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Abstract  

We analyse time-varying tolling in the stochastic bottleneck model with price-sensitive demand and 

uncertain capacity. We find that price sensitivity and its interplay with uncertainty have important 

implications for the effects of tolling on travel costs, welfare and consumers. We evaluate three fully 

time-variant tolls and a step toll that have been proposed in previous literature. We also consider a 

uniform toll, which affects overall demand but not trip timing decisions. 

The first fully time-variant toll is the “first-best” toll, which varies non-linearly over time and results in 

a departure rate that also varies over time. It raises the generalised price (i.e. the sum of travel cost and 

toll), thus lowering demand. These outcomes differ fundamentally from those found for first-best pricing 

in the deterministic bottleneck model. The second we call a “second-best” toll, as it aims to keep the 

departure rate constant over time. This is optimal without uncertainty, but it lowers welfare with 

uncertain capacity. Next, “third-best” tolling adds the further constraint that, besides a constant 

departure rate, the generalised price should stay the same as without tolling. It attains a lower welfare 

and higher expected travel cost than the second-best scheme, but a lower generalised price. All our 

tolling schemes—except for the third-best one—raise the price compared to the no-toll case.  

In our numerical study, when there is less uncertainty, the second-best and third-best tolls achieve 

welfares closer to that of the first-best toll, and the three schemes are identical without uncertainty. As 

the degree of uncertainty falls, the uniform and single-step tolls attain welfare gains closer to that from 

first-best pricing. Also, when demand becomes more price-sensitive, the uniform and single-step tolls 

attain outcomes closer to those in the first-best outcome. Our ADL equilibrium step toll would lower 

the generalised price without uncertainty but raises it in our stochastic setting. 

 

Keywords: stochastic bottleneck model; price-sensitive demand; time-varying toll; step toll; 

uncertainty  

JEL codes: R41; R48; D62; D80 
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1. Introduction  

Congestion is one of the greatest challenges for cities worldwide. It brings disutilities of different 

forms, including the pure loss of time, inconveniences from rescheduling in response to congestion, and 

additional inconveniences from unpredictability and uncertainty. Travel conditions may vary due to a 

combination of exogenous shocks, including weather conditions and traffic incidents, and endogenous 

demand responses to those shocks. Especially when those responses take the form of rescheduling—for 

example, by departing earlier to create time “buffers”—the analysis of congestion and policies to address 

it requires models that can deal with the dynamics of departure times, the impact of that on dynamic 

patterns of travel delays and the feedback of that upon behaviour, so as to obtain a consistent 

representation of stochastic dynamic equilibria that can be used for policy evaluation. That is what our 

paper aims to offer, studying policies to address dynamic congestion in a stochastic setting where 

travellers can respond in terms of departure time choice, but also travel choices more generally in the 

sense that we will consider price-sensitive demand. 

Our analysis will employ the stochastic bottleneck model. We analyse different types of fully time-

variant tolling, uniform tolling and step tolling; all with uncertain capacity and price-sensitive demand. 

As discussed below, there is a voluminous literature on the untolled equilibrium of the bottleneck model 

with uncertain capacity. Only a few papers consider time-variant tolling, and none also consider the 

price sensitivity of demand. As we will see, however, the interplay between uncertainty and price 

sensitivity has important effects and complicates the analysis. The effects of time-variant tolling will 

also change from those in the deterministic bottleneck model. Some papers have looked at uniform 

tolling, where the toll is constant (Lam, 2000; Jiang et al., 2021; Zhu et al., 2018; Yu et al., 2023a). Zhu 

et al. (2018) used a bottleneck model with uncertainty in the free-flow travel time that does not affect 

queuing. So, there is no interaction between uncertainty and the dynamics of congestion, and the model 

provides insights that are more similar to those in the deterministic bottleneck model, as the social 

optimum has no queuing. Conversely, in our model, the social optimum will have queuing when the 

uncertain capacity turns out to be very low. This seems more realistic, but it is also more difficult to 

analyse. We will provide a fuller literature review below.  

Our methodological contribution is to study time-variant tolling in the stochastic bottleneck model 

with uncertain capacity and price-sensitive demand. We consider three fully time-variant tolling 

schemes, a step toll and a uniform toll. We optimise in two stages. The first, comparably to existing 

works with fixed demand, involves optimising the departure rate and the corresponding toll pattern for 

a given number of travellers, using optimal control theory. The second stage then optimises total demand, 

and therewith the time-invariant component or starting level of the toll, taking into account the effect on 

the first stage. This second stage, which is also relevant when the total number of car travellers can vary 

in response to policies, has not been considered before and will be shown to have important implications.  

The three fully time-variant tolls that we consider follow from earlier studies with fixed demand. 

The first follows Lindsey (1994, 1999), and we call it “first-best” as it attains the overall social optimum. 

It leads to a departure rate that weakly increases over the morning, and it raises the generalised price 

(i.e. the sum of travel cost and toll) compared to the untolled equilibrium. It may also have a smaller 

reduction in travel cost and a welfare increase compared to under certainty, where first-best tolling 

leaves the price unchanged and halves the average travel cost. This has important implications for the 

political feasibility of tolling and its desirability versus alternative policies such as capacity expansion, 

information provision, travel credits and flexible working hours. Our results deviate from those for a 
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deterministic bottleneck in ways comparable to those under dynamic flow congestion, as in Chu (1999) 

and Mun (1999, 2003).  

Long et al. (2022) proposed what we call a “second-best time-varying toll”, which is designed to 

achieve a departure rate that is constant over time. This simplifies the design of the tolling scheme for 

the government, and it would match what is optimal in the deterministic bottleneck model; but, as we 

will show, it is “second best” under uncertain capacity as it lowers welfare compared to first-best pricing.  

Our third toll follows Xiao et al. (2015). We call it a “third-best time-variant toll” as it adds the 

further constraint (to the second-best setting) that the generalised price should remain the same as in the 

no-toll case. This raises the political feasibility of tolling, but as we will show, it leads to an even lower 

welfare and higher travel costs than the second-best scheme.   

The analysis of uniform (time-invariant) and step tolling (where the toll changes only in discrete 

steps) is important. In reality, tolls are not fully time-variant; they are uniform—as in London—or at 

most have a few steps in them—as in Singapore and on some US pay-lanes. We will see that the 

combination of uncertainty and price-sensitive demand changes how these coarse tolls perform 

compared to the first-best one. Indeed, a uniform toll has no effect if demand is fixed: it cannot alter 

departure rates directly, it can only affect total demand. We use an ADL equilibrium step toll, which 

lowers the generalised price in the deterministic bottleneck model but raises it in our stochastic setting. 

Xiao et al. (2015) and Long et al. (2022) also considered single-step tolling in addition to their fully 

time-variant tolls. Jiang et al. (2022) studied single-step tolling but used fixed demand. Yu et al. (2023a) 

considered uniform tolling in conjunction with information provision. Jiang et al. (2021) and Zhu et al. 

(2018) analysed uniform tolling in a bottleneck model with an uncertain free-flow travel time. 

Table 1 shows how our work relates to the closest literature and how we extend it, confirming that 

no previous study considered time-varying pricing in the bottleneck with uncertain capacity and price-

sensitive demand. The remainder of the paper continues as follows. Section 2 overviews the broader 

literature, while the introduction focuses on the most related works. Section 3 gives the basic 

formulations for the no-toll equilibrium. Section 4 derives the social optimum of the time-varying toll 

and compares it to that of the deterministic model and the second- and third-best tolls. Sections 5 and 6 

look at the uniform and single-step toll. Section 7 conducts a numerical study to illustrate the results and 

provides further insights. Section 8 concludes.   

 

2. Extended literature review 

Early works on uncertainty in the bottleneck model include Arnott et al. (1991, 1993b, 1996, 1999) 

and Daniel (1995). Arnott and co-authors were primarily interested in the effects of information 

provision and Daniel in competition among airlines. There is a very large literature on uncertainty in the 

bottleneck model. Small and Verhoef (2007), Small (2015) and Li et al. (2020), among others, provide 

extensive overviews.1 But few papers look at congestion pricing,2 and fewer still include price-sensitive 

demand; most look at the untolled equilibrium or information provision.

 
1 There is also a large literature that considers static congestion (see Zhang et al. (2022) for a detailed review). In order to examine the interaction 

between information and pricing instruments, Verhoef et al. (1996) used the static model. They found that information and tolling are nearly 

perfectly complementary in the face of stochastic congestion. This has then been extended by also considering networks (Yang, 1999; Maher 
et al., 2005; Meng and Liu, 2011; Lindsey et al., 2014; Klein et al., 2018).  

2 Many papers have looked at alternative policies to reduce congestion and uncertainty. These include: information provision (e.g. Arnott et 

al., 1991, 1993b, 1996, 1999; Liu and Liu, 2018; Zhu et al., 2019; Yu et al., 2021; Han et al., 2021; Yu et al., 2023a), ride sharing (Long et 
al., 2018; Li et al., 2022; Liang et al., 2023), on-demand buses (Ma et al., 2023), tradable credits (Zhang et al., 2022), flexible working hours 

(Xiao et al., 2014b) and merging rules (e.g. Xiao et al, 2014a). Fosgerau (2010) considered the relation between the mean and variance of 

delays. Lindsey (2009) studied self-financing under random capacity and demand.  
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Table 1: Comparing our paper with the literature 

Citation Distribution of uncertainty  

Bottleneck, 

uncertain 

capacity 

Bottleneck, 

uncertain free 

flow time 

Price-sensitive 

demand 

First-best 

toll 

Second-best 

toll 

Third-best 

toll 
Step toll Uniform toll 

No-toll 

equilibrium 

Arnott 

et al., 1991 
Two-point distribution √ - - - - - - - √ 

Arnott 

et al., 1996, 

1999 

General distribution √2 - √ - - - - - √ 

Lindsey, 

1994, 1999 
General & two-point distribution √2 - - √ - - - - √ 

Long et al., 

2022 
General distribution √ - - - √ √ √ - √ 

Xiao et al., 

2015 
Uniform distribution √ - - - - √ √ - √ 

Jiang et al., 

2021 
General distribution  - √ √ - - - - √ √ 

Jiang et al., 

2022 
Uniform distribution  √ - - - - - √ - √ 

Zhu et al., 

2018 
Uniform distribution - √ √ ̴1 - - - √ √ 

Yu et al., 

2023a 
Two-point distribution √ - √ - - - - √ √ 

Chu, 1999 None - - √ √ - - √ √ √ 

Mun, 1999, 

2003 
None - - √ √ - - - - √ 

This paper Uniform distribution √ - √ √ √ √ √ √ - 

Note: 1 For a more limited “exogenous” distribution of free-flow travel time, Zhu et al. (2018) do analyse a time-variant toll that works as in the deterministic model and is first-best in that setting.  

2 These authors also consider uncertain demand.  
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Zhu et al. (2018) analysed time-varying tolling under price-sensitive demand using a bottleneck 

model with uncertain free-flow travel time that does not affect queuing. This leads to an outcome similar 

to that in the deterministic setting, as queuing can be fully eliminated. In contrast, in our model, the 

social optimum has queuing in “bad” states. It also misses the interaction between queuing and 

uncertainty. All this makes their model more tractable, but arguably less realistic, and yielding different 

policy implications as it makes tolling appear better for welfare and less harmful for consumers.  

Yu et al. (2023a) considered information provision and uniform tolling under uncertain bottleneck 

capacity and price-sensitive demand. Lam (2000), Jiang et al. (2021) and Zhu et al. (2018) analysed 

uniform tolling in a bottleneck model with an uncertain free-flow travel time. Xiao et al. (2015), Jiang 

et al. (2022) and Long et al. (2022) also considered single-step tolling under fixed demand. The literature 

that is most directly related to our study looks at time-variant tolling in the stochastic bottleneck model 

with uncertain capacity but with fixed demand. This literature yields the first-, second- and third-best 

tolls as discussed before (see Lindsey, 1994, 1996, 1999; Xiao et al., 2015 and Long et al., 2022). 

