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Does accounting for spatial effects help forecasting the growth of Chinese

provinces?

Eric Girardin∗ Konstantin A. Kholodilin∗∗

Abstract

In this paper, we make multi-step forecasts of the annual growth rates of the real GRP for each of the 31

Chinese provinces simultaneously. Beside the usual panel data models, we use panel models that explicitly

account for spatial dependence between the GRP growth rates. In addition, the possibility of spatial effects

being different for different groups of provinces (Interior and Coast) is allowed. We find that both pool-

ing and accounting for spatial effects helps substantially improve the forecast performance compared to the

benchmark models estimated for each of the provinces separately. It was also shown that effect of accounting

for spatial dependence is even more pronounced at longer forecasting horizons (the forecast accuracy gain

as measured by the root mean squared forecast error is about 8% at 1-year horizon and exceeds 25% at 13-

and 14-year horizon).

Keywords: Chinese provinces; forecasting; dynamic panel model; spatial autocorrelation; group-specific

spatial dependence.
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One family builds the wall, two

families enjoy it.

Chinese proverb

1 Introduction

In this paper, we conduct the forecasts of the growth rates of real Gross Regional Product (GRP) of Chinese

provinces. The problem of data collection for each region is circumvented by pooling the annual growth rates

of GRP into a panel and correspondingly utilizing panel data models for forecasting. The advantages of such a

pooling approach for forecasting have been widely demonstrated in a series of articles for diverse data sets such

as Baltagi and Griffin (1997); Baltagi et al. (2003) — for gasoline demand, Baltagi et al. (2000) — for cigarette

demand, Baltagi et al. (2002) — for electricity and natural gas consumption, Baltagi et al. (2004) — for Tobin’s

q estimation, and Brücker and Siliverstovs (2006) — for international migration, among others.

In addition to pooling, accounting for spatial interdependence between regions may prove beneficial for the

purposes of forecasting. Spatial dependence implies that due to spillover effects (e.g., commuter labor and trade

flows) neighboring regions may have similar economic performance and hence location matters. However, the

number of studies that illustrate the usefulness of accounting for (possible) spatial dependence effects across

cross-sections in the forecasting exercise is still limited. For example, Elhorst (2005), Baltagi and Li (2006), and

Longhi and Nijkamp (2007) demonstrate the forecast superiority of models accounting for spatial dependence

across regions using data on demand for cigarettes from states of the USA, demand for liquor in the American

states, and German regional labor markets, respectively. However, only Longhi and Nijkamp (2007) conduct

quasi real-time forecasts for period t+ h (h > 0) based on the information available in period t. On the other

hand, the forecasts made in Elhorst (2005) and Baltagi and Li (2006) are not real-time forecasts, since they

take advantage of the whole information set that is available in the forecast period, t+ h.

Applications of panel data models accounting for spatial effects for the forecasting of regional GDP are even

more limited. To our knowledge, there are only two papers treating this issue, namely that of Polasek et al.

(2007), who make long-term forecasts of the GDP of 99 Austrian regions, but do not evaluate their accuracy in

a formal way, and Kholodilin et al. (2008), who forecast the GDP of German Länder at horizons varying from
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1 to 5 years and evaluate them in terms of the root mean square error (RMSFE).

Structural type predictions of future trend output growth for China are made by Holz (2008) and Perkins

and Rawski (2008). Existing work on forecasting Chinese GDP growth relies on two series of approaches. A

very aggregate on low-frequency (annual) data uses standard or modified ARIMA models (Guo, 2006) as well

as genetic programming methods (Li et al. (2007)). The other branch computes composite leading indicators

on disaggregated high-frequency (quarterly) data, with factor models. The latter is done either in a simple form

(in the footsteps of Stock and Watson (1989)) as in Klein and Mak (2005) or Curran and Funke (2006), or with

a sophisticated two-step VAR framework (à la Stock and Watson (2005) as in Qin et al. (2008). Finally, a third

branch relies on macroeconometric structural models (Qin et al. (2008)). The second, or two-step factor VAR,

framework seems to outperform the macro-structural one in forecasting Chinese GDP growth at a quarterly

frequency (Qin et al. (2008)). None of these exploits the regional dimension of the Chinese economy to forecast

GDP growth.

Thus, the main contribution of this paper is the construction of GRP forecasts for all Chinese provinces

simultaneously. To the best of our knowledge, this is the first attempt to make the GRP forecast for China

using spatial methods. Our additional contribution to the literature is that in order to make forecasts of GRP of

provinces we employ panel data models that allow not only for temporal interdependence in the regional growth

rates, but also take into account their spatial interdependence. Moreover, the possible differences in spatial

effects between groups of more or less homogeneous regions are allowed. Two such groups are identified: Coast

and Interior. In comparison to the Interior provinces, the Coastal provinces are much more dynamic and open.

The advantage of our approach is that it is suited to conduct forecasts in the real time. We also demonstrate

the usefulness of our approach by formal methods. It is shown that ooling, accounting for spatial effects, and

differential treatment of Coastal and Interior provinces leads to a substantially higher forecast accuracy of the

real growth rates of GRP of Chinese provinces.

The paper is structured in the following way. Section 2 reviews the studies on spatial effects among Chinese

provinces. In section 3 the data are described. Section 4 presents different econometric forecasting models.

In section 5 the estimation results are reported, whereas section 6 evaluates the forecasting performance of

alternative models. Finally, section 7 concludes.
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2 Spatial dimensions of growth in China

In this section, we review the existing literature on spatial effects among Chinese provinces. In particular, we

are interested in the spatial dependences between the provinces as well as spatial heterogeneity among them.

Spatial interactions among provinces should be a positive function of the degree of integration between

them. The fragmentation of China’s internal market in the early 1990s was established as a stylized fact from

the pioneering World Bank (1994) study to the influential work by Young (2000). Reliable evidence on the

potential impact of widely reported increases in inter-provincial trade barriers in the 1990s, relies on provincial

input-output tables. Early analyses of such data (Zhou, 1996; Naughton (2003)) leave out the crucial growth

period following Deng’s tour to the South. Work using the update of the data to 1997 uses either a trade approach

or a macroeconomic approach. Relying on the former, Poncet (2003) documents a fall in inter-provincial trade

after 1992. Such a conclusion even holds at the disaggregated level, as shown by Poncet (2005) who examined

industry-level data. The trade diminishing impact of provincial borders (measured with McCallum (1995)’s

method) indeed increased in China from 1992 to 1997.

