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Abstract 

We study how preference heterogeneity affects travel behavior and congestion pricing in a 

dynamic flow congestion model. We formulate and solve a multi-point optimal control problem 

using a Hamiltonian-based method to derive the social optimum. The properties of the travel 

equilibrium are explored analytically, particularly for travelers' arrival rates, arrival intervals, 

congestion externalities, and tolls. In the absence of tolling, the arrival order is determined by the 

ratio of the value of time (VOT) to the value of schedule delay, as in the bottleneck model. 

However, unlike the bottleneck model, the same holds for the social optimum when only the VOT 

differs across users, as travel delays will not be fully eliminated. In social optimum, the arrival 

rate, travel delay, and toll jump discontinuously at the boundary time between user types, but 

these discontinuities do not undermine the stability of the socially optimal equilibrium. 

Assessment of the distributional effects indicates that users with a lower VOT always lose from 

tolling, whereas users with a higher VOT may gain or lose from tolling. The latter depends on the 

type and degree of heterogeneity, the elasticity of travel delay with respect to arrival rate, and the 

number of users for both types. Compared to the bottleneck model, tolling is less beneficial for 

society and hurts users more. Our findings reveal the significance of the type of congestion and 

preference heterogeneity when assessing the implementation of congestion tolling. 

 

Keywords: Dynamic flow congestion; Bottleneck model; Preference heterogeneity; Congestion 

pricing; Distributional effects; Optimal control 
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1. Introduction 

Traffic congestion is a large problem in many cities worldwide, particularly during peak 

hours. Different dynamic congestion models have been proposed to study the dynamics of 

congestion. While it is natural that there are various types of models, with different strengths and 

weaknesses, there is a danger in some models gaining dominance. In particular, the Vickrey(1969) 

bottleneck model has dominated the literature. Its specifics make it a natural favorite (see Small 

and Verhoef, 2007; Small, 2015; and Li et al., 2020 for extensive reviews), but it is important to 

remain alert on the question how general the insights derived from it are? 

Recently, there has been a growing interest in flow-based dynamic congestion models more 

generally, including also Bathtub and MFD models (e.g., Arnott, 2013; Yildirimoglu et al., 2015; 

Liu and Geroliminis, 2016; Arnott and Buli, 2018; Verhoef and Silva, 2018; Bao et al., 2019; 

Long and Szeto, 2019; Verhoef, 2020; Arnott and Kilani, 2022; Beojone and Geroliminis, 2023). 

This literature complements an already sizable literature employing bottleneck congestion models, 

with insights on how the nature of dynamic congestion - i.e. flow versus bottleneck congestion-

affects policy recommendations and welfare consequences of congestion management strategies. 

Preference heterogeneity can significantly alter the overall and distributional impacts of 

congestion policies. Earlier studies using the bottleneck model found differences in behavior 

across heterogeneous users, particularly in their departure-time choices (e.g., Arnott et al., 1988, 

1994; Lindsey, 2004; Wu and Huang, 2015; Liu et al., 2015) and in response to congestion tolls 

(Cohen, 1987; Arnott et al., 1994; Van den Berg and Verhoef, 2011a, b; Van den Berg, 2014; Wu 

and Huang, 2014; Chen et al., 2015; Sun et al., 2020; Guo et al., 2023; Van den Berg, 2024). 

However, existing studies on preference heterogeneity primarily use static or bottleneck 

congestion. Little is known about the role of preference heterogeneity in dynamic flow congestion, 

particularly for the distributional and welfare effects of congestion pricing. 

In an influential paper, Chu (1995) showed how dynamic flow-congestion models produce 

insights that may deviate from, and hence enrich, those of the bottleneck model. We extend his 

approach to include various forms of preference heterogeneity, and analyze the overall and 

distributional effects of congestion pricing. We believe that our approach contributes valuable 

insights for real world congestion policies, which likely involve both bottleneck and flow 

congestion.1 

Against this background, our study examines the effects of preference heterogeneity in a 

                                                   
1 Mun (1999, 2002) extended Chu's work into a model with both flow and bottleneck congestion. 
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dynamic flow-congestion model. We focus on three questions. (i) How will preference 

heterogeneity affect dynamic equilibrium behavior and congestion? (ii) What are the socially 

optimal tolls under heterogeneous preferences? (iii) What are travelers' responses to such a toll, 

and how are users affected by tolls? 