Schrage (2006) studied time-variant tolling under dynamic flow congestion and uncertain capacity. 

Finally, Zhang et al. (2018) studied a bottleneck model where the capacity drops by a random amount 

if congestion gets severe enough, and they analysed time-varying and step tolling. Their model is similar 

to that of Zhu et al. (2018) – who used an uncertain free-flow travel time – in that optimal tolling will 

remove all queuing. This is not true under our uncertain capacity, thereby complicating the analysis and 

making tolling less beneficial. 

There are various forms that uncertainty can take in the bottleneck. Earlier studies have looked at: 

i) uncertain capacity (e.g. Arnott et al., 1991; Xiao et al., 2015; Long et al., 2022; Jiang et al., 2022); ii) 

uncertain demand (e.g. Fosgerau, 2010); iii) both uncertain capacity and demand (e.g. Arnott et al., 

1993b, 1996, 1999); iv) uncertain arrival times at the bottleneck (e.g. Daniel, 1995); v) uncertain free-

flow travel time (e.g. Zhu et al., 2018; Lam, 2000; Siu and Lo, 2009; Jiang et al., 2021); and vi) 

uncertainty in the demand function such as a random demand intercept (e.g. Fu et al., 2018). For 

uncertainty in the capacity, most papers assume—just like we do—that the capacity is uncertain but its 

realised value is constant throughout the peak. An exception is Fosgerau and Lindsey (2013), who 

studied random incidents that temporarily block the bottleneck. They analysed the user equilibrium and 

social optimum under fixed demand. Hall and Savage (2019) considered endogenous shocks to the 

capacity, and their probability increases with the traffic flow. Peer et al. (2010) and Schrage (2006) 

investigated capacity changes within the peak. So, for example, an accident that is clearer after an hour 

or a brief rain shower.  

We follow much of the literature in considering a uniform distribution for our uncertainty, as this 

allows for more closed-form results. Xiao et al. (2014a, 2014b, 2015), Jiang et al. (2022) and Zhang et 

al. (2018) also used a uniform distribution. Arnott et al. (1991), Liu et al. (2020) and Yu et al. (2020, 

2023a) used two-point distributions, which seems more restrictive than a continuous distribution. 

Lindsey (1994, 1999), Long et al. (2022), Jiang et al. (2021) and Liu et al. (2023) relaxed the 

assumptions and considered more general distributions. 

Most papers—just like us—assume that drivers are rational and consider their expected price. So, 

we abstain from considering risk aversion or bounded rationality. Li et al. (2008) considered risk 

aversion by also adding the standard deviation of travel time to the user cost function, thus not only 

considering the expected travel time and schedule delays. Siu and Lo (2009), Liu and Liu (2018) and de 

Palma and Fosgerau (2013) also considered risk aversion. In Liu et al. (2020) and Jiang et al. (2022), 
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users considered a linear combination of the mean cost and the cost variation. Zhu et al. (2019) 

considered bounded rationality.  

Fully time-variant tolls are practically impossible to implement in reality. More realistic toll 

schedules are uniform tolls that are constant over the day or step tolls with one or a few discrete steps 

in the toll. In the deterministic bottleneck model, Arnott et al. (1993a), Laih (1994), Lindsey et al. (2012) 

and Ren et al. (2016) proposed four different equilibrium models to examine such schemes. They differ 

in how to ensure that the generalised price is the same before and after the toll is lowered at time t-. The 

ADL model of Arnott and co-authors has a mass departure for those arriving after t-. The Laih model 

has separate queues for arrival before and after t- that do not interact. In the Braking model of Lindsey 

and co-authors, the first drivers that will arrive after t- brake and completely block the road for a while 

to prevent having to pay the (higher) toll or be overtaken. Finally, Ren et al. (2016) developed a model 

in between the Laih and braking model, where there are separate queues but the queue for arrivals after 

t- hinders the other drivers while not fully blocking the road. Van den Berg (2012) extended these models 

by adding price-sensitive demand and found that more steps can increase welfare gain and make 

consumers better off. Whilst considering uncertainty, Xiao et al. (2015), Long et al. (2022), Jiang et al. 

(2022) and Zhang et al. (2018) considered single-step tolling, but they used a fixed demand. The first 

three papers used the ADL equilibrium model, and the last one used the Laih model. 

We will study the three proposed time-varying tolls for the bottleneck model with uncertain 

capacity whilst adding price-sensitive demand. As we will see, this complicates the analysis and has 

important effects. We will also study uniform tolling and step tolling using the ADL equilibrium model. 

We will use a uniform distribution of the service time of the bottleneck—i.e., the inverse of capacity—

and this uncertain capacity varies over the days but is constant throughout the peak. 

 

3. Model set-up   

We assume that the bottleneck capacity is constant within a day but changes stochastically from 

day to day. Define the “service time” of the bottleneck as 𝜙 = 1 𝑠⁄ , where s is the capacity. The service 

time follows a uniform distribution over an interval [𝜙𝑚𝑖𝑛, 𝜙𝑚𝑎𝑥], and 𝑓(𝜙) = 1 (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛)⁄  is 

the probability density function of 𝜙. This simplifies the mathematics but does make equations less 

intuitive. Commuters do not know the realisation of capacity on a given day. From their day-to-day 

travel, they learn the capacity distribution and make their departure time choices by minimising their 

expected generalised price (Arnott et al., 1993b, 1996; Lindsey, 1999; Xiao et al., 2015; Long et al., 

2022). As discussed in the literature review, a uniform distribution for the uncertainty is common in the 

literature. Extending our setting to a more general distribution seems interesting for future work.  

In the classic bottleneck model (Vickrey, 1969), commuters travel from home to work through the 

bottleneck. Without loss of generality, we assume that the free-flow travel time is zero. Thus, the travel 

time departing at time t equals the queuing time at the bottleneck, 𝑞(𝑡, 𝜙), where 1 𝜙⁄  is the realised 

capacity. Let 𝜔(𝑡) denote the maximum service time so that no queue exists at departure time t. Then, 

the queuing time at t is:  

𝑞(𝑡, 𝜙) = {
𝜙 ∫ 𝑟(𝑥)

𝑡

�̂�
𝑑𝑥 − (𝑡 − �̂�), 𝜙 > 𝜔(𝑡),

0, 𝜙 ≤ 𝜔(𝑡)
  (1) 

where �̂� is the time at which the queue begins to increase from zero and r(t) is the departure rate that is 

the same for all capacity realisation as people depart without knowing what the capacity will be. The 
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travel time cost for commuters departing at t is: 

     𝑇𝑇(𝑡, 𝜙) = 𝛼𝑞(𝑡, 𝜙).  (2) 

Define the schedule delay cost for commuters departing at t as:  

𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙) − 𝑡∗) = 𝛽 𝑚𝑎𝑥{𝑡∗ − (𝑡 + 𝑞(𝑡, 𝜙)), 0} + 𝛾 𝑚𝑎𝑥{(𝑡 + 𝑞(𝑡, 𝜙)) − 𝑡∗, 0},  (3) 

where 𝛼, 𝛽 and 𝛾 are the values of time, schedule delay early and late, respectively. The 𝑡∗ is the 

desired arrival time. Since capacity is stochastic, commuters departing at the same moment each day 

may experience different costs on different days. The expected travel cost for departure at t is:  

𝐸(𝐶(𝑡)) = ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙
𝜔(𝑡)

𝜙𝑚𝑖𝑛
+ ∫ [𝑇𝑇(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙

𝜙𝑚𝑎𝑥

𝜔(𝑡)
,  (4) 

where 𝑓(𝜙) is the probability density function of 𝜙, and 𝜔(𝑡) is the maximum service time for which 

no queue exists at t. The generalised price includes the travel cost and the toll:  

𝑃𝑗(𝑡) = 𝐸 (𝐶𝑗(𝑡)) + 𝜏𝑗(𝑡),   (5) 

where j indicates the scenario. When 𝑗 = 𝑁𝑇, we have no tolling and 𝜏𝑁𝑇 = 0. We also consider a 

uniform toll—indicated by UT—that is constant throughout the peak and a step toll—indicated by ST—

that varies in two discrete steps. Finally, we have three fully time-varying tolls: our first-best toll 

indicated by FB; the second-best toll indicated by SB with a constant departure rate (as taken from Long 

et al. (2022)); and the third-best toll indicated by TB that keeps the generalised price the same as in the 

NT and has a constant departure rate (as taken from Xiao et al. (2015)).  

The inverse demand function is 𝐷(𝑁), where N is the total demand. In user equilibrium, we have 

𝑃𝑗 = 𝐷(𝑁𝑗). The welfare or social surplus is:  

𝑆𝑆𝑗 = ∫ 𝐷(𝑛)
𝑁𝑗

0
𝑑𝑛 − 𝑇𝐶𝑗,   (6) 

where 𝑇𝐶𝑗 is scenario j’s total expected travel cost of 𝐸 (𝐶𝑗(𝑡)) ∙ 𝑁𝑗. 

 

4. Social optimum under price-sensitive demand and capacity uncertainty   

In the deterministic bottleneck model, the queue can be eliminated by a time-varying toll, and this 

achieves the social optimum in which the generalised price is unchanged compared to the no-toll 

equilibrium. As we will see, the toll in our stochastic bottleneck model will affect the price and demand.  

Under the time-varying scheme, the social surplus or welfare is:  

 𝑚𝑎𝑥
𝑡𝑠,𝑡𝑒,𝑟𝐹𝐵(𝑡),𝑁𝑇𝑉

 𝑆𝑆𝐹𝐵 = ∫ 𝐷(𝑛)
𝑁𝐹𝐵

0
𝑑𝑛 − ∫ 𝐸(𝐶𝐹𝐵(𝑡, 𝜙))𝑟𝐹𝐵(𝑡)

𝑡𝑒

𝑡𝑠
𝑑𝑡, (7) 

where 𝑡𝑠 , 𝑡𝑒  and 𝑟𝐹𝐵(𝑡) denote the first departure time, the latest departure time and the first-best 

departure rate at t, respectively. Then, the generalised price follows Eq. (5) with 𝑗 = 𝐹𝐵. We solve for 

the first-best social optimum in two stages. In the first stage, for a given demand, we optimise the 

departure rate by using dynamic optimisation and minimising the expected total social cost, i.e. the 

second term of Eq. (7). This implies how the toll should change over time. This stage is similar to 

Lindsey (1994, 1999) in using optimal control theory,3 except for our service time following a uniform 

 
3 Yang and Huang (1997) used optimal control theory to analyse the deterministic bottleneck model, Mun (1999) to analyse his flow congestion 

model, Schrage (2006) and Yu et al. (2023b) to analyse dynamic flow congestion. 
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distribution. The stage is also similar to Fosgerau and Lindsey (2013). In the second stage, we optimise 

total travel demand.  

