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From Euclidean Distance to Spatial Classification: Unraveling the Technology 

behind GPT Models  

 

Alfredo B. Roisenzvit* 

 

Abstract 

In this paper, we present a comprehensive analysis of the technology underpinning Generative 

Pre-trained Transformer (GPT) models, with a particular emphasis on the interrelationships 

between Euclidean distance, spatial classification, and the functioning of GPT models. Our 

investigation begins with a thorough examination of Euclidean distance, elucidating its role as a 

fundamental metric for quantifying the proximity between points in a multi-dimensional space. 

Following this, we provide an overview of spatial classification techniques, explicating their 

utility in discerning patterns and relationships within complex data structures. With this 

foundation, we delve into the inner workings of GPT models, outlining their architectural 

components, such as the self-attention mechanism and positional encoding. We then explore the 

process of training GPT models, detailing the significance of tokenization and embeddings. 

Additionally, we scrutinize the role of Euclidean distance and spatial classification in enabling 

GPT models to effectively process input sequences and generate coherent output in a wide array 

of natural language processing tasks. Ultimately, this paper aims to provide a comprehensive 

understanding of the intricate connections between Euclidean distance, spatial classification, and 

GPT models, fostering a deeper appreciation of their collective impact on the advancements in 

artificial intelligence and natural language processing. 

 

 
* The viewpoints of the author do not necessarily represent the position of the Universidad del CEMA 
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Introduction  

This paper was, in a relevant part, written through prompts fed to GPT-4.  The outcomes 

of such prompts were then analyzed by the human author and ordered into the pre-defined 

sections of the paper.  Although some corrections were made, and the bibliography was properly 

checked, the objective of the paper was to produce an academic output, via the responses to the 

mentioned prompts.   This, however, was the result of specific questions orderly submitted in 

prompt form, and a scientific knowledge of the prompted elements was required to generate a 

conceptually sound paper.  As a result, I found a tremendous productivity boost in the process.   

Generative Pre-trained Transformers (GPT) are state-of-the-art language models that 

have demonstrated exceptional capabilities in natural language processing tasks. Understanding 

the technology behind these models requires a thorough comprehension of the concepts of 

Euclidean distance and spatial classification, which form the foundation for their architecture. 

 

Euclidean Distance 

Euclidean distance, also known as L2 distance or L2 norm, is a fundamental concept in 

geometry and linear algebra. It is a measure of the straight-line distance between two points in an 

n-dimensional Euclidean space (Bishop, 2006). Mathematically, the Euclidean distance between 

two points A(x1, x2, ..., xn) and B(y1, y2, ..., yn) can be calculated using the following equation: 

d(A, B) = √((x1 - y1)^2 + (x2 - y2)^2 + ... + (xn - yn)^2) 

In machine learning and data science, Euclidean distance is commonly employed as a 

similarity measure between data points in tasks such as clustering, classification, and 

dimensionality reduction (Pedregosa et al., 2011). 
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Spatial Classification 

Spatial classification is a machine learning technique used to categorize data points based 

on their positions in a multi-dimensional space. It involves learning a decision boundary that 

separates different classes of data points in the feature space. Distance metrics, such as Euclidean 

distance, play a crucial role in determining the similarity or dissimilarity between data points and 

forming the decision boundaries (Bishop, 2006).  The logic follows, in a multi-dimensional 

space, that if the distance between n coordinates on a vector in such space is minimized, then 

those elements must be similar or equal if such distance is zero or limit thereof.  In spatial 

classification, any given object, real or imaginary, can be given n attributes, and these attributes 

can then be vectorized in a category pertaining to the object.   So, an object can have as much 

attributes as different classifications we want to use, and then vectorize these attributes with a 

coordinate system, that will allow therefore the spatial classification techniques. 

 

Common spatial classification techniques include: 

3.1 k-Nearest Neighbors (k-NN) k-NN is a non-parametric classification method that 

considers the k nearest data points to a query point to determine its class (Altman, 1992). The 

class membership is determined by majority vote, with the query point being assigned to the 

class most common among its k nearest neighbors. 