Macroeconomic approaches have quantified the contribution of inter-regional spillover effects to regional

growth in China. Based on the input-output tables for 1987 and 1997, and a 7-region aggregation of Chinese

provinces, Meng and Qu (2007) identify the regions of origin of spillovers (dispersion) and those receiving

them (sensitivity). Among the three most dynamic regions located on the coast, a striking contrast exists

between the central Huadong (Shanghai, Jiangsu, and Zhejiang) and Southern Huanan (Fujian, Guangdong,

and Hainan) on the one side and the Northern Huebei (Beijing, Tianjin, Hebei, and Shandong) on the other. The

former two are national leaders in the degree of dispersion, which means their growth benefits other (especially

neighboring) regions’ growth, as well as each other’s. By contrast the latter shows a record degree of sensitivity,

benefiting primarily from growth in the two other coastal regions, but generally does not contribute to growth

in other regions. Among the central inner regions, and due to its geographical location, Huazang (Shanxi,

Anhui, Jianxi, Henan, Hubei, and Hunan) both shows a high sensitivity, benefiting from spillovers originating

in Huadong and Huanan, and redistributes spillovers, in decreasing order to the inner regions of Xibei (Inner

Mongolia, Shaanxi, Gansu, Qinghai, Ningxia, and Xingjiang), Huabei and Huanan. Xibei is one of the typical

beneficiaries of spillovers, but also originates them due to its “exports” of natural resources. Due to their low
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dispersion and sensitivity degrees, the Northeastern region of Dongbei (Liaoning, Jilin, and Heilongjinag) and

the Southwestern Xianan (Guangxi, Choongqin, Sichuan, Guizhou, Yunnan, and Tibet) look similar as a result

of their remote geographical locations. However, the latter has taken advantage of its proximity and good access

to the high-dispersion generating Hanan.

Luo (2005) encompasses the above approaches. He takes on board the importance of the border effect,

focuses the microscope with a finer resolution, and gives it a time-series dimension. He uses panel data on

real per capita GDP growth to examine spillover effects between neighboring provinces which share a common

border. Leaving out the municipalities (Beijing, Shanghai, and Tianjin), the provinces in the three coastal

regions of Huabei, Huadong, and Huanan have generated the largest spillovers (dispersion) effects over the

1978-1999 period. However due to the focus on border effects only, the induced growth (sensitivity) has mainly

been concentrated in the coastal region itself, with limited effects on Central, let alone Western, regions. One

notable exception is Guangdong, which is the top disperser to the benefit of provinces located in both central

and Western regions. Among Inland provinces, both Hubei and Sichuan have generated substantial dispersion

effects not limited to their own regions.

Spatial statistical methods are used by Aroca et al. (2006) to show that spatial dependence of provincial per

capital GDP in China increased very substantially over the five decades of its economic development. Spatial

dependence, as measured by Moran’s I shows a rise in spatial interactions particularly notable in the 1990s.

Comparing 1952, 1978, and 1999, a positive relationship between provincial GDP per capita and its spatial lag

(Moran’s scatterplot) only arises in the latter period. This has been due in great part the change of status of

Beijing and Shanghai from a slightly negative to a very strongly positive relationship. Sandberg (2004) finds that

the Moran’s I test is positive only for the second half of the 1990s. In other words, provinces with similar growth

rates are more clustered than chance would imply. In addition, over the whole 1985-2000 period, provinces other

than direct neighbors are relatively isolated from each other. Ying (2003) finds that according to Moran’s I

test, the strongest pattern of spatial autocorrelation is manifest for a distance of 2000 kilometers. In line with

Anselin and Rey (1991)’s criticism of Moran’s test, he further distinguishes between spatially autocorrelated

errors (often due to a mismatch between economic and administrative boundaries) and spatial lag dependence

(due to spillovers across provinces). The Lagrange multiplier test for the 2000 km distance (as well as for
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others) implies that the spatial lag is significant, while spatial autocorrelation is not. In his Solow-type growth

regression estimates, the spatial lag variable indeed takes into account spatial autocorrelation, and adequately

represents the spatial effects in the Chinese economy.

To summarize, the above mentioned studies do recognize the importance of the spatial dependences between

Chinese provinces. In addition, the literature acknowledges the spatial heterogeneity existing between the

interior and coastal provinces.

3 Data description

For estimation and forecasting we use the growth rates of the annual real Gross Regional Product (GRP) for

the 31 Chinese regions (including 22 provinces, 4 municipalities, and 5 autonomous regions). Following the

widely accepted, although a bit misleading, practice we will denote Chinese regions as provinces, regardless of

whether they are provinces, municipalities or autonomous regions. The data cover the period 1979-2007 and

were obtained from the National Bureau of Statistics of China. The data are the chain indices of GRP with the

base year 2000.

The basic descriptive statistics of the growth rates of real GDP in form of the mean, maximum, minimum,

and the standard deviation are reported in Table 1. In addition, these descriptive statistics were computed

for the two groups of Chinese provinces (Coast and Interior) as displayed in the map of China — see Figure

1. The provinces belonging to the Coast group grow faster and in a more stable way than those belonging to

the Interior group. Using the GRP data covering the whole period and the trade and foreign direct investment

(FDI) data borrowed from Sheng (2009) and covering the period of high growth, 1992-2006, it can be shown that

Coast provinces have a far higher openness degree (both in terms of trade-to-GRP and exports-to-GRP ratios)

and attract much more FDI compared to their GRP than the Interior provinces — see Table 2. For example,

alhough the growth rates in both groups of provinces differ by only 1.5 percentage points, the trade-to-GRP

ratio in Coastal provinces is 2.5 times higher than in the Interior provinces and the FDI-to-GRP ratio is 1.2

times higher. Thus, it can be expected that such a different economic structure can translate into different

spatial dependence.
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4 Alternative models

In this section, we describe the econometric models that we are used for forecasting the growth rates of real

GDP of Chinese provinces.

We examine a standard set of dynamic panel data (DPD) models starting with individual autoregressive

(AR) models, which can be considered as a particular case of DPD models with unrestricted parameters, through

fixed-effects models, which impose homogeneity restrictions on the slope parameters, to pooled models, which

impose homogeneity restrictions on both intercept and slope parameters. In addition to standard fixed-effects

and pooled models, we also consider fixed-effects and pooled models that account for spatial dependence.