 

4.1. First stage: analytics of optimising the departure rate and toll development 

In the dynamic optimisation, the departure rate 𝑟𝐹𝐵(𝑡) is the control variable. 𝑅(𝑡) is the state 

variable denoting the cumulative departures at t: 𝑑𝑅(𝑡) 𝑑𝑡⁄ = 𝑟𝐹𝐵(𝑡). The queuing time 𝑞(𝑡, 𝜙) from 

Eq. (1) is a second state variable. In the first stage, the problem can be reformulated as  

 𝑚𝑖𝑛
𝑡𝑠,𝑡𝑒,𝑟𝐹𝐵(𝑡)

∫ 𝐸(𝐶𝐹𝐵(𝑡, 𝜙))𝑟𝐹𝐵(𝑡)
𝑡𝑒

𝑡𝑠
𝑑𝑡,  (8) 

subject to   

𝑑𝑞(𝑡,𝜙)

𝑑𝑡
= {

𝜙𝑟𝐹𝐵(𝑡) − 1, 𝜙 > 𝜔(𝑡)

0, 𝜙 ≤ 𝜔(𝑡)
 (Costate variable is 𝜇1(𝑡, 𝜙)), (9) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝑟𝐹𝐵(𝑡) (Costate variable is 𝜇2(𝑡)),   (10) 

where 𝑅(𝑡𝑠) = 0 and 𝑅(𝑡𝑒) = 𝑁𝐹𝐵. The ts and te are the first and latest departure times, respectively. 

Note that the queue development depends on the capacity realisation, but the departure rate does not. 

Let 𝜇1(𝑡, 𝜙) and 𝜇2(𝑡) denote the “costate variables” of 𝑞(𝑡, 𝜙) and 𝑅(𝑡), respectively. We set up 

the equations so that 𝜇2 is the marginal social cost (MSC) of the total departures at t: how much higher 

the total cost will be when the total departures at t are higher. Similarly, 𝜇1(𝑡, 𝜙) is the shadow cost of 

queuing time when service time is ϕ (and thus capacity 1/ϕ): it gives how much higher the total costs 

are when there is more queuing.  

The Hamiltonian function for the optimisation problem is:4  

𝐻(𝑡) = −𝑟𝐹𝐵(𝑡) {∫ [𝛼𝑞(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙

𝜔(𝑡)

𝜙𝑚𝑖𝑛
} +

              ∫ 𝜇1(𝑡, 𝜙)(𝜙𝑟𝐹𝐵(𝑡) − 1)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ 𝜇2(𝑡)𝑟𝐹𝐵(𝑡).  (11) 

The equations of motion of costate variables 𝜇1(𝑡, 𝜙) and 𝜇2 are:5  

       
𝑑𝜇1(𝑡,𝜙)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞
= {

−𝑟𝐹𝐵(𝑡) (𝛼 +
𝑑𝑆𝐷𝐶(𝑡+𝑞(𝑡,𝜙))

𝑑𝑞(𝑡,𝜙)
) , 𝑖𝑓 𝜙 ≥ 𝜔(𝑡)

0, 𝑖𝑓 𝜙 ≤ 𝜔(𝑡)
  (12) 

   
𝑑𝜇2(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
= 0.   (13) 

The transversality conditions at the start and end of the peak are H(ts) = 0 and H(te) = 0.  

Costate variable 𝜇1(𝑡, 𝜙) ≥ 0 is the shadow cost of queuing time. It not only depends on departure 

time t but also on the capacity realisation and thus 𝜙. At any t, if 𝜙 is smaller (i.e. the realised capacity 

is larger), queuing is shorter or even absent. At 𝑡𝑒, all commuters have left, and no later departures6 

would be delayed by queuing regardless of the realised capacity. This implies that no matter what the 

capacity is, the shadow cost of queuing at te is zero:  

 
4 The Hamiltonian function may look different than expected as we need to integrate over the uncertainty and have two outcomes: one with 

queuing and one without. Although Eq. (10) shows that there is a regime shift between when there is queuing and when there is not, there is 

no regime shift in the control variable of the departure nor in the toll, as these depend on the expected outcome before the capacity is known. 

This is also why the first constraint for queuing is integrated over ϕ, while the second for the (total) departures is not. Therefore 𝜇1(𝑡, 𝜙) 

depends on the capacity realisation and thus ϕ, whereas 𝜇2 does not.  

5 Where the 𝑞(𝑡, 𝜙) in 
𝑑𝜇1(𝑡,𝜙)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞(𝑡,𝜙)
 it is the effect for a specific realisation of ϕ, as the queuing development is specific for each 𝜙. 

6 Of course, one would delay the departures at te, but this effect is of size zero since one integrates from te to the same time te.   
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 𝜇1(𝑡𝑒 , 𝜙) = 0.   (14) 

From (12), 𝜇1(𝑡, 𝜙) weakly decreases over time, since more commuters have departed and fewer will 

be delayed by queuing. Therefore, 𝜇1(𝑡, 𝜙) ≥ 0, 𝑡 ∈ [𝑡𝑠, 𝑡𝑒].  

From (13), the costate variable 𝜇2 is constant over time. This implies that the marginal social cost 

is constant between ts and te and equals 𝜇2. The first-order condition for the departure rate rFB implies:  

𝜇2 = ∫ [𝛼𝑞(𝑡, 𝜙) + 𝑆𝐷𝐶(𝑡 + 𝑞(𝑡, 𝜙))]𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
+ ∫ 𝑆𝐷𝐶(𝑡)𝑓(𝜙)𝑑𝜙

𝜔(𝑡)

𝜙𝑚𝑖𝑛
+

            ∫ 𝜙𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
, 𝑡 ∈ [𝑡𝑠, 𝑡𝑒].   (15) 

Here, the first two terms in integrals together give the expected private travel cost for a departure at t, 

and thus the expected marginal external cost (MEC) at t equals the last term ∫ 𝜙𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
, 

which is the expected cost due to queuing imposed on later departures at t. Moreover, the transversality 

conditions and (15) imply that the MEC is zero at ts and te, and non-negative in between. 

  Now, let us search for the toll’s pattern. For the expected price to be constant over time and thus 

the users to be in user equilibrium, the toll must vary just like the expected MEC:  

𝜏(𝑡) = ∫ 𝜙 𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
 + 𝜏0,  (16) 

where 𝜏0 is the starting level of the toll at ts. And the toll must again equal 𝜏0 at te. 

We can also use this to derive the optimal departure rate and how it varies over time. The optimal 

departure rate must equal:  

𝑟𝐹𝐵(𝑡) = 1 𝜔(𝑡)⁄ , 𝑡 ∈ [𝑡𝑠, 𝑡𝑒],  (17)  

where again 1/𝜔(𝑡) is the minimum of the stochastic capacity for which there is no queue at t. The 

intuition is that once the queue starts to develop, it does not collapse to zero until the last departure, as 

stated in Lindsey (1994, 1999). Suppose 𝑡′ ∈ [𝑡𝑠, 𝑡𝑒] and 𝑟(𝑡′) > 1 𝜔(𝑡′)⁄ ; there would always be an 

interval that the expected delay cannot dissipate efficiently. Conversely, if 𝑟(𝑡′) < 1 𝜔(𝑡′)⁄ , there 

would always be an interval in which capacity is not fully used. Moreover, for our uniform distribution, 

we get the following departure rates at the start and end of the peak: 

𝑟𝐹𝐵(𝑡𝑠) = 1 𝜙𝑚𝑎𝑥⁄ ,  

𝑟𝐹𝐵(𝑡𝑒) = (𝛼 + 𝛾) (𝛼𝜙𝑚𝑎𝑥 + 𝛾𝜙𝑚𝑖𝑛)⁄ .  (18) 

So, the departure rate at the start of the peak is low and equals the minimum capacity of 1 𝜙𝑚𝑎𝑥⁄ . The 

departure rate ends high, being above the “average” capacity of 1/𝜙 = 2 (𝜙𝑚𝑎𝑥 + 𝜙𝑚𝑖𝑛)⁄  but below 

the maximum capacity. As ω(t) is a continuous, but possibly kinked, function with a uniform distribution, 

it also follows that the optimal departure rate will continuously increase over departure times during at 

least a part of the peak and never decreases over departure times. There may be departure windows when 

drivers always or never see queuing, which implies that the departure rate 𝑟𝐹𝐵(𝑡) are constant over time 

in those ranges.  

The departure rate starts low, as it is more costly if an early departure causes queuing if the realised 

capacity turns out to be low. The optimal departure rate ends high, as for late departures there are few 

to no users who can be affected. This is also implied by the pattern of shadow cost of queuing: μ1(t,ϕ). 

 

4.2. Second stage: setting total demand 

Our first-stage results with a uniform distribution are consistent with those of Lindsey (1994, 1999) 
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for a general distribution, but our explicit distribution allows for more explicit results. We now turn to 

the second stage where we set the total number of users to maximise the reduced-form social surplus 

(which is conditional on the departure rate following the socially optimal pattern): 

𝑆𝑆𝐹𝐵 = ∫ 𝐷(𝑛)
𝑁𝐹𝐵

0
𝑑𝑛 − 𝑁𝐹𝐵𝐸(𝐶𝐹𝐵

∗ (𝑁𝐹𝐵)), 

where the superscript * in 𝐶𝐹𝐵
∗  indicates that it is the travel cost under the socially optimal departure rate 

from the previous section. Maximising this to NFB gives  

D(NFB) = 𝐸(𝐶𝐹𝐵
∗ (𝑁𝐹𝐵)) + 𝑁𝐹𝐵

𝜕𝐸(𝐶𝐹𝐵
∗ (𝑁𝐹𝐵))

𝜕𝑁𝐹𝐵
=𝜇2. (19)  

And the inverse demand should equal the (expected) marginal social cost that equals the 𝜇2 from the 

previous section. This in turn implies that the toll should start at zero, and thus the first-best toll is: 

 𝜏(𝑡) = ∫ 𝜙 𝜇1(𝑡, 𝜙)𝑓(𝜙)𝑑𝜙
𝜙𝑚𝑎𝑥

𝜔(𝑡)
.             (20) 

The toll at t should equal the expected MEC(t).  

 This outcome is, of course, similar to the social optimum with a fixed capacity, where it is also 

optimal that the inverse demand equals the MSC and the toll equals MEC(t). However, in that case, the 

optimal departure rate equals the fixed capacity, whereas here the rate starts at the minimum capacity 

and then weakly increases to some final level that is in between the ‘average’ and the maximum.   

   

In the optimum, the peak is divided into different time windows: [𝑡𝑠, 𝑡1], [𝑡1, 𝑡2], [𝑡2, 𝑡∗] and 

[𝑡∗, 𝑡𝑒], denoted as “Situations 1–4”, respectively.7 Commuters have a different queuing experience and 

schedule delay experience under the given capacity (day) in different time windows. The type of queuing 

and schedule delay commuters may experience, and the generalised price during each time window, are 

given in Appendix A.1.  

From the analysis above, we have the following results:  

Remark 1: The cumulative departures 𝑅(𝑡1) =
𝑡1−𝑡𝑠

𝜙𝑚𝑎𝑥
, 𝑅(𝑡2) =

𝑡∗−𝑡𝑠

𝜙𝑚𝑎𝑥
 and 𝑅(𝑡∗) =

𝑡1−𝑡𝑠

𝜙𝑚𝑎𝑥
+

𝑡∗−𝑡1

𝜔(𝑡∗)
.  

The proof of Remark 1 is given in Appendix A.2. 

Remark 2: In the social optimum, we have:  

𝑡𝑠 =
2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥𝑡∗−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)𝑡1

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
−

𝛾𝜙𝑚𝑎𝑥[𝛾(𝜙𝑚𝑎𝑥+𝜙𝑚𝑖𝑛)+2𝛼𝜙𝑚𝑎𝑥]𝑁𝐹𝐵

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
 (21) 

𝑡𝑒 =
2(𝛽+𝛾)(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)𝑡∗+(2𝛽+𝛾)𝛾(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)𝑡1

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
+

2𝛽𝜙𝑚𝑎𝑥(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)𝑁𝐹𝐵

2(𝛼+𝛾)(𝛽+𝛾)𝜙𝑚𝑎𝑥−𝛾2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
 (22) 

The proof of Remark 2 is given in Appendix A.3. 