To study these questions, we use the model of Chu (1995, 1999).2 The model's essential 

feature is that the travel delay depends on the instantaneous arrival flow at the arrival moment, 

without congestion interaction between users with different arrival times.3 Earlier studies have 

shown that, in the bottleneck model, a triangular, time-varying toll can fully eliminate queues and 

decentralize the first-best optimum. Under homogeneity, the generalized price (i.e., travel cost 

plus toll) is the same as without tolling (Arnott et al., 1988, 1994; Van den Berg and Verhoef, 

2011a, b). Conversely, in (dynamic) flow congestion, travel delays persist, and under homogeneity, 

optimal tolling raises the generalized price (Chu, 1995). We include preference heterogeneity into 

the dynamic flow congestion model, and will show how the simultaneous change in travel delay 

and toll complicates the derivation, thereby altering the properties of socially optimal equilibrium. 

We consider two types of heterogeneity: 'ratio' and 'proportional' heterogeneity. Ratio 

heterogeneity means there is heterogeneity in the ratio of the value of time (VOT) to the value of 

schedule delay. The VOT is the ratio of the marginal utility of travel time to the marginal utility 

of income, and similarly for the value of schedule delay. Ratio heterogeneity measures how people 

differ in how they trade off travel time and schedule delay; or, in other words, how they differ in 

how flexible they are in terms of when to arrive. This heterogeneity could, for example, stem 

from variations in job type, trip purpose, or family status, since these differences alter how flexible 

people are (Van den Berg and Verhoef, 2011a; Hall, 2018; Van den Berg, 2024). Conversely, 

proportional heterogeneity varies all values in a fixed proportion. It could stem from 

heterogeneity in the marginal utility of income caused by income differences4 (Van den Berg and 

Verhoef, 2011a). As we will see, preference heterogeneity leads to significant differences in the 

properties of the travel equilibrium compared to those of the bottleneck model. These are 

                                                   
2 Tractability is a major challenge for more elaborate dynamic models. Even the Agnew (1977) and bathtub models, which 
assume spatial homogeneity, typically do not have closed-form solutions. As with continuous time continuous space models, 
such as the car-following model or the hydrodynamic Lighthill-Whitham-Richards (LWR) model, these models require 
numerical methods to be solved. 
3 This differs from the bottleneck model, whereby departures during queuing also affect the travel times of users departing 
later. The Chu model thus describes a dynamic equilibrium under flow congestion, which is particularly relevant when there 
are no strict and predictable queues, and speeds, densities, and flows are below their free flow values throughout the facility or 
network. 
4 The value of time is the (absolute of) ratio of the marginal utility of time to marginal utility of income, and similar for the 
values of schedule delay. So, changing the marginal utility income, changes all values for the same percentage. It is normal that 
the marginal utility of income falls with the income of people., Hence, pure proportional heterogeneity can stem from income, 
if income does not affect the marginal utilities of time and schedule delay directly. 
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important for policy making in practice. 

In a recent study, Long and Szeto (2019) considered general heterogeneity in values of time 

and schedule delay in a dynamic flow congestion model, while also incorporating an 

environmental externality. Their un-tolled setting is like our case of ratio heterogeneity, but they 

only analyze the arrival order and do not explore the analytical properties of the equilibrium and 

congestion effects. Furthermore, they analyze a second-best toll, using partially analytical 

methods and partially numerical methods. Conversely, we use pure analytical methods to analyze 

and solve for the first-best toll and the travel equilibrium under separate ratio and proportional 

heterogeneity, using dynamic optimization with Kuhn-Tucker Hamiltonians. We then illustrate 

the effects in a numerical model. 