3.2 Support Vector Machines (SVM) SVM is a linear classification technique that seeks 

to find the optimal hyperplane separating data points of different classes (Cortes & Vapnik, 

1995). The goal is to maximize the margin between the hyperplane and the closest data points 

from each class, called support vectors. SVM can also be extended to non-linear classification 

using kernel methods. 
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3.3 Decision Trees Decision trees are a type of classification model that recursively splits 

the feature space into regions based on feature values, forming a tree-like structure (Breiman et 

al., 1984). Each internal node in the tree represents a feature, and each leaf node represents a 

class label. 

 

GPT Models 

   

GPT models are a type of deep learning architecture that leverages the Transformer 

model, which was introduced by Vaswani et al. (2017) as a novel approach to sequence-to-

sequence learning. The primary components of the Transformer are the self-attention mechanism 

and the positional encoding, which together enable the model to effectively capture long-range 

dependencies in the input data. 

 

The Transformer Model: Architecture and Applications 

The Transformer model is a groundbreaking architecture designed for sequence-to-

sequence tasks in natural language processing and other domains. It has garnered significant 

attention due to its ability to handle long-range dependencies in input sequences and its highly 

parallelizable structure. The key components of the Transformer model are the self-attention 

mechanism and positional encoding, which Will be discussed in the context of GPT models. 

The Transformer model can be thought of as a highly intelligent language processing 

machine designed to understand and generate text. Imagine you have a series of jigsaw puzzle 

pieces (words in a sentence) that you need to put together in the right order to create a 
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meaningful picture (a coherent sentence). The Transformer model excels at this task, thanks to 

two key components: the self-attention mechanism and positional encoding. 

Let's break down these concepts using real-world metaphoric examples: 

1. Self-Attention Mechanism: Think of the self-attention mechanism as a group of 

detectives working together to solve a case. Each detective (word) in the group is 

responsible for gathering clues about the other detectives and understanding their roles in 

the case (the sentence). The self-attention mechanism allows the model to figure out 

which words are closely related and should be considered together to make sense of the 

whole sentence. 

For example, in the sentence, "The dog chased the cat, but it got away," the self-attention 

mechanism helps the model understand that "dog" is related to "chased" and "cat" is related to "it 

got away." 

2. Positional Encoding: The order in which words appear in a sentence often plays a crucial 

role in determining the meaning. Positional encoding is like a GPS system that gives each 

word a specific location in the sentence, helping the model understand the importance of 

the word's position. 

For instance, consider the sentences "The cat sat on the mat" and "The mat sat on the 

cat." Although the words are the same, the meaning of these sentences is different because of the 

order of the words. Positional encoding helps the model capture the correct meaning by 

considering the order of the words in the sentence. 

Now let's look at the overall structure of the Transformer model. It has two main parts: 

the encoder and the decoder. 
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1. Encoder: The encoder's job is to read and analyze the input text, just like a detective 

gathering information about a case. It takes the words in the sentence, considers their 

relationships and positions, and creates a continuous representation that captures the 

meaning of the whole sentence. 

2. Decoder: The decoder's role is similar to a detective presenting their findings to solve the 

case. It takes the continuous representation generated by the encoder, processes it further, 

and produces an output that can be a translation, a summary, or answers to specific 

questions. 

In summary, the Transformer model is a powerful language processing tool that excels at 

understanding and generating text by considering the relationships between words and their 

positions in a sentence. It's like a team of detectives working together to solve complex language 

puzzles and present meaningful solutions. 

 

Drilling down into the Encoder  

In the Transformer model, the encoder plays a crucial role in processing and 

understanding the input text. Let's break down its workings in layman's terms, using the 

metaphor of a detective agency and referring to the code as described by Vaswani et al. in the 

original paper. 