The tolls at the first and at the latest departure time are both zero. The generalised price of the first 

commuter is 𝑃𝐹𝐵 = 𝛽(𝑡∗ − 𝑡𝑠). This is also the marginal social cost, since an additional user departing 

before 𝑡𝑠 does not impose any costs on others.  

 
7 In the no-toll equilibrium, it could occur that the last departure is before t* if the uncertain capacity is really spread out (Arnott et al., 1996). 

But in the social optimum there will always be departures after t*. The departure rate is positive between ts and te, non-decreasing over t and 

starts at the minimum capacity. If the last departure occurred before t* someone departing at te could depart marginally later; they would lower 
their cost without hurting anyone else and thus lower the total cost. If capacity turns out high, they will face no travel delay whilst lowering 

their schedule delay; if capacity turns out low, they will join the queue for the last departures and keep the same schedule delay whilst 

lowering queueing time (Lindsey, 1994). Hence, all four situations will occur.  
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To summarise, compared with the deterministic model, both the generalised price and the total 

demand will change under the toll. Both departure rate and toll are now non-linear over time. The 

departure rate starts low at the start of the peak as it equals the minimum capacity; at the end of the peak, 

the rate is high but below the maximum capacity; in between these times, the departure rate is non-

decreasing, continuous and increasing for a range of departure times. Interestingly, this is the mirror 

image of the pattern without tolling: the untolled departure rate starts high, decreases in between and 

ends low. All this is really different from the deterministic bottleneck model, where first-best tolling 

leads to a constant departure rate and has the same price as the no-toll case. 

 

4.3. Analytical comparison with the no-toll equilibrium and other proposed time-varying tolls 

For the no-toll equilibrium, we use the results from Arnott et al. (1996, 1999), Linsdey (1994), 

Xiao et al. (2015) and Long et al. (2022), as our focus is on tolled equilibria. The analysis may actually 

be more complicated without tolling, as there are multiple cases of the no-toll equilibrium depending on 

the parameters, e.g. with or without departure after t*, whereas in the social optimum there are always 

departures after t* no matter what the parameters.  

By adopting the results of Long et al. (2022), the first and the last departure time under the no-toll 

equilibrium when 𝜙 follows the uniform distribution are given as follows:  

(a) when there is departure after t*, 

𝑡𝑠
𝑁𝑇 = 𝑡∗ −

𝛼+𝛾

𝛽+𝛾
𝑁 [

𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥

2
−

𝛼(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)+(𝛼+𝛾)𝛼𝜙𝑚𝑖𝑛

(𝛼+𝛾)2(𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥)
] (23) 

𝑡𝑒
𝑁𝑇 = 𝑡∗ + 𝑁 [

𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛

(𝛼+𝛾)
−

(𝛼+𝛾)(𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥)

2(𝛽+𝛾)
+

𝛼(𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛)+(𝛼+𝛾)𝛼𝜙𝑚𝑖𝑛

(𝛼+𝛾)(𝛽+𝛾)(𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥)
] ; (24) 

(b) when there is no departure after t*, 

𝑡𝑠
𝑁𝑇 = 𝑡∗ − 𝑁�̂�   (25) 

𝑡𝑒
𝑁𝑇 = 𝑡∗,  (26) 

where �̂� is obtained by solving the equation 
1

�̂�
(

𝜙𝑚𝑖𝑛+𝜙𝑚𝑎𝑥

2
−

(�̂�)
2
−(𝜙𝑚𝑖𝑛)2

(𝜙𝑚𝑎𝑥)2−(𝜙𝑚𝑖𝑛)2) +
�̂�−𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛
=

𝛼+𝛽+𝛾

𝛼+𝛾
. 

By comparing Eqs. (21)–(22) and Eqs. (23)–(26), it becomes apparent that the departure timings under 

the social optimum differ from those under the no-toll equilibrium. Then, the price also changes under 

the social optimum, which is different from the results in the deterministic scenario.  

 The departure rate in the no-toll stochastic equilibrium is qualitatively the mirror image of the 

socially optimal one. The untolled departure rate starts high, weakly decreases in between and ends low. 

Numerical analysis in Xiao et al. (2015) shows that the rate may be flat in some periods, which we will 

also see in our numerical model for the first-best toll. We cannot analytically compare the prices in the 

no-toll and first-best equilibria. We will do this in the numerical model and find that no matter the 

parameters, the first best has higher prices than the no toll. 

All this is also very different from the deterministic bottleneck model, where the no-toll rate is flat 

with a downward jump for arrivals at t*. Moreover, the no-toll and first-best settings have the same 

prices in the deterministic bottleneck model. The first-best toll in the stochastic model is convex over 

time, where it starts and ends at zero. Conversely, in the deterministic model, the toll is piecewise linear. 

Our stochastic bottleneck model is thus more akin to flow congestion models (e.g. Agnew, 1973; Chu, 

1999; Mun, 2003). 

 Now, let us turn to the comparison with the two other time-variant toll models in the literature. 

Long et al. (2022) proposed a time-varying toll under the condition that the departure rate is constant 
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over time. This has the advantages of being easier to implement and allowing for a more detailed 

analytical study. However, as the socially optimal rate varies (see also Linsdey, 1994, 1999), it must 

mean that their scheme has a (somewhat) lower welfare. Hence, we call it the “second-best” time-variant 

toll, as the constraint of a constant departure rate somewhat lowers welfare. Xiao et al. (2015) proposed 

a time-variant toll that has a constant departure rate and keeps the price at the no-toll setting. It thus adds 

another constraint to the tolling; hence, we call it “third best”. As it is a constrained version of the second 

best, it can, at most, do as well as the second best (when the second best would lead to the same price 

as no tolling). Again, analytical comparison is limited, but in the numerical model, we see that the third-

best toll always has lower prices than the second best and first best but has a lower social surplus. It is 

thus nicer for the users, making it more politically feasible to implement. All three time-variant tolls are 

non-linear and concave over time.    

5. Uniform toll  

The uniform toll is constant during the morning peak, and it does not give an incentive to change 

the departure patterns other than an indirectly via changing total demand. Thus, the equilibrium is the 

same as without tolling (Arnott, 1996; Long et al., 2022). However, these authors did not study flat 

tolling. Yu et al. (2023a) did look at uniform tolling. 

The generalised price follows from Eq. (5) with 𝑗 = 𝑈𝑇. The social surplus is:  

𝑆𝑆𝑈𝑇 = ∫ 𝐷(𝑛)
𝑁𝑈𝑇

0
𝑑𝑛 − 𝑁𝑈𝑇𝐸(𝐶𝑈𝑇).  (27) 

Maximising it implies that the flat toll needs to equal the marginal external cost (MEC): 

 𝜏𝑈𝑇 = 𝑁𝑈𝑇
𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
.                                                          (28)  

The derivations are given in Appendix A.4. The optimal demand 𝑁𝑈𝑇 is found by 𝑃𝑈𝑇 = 𝐷(𝑁𝑈𝑇). This 

is basically the same outcome as the flat toll without uncertainty (Arnott et al., 1993a). This tolling 

regime has many possible cases depending on the parameters, just like the case without tolling.  

This uniform toll cannot alter departure rates, it can only lower the total number of users so that 

the (averaged over time) MSC equals the inverse demand, whereas without tolling, the inverse demand 

equals the travel cost, which is lower than the MEC. Hence, the uniform toll raises the expected price 

and lowers the total number of users.  

6. Single-step toll  

The single-step toll consists of a “time-variant” step-up component that applies during the step-

tolling period, and a time-invariant component that lasts the whole peak: 

𝜏𝑆𝑇(𝑡) = 𝜌𝑡 + 𝜇.  (29) 

Here, 𝜏𝑆𝑇(𝑡) is the toll at departure time t, and 𝜌𝑡 is the time-variant step part implemented from 𝑡+ to 

𝑡−. The 𝑡+ and 𝑡− are the start time and end time of the step-tolling period. 𝜇 is the time-invariant part 

implemented throughout the peak.  

Adapting the procedure in Van den Berg (2012), we again optimise in two stages. In the first stage, 

given the number of users, the time-variant part 𝜌𝑡  and the step-tolling period are obtained by 

minimising the total expected cost. In the second stage, the total demand is set to maximise social 

welfare whilst considering the effect on the first stage. This then also implies the time-invariant part of 
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the toll: 𝜇.   

With fixed demand, Long et al. (2022) investigated the single-step toll in the stochastic bottleneck 

model, where the service time of the bottleneck follows a general distribution. If the step toll is 

implemented, commuters depart at a constant departure rate before 𝑡+. When the toll is lifted at 𝑡−, there 

will be a mass of commuters departing. Like Long et al. (2022), we use the ADL (Arnott et al., 1993a) 

model with mass departures.  

In the first stage, the results are the same as in Long et al. (2022) for a uniformly distributed service 

time. There are two cases under the single-step toll, depending on whether the peak ends at or after the 

preferred arrival time t*. Here, under the single-step toll, the peak ends after t* in Case I (it is Case 8.2 

in Long et al. (2022)), and it ends at t* in Case II (it is Case 9.2 in Long et al. (2022)). For the second 

stage, Appendix A.5 gives the detailed derivations, and the results are summarised below.  

Following Long et al. (2022), the expected total social cost in Case I is:  

𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) = −
𝑊(�⃡�  )(𝑀(�⃡�  ))

2
(𝑁𝑆𝑇)2

4(𝛽+𝛾)2 +
(𝛼+𝛾)(�̄�−�̃�)𝛽(𝑁𝑆𝑇)2

𝛽+𝛾
. (30) 

Here, 𝜙 is the reciprocals of the average departure rate during the period from the departure time of the 

first commuter to the departure time of the first commuter who pays the toll, and 𝜙 is obtained by solving 

the equation 𝑀(𝜙)
𝑑𝑊(�⃡�  )

𝑑�⃡�  
+ 2𝑊(𝜙)

𝑑𝑀(�⃡�  )

𝑑�⃡�  
= 0 , where 𝑊(𝜙) =

1

𝑌(�⃡�  )+
2

(𝛼+𝛾)�̄�
, 𝑌(𝜙) =

1

𝛼�⃡�  −(𝛼−𝛽)𝐻(�⃡�  )
, 

𝐻(𝜙) = �̄� − 𝐺(𝜙) + 𝜙𝐹(𝜙) , 𝑀(𝜙) = 𝛽(𝛼 + 𝛾)(�̄� − �̃�)𝑌(𝜙) − 𝛽(𝛽 + 𝛾)𝐻(𝜙)𝑌(𝜙) + (𝛽 + 𝛾) +

2𝛽(�̄�−�̃�)

�̄�
, 𝐹(𝑥) =

𝑥−𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛
, 𝐺(𝑥) =

𝑥2−𝜙𝑚𝑖𝑛
2

2(𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)
, �̃� = 𝐺 (

𝛼𝜙𝑚𝑎𝑥+𝛾𝜙𝑚𝑖𝑛

𝛼+𝛾
)  and �̄� =

𝜙𝑚𝑎𝑥+𝜙𝑚𝑖𝑛

2
. 

These definitions follow from those in Long et al. (2022). As proved in Proposition 16 by Long et al. 