As a benchmark model, with which all other models will be compared, we use a linear individual AR(1)

model (IOLS) and estimate it for each province separately:

yit = αi + βiyit−1 + εit εit ∼ N.I.D.(0, σ2
i ) (1)

where yit is the annual growth rate of real GDP of i-th province.

In addition, given the short time dimension of our data, it should be noted that the OLS estimator of

the parameters of individual AR(1) models is biased due to insufficient degrees of freedom as pointed out in

Ramanathan (1995).

The next model we consider is the pooled panel, POLS , model:

yit = α+ βyit−1 + εit εit ∼ N.I.D.(0, σ2) (2)

which imposes the homogeneity restriction on both intercept and slope coefficients across all the provinces.

An alternative model is the fixed-effects, FOLS , model that allows for province-specific intercepts:

yit = αi + βyit−1 + εit εit ∼ N.I.D.(0, σ2) (3)

The fixed-effects model represents an intermediate case between the individual, IOLS , and pooled panel, POLS ,

models. It is not too restrictive as the pooled model, which assumes equal average growth rates in all provinces,
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and yet allows to take advantage of panel dimension. From the economic point of view, fixed effects capture

differences in growth rates between provinces related to their heterogeneous economic structure.

Moreover, considering a group-effects, GOLS , where the intercepts are group-specific, might be useful:

yit =
G∑

g=1

Igαg + βyit−1 + εit εit ∼ N.I.D.(0, σ2) (4)

where G is the number of groups of provinces (1 < G < N , where N is the number of provinces) and Ig is the

group dummy, which is equal to one, when the province belongs to group g, and to zero, otherwise. As shown

in section 3, two major groups of provinces in China can be identified: Coast and Interior. These groups of

provinces differ both in terms of level of economic development and in terms of the growth rate. Therefore,

it would be reasonable to assume that the intercepts of for each group can be different. Hence, G = 2 and

group dummies represent a group of coastal and a group of interior provinces. The group-effects model can be

considered as an intermediate case between the pooled model and the fixed-effects model.

Additionally, we consider the following two types of models that account for spatial correlation that might

exist between the provinces. One may expect to find the dynamic (stagnating) provinces being the neighbors

of dynamic (stagnating) provinces due to cross-border spillovers (commuter labor and trade flows).

The spatial dependence is accounted for using an N × N matrix of spatial weights W , which is based on

the distance between the centroids of respective provinces1. Following Baumont et al. (2002) we constructed

four distance-decay weights matrices depending on four different distance cutoff values: first quartile, median,

second quartile, and maximum distance. The forecast accuracy of the models based on these weights matrices

was more or less similar. Therefore, in order to save space we will report here only results obtained for the

median as a distance cutoff value. The typical element of this matrix, wij , is defined as:

wij =
1

d2ij
(5)

where dij is the great circle distance between the centroids of province i and province j.

Moreover, all the elements on the main diagonal of matrix W are equal to zero. The constructed weights

1The use of a matrix of spatial weights based on existence of common borders between the provinces is complicated by the fact
that there are island provinces, such as Hainan.
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matrix is normalized such that all the elements in each row sum up to one.

First, we model the spatial dependence by means of spatial lags of the dependent variable. We examine

both pooled and fixed-effects versions of this model. The pooled spatial lag model (PSLM
MLE ) can be written as

follows:

yit = α+ βyit−1 + ρ

N∑

j=1

wijyjt + εit εit ∼ N.I.D.(0, σ2) (6)

The group-effects spatial lag model (GSLM
MLE) is:

yit =
G∑

g=1

Igαg + βyit−1 + ρ

N∑

j=1

wijyjt + εit εit ∼ N.I.D.(0, σ2) (7)

The fixed-effects spatial lag model (FSLM
MLE ) is:

yit = αi + βyit−1 + ρ

N∑

j=1

wijyjt + εit εit ∼ N.I.D.(0, σ2) (8)

where ρ is the spatial autoregressive parameter and N is the number of provinces.

The second type of models addresses spatial correlation through a spatial autoregressive error structure,

as suggested by Elhorst (2005). Again, we distinguish between pooled and fixed-effects models. Due to their

specific nature, those models are estimated by the Maximum Likelihood method (MLE). The pooled spatial

error model (PSEM
MLE ) has the following form:

yit = α+ βyit−1 + uit uit = λ
∑N

j=1
wijujt + εit εit ∼ N.I.D.(0, σ2) (9)

The group-effects spatial error model (GSEM
MLE) can be defined as:

yit =

G∑

g=1

Igαg + βyit−1 + uit uit = λ
∑N

j=1
wijujt + εit εit ∼ N.I.D.(0, σ2) (10)

8



The fixed-effects spatial error model (FSEM
MLE ) can be expressed as:

yit = αi + βyit−1 + uit uit = λ
∑N

j=1
wijujt + εit εit ∼ N.I.D.(0, σ2) (11)

where λ is the coefficient of spatial error autoregression.

However, it may be argued that the spatial dependence, as measured by the spatial correlations, should not

necessarily be the same for all the provinces. It may well be the case that spatial correlations within groups

encompassing more or less homogeneous provinces can be different. Based on this hypothesis Garrett et al.

(2007) suggest a model with group-specific spatial dependence. As usual, both pooled and fixed-effects models

can be defined, which are estimated using MLE.

The pooled spatial lag model with group-specific spatial dependence (PSLM−G
MLE ) can be formulated as:

yit = α+ βyit−1 +
G∑

g=1

N∑

j=1

ρgw
g
ijyjt + εit εit ∼ N.I.D.(0, σ2) (12)

where w
g
ij is a typical element of the group-specific spatial weights matrix, WG, which is constructed by pre-

multiplying by a dummy variable that equals unity if province i is located in group g, and zero otherwise, see

Garrett et al. (2007), p. 607.

The group-effects spatial lag model with group-specific spatial dependence (GSLM−G
MLE ) can be expressed as:

yit =

G∑

g=1

Igαg + βyit−1 +

G∑

g=1

N∑

j=1

ρgw
g
ijyjt + εit εit ∼ N.I.D.(0, σ2) (13)

This model accounts both for heterogeneity in average growth rates and spatial dependence between the groups

of provinces.