The encoder consists of multiple layers, each working like a team of detectives who 

specialize in different aspects of the case (input text). Each layer in the encoder contains two 

sub-layers: a multi-head self-attention mechanism and a position-wise feed-forward network. 

1. Multi-Head Self-Attention Mechanism: This sub-layer can be thought of as several 

groups of detectives working simultaneously to analyze different aspects of the case. 
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Each group (head) focuses on different relationships between the words in the sentence. 

By having multiple heads, the model can capture a more comprehensive understanding of 

the input text. 

For example, one group of detectives might focus on understanding the relationships 

between nouns and verbs, while another group might concentrate on the connections between 

adjectives and the nouns they describe. 

In the original paper, the multi-head self-attention mechanism is defined as: 

MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O where head_i = 

Attention(QW_i^Q, KW_i^K, VW_i^V) 

Here, Q, K, and V represent query, key, and value matrices. W_i^Q, W_i^K, and W_i^V 

are the learned linear projections for each head. W^O is the output linear projection. 

2. Position-wise Feed-Forward Network: After the self-attention mechanism, the input text 

is passed through a position-wise feed-forward network, which can be thought of as a 

group of detectives working together to synthesize the findings of the previous groups. 

They process the information gathered by the self-attention mechanism and generate a 

new representation of the input text. 

In the original paper, the position-wise feed-forward network is defined as: 

FFN(x) = max(0, xW_1 + b_1)W_2 + b_2 

Here, W_1 and W_2 are weight matrices, and b_1 and b_2 are bias terms. The max 

function is the Rectified Linear Unit (ReLU) activation function. 

The output of the top layer in the encoder is a continuous representation of the input text, 

which captures the meaning of the whole sentence. This representation is then passed to the 

decoder to generate the final output. 
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Throughout the encoder, residual connections and layer normalization are used to 

improve the training stability and performance. Residual connections can be thought of as a 

shortcut that allows the detectives to refer back to the original input, while layer normalization 

helps maintain consistency in the detectives' work, ensuring that their findings are reliable and 

accurate. 

In summary, the encoder in the Transformer model works like a detective agency with 

multiple layers of specialists who analyze the relationships between words and their positions in 

a sentence. Through the multi-head self-attention mechanism and position-wise feed-forward 

networks, the encoder creates a continuous representation of the input text, which is then used by 

the decoder to generate the final output. 

 

Tokenization 

Before the input text is fed into the Transformer model, it needs to be broken down into 

smaller pieces called tokens. This process is known as tokenization. Let's explain tokenization 

using a metaphor and in layman's terms, similar to the previous explanations. 

Think of tokenization as a librarian who's tasked with organizing books (input text) on 

shelves in a way that makes it easier for the Transformer model (the reader) to understand and 

process the information. The librarian breaks down the books into smaller units (tokens), which 

can be words, subwords, or even characters, depending on the chosen tokenization strategy. 

There are several strategies the librarian (tokenizer) can use to break down the text into 

tokens: 

1. Word-based Tokenization: In this approach, the librarian breaks down the text into 

individual words. For example, the sentence "The cat is sitting on the mat" would be 
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tokenized into ["The", "cat", "is", "sitting", "on", "the", "mat"]. This is a simple and 

intuitive method, but it may struggle with handling rare or out-of-vocabulary words. 

2. Subword-based Tokenization: To overcome the limitations of word-based tokenization, 

the librarian can use subword-based tokenization, which breaks down the text into 

smaller units that are more frequent and consistent across languages. For example, the 

sentence "ChatGPT is an advanced AI model" might be tokenized into ["Chat", "G", 

"PT", " is", " an", " ad", "van", "ced", " AI", " mo", "del"]. This method can handle rare 

words and is more flexible when dealing with different languages. 

3. Character-based Tokenization: In this approach, the librarian breaks down the text into 

individual characters. For example, the sentence "The cat is sitting on the mat" would be 

tokenized into ["T", "h", "e", " ", "c", "a", "t", " ", "i", "s", " ", "s", "i", "t", "t", "i", "n", 

"g", " ", "o", "n", " ", "t", "h", "e", " ", "m", "a", "t"]. This method can handle any input 

text but may require more computational resources due to the increased number of 

tokens. 