(2022), 𝜙 is independent of 𝑁𝑆𝑇. Then, the total expected social cost shown in Eq. (30) is a function of 

travel demand. The total toll revenue is:   

𝑇𝑅𝑆𝑇 = 𝜌𝑡𝑁1 + 𝜇𝑁𝑆𝑇 ,  (31) 

where 𝜌𝑡 =
𝑀(�⃡�  )𝑊(�⃡�  )𝑁𝑆𝑇

2(𝛽+𝛾)
 is the optimal time-variant step part of the toll, and 𝑁1 = 𝑁𝑆𝑇 −

𝜌𝑡

𝑊(�⃡�  )
 is the 

number of travellers departing during the step-tolling period. The step part of the toll, 𝜌𝑡, is a function 

of travel demand. The average marginal external cost (MEC) is the difference between the average 

marginal social cost and the average travel cost. From Eq. (30), the average MEC is: 

𝑀𝐸𝐶𝑆𝑇 = −
𝑊(�⃡�  )(𝑀(�⃡�  ))

2
𝑁𝑆𝑇

4(𝛽+𝛾)2 +
(𝛼+𝛾)(�̄�−�̃�)𝛽𝑁𝑆𝑇

𝛽+𝛾
. (32) 

We obtain the optimal time-invariant part of the toll by equalising the average marginal external 

cost and the average toll, i.e. 𝑀𝐸𝐶𝑆𝑇 =
𝑇𝑅𝑆𝑇

𝑁𝑆𝑇
. Then, the optimal time-invariant part is:  

𝜇 = 𝑀𝐸𝐶𝑆𝑇 −
𝜌𝑡𝑁1

𝑁𝑆𝑇
=

(𝛼+𝛾)(�̄�−�̃�)𝛽𝑁𝑆𝑇

𝛽+𝛾
−

𝑊(�⃡�  )𝑀(�⃡�  )𝑁𝑆𝑇

2(𝛽+𝛾)
. (33) 

The generalised price in Case I is:  

𝑃𝑆𝑇 = −
𝑊(�⃡�  )(𝑀(�⃡�  ))

2
𝑁𝑆𝑇

2(𝛽+𝛾)2 +
2(𝛼+𝛾)(�̄�−�̃�)𝛽𝑁𝑆𝑇

𝛽+𝛾
. (34) 

From Eq. (34), the optimal demand under a step toll can be found by 𝑃𝑆𝑇 = 𝐷(𝑁𝑆𝑇). The results 
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for Case II will be similarly obtained and are given in Appendix A.6 to save space.  

 

7. Numerical study  

Because the analytical results are not easy to interpret, we conduct a numerical study to compare 

the different schemes. This also provides new insights beyond what can be obtained from the analytics. 

We conduct extensive sensitivity tests to see how robust these insights are. We will use a uniformly 

distributed bottleneck service time as this is a common assumption, as seen in the literature review.  

The first section will look at fixed demand, and the second at price-sensitive demand. Fixed demand 

allows for a clearer comparison of departure rates and costs, as otherwise the number of users will differ 

between tolling regimes, which muddles the view.   

Unless otherwise mentioned, we use the same values for the unit cost parameters as Long et al. 

(2022): 𝛼 = 6.4$/ℎ , and ratios 𝛽/𝛼 = 0.609  and 𝛾/𝛽 = 3.9 . The desired arrival time 𝑡∗ = 9ℎ . 

Following Long et al. (2022), the mean bottleneck service time is 𝜙 = 1𝑠/𝑣𝑒ℎ, which implies an 

“average” capacity of 3600 𝑣𝑒ℎ/ℎ. Increasing 𝜙𝑚𝑖𝑛 (the lower bound of service time) makes the system 

less uncertain. When 𝜙𝑚𝑖𝑛 approaches the average 𝜙, the model approaches the deterministic scenario. 

In this set-up, 𝜙𝑚𝑎𝑥 = 2 − 𝜙𝑚𝑖𝑛. 

The inverse demand function is assumed to be linear: 𝐷(𝑛) = 𝑑0 − 𝑑1𝑛. The average demand 

elasticity is -0.4 (Van den Berg, 2012). When the capacity is at the mean value (i.e. the capacity is 1/𝜙), 

the number of commuters N = 5000 veh. under the no-toll scheme (Long et al., 2022). This implies that 

𝑑0 = 15.0893 and 𝑑1 = 0.0022. The demand elasticity is set based on the mean (average) capacity and 

N = 5000 veh under this setting. Due to the uncertainty, the demand and price will change under the no-

toll equilibrium when the elasticity changes.   

   

7.1. Numerical evaluation of the different scenarios under fixed demand 

Long et al. (2022) proposed a “second-best” time-varying toll model with two properties: (i) the 

toll keeps the departure rate constant; (ii) there are no toll charges for both the first and the last traveller, 

as is the case in the deterministic bottleneck model. Xiao et al. (2015) introduced a “third-best” time-

varying toll that has these conditions and keeps the generalised price (i.e. the sum of travel cost and toll) 

at the level in the no-toll equilibrium. In these previous works, the demand is fixed, and the time-varying 

toll scheme cannot achieve the system optimum. The “first-best” toll of Lindsey (1999) does this and 

leads to a departure rate that weakly increases over time.  

For different 𝜙𝑚𝑖𝑛, Fig. 1 plots the equilibrium departure rates under the no-toll and the first-, 

second- and third-best time-varying toll schemes. Note that the departure rate in no-toll equilibrium 

follows from Long et al. (2022).  

The departure rate in no-toll equilibrium is non-increasing over the departure time, while that under 

the first-best toll is non-decreasing. The intuition for the latter is that as time progresses, more travellers 

have departed and fewer travellers will be delayed by queuing, which means that the cost of queuing 

decreases over time in the optimum. Thus, in the earliest departure period, the departure rate is constant 

and equals the minimum capacity to avoid high queuing cost; after that, it starts to increase, before 

becoming constant again for the last departure period. During the early peak, capacity is underutilised 

unless the worst possible traffic condition occurs. The results are consistent with those in Lindsey (1994), 

who used a binary distribution, and in Fosgerau and Lindsey (2013), who used a capacity that varies 

over the day. In line with the analytics, Fig. 1 shows that the optimal departure rate is constant after 𝑡∗, 
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and is in between the ‘average’ capacity and the maximum capacity. It is interesting to point out that 

when 𝜙𝑚𝑖𝑛 is relatively large with less uncertainty, the first-best departure rate after 𝑡∗ is the same as 

that under the third-best toll, as shown in Fig. 1(c)–(d).  

The third-best time-varying toll keeps the price unchanged from the no-toll case, and the peak 

duration and timing are also the same. With our uniform distribution, the peak begins earlier and ends 

later in the social optimum compared to that under the no-toll equilibrium. Under the second-best time-

varying toll, the peak is the longest due to a lower departure rate on average. Conversely, the third-best 

time-varying toll has the shortest departure window. Thus, compared with the no-toll case, both the first- 

and second-best tolls increase the price and the peak duration under fixed demand, which differs from 

the deterministic model.  

The no-toll departure rate is qualitatively the mirror image of the first-best one. It weakly decreases 

over time and is continuous with two kinks. The rate starts at the maximum, and then, after a while, it 

starts to decrease. 

When 𝜙𝑚𝑖𝑛 increases towards 𝜙, so that there is less uncertainty, the departure rate under the first-

best toll becomes more concentrated and that under the three time-varying toll schemes approaches the 

mean capacity, as illustrated in Fig. 1(d). A constant departure rate is only optimal when there is no 

uncertainty.  

 

               

(a) High uncertainty: 𝜙𝑚𝑖𝑛=0.2 s/veh.            (b) Medium uncertainty: 𝜙𝑚𝑖𝑛=0.5 s/veh. 

                                        

(c) Low uncertainty: 𝜙𝑚𝑖𝑛=0.75 s/veh.            (d) Very low uncertainty: 𝜙𝑚𝑖𝑛 =0.9 s/veh. 

Fig. 1: Comparisons of equilibrium departure rates under different time-varying tolling schemes in 

stochastic bottleneck model for four spreads of the capacity. 

Note: The uniform distribution of the service time varies from 𝜙𝑚𝑖𝑛 to 𝜙𝑚𝑎𝑥 = 2 − 𝜙𝑚𝑖𝑛. So, lowering 𝜙𝑚𝑖𝑛 increases 

the spread of the distribution without altering the mean.  

 

We also examine the results for a different ratio 𝛽/𝛼, where the ratio 𝛾/𝛽 is kept constant. For 

simplicity, the results are illustrated in Fig. B.1 in Appendix B. We find that when the ratio of 𝛽/𝛼 

decreases, there is a decrease in the overall departure rates, and the difference under different schemes 
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becomes small. Since the cost of queuing becomes relatively high, the average departure rate decreases 

to avoid being involved in long queues due to uncertainty. Also, the peak under these schemes begins 

earlier with a smaller ratio of 𝛽/𝛼, since experiencing schedule delays becomes less costly.   

 

For the three toll schemes, Fig. 2 shows the mean queuing cost and mean schedule delay cost over 

departure time. All tolls start at zero. The third-best toll is much lower than the others and its peak is 

much shorter, which results in much higher expected travel times. In the graph, the first-best toll is 

higher than the second best. But this result is not universal and depends on the parameter levels: with 

low uncertainty, we obtain the opposite result. Nevertheless, the first-best toll does start the earliest, 

regardless of the parameters. For simplicity, the results when 𝜙𝑚𝑖𝑛=0.8 s/veh are given in Fig. B.2.  

Queuing will not be eliminated under uncertainty. It does not occur during the earliest departure 

period in the social optimum, which is consistent with the analytics. However, after that, queuing is 

always possible. For the second- and third-best toll schemes, because of the constant departure rate, the 

mean queuing cost increases linearly over departure time. In the social optimum, expected travel time 

delays are low for much of the peak, but they increase sharply during the later peak because of the 

sudden increase in the departure rate then. This increase is more pronounced the more uncertain the 

capacity is. The mean schedule delay cost at the end of the peak is smaller than that at the beginning, as 

tolling will not eliminate all delays (since then, the departure rate has never exceeded the minimum 

capacity, and almost always some capacity will go unused).  

 

  

(a) Toll             (b) Mean queuing cost   (c) Mean schedule delay cost       

Fig. 2: Comparisons of toll, mean queuing cost and mean schedule delay when 𝜙𝑚𝑖𝑛=0.2 s/veh. 

 

Fig. 3 illustrates the effect of tolling over different degrees of uncertainty. When 𝜙𝑚𝑖𝑛 increases, 

there is less uncertainty, and the price, average travel cost, average queuing cost and schedule delay cost 

decrease. Unlike in the deterministic model, the first-best toll raises the generalised price from the 

untolled setting, and it decreases travel cost less in percentage terms. These effects are stronger the more 

uncertainty there is. 

As mentioned above, the third-best time-varying toll keeps the generalised price unchanged from 

the no-toll equilibrium. In Fig. 3(a), both the first- and second-best tolls raise the price. When there is 

more uncertainty, the first-best price is higher than the second-best price. The expected average travel 

cost under the optimal toll is naturally at the minimum, while this is not necessarily true for queuing 

costs. The expected queuing cost under the second-best scheme is lower than that under the first-best 

one, as illustrated in Fig. 3(c). Fig. 3(d) shows that the average schedule delay cost under the social 

optimum is the lowest and that under the second-best time-varying toll is the highest.     

Together with the analysis above, we give some possible intuitive explanations concerning the 
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results under the first- and second-best tolls. As shown in Fig. 1, the departure duration is longest and 

the constant departure rate is lowest under the second-best toll. The second-best toll spreads the 

departures greatly, so that the expected queuing cost is lowest while the expected schedule delay cost is 

highest. This is also shown in Fig. 3(c) and (d). Compared to the first-best toll, the second-best toll is 

more effective at eliminating queues and less so at reducing schedule delay costs. Moreover, both 

uncertainty and the ratio 𝛽/𝛼 could affect the two schemes. Comparatively, the second-best toll is more 

sensitive to the ratio 𝛽/𝛼, while the first-best toll is more sensitive to uncertainty.  