Our paper makes three main contributions. First, we present a flow-based congestion model 

with heterogeneous preferences and derive closed-form solutions for the equilibrium. The 

properties of the equilibrium are explored analytically, particularly for travelers' arrival rates, 

arrival intervals, and congestion externalities. In the absence of tolling, although bottleneck and 

flow congestion approaches lead to the same arrival orders of different types of users, the travel 

patterns and congestion effects are substantially different. 

Second, we derive the social optimum, which minimizes total travel cost. To do so, we 

formulate an optimal control problem and solve it using Hamiltonians, adding Khun-Tucker 

conditions to determine when a certain type travels. We find that user types self-separate over 

arrival time, even when scheduling preferences are the same and only the VOT differs. 

Specifically, under ratio heterogeneity—for which only the VOT differs and scheduling 

preferences are the same—travelers with a lower VOT travel in the center of the peak period, 

whereas, under proportional heterogeneity, travelers with a higher VOT travel in the center. 

Discontinuities in arrival rate, travel delay, and toll occur at the boundary time between types but 

do not undermine the stability of the toll-supported social optimum. This is markedly different 

from the bottleneck model. 

Third, we conduct an analytical investigation of the distributional effects of tolling on 

travelers and compare them for different types of heterogeneity. As the travel delay cannot be 

eliminated in this model, the efficiency gains from tolls are smaller than in the bottleneck model. 

Travelers with a lower VOT always lose from tolling, and users with a higher VOT may gain or 

lose from tolling, depending on the type of heterogeneity and the parameters. Hence, compared 

to the bottleneck model, tolling is less beneficial for society and hurts users more: the reduction 

of aggregate travel delay here requires acceptance of higher schedule delays. Tolling is less 
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attractive for users and has different distributional effects. 

The remainder of this paper is organized as follows. The next section presents our flow-

based congestion model under heterogeneity. Section 3 studies the travel equilibrium and 

congestion externality without tolling under two-type ratio heterogeneity, and Section 4 examines 

the social optimum in this setting. Section 5 studies the model under proportional heterogeneity. 

Section 6 compares our results with those from the bottleneck model. Section 7 turns to the 

numerical model and presents extensive sensitivity analyses. Section 8 briefly discusses other 

forms of heterogeneity. Section 9 concludes the paper. 
 

2. Basic model 

This section presents a general formulation of the flow-based congestion model for many 

types of users (or 'types' for brevity) and any form of discrete heterogeneity in the values of time 

and schedule delay, with a homogeneous preferred arrival time. Suppose that every morning a 

fixed number of travelers travel from home to a workplace along a single road with a fixed 

capacity per hour, K. All travelers wish to arrive at their workplace at an identical preferred arrival 

time, t∗ . Those who arrive early or late encounter a schedule delay cost. Each traveler chooses 

their arrival time based on a trade-off between the travel delay cost, schedule delay cost, and 

possibly a toll, in order to minimize their travel price (i.e., travel cost plus toll). 
 

2.1 A general formulation of travel time and costs 

Let ( )T t  represent the travel time at arrival time t. Following Chu (1995), we assume that a 

traveler's speed on that road is constant over time during the trip and depends only on the arrival 

rate at the road's exit when the trip is completed. This avoids complications from other congestion 

technologies, as the model ignores congestion interactions between individuals traveling at 

different moments, regardless of how close these moments are.5 Therefore, the travel speed at 

arrival time t is set by the arrival flow through a power function (or BPR function). The travel 

time function, ( )T t , is 

1 2

( )
( ) ( ( ), ( ),..., ( ); )

i
i

n f

f t
T t T f t f t f t K T

K

χ
 
 = = +   
 

∑
,                             (1) 

where ( )if t  is the arrival flow of type i at arrival time t, and χ  governs the curvature of the 

                                                   
5 As discussed in footnote 2, tractability is a major challenge for more elaborate dynamic flow congestion models. 
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travel delay relation ( )T t  and represents the elasticity of travel delay with respect to arrival flow. 