Once the text is tokenized, the tokens are converted into numerical representations called 

embeddings. These embeddings are like the Dewey Decimal System used in libraries to represent 

the tokens in a way that makes it easier for the Transformer model to understand and process the 

information. 

In summary, tokenization is the process of breaking down the input text into smaller 

units, such as words, subwords, or characters, to make it easier for the Transformer model to 

understand and process the information. The choice of tokenization strategy depends on the 

specific problem and desired balance between simplicity, flexibility, and computational 

resources. 
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Embeddings and similarities 

Embeddings are an essential part of natural language processing, as they help the 

Transformer model (the reader) understand and process the tokens (pieces of text) more 

effectively. To explain embeddings using a metaphor and in layman's terms, let's consider the 

process of assigning colors to objects based on their properties. 

Imagine that you have a collection of objects (tokens), such as fruits, and you want to 

represent their properties, like taste, size, and texture, in a way that's easier for the Transformer 

model to understand. To do this, you can assign a unique color (embedding) to each fruit, based 

on its properties. For example, sweet fruits might be represented by shades of red, while sour 

fruits could be shades of green. 

Embeddings work similarly in natural language processing. They are numerical 

representations that capture the meaning and properties of tokens in a continuous vector space. 

Instead of representing tokens as discrete units (like colors in our fruit example), embeddings 

position the tokens in a multi-dimensional space based on their similarities, relationships, and 

contextual information. 

For example, words with similar meanings, such as "cat" and "kitten," would have 

embeddings that are closer together in the vector space, while unrelated words, like "cat" and 

"airplane," would be farther apart. This continuous representation allows the Transformer model 

to process and understand the tokens more effectively. 

There are several methods to generate embeddings, including: 

1. Word2Vec: This method learns embeddings based on the idea that words that appear in 

similar contexts tend to have similar meanings. It uses a shallow neural network to 
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predict a word based on its surrounding words (Skip-gram) or predict surrounding words 

based on a given word (Continuous Bag of Words). 

2. GloVe: The Global Vectors for Word Representation (GloVe) method learns embeddings 

by analyzing word co-occurrence statistics in a large text corpus. It aims to create 

embeddings that capture both the local context information (like Word2Vec) and global 

word co-occurrence patterns. 

3. FastText: This method is an extension of Word2Vec that generates embeddings for 

subword units, such as character n-grams, in addition to whole words. This approach 

allows FastText to handle rare and out-of-vocabulary words more effectively. 

4. BERT: Bidirectional Encoder Representations from Transformers (BERT) is a 

Transformer-based model that learns contextual embeddings by pre-training on a large 

text corpus using masked language modeling and next sentence prediction tasks. 

Once the embeddings are generated, they serve as the input for the Transformer model, 

which then processes and understands the text based on the relationships and contextual 

information captured in these continuous vector representations. 

In summary, embeddings are numerical representations of tokens that capture their 

meaning and properties in a continuous vector space. They help the Transformer model 

understand and process the input text more effectively by leveraging the similarities, 

relationships, and contextual information between tokens. 

Leveraging similarities in embeddings is crucial for the Transformer model to effectively 

process and understand the input text. The main idea is that tokens with similar meanings or 

properties should have embeddings that are closer together in the continuous vector space. By 
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positioning related tokens close to each other in this space, the model can easily identify their 

relationships and extract meaningful patterns from the data. 

Let's dive deeper into the concept of leveraging similarities in embeddings: 

1. Semantic Similarity: The similarity between embeddings helps the model capture 

semantic relationships between tokens. For example, synonyms like "happy" and "joyful" 

should have embeddings that are close together in the vector space, as they have similar 

meanings. By representing tokens in this manner, the model can recognize that these 

words can often be used interchangeably in a sentence and understand their semantic 

connection. 