The fixed-effects spatial lag model with group-specific spatial dependence (FSLM−G
MLE ) can be expressed as:

yit = αi + βyit−1 +
G∑

g=1

N∑

j=1

ρgw
g
ijyjt + εit εit ∼ N.I.D.(0, σ2) (14)
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The pooled spatial error model with group-specific spatial dependence (PSEM−G
MLE ) has the following form:

yit = α+ βyit−1 + uit uit =
∑G

g=1

∑N

j=1
λgw

g
ijujt + εit εit ∼ N.I.D.(0, σ2) (15)

The group-effects spatial error model with group-specific spatial dependence (GSEM−G
MLE ):

yit =

G∑

g=1

Igαg + βyit−1 + uit uit =
∑G

g=1

∑N

j=1
λgw

g
ijujt + εit εit ∼ N.I.D.(0, σ2) (16)

Finally, the fixed-effects spatial error model with group-specific spatial dependence (GSEM−G
MLE ):

yit = αi + βyit−1 + uit uit =
∑G

g=1

∑N

j=1
λgw

g
ijujt + εit εit ∼ N.I.D.(0, σ2) (17)

We have estimated IOLS , POLS , GOLS , and FOLS using the OLS method. It is known from the literature

that in the context of dynamic panel data models the OLS estimator is subject to simultaneous equation bias.

In order to address this problem we have used the GMM estimator of Arellano and Bond (1991) to estimate the

fixed-effects model without spatial autoregressive lags. Notice that the GMM estimator uses the first-difference

transformation, which omits the time-invariant variables (in our case, the province-specific intercepts). These

were recovered using the following two-step procedure. In the first step, the slope parameters are estimated

using the first differences of the data. In the second step, the estimated parameters are plugged into the equation

for the levels of data and the fitted values are calculated. The fixed effects for the FGMM model are obtained

as the province-specific averages of a difference between actual and fitted values.

Although from the theoretical perspective, the GMM estimators should be preferred to the OLS estimators

when applied to dynamic panels with small time dimension, in what follows we use the OLS estimators2, since in

the forecasting context a biased but stable estimator may still deliver a more accurate forecasting performance

than an unbiased but unstable one.

The remaining dynamic panel models accounting for spatial effects were estimated using the Maximum

Likelihood method as implemented in the Ox codes written by Konstantin A. Kholodilin3.

2The computations were performed using the DPD package for Ox, see Doornik et al. (2006).
3The codes are available upon request. For details about the Ox programming language see Doornik and Ooms (2006).
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5 Estimation results

The estimates of the temporal and spatial autoregressive coefficients of all the models are presented in Table 3.

First, we report a summary of the estimates of intercept, α̂, and the temporal autoregressive coefficient, β̂,

obtained for an autoregressive model estimated for each province separately and reported in columns (1) and

(2) of Table 3. To save space only lowest and highest parameter estimates are reported. The smallest intercept

is estimated at 3.278 for Hunan, while the largest one at 10.949 for Henan. The first coefficient estimate is not

statistically significant, whereas the second one is statistically significant. The smallest temporal autoregressive

coefficient (-0.156) is estimated for Qinghai province, whereas the largest (0.669) for Hunan province. Both

these coefficients are statistically significant. The intercept and autoregressive coefficient estimated for 1979-

2007 imply that the conditional mean of the growth rate in Chinese provinces should vary between 8.8% and

14.1%. In addition, the individual autoregressive models seem to provide quite a good fit to the data, since the

values of the R2 are relatively high: in two thirds of the cases they exceed 0.8.

The columns (3) through (5) of Table 3 contain the estimation results obtained for the pooled model (equation

2), group-effects (equation 4), and for the fixed-effects model (equation 3) using OLS. All the intercept estimates

are positive and significant. Under the group-effects model, GOLS , the intercept estimate for Coastal provinces,

α̂1, is higher than that for the Interior provinces, α̂2. This reflects the fact that the Coast provinces have been

growing in 1979-2007 on average faster than the provinces of Interior, as also Table 1 shows. The estimates of

temporal autoregressive parameters for these models are significant and positive and very close to the median

autoregressive parameter estimate of the individual models. The goodness-of-fit of the panel models without

spatial effects is larger than that of the individual models, whose median R2 is equal to 0.149.

The columns (6) through (10) of Table 3 report the parameter estimates of the panel models accounting

for spatial dependence but assuming that it is identical. As in case of group-effects model, which does not

account for spatial dependence, the intercept estimates for Coastal provinces are higher than those for the

Interior provinces both for GSLM
MLE and GSEM

MLE model. Again, the estimates of the temporal autoregressive

coefficients are positive and significant, but substantially smaller than those of the models without spatial

effects. The estimated spatial autoregressive coefficients are highly significant and positive. This points out to

the importance of spatial dependence among Chinese provinces. The R2’s are more than twice as large as those
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of the panel models without spatial effects.

Finally, the columns (11) through (17) of Table 3 contain the parameter estimates of the models that allow

for group-specific spatial effects. The estimates of the temporal autoregressive coefficients are significant and

similar to those of the panel models with identical spatial dependence. In each model, three spatial autoregressive

coefficients are estimated, for, as described in Table 1, all 31 Chinese provinces were classified into two groups:

Coast and Interior. All these estimates are positive and statistically significant. The spatial autoregressive

coefficient for the Coast is bigger than that of Interior in case of the spatial lag model and smaller in case of the

spatial error model. The goodness-of-fit measures for these last four models are similar to those of the panel

models with identical spatial dependence.

To summarize, on the basis of our estimation results we conclude the following. First, in most cases, the

temporal autoregression is statistically significant and thus past GRP values appear to play an important role

in explaining its future values. Second, the spatial dependence is also statistically significant, which implies that

there is a relatively high degree of dependence of economic performance among neighboring provinces. Third,

this spatial dependence seems to be different within the Coastal group and Interior group of provinces. Fourth,

the panel-data models with spatial dependence appear to fit the data better than the panel-data models without

spatial dependence and the individual models.

6 Forecasting performance

For each model we forecast recursively the h-year growth rates of real GDP, ∆hyi,t+h = yi,t+h − yit for h =

1, 2, . . . , 15 for all 31 provinces over the forecasting period encompassing the period 1989-2007. This procedure

gives us (15− (h− 1))×N forecasts for the h-year growth rate.

For each model, the parameter estimates were obtained using either an expanding window or rolling window

of observations. Under expanding window, the first estimation period is 1979-1988, based on which the forecasts

of ∆1yi,1989,∆
2yi,1990, . . . ,∆

15yi,2003 are made. Next, the model is re-estimated for the period 1979-1989 and

the forecasts ∆1yi,1990,∆
2yi,1991, . . . ,∆

15yi,2004 are computed, etc. Alternatively, under rolling window, the first

estimation period is 1979-1988, based on which the forecasts of ∆1yi,1989,∆
2yi,1990, . . . ,∆

15yi,2003 are made.