For analytical convenience and without much loss of generality, the free-flow travel time, fT , is, 

for now, normalized to zero. The numerical analysis will consider a positive value. 

Let ( )ic t  represent the travel cost of type i travelers arriving at t. It consists of the travel 

time cost and schedule delay cost of arriving early or late. Under the conventional assumptions 

of a linear schedule delay cost function and a constant value of travel delays, ( )ic t  equals: 

1 2

( )   if t t
( ) ( ( ), ( ),..., ( ); )

( )    if t>t
i

i i n
i

t t
c t T f t f t f t K

t t
β

α
γ

∗ ∗

∗ ∗

 ⋅ − ≤= ⋅ + 
⋅ −

,                      (2) 

where iα  is the VOT for type i. iβ  is the value of schedule delay early for type i: it gives the 

shadow price of an arrival one hour earlier than is most preferred; iγ  is the corresponding value 

for late arrivals. Under the plausible assumption that early arrivers prefer ending the trip over 

continuing it, i iα β>  should hold. Following convention, denote iδ  as a composite scheduling 

preference parameter, with ( )i i i i iδ β γ β γ= + . 

In the absence of tolling, travelers choose their arrival times to minimize their own travel 

cost. Let sit  denote the arrival time of the first type-i traveler, and eit  the arrival time of the last 

type-i traveler. The total travel cost for type i  is the integral of the product of the arrival rate and 

travel cost over arrival time t  (between sit  and eit ). The total travel cost, TC , equals the sum 

of the travel costs of the different types: 

( ) ( )ei

si

t

i it
i

TC f t c t dt= ⋅∑∫ .                                                  (3) 

 
2.2 Social optimum 

The no-toll equilibrium is not efficient due to uninternalized congestion externalities. Time-

varying tolling can be applied to internalize the congestion externality. Let ( )tτ  denote the time-

varying toll charged for arrival at t. Let ( )ip t  denote the travel price of type-i travelers arriving 

at t, encompassing the toll, travel time cost,6 and schedule delay cost: 

                                                   
6  For the conventional bottleneck model, the optimal time-varying toll eliminates queuing and thus travel time delays. However, as 
previously stated, in the dynamic flow congestion model, the optimal time-varying toll will typically not fully eliminate travel delays. 
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1 2

( )   if t t
( ) ( ) ( ( ), ( ),..., ( ); )

( )    if t>t
i

i i n
i

t t
p t t T f t f t f t K

t t
β

τ α
γ

∗ ∗

∗ ∗

 ⋅ − ≤= + ⋅ + 
⋅ −

.                 (4) 

We assume that the demand per type of user is fixed. The social regulator then chooses ( )if t , 

sit  and eit  to minimize the total travel cost under the constraint that all users should arrive in 

their arrival intervals. This leads to the following total travel cost minimization problem: 

1 2
1 2 1 2

    ( ), ( ),.., ( ),
, ,..., , , ...,

min    

. .     ( ) , 1, 2,...,

n
s s sn e e en

ei

si

f t f t f t
t t t t t t

t

i it

TC

s t f t dt N i n= =∫
,                                       (5) 

where the total travel cost, TC, is defined in (3). 
 
2.3 Definition of dynamic equilibrium 

In the dynamic equilibrium, no traveler can reduce her generalized price by unilaterally 

changing her arrival time. This implies that all travelers within a type incur the same price for 

their chosen arrival times and face equal or higher travel prices at any other time. Moreover, all 

iN  users of any type i should arrive and thus ( )ei

si

t

i it
f t dt N=∫ . 

In the absence of tolling, solving ( ) 0idc t dt =  yields: 

,      for  type users with positive early arrivals at moment 
.

,    for  type users with positive late arrivals at moment 
i i

i i

i tdT
i tdt

β α
γ α


= −

         (6) 

The travel delay should increase at a rate of i iβ α  within type i's early-arrival interval and 

decrease at a rate of i iγ α  within type i's late-arrival interval. This condition mimics that for 

bottleneck congestion (e.g., Arnott et al., 1988). 