2. Syntactic Similarity: Embeddings can also capture syntactic relationships between 

tokens. For example, different verb forms such as "run," "running," "ran," and "runs" 

should have similar embeddings, as they all convey the same action but in different 

grammatical forms. By capturing syntactic similarities, the model can understand the 

underlying structure and grammar of the input text, helping it generate coherent and 

grammatically correct output. 

3. Analogical Reasoning: Another advantage of leveraging similarities in embeddings is the 

ability to perform analogical reasoning. For instance, given the relationship "king is to 

man as queen is to woman," the model can understand the analogy by identifying the 

relationship between the embeddings of "king" and "man" and applying the same 

relationship to the embeddings of "queen" and "woman." This ability helps the model 

make inferences and predictions based on the observed patterns and relationships in the 

data. 
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4. Contextual Information: Embeddings can also capture contextual information about how 

tokens are used in different contexts. For example, the word "bank" can refer to a 

financial institution or the side of a river, depending on the context. By learning 

embeddings that reflect these contextual nuances, the model can understand the different 

meanings of a word based on its surrounding words and generate appropriate output 

accordingly. 

The Transformer model leverages these similarities by processing the input text using 

self-attention mechanisms and positional encodings. The self-attention mechanism allows the 

model to focus on different parts of the input sequence, weighting the importance of tokens 

based on their relationships to other tokens in the sequence. This helps the model capture the 

contextual information and understand the meaning of tokens in the given context. 

In summary, leveraging similarities in embeddings allows the Transformer model to 

capture semantic and syntactic relationships, perform analogical reasoning, and understand 

contextual information. These capabilities help the model process the input text more effectively, 

enabling it to generate accurate and coherent output in various natural language processing tasks. 

In the context of leveraging similarities in embeddings, Euclidean distance serves as a 

metric for measuring the proximity between tokens in the continuous vector space. Embeddings 

capture semantic, syntactic, and contextual information, positioning tokens with similar 

properties closer together in the vector space. Euclidean distance quantifies the degree of 

similarity between these embeddings, allowing the Transformer model to understand and process 

the relationships between tokens more effectively. 

In the context of word embeddings, each token is represented as a point in a high-

dimensional vector space, and the Euclidean distance between two embeddings serves as an 
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indicator of their similarity. Smaller Euclidean distances imply that the tokens are more closely 

related, while larger distances indicate a weaker relationship. By measuring the Euclidean 

distances between embeddings, the Transformer model can gauge the semantic and syntactic 

similarities between tokens, as well as their contextual relationships. 

It is important to note that Euclidean distance is not the only metric for measuring 

similarity between embeddings. Other metrics, such as cosine similarity, are also commonly used 

in natural language processing tasks. Cosine similarity measures the cosine of the angle between 

two embeddings, with a value of 1 indicating perfect similarity (parallel vectors) and a value of -

1 indicating perfect dissimilarity (antiparallel vectors). Cosine similarity is often preferred in 

some applications, as it is less sensitive to the magnitude of the embeddings and focuses more on 

their relative orientations. 

In summary, Euclidean distance is a metric that quantifies the degree of similarity 

between embeddings in the continuous vector space. By measuring the distances between 

embeddings, the Transformer model can leverage the semantic, syntactic, and contextual 

information encoded in these representations to effectively process and understand the 

relationships between tokens in the input text. 

 

 Self-Attention Mechanism 

The self-attention mechanism allows GPT models to weigh the importance of words in a 

sequence relative to one another. It computes a set of attention scores for each word in the input 

sequence using query, key, and value vectors, which are derived from the input word 

embeddings (Vaswani et al., 2017). 
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Example 1: Consider a simple sentence, "The cat sat on the mat." In this case, the self-

attention mechanism would help the model understand the relationships between the words "cat" 

and "mat," as well as "sat" and "on," as they have strong contextual relationships. 