Next, the model is re-estimated for the period 1980-1989 and the forecasts ∆1yi,1990,∆
2yi,1991, . . . ,∆

15yi,2004

12



are computed, etc.

For all models, except spatial lag models, the forecasts were made in a standard way. The forecasts of

the spatial lag models are conducted using a two-step procedure. In order to illustrate this procedure, it is

worthwhile re-writing the spatial lag models (6) and (8) in the following matrix form for the pooled:

y = αıNT + βy
−1 + ρWy + ε (18)

for the fixed-effects:

y = (ıT ⊗ IN )α+ βy
−1 + ρWy + ε (19)

where y is a NT × 1 vector of the yit stacked by year and province such that the first N observations refer to

the first year, etc. Correspondingly, y
−1 is a NT × 1 vector of the yi,t−1 stacked by year and province. IN , IT ,

and INT are the unit matrices with dimensions N × N , T × T , and NT × NT , respectively. The NT × NT

matrix W = IT ⊗ W is the block-diagonal matrix with the N × N matrix W of spatial weights on its main

diagonal, where is ⊗ a Kronecker product. ıNT and ıT are the NT and T unit vectors, respectively, such that

α and α are correspondingly a common intercept and an N × 1 vector of cross-section specific intercepts in the

pooled and the fixed-effects spatial lag models.

The models (18) and (19) can be re-written in the following reduced form:

(INT − ρW)y = αıNT + βy
−1 + ε

y = (INT − ρW)
−1

[αıNT + βy
−1] + (INT − ρW)

−1
ε (20)

(INT − ρW)y = (ıT ⊗ IN )α+ βy
−1 + ε

y = (INT − ρW)
−1

[(ıT ⊗ IN )α+ βy
−1] + (INT − ρW)

−1
ε (21)

where only the past values of y appear on the right-hand side of the equations.

In the case of the models with group-specific spatial dependence, these forecasting equations can be easily

generalized as follows. For the pooled model with group-specific spatial dependence, the forecasting equation
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will look like:

(INT − W̃)y = αıNT + βy
−1 + ε

y = (INT − W̃)
−1

[αıNT + βy
−1] + (INT − W̃)

−1
ε (22)

where W̃ = IT ⊗

[∑G

g=1
ρgW

g

]
.

The forecasting equation for the fixed-effects model with group-specific spatial dependence can be expressed

as:

(INT − W̃)y = (ıT ⊗ IN )α+ βy
−1 + ε

y = (INT − W̃)
−1

[(ıT ⊗ IN )α+ βy
−1] + (INT − W̃)

−1
ε (23)

The multi-step ahead forecasts from the spatial lag models can now be obtained as follows. First, we

estimate the parameters of the models (18) and (19), as outlined above. Second, we use the reduced form

equations (20) and (21) for the models with identical spatial dependence or equations (22) and (23) for the

models with group-specific spatial dependence in order to generate the forecasts.

The estimation of all forecasting models was conducted using both expanding window and rolling 9-year

window. The advantage of the growing-window estimation is that each period the estimation sample is increased

by one observation and hence the small-sample uncertainty of parameter estimates should diminish. However,

looking at the GRP dynamics of Chinese provinces in 1979-2007 (see Figure 2) one can observe at least three

distinct periods: 1979-1989, 1990-1998, and 1999-2007. These periods are characterized by different dynamics

and hence probably by different parameter values. Therefore, using a rolling window might be useful, as

its parameter estimates depend on the recent past only and hence react quicker to the possible structural

breaks. The disadvantage of rolling-window estimation, especially for non-panel models, is that the number of

observations might be too small to guarantee an accurate enough estimation of parameters.

The results of our forecasting exercise are reported in Table 4 for expanding window and Table 5 for rolling

window. The forecasting performance is measured by the root mean square forecast error (RMSFE) calculated

for all years and over all provinces for each forecasting horizon, h = 1, 2, . . . , 15.
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First, the use of growing versus rolling window is compared. In case of the following six models rolling window

leads to a better forecast accuracy at all or most forecast horizons: POLS , GOLS , FOLS , P
SEM
MLE , PSEM2

MLE , and

GSEM2
MLE . For the remaining models, under the rolling window, either at all or at more than a half of horizons the

forecast accuracy deteriorates. While the improvement varies between 1% and 8% compared to the growing-

window estimation, the deterioration attains even 85%. The models with fixed-effects, which have even poorer

forecast accuracy, are excluded from consideration as inadequate in this context (see below). Hence, it is not at

all evident that the rolling-window estimation brings better forecast accuracy. However, it still can be useful,

since it improves the forecasting performance of the already more accurate models.

Second, the panel models are compared to the naive models. Naive model 1, which uses previous period

value as a forecast, is almost always worse than all other models, regardless of estimation window. Only at

horizon h = 1 it produces more accurate forecasts than other non-panel models and even some panel models

(generally, fixed-effects models). The naive model 2, which uses an average of past growth rates as a forecast, is

worse than all panel models at all forecast horizons and worse than IOLS model at horizons from h = 1 through

h = 4, when estimated using expanding window. Under the rolling-window estimation, the naive model 2 is

less accurate at all horizons than POLS , GOLS , FOLS , P
SEM
MLE , GSEM

MLE , P
SEM2
MLE , and GSEM2

MLE models and less

accurate at most horizons than PSLM
MLE and GSLM

MLE models. Thus, the naive models are inferior in terms of the

forecast accuracy than the pooled and group-effects panel models.

Third, the individual autoregressive models, IOLS , are compared to the panel models. The results of our

forecasting exercise further strengthen the evidence previously reported in a number of studies such as Baltagi

and Griffin (1997); Baltagi et al. (2003), Baltagi et al. (2000), Baltagi et al. (2002), Baltagi et al. (2004), and

Brücker and Siliverstovs (2006), Kholodilin et al. (2008) among others, that pooling helps to improve forecast

accuracy. Under the expanding window, the individual AR model is less accurate than all the panel models at

all forecast horizons. The two exceptions are FSEM
MLE and FSEM2

MLE that are worse than IOLS at the early horizons:

from h = 1 till h = 3. Under the rolling window, the individual AR model has lower forecasting performance

than all the panel models, but FSEM
MLE and FSEM2

MLE as well as FSLM2
MLE , which is substantially worse than the

individual AR model at horizons from h = 1 through h = 13.