For the first-best social optimum, the toll pattern also matters and solving ( ) 0idp t dt =  

yields: 

,  for  type users with positive early arrivals at moment ( ) ( )
,  for  type users with positive late arrivals at moment 

i
i

i

i td t dT t
i tdt dt

βτ α
γ


+ ⋅ = 


,    (7) 

implying that to secure a dynamic equilibrium, for type i the sum of the travel delay cost and toll 

needs to increase at rate iβ  for early arrivals and decrease at rate iγ  for late arrivals. Condition 

(7) highlights the main difference between Chu's model and the bottleneck model under 
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heterogeneity. As travel delays will not be eliminated, the simultaneous changes in travel delay 

and toll in (7) make travel patterns ambiguous, thereby elevating the complexity of solving for 

the social optimal equilibrium. 

To enhance the transparency of the results, we now focus on two types: H and L. Without 

loss of generality, we consider the H type to have a higher VOT than L type (i.e., H Lα α> ). We 

thus obtain 'ratio heterogeneity' with identical scheduling preferences, and obtain 'proportional 

heterogeneity' when iβ  and iγ  vary in a fixed proportion over the two types. Other forms of 

heterogeneity are briefly discussed in Section 8. 
 

3. Two-type ratio heterogeneity in dynamic flow congestion: no tolling 

Our first form of preference heterogeneity, ratio heterogeneity, captures differences in how 

travelers value travel time versus schedule delays or how flexible they are regarding arrival 

times.7 This heterogeneity could, for instance, result from differences in type of job, family status, 

or the purpose of the trip. 

We introduce ratio heterogeneity by letting the VOT, iα  vary while the other values remain 

fixed. As noted, this section considers two types of users: H and L. The H type has a higher VOT, 

and the L type a lower VOT. The H type cares relatively more about travel time losses than about 

when to arrive (i.e., the schedule delay). These drivers are thus relatively more flexible in when 

to arrive, and consequently have a lower queuing tolerance. This section explores travel behavior 

without tolling, focusing on travel equilibrium in terms of arrival order, arrival rate, and travel 

cost. We also examine congestion externalities caused by the different user types. 
 

3.1 Arrival order 

Following Arnott et al. (1988) and Van den Berg and Verhoef (2011b), we construct iso-cost 

curves representing combinations of travel delay (along the vertical axis) and schedule delay 

(along the horizontal axis), resulting in a constant travel cost over time. By condition (6), travel 

delay increases at a rate of iβ α  for early arrivals, and decreases at a rate of iγ α  for late 

arrivals. As a result of a lower VOT, the iso-cost line for the L type is steeper than that for the H 

type. Fig. 1 illustrates the associated equilibrium iso-cost curves. The solid lines represent the 

                                                   
7 Following Van den Berg and Verhoef (2011a), we denote such heterogeneity as ratio heterogeneity since the VOT varies relative to the values 

of schedule delay, and the queuing intolerance as given by the ratios α β  and α γ  varies over time. 



9 
 

 
 

equilibrium travel delay, while the dashed lines depict the out-of-equilibrium continuation of the 

iso-cost function. Although users do not arrive at these times, the dashed lines indicate the 

necessary travel delay for them to incur the same travel cost. The equilibrium arrival order is 

summarized in Proposition 1. 
 

Proposition 1. Under ratio heterogeneity for which only the VOT differs, in the un-tolled 

equilibrium, users with a lower VOT travel in the center of the peak period, and users with a 

higher VOT in the shoulder of the peak period. 
Proof. See Appendix A. □ 

 
The arrival order in Proposition 1 is consistent with that in the bottleneck model. The 

intuition behind Proposition 1 is that users with a higher VOT are more willing to accept larger 

schedule delays in exchange for shorter travel times, or, equivalently, have a lower queuing 

tolerance. The two types arrive separately in time since the evolution of travel times by arrival 

time that keeps one type arriving at that moment in equilibrium pushes the other type toward its 

own window. 

 
Fig. 1. Travel delay under ratio heterogeneity without tolling. 

Note: L type users travel in the center and H type users travel in the shoulder of the peak period. 