Specifically, with a relatively small ratio 𝛽/𝛼, experiencing schedule delay is less costly. The 

second-best toll always begins earlier, resulting in a higher price than the first-best toll, no matter 

whether 𝜙𝑚𝑖𝑛 is relatively small or large (also see Fig. B.1 in Appendix B). Conversely, with a relatively 

large ratio 𝛽/𝛼, experiencing schedule delay is more costly, and the second-best toll begins either earlier 

or later than the first-best toll depending on the uncertainty (see Fig. 1). This results in either a higher 

or a lower generalised price of the second-best toll (see Fig. 3(a)) compared to the first-best one. When 

𝜙𝑚𝑖𝑛  is relatively small, the first-best toll begins earlier, leading to a higher price. Under that 

circumstance, the toll is higher and the constant component of the departure rate (in the earliest part of 

the peak) lasts longer under the first-best scheme in a highly uncertain environment (see Fig. 2(a) and 

1(a)–(b)). The intuition is that travellers could avoid the possibility of a long queue caused by large 

uncertainty and being heavily penalised by a high cost of arriving late. When there is less uncertainty, 

the price under the first-best toll decreases faster. When 𝜙𝑚𝑖𝑛 increases and exceeds a certain threshold, 

the price under the first-best toll is lower than the second-best price. Similar results are observed in the 

next section when there is price-sensitive demand.  

  

                      

 (a) Expected price                                              (b) Average travel cost   

                      

         (c) Average queuing cost                                       (d) Average schedule delay cost 

Fig. 3: The effect of uncertainty under different time-varying toll schemes with fixed demand on (a) 

price, (b) average travel cost, (c) average queuing cost, and (d) average schedule delay cost.  
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7.2. Numerical evaluation of the different scenarios under price-sensitive demand  

This section compares different tolling schemes. Here, the second- and third-best time-varying tolls 

mentioned in Section 7.1 are generalised to the price-sensitive schemes involving optimisation of 

demand as a separate step. Specifically, with price-sensitive demand, the second-best time-varying toll 

scheme imposes a constant departure rate. The third-best time-varying scheme adds the second 

constraint that the price is the same as in the no-toll equilibrium. We find their optimal departure rates 

by numerically maximising the social welfare with respect to the departure rate.  

 

7.2.1. The structures of different tolling schemes    

For two levels of uncertainty, Fig. 4 plots the uniform toll, single-step toll, first-best (FB) time-

varying toll, second-best (SB) time-varying toll and third-best (TB) time-varying toll with price-

sensitive demand. The flat toll and single-step toll are generally higher than the average toll of the time-

varying schemes. Similarly to the results for the deterministic model, the marginal external cost is higher 

with coarser pricing, implying higher toll levels. Furthermore, for the single-step toll, the time-variant 

step part of the toll is lifted at some point and there is a mass departure of users and they only need to 

pay the time-invariant part of the toll. Finally, similarly to what we found for fixed demand, with more 

uncertainty, the first-best time-varying toll begins earlier and the average toll is higher than for the 

second-best time-varying toll; the results are opposite with less uncertainty.   

 

   

(a) High uncertainty: 𝜙𝑚𝑖𝑛=0.2 s/veh.      (b) Low uncertainty: 𝜙𝑚𝑖𝑛 = 0.8 s/veh. 

Fig. 4: Different tolling schemes over the departure time for two levels of uncertainty.  

 

7.2.2. The effect of uncertainty    

In order to compare the efficiency of different tolling schemes with price-sensitive demand, we 

employ the index 𝜔𝑖
𝑆𝑆 that denotes the relative efficiency of tolling scheme i, i.e. the social surplus gain 

of scheme i from the no-toll equilibrium relative to that of the first-best scheme. It equals 

 𝜔𝑖
𝑆𝑆 =

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, 

where 𝑆𝑆𝑁𝑇, 𝑆𝑆𝐹𝐵 and 𝑆𝑆𝑖 denote the social surplus of the system under the no-toll equilibrium, under 

the first-best equilibrium and under the tolling scheme i, respectively.   

Fig. 5 shows how uncertainty affects the demand, price, expected average travel cost, average toll, 

social surplus and relative efficiency under different tolling schemes. There are kinks in the curves for 

the third-best toll when the equilibrium pattern changes. 
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We make the following observations. First, travel demand increases and the generalised price 

decreases with respect to 𝜙𝑚𝑖𝑛. The demand is highest and the price is lowest under the third-best time-

varying toll, where they are the same as under the no-toll equilibrium. With more uncertainty, the first- 

and second-best time-varying schemes raise the price more from the no-toll equilibrium, thus reducing 

the demand much lower. There is only a moderate difference between the first- and second-best time-

varying schemes. Similarly to the results with fixed demand, the price is higher and demand is lower 

under the first-best toll than under the second-best one when 𝜙𝑚𝑖𝑛 is less than around 0.5. The results 

are the opposite when 𝜙𝑚𝑖𝑛 is relatively large. Compared with time-varying schemes, a flat toll and step 

toll raise the price and reduce demand more.  

Second, from Fig. 5(c)–(d), the average travel cost and toll decrease with 𝜙𝑚𝑖𝑛. When there is less 

uncertainty, the average travel cost and toll under the third- and second-best schemes approach those 

under the first-best toll. Conversely, those under the single-step toll and flat toll become closer to that 

of the first-best toll as the degree of uncertainty increases. Additionally, the average travel cost under 

the third-best toll is higher than that of the single-step toll when 𝜙𝑚𝑖𝑛 is less than a critical value, of 

around 0.7, and it decreases sharply when 𝜙𝑚𝑖𝑛 exceeds the critical value. Fig. 5(d) shows that the 

average toll under the third-best scheme is always lowest.  

    

  

                (a) Demand                          (b) Expected price            (c) Expected travel cost  

   

                (d) Average toll                 (e) Social surplus                 (f) Relative efficiency 

Fig. 5: The effect of uncertainty on the outcomes under price-sensitive demand. 

Note: The relative efficiency of policy i is 𝜔𝑖
𝑆𝑆 =

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, where SSi is the social surplus or welfare. 

 

Finally, Fig. 5(e) shows that the social surplus of the third-best time-varying scheme is always 

higher than that of the single-step scheme, even though the average cost might be higher under the third-

best toll. According to Fig. 5(f), with the increases of 𝜙𝑚𝑖𝑛 the second- and third-best time-varying 

schemes become more efficient. The three time-varying schemes approach the same one when the 

stochastic bottleneck model approaches the deterministic model. However, the relative efficiency of the 

flat toll and single-step toll is higher with uncertainty than without uncertainty. This indicates that 
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lowering demand is more important in a highly uncertain environment, since the step toll is better at 

changing demand levels than lowering delays. The relative efficiency of the second-best toll is the 

highest, followed by the third-best toll, the single-step toll and then the uniform toll.   

 

7.2.3. The effect of demand elasticity    

Fig. 6 illustrates how demand elasticity affects the demand, average travel cost and relative 

efficiency of our schemes when 𝜙𝑚𝑖𝑛 = 0.2. The results with less uncertainty (𝜙𝑚𝑖𝑛 = 0.75) are given 

in Fig. B.3 in Appendix B. When the elasticity changes from -0.2 to -2, demand becomes more sensitive 

to the price. Compared to time-varying schemes, the performance of step-toll schemes is more sensitive 

to elasticity. The demand under the third-best toll is by definition the same as in the no-toll case.  

According to Fig. 6, more price-sensitive demand means a lower demand and average travel cost. 

Furthermore, there is little difference in demand between the first- and second-best schemes. Demand 

under the third-best toll scheme is always largest. This might also result in the highest travel cost, 

especially when demand is more price-sensitive to the price.  

Finally, Fig. 6(c) illustrates that as demand becomes more price-sensitive, the relative efficiency of 

the single-step toll and uniform toll increases, while that of time-varying schemes remains almost 

constant. The efficiency of the single-step toll is higher than that of the third-best time-varying toll when 

demand elasticity is less than around -0.8. By contrast, when there is less uncertainty, the uniform and 

single-step tolls become less efficient, and their performance is inferior to time-varying schemes (see 

Fig. B.3 in Appendix B). This is because these schemes are better at changing the total demand and 

worse at changing departure times. When demand becomes more price-sensitive, the step toll becomes 

more efficient since it is more important to change demand then. However, with less uncertainty in the 

system, the time-varying tolls perform better because the shift in the travel window matters more.  

  

     

                    (a) Demand          (b) Average travel cost                   (c) Relative efficiency 

Fig. 6: The effect of elasticity on the outcomes when 𝜙𝑚𝑖𝑛 = 0.2 s/veh.   

Note: The relative efficiency of policy i gives the relative welfare gain compared to the first best and is 𝜔𝑖
𝑆𝑆 =

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, where SSi is the 

social surplus or welfare. 

 

7.2.4. The effect of 𝜷/𝜶   

How the ratio 𝛽/𝛼 affects the price, average travel cost and relative efficiency under those tolling 

schemes is illustrated in Fig. 7. The results with less uncertainty (𝜙𝑚𝑖𝑛 = 0.8) are given in Fig. B.4 in 

Appendix B. Here, the value of time 𝛼 = 6.4$/ℎ and the ratio of 𝛾/𝛽 remain unchanged. Note that ratio 

𝛽/𝛼 varies from 0.26 to 0.99 to ensure we do not violate 𝛽 < 𝛼. With the increase of 𝛽/𝛼, queuing 

becomes less costly, while experiencing schedule delay becomes more costly.   

With the increase of 𝛽/𝛼, the price and average travel cost increase due to the increase in value of 

schedule delay, as illustrated in Fig. 7(a). Regardless of 𝛽/𝛼, the performance of the second-best toll is 
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close to that of the first best. The price under the third-best time-varying toll is again always lowest.  

Furthermore, with a lower value of schedule delay, the average travel cost might be higher under 

the third-best scheme than that under the uniform toll (see Fig. 7(b)). Under these circumstances, 

queuing is relatively costly, indicating that the third-best scheme is worse at reducing queue delays.  

Finally, in Fig. 7(c), with the increase of 𝛽/𝛼 , the third-best time-varying toll becomes more 

efficient, which also indicates that the impact of uncertainty on its performance becomes less important. 

However, the efficiency of the single-step toll slightly increases, and that of the other two schemes 

remains almost constant. When the system becomes more certain, the efficiency under all schemes 

becomes almost insensitive to 𝛽/𝛼 (see Fig. B.4 in Appendix B).  

  

      

       (a) Generalised price           (b) Average travel cost                 (c) Relative efficiency   

Fig. 7: The effect of 𝛽/𝛼 on the outcomes when 𝜙𝑚𝑖𝑛 = 0.2 s/veh.   

Note: The relative efficiency of policy i is 𝜔𝑖
𝑆𝑆 =

𝑆𝑆𝑖−𝑆𝑆𝑁𝑇

𝑆𝑆𝐹𝐵−𝑆𝑆𝑁𝑇
, where SSi is the social surplus or welfare. 

 

7.3. Summarising the numerical analysis 

This section compares the socially optimal time-varying toll to a second-best and third-best toll 

that, by assumption, have a departure rate that is constant over time. The third-best toll adds a further 

constraint that the generalised price should be the same as without tolling. We also looked at a uniform 

toll—which is constant over time—and a single-step toll.  

In the social optimum, the departure rate weakly increases over the morning; in the early peak, it 

is constant over time and equals the minimum capacity. Thereafter, it increases over time, and then 

finally, in the latest part of the peak, it is constant again. This differs greatly from the deterministic 

model where the optimal departure rate is always constant over time. Conversely, the untolled outcome 

has a rate that is the mirror image and weakly decreases over time. Unlike in the deterministic model, 

the first-best toll raises the generalised price from the untolled setting, and it decreases travel cost and 

increases welfare less in percentage terms. These effects are stronger the more uncertainty there is. 