Fourth, the panel models can be ranked in terms of their forecast accuracy as follows. As a rule, the group-
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effects models are better than the pooled ones, which, in turn, are much better than the fixed-effects models.

There are the following few exceptions: 1) under growing-window estimation, GSLM2
MLE is worse than PSLM2

MLE ; 2)

under rolling-window estimation, GSLM
MLE and GSLM2

MLE are worse than the corresponding pooled models.

Fifth, as expected, the application of panel models accounting for spatial effects as a rule results in a better

forecast accuracy compared to the corresponding non-spatial models. Regardless of whether the models were

estimated using growing or rolling window, the pooled and group-effects models accounting for spatial effects

always produce more accurate forecasts than their non-spatial counterparts. This is not always true for the

fixed-effects models, but, as shown above, they appear to be inadequate as forecasting models in the present

context and hence can be discarded.

Sixth, homogeneous spatial effects vs. heterogeneous spatial effects. Under the expanding window, PSLM2
MLE

and PSEM2
MLE are better than their counterparts,PSLM

MLE and PSEM
MLE , not accounting for the possible heterogeneity

of spatial dependence within Coast and Interior groups of provinces. Increase in forecast accuracy due to

accounting for heterogeneity of spatial dependence varies between 1% and 13%. In case of group-effects models,

there is no improvement or there is even a slight deterioration of the forecasting performance. Under the rolling-

window estimation, the forecast accuracy of all the spatial-error models improves when group-specific spatial

dependence is accounted for. The forecast accuracy gain, however, is quite small, varying between 1% and 5%.

In case of spatial-lag models, the forecast accuracy substantially deteriorates but under the rolling window in

the Chinese regional context they seem to be inadequate as forecasting models.

Seventh, the following best forecasting models can be identified. Under the expanding window, the two best

models are: GSLM
MLE at horizons from h = 1 through h = 4 and from h = 12 through h = 14 and GSEM2

MLE at

horizons h = 5 and horizons from h = 8 through h = 11. In addition, GSEM
MLE is the best at horizon h = 6 and

h = 7, whereas GSLM2
MLE is the best at horizon h = 15. When the individual autoregressive model estimated under

the expanding window, IOLS , is used as a benchmark, then the forecast accuracy gain, measured as a ratio of

the RMSFE of the corresponding best model to that of IOLS , varies between 6% at horizon h = 2 and 27% at

horizon h = 13. Under the rolling window, the clear leader of forecasting accuracy is the model GSEM2
MLE , which

is the most accurate at forecast horizons from h = 2 through h = 14. The other best two models are PSLM
MLE that

is the best at horizon h = 1 and GSLM
MLE that is the best at horizon h = 15. The forecast accuracy gain (again
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measured with respect to the individual autoregressive model estimated under the expanding window, because

the use of rolling window leads systematically worse performance of IOLS) varies between 7% at horizons h = 2

and h = 3 and 27% at horizon h = 15. As a general rule, regardless of estimation window, the forecast accuracy

gets larger at higher forecast horizons.

To summarize, pooling, accounting for spatial effects, and using group dummies instead of a single intercept

contribute the most to the improvement in forecast accuracy. Additional, albeit smaller, improvements stem

from accounting for the fact that spatial effects may be different depending on the group of provinces. In this

case, taking into account the differences between Coast and Interior both in terms of intercept and in terms of

spatial dependence clearly leads to a better forecast accuracy.

The robustness of these results can be checked by observing Figures 3-5, which show the RMSFE computed

for 1-, 5-, and 10-year ahead forecasts with a rolling 3-year window. The boxplots represent the distribution of

the RMSFE of all the model examined in this paper. In addition, the AR(1) model estimated using an expanding

window, IOLS , and the best model accounting for spatial effects estimated using a rolling window, GSEM2
MLE , are

shown. Recall that AR(1) estimated using a rolling window has a very poor forecasting performance.

Several observations can be made using these graphs. Firstly, the forecast accuracy of all the models has not

been constant: It increased from 1989 till the mid-1990s, then it dropped substantially (5 times for the 1-year

ahead forecasts, 2 times for the 5-year ahead forecasts, and about 1.5 times for the 10-year ahead forecasts) and

attained its minimum around 2001, after which it slightly increased again. Such a profile can be explained by

the interplay of many factors. One reason can be a purely econometric one — increasing the sample size leads

to an improvement in parameter estimates and hence forecast accuracy. Another reason can be the influence

of economic downturns — during turmoil periods the economy is generally considered to be more difficult to

forecast.

Secondly, the rolling RMSFE for the 1-year ahead forecasts of GSEM2
MLE is systematically lower than that of the

AR(1) model. Most of the time it is also lower than the median rolling RMSFE. In addition, in the beginning

of the sample 1989-1995, the RMSFE of GSLM−2

MLE is close to the minimum. The AR(1) model is usually close

to the median, although in the very beginning and end of sample its RMSFE exceeds the median RMSFE.

Thirdly, it is at the higher forecast horizons (5- and especially 10-year ahead forecasts) that the GSLM−2

MLE

17



model significantly improves upon the IOLS model and all other models. Thus, at 5-year horizon its rolling

RMSFE is close to the 1st quartile and minimum of the distribution starting from subperiod 1994-1996. However,

during 1991-1995 period it is worse than the AR(1) model. At the 10-year ahead forecast horizon, the GSLM−2

MLE

model is always better than IOLS model and the gap between both models increases towards the end of sample.

Moreover, the RMSFE of the GSLM−2

MLE model is systematically lower than the median rolling RMSFE.

Thus, during the most of the sample period at higher forecast horizons our best model, GSEM2
MLE , seems to

be more accurate than the alternative models.

7 Conclusion

In this paper, we have addressed the forecasting of h-year growth rates of real GDP for of each of the 31 Chinese

provinces using dynamic panel data models with spatial effects, h = 1, 2, . . . , 15.

Our main finding is that pooled models accounting for spatial dependence, in particular the models allowing

for group-specific spatial effects, produce the best forecasting accuracy (as measured by the Root Mean Squared

Forecast Error) compared to any other model examined in this paper. This finding remains robust across all

forecasting horizons but especially high forecast accuracy gains are obtained at high forecast horizons.