Example 2: In the sentence, "I arrived at the airport after the flight had departed," the 

self-attention mechanism allows the model to understand the temporal relationship between 

"arrived" and "departed," despite the distance between the words in the sequence. 

Example 3: For the sentence, "Jane went to the store to buy some groceries, but she 

forgot her wallet at home," the self-attention mechanism helps the model associate "Jane" with 

"she" and "her wallet," even though they are separated by several words. 

Mathematically, the self-attention mechanism is represented by: 

Attention(Q, K, V) =Softmax((QK^T) / √(d_k))V 

where Q, K, and V represent the query, key, and value matrices, and d_k is the dimension 

of the key vectors. 

4.2 Positional Encoding 

Positional encoding is used to incorporate the order of words in a sequence, as the self-

attention mechanism is permutation invariant (Vaswani et al., 2017). It uses sine and cosine 

functions to encode the position of each word, allowing the model to capture the relative 

positions of words. 

Example 1: Consider the sentences, "I love chocolate ice cream" and "I love ice cream 

chocolate." Although the words are the same, the meaning of the sentences is different due to the 

word order. Positional encoding allows the model to differentiate between these sentences by 

capturing the order of the words. 
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Example 2: In the sentence, "The quick brown fox jumps over the lazy dog," the word 

"jumps" is positioned between "fox" and "dog." Positional encoding ensures that the model 

understands the importance of this position and can capture the relationship between these three 

words. 

Example 3: For the sentence, "Anna bought a new dress, and Emily purchased a stylish 

skirt," positional encoding enables the model to associate "Anna" with "dress" and "Emily" with 

"skirt" by capturing the positions of these words in the sequence. 

Mathematically, positional encoding is represented by: 

PE(pos, 2i) = sin(pos / 10000^(2i / d_model))  

PE(pos, 2i + 1) = cos(pos / 10000^(2i / d_model)) 

where pos is the position of the word in the sequence, i is the dimension of the word 

embedding, and d_model is the model's input dimension. 

By integrating self-attention and positional encoding, GPT models can effectively capture 

the complex relationships between words in a sequence and generate contextually relevant output 

for various natural language processing tasks. 

 

Training the Model 

Training the Transformer model is like teaching a student to understand and generate text 

based on patterns and relationships learned from large amounts of data. In the context of our 

metaphors, it involves refining the process of assigning colors to objects (embeddings) and 

teaching the detective agency (encoder) and the writer (decoder) to work together more 

efficiently. 
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Training supervision techniques 

For example, GPT-3, or the third iteration of the Generative Pre-trained Transformer, is 

primarily trained using unsupervised learning techniques with a small amount of supervised fine-

tuning. The training process can be broken down into two main stages: pre-training and fine-

tuning. 

1. Pre-training (unsupervised learning): The primary learning technique employed in GPT-

3's training is unsupervised learning. During this stage, the model learns from vast 

amounts of text data without any explicit supervision or labeled data. The primary 

objective is to learn a language model that can predict the next word in a sequence based 

on the given context. This is achieved using a technique called maximum likelihood 

estimation. 

The pre-training process involves feeding the model with a large corpus of text from 

various sources, such as websites, books, articles, and more. The model tokenizes the text into 

smaller units (words or subwords) and processes them using the Transformer architecture. 

The Transformer architecture consists of multiple layers of self-attention mechanisms and 

feed-forward neural networks, which help the model learn contextual representations of the input 

tokens. As the model processes the input, it predicts the next token in the sequence. During pre-

training, the model's parameters (weights and biases) are updated using backpropagation to 

minimize the prediction error. This process continues iteratively until the model converges, 

meaning its predictions become more accurate and the error is minimized. 

2. Fine-tuning (supervised learning): After pre-training, GPT-3 is fine-tuned using a 

smaller, labeled dataset. This dataset contains input-output pairs, where the input is a 

prompt and the output is the desired response. Fine-tuning is a form of supervised 
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learning because the model is provided with explicit supervision in the form of labeled 

data. 