The second-best toll attains a welfare level that is somewhat lower than in the first-best one, 

whereas the third-best toll attains a much lower welfare. The relative efficiencies of the second-best and 

third-best schemes fall with the degree of uncertainty, whereas the price sensitivity has little to no effect 

on relative efficiency. The uniform toll has a welfare that is much lower than that of the single-step toll. 

For most parameter ranges, the step toll, in turn, has a lower welfare than the third-best toll; exceptions 

include when demand is very price-sensitive, and when the value of time is substantially higher than 

that of schedule delay early.  

As demand becomes more price-sensitive, all schemes result in generalised prices that are closer 

together, and under perfectly elastic demand, they would all lead to the same price. The uniform toll has 

the highest price, followed by the single-step toll, then either the first-best or second-best toll, and finally 
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the third-best toll, which has the same generalised price as the no-toll case. Whether the first- or second-

best toll has the higher price depends on multiple parameters, but their prices will be close. The uniform 

and step toll attain welfare levels closer to the first-best level when the price sensitivity increases.  

 

8. Conclusion  

This study examines various tolling schemes in the stochastic bottleneck model with price-sensitive 

demand. We assume that the capacity is constant within a day but changes stochastically from day to 

day. We study three time-varying toll schemes, a uniform toll and a single-step toll. Our core 

contribution is doing so under uncertain capacity and price-sensitive demand. Pervious works only 

looked at these separately, and their interplay changes the results substantially. This is important for 

policymaking, since their combined occurrence is what might be expected in reality: travel time 

uncertainty is a fact of life in real transport systems, while travellers may respond to this and to policies 

such as tolling by changing their departure time, but also by changing their behaviour in other ways 

(including mode choice, working from home or rescheduling more drastically to times outside the peak). 

In the stochastic bottleneck model, the first-best social optimum is decentralised by a time-varying 

toll and has a departure rate that is continuous and weakly increases over time: the rate is constant in the 

earliest and latest parts of the peak, while in between the rate increases. This is very different from the 

deterministic model, where the optimal rate is constant over time. We solve for the time-varying tolls 

and the step toll in two stages. In the first stage, under a given demand, the departure rate is optimised, 

and this in turn implies the toll development over time. In the second stage, the total demand is optimised, 

which implies the toll’s starting level. We also study a second-best and a third-best time-varying toll, 

which are based on schemes in earlier papers but now account for price-sensitive demand. The second-

best scheme assumes that the departure rate should be constant over time, as is optimal in the 

deterministic bottleneck model but is second best here; this imposition leads to a lower welfare than 

under first-best tolling. The third-best time-varying scheme adds to the further condition that the 

generalised price should be the same as in the no-toll case. This is optimal in the deterministic model 

but lowers welfare under uncertainty.  

Our numerical study illustrates all of this. It shows that the optimal departure rate weakly increases 

over the morning, whereas the untolled departure rate is the mirror image as the rate weakly decreases. 

The second-best and third-best tolls are optimal only when there is no uncertainty. Unlike in the 

deterministic model, the first-best toll raises the generalised price from the untolled setting, and it 

decreases travel cost and raises welfare less in percentage terms. These effects are stronger the more 

uncertainty there is. The second-best toll attains a welfare a bit below that of the first-best toll, whereas 

the third-best toll leads to a much lower welfare and a higher travel cost. The single-step toll has a 

welfare that is below that of the third-best toll for most parameter ranges; exceptions include when 

demand is very price-sensitive and when the value of time is much higher than that of schedule delay 

early. The uniform toll has a welfare that is well below that of the step toll. When there is less uncertainty, 

the second-best and third-best schemes lead to a welfare that is closer to that of the first-best one, 

whereas the uniform and single-step toll perform relatively worse with less uncertainty. The effects of 

the price elasticity on the uniform toll and single-step toll are more significant than on the time-varying 

tolls. All this shows the importance of jointly considering uncertainty and price-sensitive demand.  

Our study can be extended in several directions. The first one is to consider other step-toll models, 

as we used the ADL step toll. How would adding more steps to the step toll alter things? All the time-
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varying tolls vary non-linearly over time, whereas the deterministic model has a linear slope. How would 

such a much simpler and easier-to-implement linear toll perform?8 What toll would a profit-maximising 

road operator set? In the deterministic model, the operator uses the same toll pattern as the welfare-

maximising first-best toll but with a time-invariant markup added. Does the same hold with stochasticity? 

What happens if we consider larger networks or a different form of congestion? What if demand is also 

uncertain or the uncertainty varies over the day (e.g. an accident that is cleared)? What about alternative 

policies to tolling, such as capacity expansion or travel credits? Finally, accounting for the effect of 

information is important (Yu et al., 2021, 2023a; Han et al., 2021; Verhoef et al., 1996). So, there is a 

long list of interesting and important opportunities for further research on stochastic and congested 

transportation systems.  

Finally, as a policy conclusion, we find that in the stochastic bottleneck model, unlike the 

deterministic one, the first-best socially optimal toll cannot remove all queuing and hurts consumers by 

raising the generalised price from the untolled case. Moreover, the percentage welfare gain is much 

lower in our stochastic model than in the deterministic bottleneck model. This makes tolling harder to 

implement politically. Adding a constraint that the generalised price must remain the same as without 

tolling is beneficial for users (before considering revenue recycling); however, this raises travel costs 

and lowers toll revenue and welfare. This highlights the fact that the interaction between uncertainty and 

price sensitivity complicates the design of transportation policies and alters their effects; and, of course, 

in reality we do have uncertainty, making it important to consider it.   
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Appendix A. Analytics for different toll schemes          

A.1 The generalised price in each time window under social optimum   

Situation 1: [𝑡𝑠, 𝑡1]. During the period, commuters always experience schedule delay early and 

never experience queuing regardless of the realised capacity. The departure rate 𝑟𝐹𝐵(𝑡) = 1 𝜙𝑚𝑎𝑥⁄ , 

where 𝑡 ∈ [𝑡𝑠, 𝑡1]. The generalised price during [𝑡𝑠, 𝑡1] is:   

 𝑃𝐹𝐵(𝑡) = 𝛽(𝑡∗ − 𝑡) + 𝜏𝐹𝐵(𝑡) (A.1) 

Situation 2: [𝑡1, 𝑡2]. During the second period, commuters always experience schedule delay early. 

They experience queuing for some realisations of capacity. They experience queuing if 𝑞(𝑡, 𝜙) > 0, i.e., 

𝜙 > 𝜔(𝑡); otherwise, they do not. The generalised price during [𝑡1, 𝑡2] is:      

𝑃𝐹𝐵(𝑡) = 𝛽(𝑡∗ − 𝑡) + (𝛼 − 𝛽) ∫ 𝑞(𝑡, 𝜙)𝑓(𝜙)
𝜙𝑚𝑎𝑥

𝜔(𝑡)
𝑑𝜙 + 𝜏𝐹𝐵(𝑡) (A.2) 

Situation 3: [𝑡2, 𝑡∗] . Commuters possibly experience schedule delay either early or late, and 

possibly experience queuing depending on the realised capacity. They experience schedule delay late 

with queuing if 𝑡 + 𝑞(𝑡, 𝜙) > 𝑡∗, i.e., 𝜙 >
𝑡∗−𝑡1

𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄
; they experience schedule delay early with 

queuing if 𝑡 + 𝑞(𝑡, 𝜙) < 𝑡∗, i.e., 𝜔(𝑡) < 𝜙 <
𝑡∗−𝑡1

𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄
; they experience schedule delay early 

without queuing if 𝜙 < 𝜔(𝑡). The generalised price during [𝑡2, 𝑡∗] is:    

𝑃𝐹𝐵(𝑡) = ∫ 𝛽(𝑡∗ − 𝑡)
𝜔(𝑡)

𝜙𝑚𝑖𝑛
𝑓(𝜙)𝑑𝜙 + ∫ [𝛽(𝑡∗ − (𝑡 + 𝑞(𝑡, 𝜙))) +

𝑡∗−𝑡1
𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄

𝜔(𝑡)

𝛼𝑞(𝑡, 𝜙)] 𝑓(𝜙)𝑑𝜙 + ∫ [𝛾(𝑡 + 𝑞(𝑡, 𝜙)−𝑡∗) + 𝛼𝑞(𝑡, 𝜙)]𝑓(𝜙)
𝜙𝑚𝑎𝑥

𝑡∗−𝑡1
𝑅(𝑡)−(𝑡1−𝑡𝑠) 𝜙𝑚𝑎𝑥⁄

𝑑𝜙 + 𝜏𝐹𝐵(𝑡) (A.3) 

Situation 4: [𝑡∗, 𝑡𝑒]. Commuters always experience schedule delay late regardless of the capacity, 

and experience queuing for some realisations of capacity. They experience queuing if 𝑞(𝑡, 𝜙) > 0, i.e., 

𝜙 > 𝜔(𝑡), otherwise, they do not. The generalised price during [𝑡∗, 𝑡𝑒] is:     

𝑃𝐹𝐵(𝑡) = ∫ 𝛾(𝑡 − 𝑡∗)
𝜔(𝑡)

𝜙𝑚𝑖𝑛
𝑓(𝜙)𝑑𝜙 + ∫ [𝛾(𝑡 + 𝑞(𝑡, 𝜙)−𝑡∗) + 𝛼𝑞(𝑡, 𝜙)]𝑓(𝜙)

𝜙𝑚𝑎𝑥

𝜔(𝑡)
𝑑𝜙 + 𝜏𝐹𝐵(𝑡)  (A.4) 

 

A.2 The proof of Remark 1   

Proof. The departure rate 𝑟𝐹𝐵(𝑡) = 1 𝜙𝑚𝑎𝑥⁄ , where 𝑡 ∈ [𝑡𝑠, 𝑡1]. Then, the cumulative departures 

at 𝑡1 is 𝑅(𝑡1) = (𝑡1 − 𝑡𝑠) 𝜙𝑚𝑎𝑥⁄ . From the schedule delay experience during Situation 2 and Situation 

3, the boundary condition for 𝑡2 is that commuters departing at 𝑡2 arrive exactly at 𝑡∗ when the realised 

capacity is the minimum, i.e., 1 𝜙⁄ = 1 𝜙𝑚𝑎𝑥⁄ . Then, we have 𝑅(𝑡2) = (𝑡∗ − 𝑡𝑠) 𝜙𝑚𝑎𝑥⁄ . The 

cumulative departures at 𝑡∗  is obtained by substituting 𝑡 = 𝑡∗  into Eq. (A.3) and Eq. (A.4), and 

equalising the two equations.   

 

A.3 The proof of Remark 2   

Proof. By the definition of 𝜔(𝑡), we have 𝑞(𝑡𝑒 , 𝜔(𝑡𝑒)) = 0. i.e.,  

𝜔(𝑡𝑒) [𝑁𝐹𝐵 −
(𝑡1−𝑡𝑠)

𝜙𝑚𝑎𝑥
] − (𝑡𝑒 − 𝑡1) = 0  
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In the optimum, 𝑃𝐹𝐵(𝑡𝑠) = 𝑃𝐹𝐵(𝑡𝑒), then we have 

(𝛼+𝛾)

2
𝑓(𝜙) (𝑁𝐹𝐵 −

𝑡1−𝑡𝑠

𝜙𝑚𝑎𝑥
) ((𝜙𝑚𝑎𝑥)2 − 𝜔2(𝑡𝑒)) − 𝛾(𝑡∗ − 𝑡1) = 𝛽(𝑡∗ − 𝑡𝑠)  

Substituting 𝑓(𝜙) = 1 (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛)⁄  and 𝜔(𝑡𝑒) = (𝛼𝜙𝑚𝑎𝑥 + 𝛾𝜙𝑚𝑖𝑛) (𝛼 + 𝛾)⁄  into the two 

equations and rearrange them, the results in Remark 2 can be obtained.   