 

3.2 Travel equilibrium 
As a result of the separated travel patterns, the travel cost can be further formulated as: 

( ),  for  type users with positive early arrivals at ( )( )
( ),  for  type users with positive late arrivals at 

i
i i

t t i tf tc t
K t t i t

χ β
α

γ

∗

∗

 ⋅ − = ⋅ +   ⋅ −  
.      (8) 

In dynamic equilibrium, the H type arrives within the interval [ , ] ( , ]sH sL eL eHt t t t∪ , and the L type 
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arrives within the interval ( , ]sL eLt t  , i.e., ( ) ( )sL eH

sH eL

t t

H H Ht t
f t dt f t dt N+ =∫ ∫   and ( )eL

sL

t

L Lt
f t dt N=∫  

hold. Solving the associated equilibrium conditions, we can derive the resulting travel equilibrium. 
Detailed derivations can be found in Appendix B. 

Despite flow and bottleneck congestion having the same arrival order, their travel 
equilibriums differ significantly. The equilibrium travel costs for the two user types are: 

1 1

1

1 1( 1) ( ),

1( 1) .

H L H
H L H L

H L H

H L
L L

H L

N N Nc
K K K

N Nc
K K

χ χ
χ χ

χ
χ

δ δ δ χα α α
χ α α α χ

δ δα
χ α α

+ +

+


    + = + ⋅ + + ⋅ ⋅ −           


    = + ⋅ +      

               (9) 

Taking the difference between Hc  and Lc , the travel cost difference between the different 

types of users is: 
11

11 ( ) (1 ) 0H L
H L H

H

Nc c c
K

χ
χ

χδ αχ α
χ α

+
+ +

∆ = − = ⋅ ⋅ − ≥ 
 

.                          (10) 

The cost difference, c∆ , rises with the degree of ratio heterogeneity, H Lα α .8 It should be 

noted that under bottleneck congestion, c∆  increases linearly with H Lα α , whereas under flow 

congestion, the power of the speed-flow function also matters, as shown by the term ( )
1

1
H

χα + . 

 
3.3 Congestion externality with ratio heterogeneity 

Under bottleneck congestion, Van den Berg and Verhoef (2011b) found that L type causes 

higher congestion effects, which mimics the analytical expression for homogeneous users, 

whereas H type causes lower congestion effects. In the present flow congestion model, congestion 

effects are: 
1

1

1
1

1 ,   ,  

( )1

H L H L L L L

L L H L H H L

H L H H L H

H H H H L

c c N N c c
N N K K K N N

c c N c
N N K K N

χ

χ

δ δ αχ δ
χ α α α

δ δ α αχ
α χ α

−
+

−
+

  ∂ ∂ ∂ ∂+
= = ⋅ + ⋅ = ⋅   ∂ ∂ ∂ ∂  

 ∂ ∂ − ∂+
= + ⋅ ⋅ > ∂ ∂ ∂ 

.               (11) 

This implies that L type imposes an equal congestion effect on both types of users. Perhaps 

                                                   
8 Denote H L mα α = . Taking the derivative of (10) with respect to m yields ( ) 0c m∂ ∆ ∂ > . Specifically, when H Lα α= , all users have 

the same arrival patterns and travel cost. 
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surprisingly, but matching the general notion that preference heterogeneity tends to dampen 

congestion as travelers are less inclined to impede each other's travel windows, H-type users 

impose a lower congestion effect on L types than they do on themselves. 

The marginal external cost, iMEC , of type i equals the sum of the congestion effects it 

imposes on all travelers, which can be calculated as i H i H L i LMEC c N N c N N= ∂ ∂ ⋅ + ∂ ∂ ⋅  . 

Combining (11) and further taking the difference between HMEC   and LMEC  , we find the 

following property in the relationship between the MEC of the different types. 
 
Proposition 2. Under dynamic flow congestion with ratio heterogeneity, when 

( ) 11 1L HH

L L H

N N
N N

χ
α
α

++ −
≤   is satisfied, L HMEC MEC≥   holds; otherwise, when 

( ) 11 1L HH

L L H

N N
N N

χ
α
α

++ −
>  is satisfied, L HMEC MEC< . 