During fine-tuning, the model is trained to minimize the difference between its 

predictions and the provided target outputs. The model's parameters are further updated using 

techniques like gradient descent, but the updates are smaller compared to the pre-training phase. 

This fine-tuning process allows GPT-3 to adapt to specific tasks, such as translation, 

summarization, or question-answering, depending on the labeled dataset used. 

In summary, GPT-3's training process primarily involves unsupervised learning during 

the pre-training phase, where the model learns to predict the next word in a sequence based on 

context. After pre-training, the model is fine-tuned on a smaller, task-specific labeled dataset 

using supervised learning techniques, allowing it to adapt to specific tasks and generate more 

accurate outputs. 

 

Training steps 

 Let's break down the training process into three main steps: pre-processing, forward 

propagation, and backpropagation. 

1. Pre-processing: The first step in training the model is preparing the data. The input text is 

tokenized into smaller units (words, subwords, or characters), and these tokens are 

converted into embeddings (assigning colors to objects). The target output (e.g., 

translations, summaries, or labeled entities) is also tokenized and embedded. 

2. Forward Propagation: During this step, the input embeddings are passed through the 

encoder (detective agency) to generate a continuous representation of the input text. This 

representation captures the relationships and contextual information between the tokens. 
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The decoder (writer) then uses this representation to generate the output text one token at 

a time, predicting the most likely next token based on the input, previous output tokens, 

and its internal state. The model's predictions are compared to the actual target output to 

calculate a loss, which measures how well the model is performing. 

3. Backpropagation: To improve the model's performance, the loss is used to update the 

model's parameters (the weights and biases in the self-attention mechanism, position-wise 

feed-forward networks, and other components). The backpropagation algorithm 

calculates the gradients (partial derivatives) of the loss with respect to each parameter, 

indicating how much each parameter should be adjusted to minimize the loss. The 

model's parameters are then updated using an optimization algorithm, such as stochastic 

gradient descent (SGD) or Adam, which adjusts the parameters based on the calculated 

gradients and a learning rate. 

The training process is repeated for many iterations (epochs) over the entire dataset, with 

the model's performance improving incrementally as it learns the patterns and relationships in the 

data. To prevent overfitting, techniques such as dropout, weight decay, and early stopping can be 

employed, ensuring that the model generalizes well to new, unseen data. 

In summary, the training of the Transformer model involves pre-processing the input and 

target text, passing the data through the encoder and decoder to generate predictions, and using 

the calculated loss to update the model's parameters. This process is iterated over the dataset, 

refining the model's understanding of the input text and its ability to generate accurate and 

coherent output. 

 

Drilling down on how the model predicts the next token: this is the magic sauce. 
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The prediction of the next token involves a series of steps within the Transformer 

architecture, which is the underlying model for GPT. Here, we'll dive into a technical 

explanation of how GPT-3 predicts the next token in a given sequence: 

1. Tokenization: The input text is first tokenized into smaller units, such as words or 

subwords. These tokens are then converted into numerical representations called 

embeddings using an embedding layer. Each token is also assigned a positional encoding 

to retain information about the position of the token in the sequence. 

2. Forward pass through the Transformer layers: GPT-3 is a deep learning model that 

consists of multiple Transformer layers stacked on top of each other. Each layer is 

composed of a multi-head self-attention mechanism and a position-wise feed-forward 

neural network, with layer normalization and residual connections in between. 

a. Multi-head self-attention: The self-attention mechanism computes a weighted sum of 

the input embeddings based on their similarity. This process is done in parallel for multiple 

"heads," which allows the model to capture different aspects of the input relationships. The 

outputs of all the heads are concatenated and passed through a linear layer. 

b. Position-wise feed-forward neural network: After the multi-head self-attention step, the 

output is passed through a feed-forward neural network consisting of two linear layers separated 

by an activation function, usually ReLU (Rectified Linear Unit). 

c. Layer normalization and residual connections: Layer normalization is applied after the 

multi-head self-attention and the feed-forward neural network to stabilize the learning process. 