 

A.4 Uniform toll scheme  

The social surplus equals the total benefit minus total expected social cost. The total expected cost 

equals the expected travel cost multiplied by the number of users. Under the uniform toll, the social 

welfare needs to be maximised subject to the constraint that price equals the sum of mean travel cost 

and the toll. Therefore, the problem can be formulated as:    

 max 𝑆𝑆𝑈𝑇 = ∫ 𝐷(𝑛)
𝑁𝑈𝑇

0
𝑑𝑛 − 𝑁𝑈𝑇𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) (A.5) 

 s.t. 𝐷(𝑁𝑈𝑇) = 𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) + 𝜏𝑈𝑇 (A.6) 

where the subscript “UT” denotes the uniform toll scheme. 𝑁𝑈𝑇 , 𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) and 𝜏𝑈𝑇  denotes the 

demand, expected travel cost of user and toll under the uniform toll, respectively. To find the optimal 

constant toll 𝜏𝑈𝑇, the following Lagrangian is maximised,  

 𝐿(𝑁𝑈𝑇, 𝜏𝑈𝑇, 𝜆) = ∫ 𝐷(𝑛)
𝑁𝑈𝑇

0
𝑑𝑛 − 𝑁𝑈𝑇𝐸(𝐶𝑈𝑇(𝑁𝑈𝑇)) + 𝜆(𝐷(𝑁𝑈𝑇) − 𝐸(𝐶𝑈𝑇) − 𝜏𝑈𝑇) (A.7) 

where 𝜆 is the multiplier. The first-order conditions are  

 
𝜕𝐿

𝜕𝑁𝑈𝑇
= 𝐷(𝑁𝑈𝑇) − 𝑁𝑈𝑇

𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
− 𝐸(𝐶𝑈𝑇) + 𝜆 (

𝜕𝐷(𝑁𝑈𝑇)

𝜕𝑁𝑈𝑇
−

𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
) = 0  (A.8) 

 
𝜕𝐿

𝜕𝜏𝑈𝑇
= −𝜆 = 0  (A.9) 

 
𝜕𝐿

𝜕𝜆
= 𝐷(𝑁𝑈𝑇) − 𝐸(𝐶𝑈𝑇) − 𝜏𝑈𝑇 = 0  (A.10) 

These conditions imply that the toll can be given as follows,  

 𝜏𝑈𝑇 = 𝐷(𝑁𝑈𝑇) − 𝐸(𝐶𝑈𝑇) = 𝑁𝑈𝑇
𝜕𝐸(𝐶𝑈𝑇)

𝜕𝑁𝑈𝑇
  (A.11) 

Therefore, the uniform toll is set such that the average marginal social cost equals the price, and 

thus the toll equals the average marginal external cost.    

 

A.5 Single-step toll scheme  

In the first stage, the step part of the toll is obtained by minimising the total social cost under the 

given demand. The solution is basically the same as in Long et al. (2022) with fixed demand. In the 

second stage, the social welfare is maximised to find the optimal flat part of toll implementing during 

the whole peak. The problem can be formulated as follows,  

 max 𝑆𝑆𝑆𝑇 = ∫ 𝐷(𝑛)
𝑁𝑆𝑇

0
𝑑𝑛 − 𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) (A.12) 

 s.t. 𝐷(𝑁𝑆𝑇) = 𝐴𝐶𝑆𝑇(𝑁𝑆𝑇) + 𝜌𝑆𝑇  (A.13) 

where the subscript “ST” denotes the single-step toll scheme. 𝑇𝐶𝑆𝑇 and 𝐴𝐶𝑆𝑇 denote the total expected 

social cost and the average expected travel cost under the step part of toll, respectively, and 𝐴𝐶𝑆𝑇 =
𝑇𝐶𝑆𝑇

𝑁𝑆𝑇
. 
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𝜌𝑆𝑇 are defined as 𝜌𝑆𝑇 =
𝜌𝑡𝑁1

𝑁𝑆𝑇
+ 𝜇, where 𝜌𝑡, 𝜇, and 𝑁1 are the time-variant step part of the toll, time-

invariant part of toll and the number of users departing from 𝑡+ to 𝑡−, respectively.      

Here, similar to the procedure in Van den Berg (2012), in the first stage, given the number of users, 

the time-variant part 𝜌𝑡 and the step tolling period are obtained by minimising the total expected social 

cost. The results of 𝑇𝐶𝑆𝑇, 𝜌𝑡 and 𝑁1 follow those in Long et al. (2022), and 𝑇𝐶𝑆𝑇 and 𝜌𝑡 are both the 

function of travel demand, as given in their study. In the second stage, we also use the Lagrangian to 

find the solution by maximising the social welfare, since total expected travel cost and the step part of 

toll can be expressed as the function of travel demand. To find the optimal flat part of the toll 𝜇, the 

following Lagrangian is maximised,        

 𝐿(𝑁𝑆𝑇 , 𝜇, 𝜆) = ∫ 𝐷(𝑛)
𝑁𝑆𝑇

0
𝑑𝑛 − 𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) + 𝜆(𝐷(𝑁𝑆𝑇) − 𝐴𝐶𝑆𝑇(𝑁𝑆𝑇) − 𝜌𝑆𝑇 ) (A.14) 

The first-order conditions are 

 
𝜕𝐿

𝜕𝑁𝑆𝑇
= 𝐷(𝑁𝑆𝑇) −

𝜕𝑇𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
+ 𝜆 (

𝜕𝐷(𝑁𝑆𝑇)

𝜕𝑁𝑆𝑇
−

𝜕𝐴𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
−

𝜕𝜌𝑆𝑇

𝜕𝑁𝑆𝑇
) = 0 (A.15) 

 
𝜕𝐿

𝜕𝜇
= −𝜆 = 0 (A.16) 

 
𝜕𝐿

𝜕𝜆
= 𝐷(𝑁𝑆𝑇) − 𝐴𝐶𝑆𝑇 − 𝜌𝑆𝑇 = 0 (A.17) 

These conditions imply that the optimal flat part of the toll can be given as follows,  

 𝜇 = 𝜌𝑆𝑇 −
𝜌𝑡𝑁1

𝑁𝑆𝑇
=

𝜕𝑇𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
− 𝐴𝐶𝑆𝑇 −

𝜌𝑡𝑁1

𝑁𝑆𝑇
  (A.18) 

The average marginal social cost is 𝑀𝑆𝐶𝑆𝑇 =
𝜕𝑇𝐶𝑆𝑇

𝜕𝑁𝑆𝑇
. Therefore, Eq. (A.18) can also be expressed 

as: 𝜇 = 𝑀𝑆𝐶𝑆𝑇 − 𝐴𝐶𝑆𝑇 −
𝜌𝑡𝑁1

𝑁𝑆𝑇
= 𝑀𝐸𝐶𝑆𝑇 −

𝜌𝑡𝑁1

𝑁𝑆𝑇
, where 𝑀𝐸𝐶𝑆𝑇 is the average marginal external cost. 

The optimal flat part of toll 𝜇 is set such that price equals the average marginal social cost. The optimal 

demand can be obtained from 𝐷(𝑁𝑆𝑇) = 𝑀𝑆𝐶𝑆𝑇.     

 

 

A.6 The results in Case II for the single-step toll  

As given in Long et al. (2022), the expected social cost in Case II is:  

 𝑇𝐶𝑆𝑇(𝑁𝑆𝑇) = (𝑁𝑆𝑇)2𝜍(𝜙, 𝜙  ) (A.19) 

where 𝜍(𝜙, 𝜙  ) = 𝛽𝜙  − 𝑋(𝜙, 𝜙  ) [1 − 𝛽(𝜙 − 𝜙  )𝑌(𝜙) +
2(𝛽𝜙    −𝑋(�⃡�  ,𝜙    ))

(𝛼+𝛾)�̄�
− 𝑋(𝜙, 𝜙  )𝑌(𝜙)] , 𝑋(𝜙, 𝜙  ) =

𝛽𝜙    −(𝛼+𝛾)(𝐻(𝜙    )−𝜙    )

(𝛼+𝛾)[𝐻(�⃡�  )𝑌(�⃡�  )−𝐻(𝜙    )/𝑊(�⃡�  )]+(𝛼+𝛽+𝛾)[𝜙    /𝑊(�⃡�  )−�⃡�  𝑌(�⃡�  )]+1
. As defined in Long et al. (2022), 𝜙 and 𝜙   are the 

reciprocals of average departure rates during the period from the departure time of the first commuter 

to the departure time of the first commuter who pays the toll and during the period from the departure 

time of the first commuter who pays the toll to the end of the tolling period, respectively. 𝜙 and 𝜙   are 

obtained by 
𝜕𝜍(�⃡�  ,𝜙    )

𝜕�⃡�  
= 0  and 

𝜕𝜍(�⃡�  ,𝜙    )

𝜕𝜙    
= 0 . The total toll revenue follows Eq. (31), where 𝜌𝑡 =

𝑁𝑆𝑇𝑋(𝜙, 𝜙  ) and 𝑁1 = 𝑁𝑆𝑇 −
𝜌𝑡

𝑊(�⃡�  )
 in Case II. As proved in Proposition 20 by Long et al. (2022), 𝜙 and 
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𝜙   are independent of the number of users, and 𝑇𝐶𝑆𝑇 and 𝜌𝑡 depend on the travel demand. Hence, the 

average MEC in Case II is: 

 𝑀𝐸𝐶𝑆𝑇 = 𝑁𝑆𝑇𝜍(𝜙, 𝜙  ) (A.20) 

The optimal time-invariant part of the toll in Case Ⅱ is:  

 𝜇 = 𝑁𝑆𝑇 [𝜍(𝜙, 𝜙  ) − 𝑋(𝜙, 𝜙  ) (1 −
𝑋(�⃡�  ,𝜙    )

𝑊(�⃡�  )
)] (A.21) 

where 𝜇 > 0 in Case II. The generalised price in Case II is:   

 𝑃𝑆𝑇 = 2𝑁𝑆𝑇𝜍(𝜙, 𝜙  ) (A.22) 

From Eq. (A.22), the optimal demand under a step toll can be found by 𝑃𝑆𝑇 = 𝐷(𝑁𝑆𝑇). 

 

Appendix B. The further results from the numerical study       

                 

(a) High uncertainty: 𝜙𝑚𝑖𝑛=0.2 s/veh             (b) Very low uncertainty: 𝜙𝑚𝑖𝑛=0.9 s/veh 

Fig. B.1. Comparisons of equilibrium departure rates under different time-varying tolling schemes 

in stochastic bottleneck model, when 𝛽/𝛼 = 0.3.    

   

(a) Toll                              (b) Mean queuing cost               (c) Mean schedule delay cost 

Fig. B.2. Comparisons of toll, mean queuing cost, and mean schedule delay cost under fixed 

demand when 𝜙𝑚𝑖𝑛=0.8 s/veh.  
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(a) Demand                              (b) Average travel cost                (c) Relative efficiency    

Fig. B.3. The effect of elasticity on the outcomes under price-sensitive demand when 𝜙𝑚𝑖𝑛 =0.75 

s/veh.  

 

 (a)Price                               (b) Average travel cost                       (c) Relative efficiency  

Fig. B.4. The effect of 𝛽/𝛼 on the outcomes under price-sensitive demand when 𝜙𝑚𝑖𝑛 =0.8 s/veh.  

 

 