Proof. See Appendix C. □ 
 

 
Fig. 2. Contour plot of the difference in marginal external cost of the types, MECH – MECL, 

when 4χ = . Note: A positive number implies that the H type causes a larger externality. 

 
Proposition 2 indicates that the L type may impose higher or lower MECs than H type, 

depending on the degree of ratio heterogeneity, H Lα α , the ratio of LN  to HN , and power χ. 

This finding differs from the bottleneck model, in which the MEC caused by L type is always 

higher than the MEC of H type. Hence, ignoring flow congestion will overestimate the MEC 
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imposed by L-type users. Fig. 2 illustrates the result of Proposition 2 when 4χ = . When the 

degree of ratio heterogeneity and H LN N  are large, H-type users tend to have a higher MEC; 

otherwise, L-type users tend to have a higher MEC. 
 
4. Two-type ratio heterogeneity in dynamic flow congestion: social optimum 

Fig. 3 shows the resulting travel delays and tolls in the optimum with two-type ratio 

heterogeneity. We will derive it below. Seeing this figure first can help understand the 

mathematics that follow. We also point to four surprising features: 1) the two types travel 

separately over time, with those with low values traveling in the center; 2) the travel delay and 

toll are discontinuous at the times separating the types; 3) the social optimum cannot remove all 

travel delays, unlike in the bottleneck model; and 4) the slopes of the travel delay and toll are 

related to those in the bottleneck model, but also depend on the power χ. 
 

 

(a) Travel delay                           (b) Optimal toll 
Fig. 3. Equilibrium travel delay and toll under the social optimum with ratio heterogeneity. 

Note: L type users travel in the center, and H type users travel in the shoulder of the peak period. 
 

4.1 Arrival order 
We will find that under ratio heterogeneity, it is socially optimal to have users traveling 

separately over time. Moreover, an anonymous toll—in which at any moment t does not differ 
across types—also naturally results in the dynamic user equilibrium, in which no traveler can 
reduce their travel price by unilaterally altering the arrival time. 

Solving ( ) 0idp t dt =   yields ( ) ( )id t dt dT t dtτ α β+ ⋅ =   for early arrivals, and similar 

(with γ ) for late arrivals. Obviously, this condition cannot be true for H and L simultaneously. 
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This is the main difference between the bottleneck and Chu models under ratio heterogeneity with 
identical scheduling preferences.9 

As travelers travel separately, two potential arrival orders may occur: one, with either H in 

the center and L in the shoulders or, two, the other way around. However, because of the higher 

VOT of H type, scheduling H type in the shoulder of the peak period will reduce the total cost. 

Therefore, there is a single pattern of departure of the types in the optimum. The equilibrium 

arrival order is summarized in the following proposition.10 
 

Proposition 3. Under dynamic flow congestion with ratio heterogeneity, time-varying tolling 

leads different types of users to travel separately. Specifically, L-type users travel in the center of 

the peak period, and H-type users travel in the shoulder of the peak period. This is the same self-

separation as in the un-tolled equilibrium. 

Proof. See Appendix D. □ 
 

The findings for Proposition 3 differ from previous bottleneck studies, such as Arnott et al. 

(1994), in which all users travel jointly in the social optimum under this type of ratio heterogeneity. 

This difference arises because, with flow congestion, the optimum cannot eliminate travel delay. 
 