Residual connections are used to add the input of each sub-layer to its output, which helps in 

mitigating the vanishing gradient problem. 
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3. Repeating the process across layers: The output of one Transformer layer becomes the 

input for the next layer. This process is repeated for all the layers in the model. The 

output of the final layer is a contextualized representation of the input tokens. 

4. Generating the probability distribution for the next token: The output of the final 

Transformer layer is passed through a linear layer to project the contextualized 

embeddings back into the vocabulary size. Then, a softmax activation function is applied, 

which converts the logits into a probability distribution over the vocabulary. The softmax 

function ensures that the sum of probabilities for all possible tokens is equal to 1. 

5. Sampling or selecting the next token: To predict the next token, one can either choose the 

token with the highest probability (greedy decoding) or sample a token from the 

probability distribution (sampling-based decoding). The chosen token is then added to the 

input sequence, and the process is repeated until a predetermined stopping condition is 

met (e.g., reaching a maximum sequence length or generating an end-of-sequence token). 

In summary, GPT-3 predicts the next token in a sequence by employing a sophisticated 

multi-layered Transformer architecture, which comprises several key components that work in 

tandem to process the input sequence effectively. These components include self-attention 

mechanisms, feed-forward neural networks, layer normalization, and residual connections. Upon 

processing the input sequence through the multiple layers of the Transformer architecture, GPT-

3 generates a final output in the form of a probability distribution over the entire vocabulary. 

This distribution represents the model's confidence in each potential token being the most 

suitable next token in the sequence, with higher probabilities assigned to tokens deemed more 

likely based on the contextual information derived from the input. The chosen token is then 

appended to the input sequence, and the process is repeated until a predefined stopping criterion 
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is met, such as reaching a maximum sequence length or generating a special end-of-sequence 

token.  This comprehensive approach, combining self-attention mechanisms, feed-forward neural 

networks, layer normalization, and residual connections, equips GPT-3 with the ability to 

generate highly coherent and contextually appropriate output, making it a powerful model for a 

wide range of natural language processing tasks.+ 

 

Conclusion 

Although GPT models are primarily designed for natural language processing, the 

concepts of Euclidean distance and spatial classification can be intimately linked to their 

underlying mechanisms, highlighting the versatility and adaptability of these models for various 

practical applications. 

The self-attention mechanism, a crucial component of GPT models, computes similarity 

scores between words in a sequence. This process is analogous to the role of distance metrics, 

such as Euclidean distance, in spatial classification, where the proximity between data points is 

used to discern patterns and relationships within complex data structures.  Furthermore, GPT 

models can be adapted for tasks involving spatial data by leveraging spatial classification 

techniques. These adaptations may include the incorporation of convolutional layers, attention 

mechanisms designed for spatial data, or specialized positional encoding schemes that capture 

spatial relationships between elements. Some examples of tasks that can benefit from such 

adaptations include: 

• Image classification: GPT models can be modified to handle image data by incorporating 

convolutional layers, which can extract local features and spatial patterns in images. 
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These features can then be processed by the Transformer architecture to generate a 

classification output. 

• Object detection: By integrating specialized attention mechanisms that focus on spatial 

relationships and local contexts, GPT models can be adapted to detect and localize 

objects within images, providing both class labels and bounding box coordinates. 

• Semantic segmentation: GPT models can be extended to perform pixel-wise 

classification, assigning class labels to each pixel in an image. This task can benefit from 

adaptations that maintain and utilize spatial information throughout the model, such as 

preserving spatial dimensions in intermediate layers or employing specialized positional 

encoding schemes. 

In conclusion, the connection between Euclidean distance, spatial classification, and GPT 

models reveals the potential for these models to be adapted and fine-tuned for a wide range of 

practical applications, transcending their original purpose in natural language processing. By 

understanding and exploiting these connections, researchers and practitioners can unlock new 

possibilities and drive innovation in artificial intelligence across various domains. 
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