Two factors must have contributed to this improvement: pooling and accounting for spatial effects. On

the one hand, the finding that pooling helps to increase the forecasting accuracy is consistent with the results

obtained in Baltagi and Griffin (1997); Baltagi et al. (2003), Baltagi et al. (2000), Baltagi et al. (2002), Baltagi

et al. (2004), and Brücker and Siliverstovs (2006), inter alia, for diverse data sets. On the other hand, the fact

that accounting for spatial effects helps to improve the forecast performance further strengthens conclusions of

Elhorst (2005), Longhi and Nijkamp (2007), and Kholodilin et al. (2008).

Hence, on the basis of our results, we strongly recommend incorporating spatial dependence structure into

regional forecasting models, especially, when long-run forecasts are made.
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Appendix

Table 1: Descriptive statistics of the growth rates of real GDP of the Chinese provinces (%), 1979-2006
Region Status Coast Interior Minimum Mean Maximum CV
Anhui province + -0.9 10.9 21.0 0.49
Beijing municipality + -1.5 10.6 17.5 0.34
Chongqing municipality + 4.7 10.2 16.2 0.30
Fujian province + 5.5 13.1 24.1 0.36
Gansu province + -8.4 9.4 14.9 0.45
Guangdong province + 7.2 13.7 22.3 0.29
Guangxi autonomous region + 3.3 9.9 18.3 0.40
Guizhou province + 4.3 9.5 19.8 0.34
Hainan province + 1.8 11.5 40.2 0.63
Hebei province + 1.0 10.8 17.7 0.35
Heilongjiang province + 3.0 8.4 12.1 0.29
Henan province + 4.3 11.2 23.8 0.39
Hubei province + 4.5 10.7 20.9 0.37
Hunan province + 3.6 9.5 14.5 0.27
Jiangsu province + 2.5 12.8 25.6 0.36
Jiangxi province + 4.2 10.7 17.0 0.34
Jilin province + -2.5 10.3 21.7 0.47
Liaoning province + -1.6 9.6 16.8 0.44
Nei Mongol Zizhiqu autonomous region + 1.7 11.8 23.8 0.44
Ningxia autonomous region + 2.0 9.9 18.1 0.36
Qinghai province + -9.1 8.5 17.8 0.59
Shaanxi province + 3.3 10.2 21.0 0.38
Shandong province + 4.0 12.2 21.9 0.32
Shanghai municipality + 3.0 10.3 14.9 0.33
Shanxi province + 0.8 9.9 21.6 0.46
Sichuan province + 2.6 9.8 14.2 0.29
Tianjin municipality + 1.6 10.6 19.3 0.39
Xinjiang Uygur autonomous region + 5.9 10.4 16.9 0.24
Xizang Zizhiqu autonomous region + -9.2 10.1 25.3 0.74
Yunnan province + 3.1 9.7 16.0 0.31
Zhejiang province + -0.6 13.3 22.0 0.37
Coast group -1.6 11.5 40.2 0.41
Interior group -9.2 10.1 25.3 0.42

Note: CV stands for coefficient of variation.

Sources: National Bureau of Statistics of China; Sheng (2009)
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Table 2: Selected macroeconomic variables averaged by groups of Chinese provinces (%), 1992-2006
Variable Coast Interior
GDP growth 11.5 10.1
Trade-to-GRP 26.7 10.0
Exports-to-GRP 15.5 6.1
FDI-to-GRP 2.5 1.2
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Table 3: Estimation results 1979 - 2007

No spatial effects Spatial effects
identical group-specific

IOLS POLS GOLS FOLS PSLM

MLE
GSLM

MLE
FSLM

MLE
PSEM

MLE
GSEM

MLE
FSEM

MLE
PSLM2

MLE
GSLM2

MLE
FSLM2

MLE
PSEM2

MLE
GSEM2

MLE
FSEM2

MLE

minimum maximum
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

α̂ 3.278 10.949 6.458 1.980 7.924 2.209 7.443
(2.1) (4.7) (19.0) (5.1) (17.6) (5.7) (16.8)

α̂1 7.188 2.653 8.795 2.067 8.276
(14.7) (6.1) (17.3) (3.7) (17.1)

α̂2 6.289 1.832 7.753 2.314 7.338
(18.8) (4.8) (17.2) (4.7) (16.6)

β̂ -0.156 0.669 0.409 0.392 0.356 0.236 0.222 0.172 0.270 0.254 0.182 0.220 0.220 0.170 0.320 0.297 0.229
(-1.1) (4.1) (11.9) (11.4) (11.6) (8.8) (8.2) (6.4) (8.4) (7.9) (5.5) (8.2) (8.2) (6.4) (10.2) (9.4) (7.1)

ρ̂ 0.586 0.584 0.613
(19.0) (18.9) (20.5)

ρ̂1 0.628 0.639 0.669
(19.5) (14.1) (15.4)

ρ̂2 0.549 0.540 0.566
(17.0) (12.9) (13.8)

λ̂ 0.611 0.609 0.632
(19.2) (19.2) (20.7)

λ̂1 0.555 0.561 0.576
(10.2) (10.4) (11.1)

λ̂2 0.624 0.627 0.651
(13.2) (13.4) (14.4)

R2 0.001 0.394 0.172 0.182 0.206 0.411 0.418 0.439 0.412 0.420 0.408 0.423 0.423 0.415 0.382 0.396 0.380

Notes:

• α̂, α̂1, and α̂2 denote the estimate of intercept for all provinces, Coastal provinces, and Interior provinces, respectively.

• β̂ denotes the estimate of the temporal autoregressive parameter.

• ρ̂, ρ̂1, and ρ̂2 denote the estimate of the spatial autoregressive parameter for all provinces, Coastal provinces, and Interior provinces, respectively.

• λ̂, λ̂1, and λ̂2 denote the estimate spatial error parameter for all provinces, Coastal provinces, and Interior provinces, respectively.

• number in brackets denotes the t-statistic
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Table 4: Forecasting performance of models estimated using expanding window: RMSFE, 1989-2007

h-step No spatial effects Spatial effects
ahead identical group-specific

forecast Naive 1 Naive 2 IOLS POLS GOLS FOLS PSLM

MLE
GSLM

MLE
FSLM

MLE
PSEM

MLE
GSEM

MLE
FSEM

MLE
PSLM2

MLE
GSLM2

MLE
FSLM2

MLE
PSEM2

MLE
GSEM2

MLE
FSEM2

MLE

h=1 3.49 3.99 3.72 3.52 3.50 3.62 3.44 3.42 3.69 3.64 3.59 3.86 3.42 3.42 3.69 3.56 3.54 3.77
h=2 7.71 7.37 7.06 6.87 6.78 6.95 6.72 6.61 7.01 6.99 6.83 7.22 6.64 6.63 7.01 6.88 6.78 7.12
h=3 12.68 10.24 10.04 9.80 9.62 9.85 9.61 9.36 9.88 9.85 9.54 10.07 9.42 9.40 9.88 9.72 9.51 9.98
h=4 17.84 12.56 12.49 12.16 11.87 12.22 11.97 11.55 12.25 12.09 11.63 12.37 11.66 11.63 12.25 11.95 11.61 12.30
h=5 23.20 14.51 14.59 14.07 13.67 14.23 13.92 13.36 14.27 13.89 13.27 14.32 13.52 13.49 14.27 13.74 13.27 14.27
h=6 28.62 16.09 16.32 15.47 14.97 15.87 15.34 14.68 15.90 15.19 14.42 15.90 14.93 14.90 15.90 15.03 14.43 15.88
h=7 33.88 17.34 17.68 16.38 15.78 17.16 16.24 15.51 17.17 16.02 15.11 17.16 15.88 15.84 17.17 15.85 15.11 17.15
h=8 39.21 18.46 18.88 17.07 16.36 18.29 16.86 16.06 18.29 16.63 15.56 18.28 16.55 16.51 18.29 16.43 15.55 18.27
h=9 44.18 19.67 20.08 17.71 16.86 19.44 17.32 16.42 19.41 17.23 15.95 19.46 17.06 17.01 19.41 16.98 15.93 19.45

h=10 49.93 21.22 21.60 18.70 17.72 20.93 18.02 16.95 20.86 18.15 16.65 20.98 17.72 17.67 20.86 17.84 16.62 20.96
h=11 56.57 23.26 23.62 20.28 19.19 22.91 19.22 17.87 22.79 19.61 17.88 22.98 18.70 18.65 22.80 19.23 17.85 22.95
h=12 63.86 25.81 26.21 22.56 21.37 25.43 21.05 19.31 25.26 21.70 19.73 25.49 20.12 20.08 25.27 21.24 19.72 25.45
h=13 72.43 28.70 29.15 25.55 24.11 28.29 23.59 21.27 28.03 24.46 22.11 28.28 21.94 21.89 28.04 23.94 22.16 28.26
h=14 81.05 31.81 32.20 29.29 27.46 31.28 26.94 23.77 31.00 27.88 25.05 31.21 24.07 24.01 31.01 27.32 25.17 31.19
h=15 89.06 34.95 35.54 33.45 31.23 34.39 31.05 27.17 34.12 31.68 28.40 34.16 27.05 26.98 34.12 31.13 28.63 34.18

Total RMSFE = total root mean squared forecast errors (RMSFE) computed for all the provinces over all years together.
Relative RMSFE = total RMSFE of each alternative model divided by that of the benchmark model, for every forecasting horizon h.
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Table 5: Forecasting performance of models estimated using rolling 9-year window: RMSFE, 1989-2007

h-step No spatial effects Spatial effects
ahead identical group-specific

forecast Naive 1 Naive 2 IOLS POLS GOLS FOLS PSLM

MLE
GSLM

MLE
FSLM

MLE
PSEM

MLE
GSEM

MLE
FSEM

MLE
PSLM2

MLE
GSLM2

MLE
FSLM2

MLE
PSEM2

MLE
GSEM2

MLE
FSEM2

MLE

h=1 3.49 3.94 3.77 3.31 3.30 3.39 3.26 3.26 3.52 3.37 3.34 4.05 3.29 3.28 4.23 3.32 3.31 3.84
h=2 7.71 7.27 7.44 6.55 6.52 6.60 6.53 6.55 6.86 6.60 6.53 7.86 6.65 6.66 8.91 6.54 6.50 7.53
h=3 12.68 10.12 11.01 9.49 9.43 9.49 9.71 9.77 9.98 9.49 9.37 11.30 10.03 10.07 13.90 9.43 9.34 10.82
h=4 17.84 12.44 14.37 11.94 11.85 11.94 12.67 12.78 12.87 11.83 11.66 14.28 13.31 13.41 19.16 11.76 11.60 13.61
h=5 23.20 14.50 17.54 13.81 13.71 14.02 15.21 15.45 15.32 13.60 13.40 16.87 16.39 16.64 24.80 13.53 13.32 16.10
h=6 28.62 16.37 20.34 14.96 14.88 15.75 17.12 17.58 17.30 14.67 14.45 19.06 19.11 19.58 30.89 14.60 14.35 18.26
h=7 33.88 18.10 22.53 15.37 15.41 17.07 17.90 18.75 18.52 15.11 14.93 20.56 21.15 21.92 37.30 15.03 14.82 20.13
h=8 39.21 19.75 25.26 16.04 16.21 18.20 18.51 20.28 20.15 15.72 15.60 22.11 23.74 24.89 38.82 15.62 15.48 21.97
h=9 44.18 21.41 28.26 16.76 16.92 19.27 19.23 21.69 21.82 16.38 16.20 23.72 26.37 28.01 44.18 16.22 16.02 23.65

h=10 49.93 23.16 31.71 17.90 18.04 20.70 20.24 23.09 23.80 17.47 17.14 25.75 29.07 31.29 49.30 17.15 16.91 25.57
h=11 56.57 25.29 35.56 19.27 19.50 22.64 21.22 24.54 25.83 18.74 18.38 27.75 31.67 34.44 49.48 18.31 18.15 27.97
h=12 63.86 27.68 40.15 21.43 21.82 25.25 22.42 25.67 28.53 20.71 20.29 30.56 33.94 37.18 48.66 20.12 20.08 30.67
h=13 72.43 29.64 45.15 24.60 24.59 28.20 22.50 24.89 31.29 23.61 22.57 33.29 32.96 36.29 48.63 22.85 22.45 34.03
h=14 81.05 31.42 50.08 27.77 26.87 31.20 25.25 25.13 33.10 26.48 24.64 37.36 31.02 33.63 34.03 25.81 24.51 37.24
h=15 89.06 34.06 55.11 30.92 28.97 34.40 28.93 25.98 34.34 29.48 26.68 41.43 27.07 27.17 35.96 28.81 26.45 39.90

Total RMSFE = total root mean squared forecast errors (RMSFE) computed for all the provinces over all years together.
Relative RMSFE = total RMSFE of each alternative model divided by that of the benchmark model, for every forecasting horizon h.
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Figure 1: Groups of Chinese provinces
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