4.2 Formulation of the social optimum problem 

Given the arrival order of different types of users, we still need to pinpoint the full optimum 

in terms of arrival flows and windows. The social optimum problem can be formulated as a 

corresponding optimal control problem. Travelers of H type arrive within [ , ] ( , ]sH sL eL eHt t t t∪  in 

the shoulders of the peak period when travel times are relatively short. Travelers of L type arrive 

within ( , ]sL eLt t  in the center of the peak when travel times are long but schedule delays low. Let 

( ) ( )
sH

t

H Ht
A t f t dt= ∫   and ( ) ( )

sL

t

L Lt
A t f t dt= ∫   denote their cumulative arrivals. The regulator's 

optimization problem is: 

                                                   
9 One could ensure joint travel using a type-specific toll. So that, say, an H-type user pays a toll of 2.00 when arriving at 8:44, and an L-type 

user pays 1.50 when arriving at the same time. This is very difficult to implement in practice. And, as we will see, it is not needed: it is optimal 

for the types to travel separately. 
10 It could also be possible that types travel separately by alternating. Say, first H-type users, then L-type users, then H again, then L, and then 

H, and so on. Such an outcome, however, always lowers the total costs of moving to one of the suggested potential equilibria. 
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( ), ( ), ,
    , ,

 ( ) ( ) ( ) ( ) ( ) ( )min eH eL

sH sL
H L sH

sL eH eL

t t t

H H H H L Lt t tf t f t t
t t t

TC f t c t dt f t c t dt f t c t dt
∗

∗
= ⋅ + ⋅ + ⋅∫ ∫ ∫  .             (12)

subject to the equations of motion: 

( ) ( )

( ) ( )

H
H

L
L

dA t f t
dt

dA t f t
dt

 =

 =


.                                                       (13) 

and the following constraints: 

( ) 0Hf t ≥                                                               (14) 

( ) 0Lf t ≥                                                               (15) 

( ) 0, ( ) , ( ) 0, ( )H sH H eH H L sL L eL LA t A t N A t A t N= = = =  ( HN , LN  given)             (16) 

, , ,sH eH sL eLt t t t  chosen freely.                                              (17) 

Eq. (13) governs the arrivals of type i. Conditions (14) and (15) stipulate that the arrival 

rate cannot be negative. Condition (16) specifies initial and terminal values for cumulative 

arrivals, which means all users arrive within their travel period. Lastly, (17) establishes that the 

timings of the arrival windows are free and need to be determined. 
 
4.3 Maximizing the Hamiltonian 

We turn the TC minimization into equivalent free-end-time Hamiltonian maximization.11 

The introduction of heterogeneity adds multiple switching points to that with homogeneity (e.g., 

Yang and Huang, 1997; Mun, 1999, 2002). When solving the optimal solution, special 

transversality conditions are required at the switching points. 

For ease of exposition, we set it up with the two types in separate periods, which we then 

show to be optimal. We define the following Hamiltonian for the two types: 

( )( ) ( ) ( ) ( ) ,

( )( ) ( ) ( ) ( ) .

H
H H H H

L
L L L L

dA tH t c t f t t
dt

dA tH t c t f t t
dt

λ

λ

= − ⋅ + ⋅

= − ⋅ + ⋅
                                     (18) 

                                                   
11 We also solved (12)-(17) directly with a Lagrangian, without turning it into a Hamiltonian (see footnote 12). This gives the same outcome. 

However, for readers equipped with basic knowledge of dynamic optimization methods, the Hamiltonian approach is more intuitive and 

streamlined to follow. 
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Here, the cumulative number of arrivals, ( )iA t , is a state variable, the arrival rate, ( )if t , a 

control variable, and ( )i tλ  a costate variable that measures the shadow cost of the control. We 

will see that ( )i tλ  is the marginal social cost of i, and that it is constant over time. Then, after 

adding constraints that the arrival rate is non-negative, ( ) 0if t ≥ , we get the following Kuhn-

Tucker (KT) Hamiltonian: 

( ) ( ) ( ) ( ) ( ) ( ) ( )H L H H L LL t H t H t t f t t f tθ θ= + + + ,                               (19) 

where [ ]i tθ  is the shadow price of the KT constraint. 

Maximizing (19) implies that the costate variable evolves according to the following 

equation of motion: 

=0                     [equation of motion for ]H H
H

L
A

λ λ∂
= −

∂
 ,                       (20) 

=0                       [equation of motion for ]L L
L

L
A

λ λ∂
= −

∂
 .                       (21) 

With , , ,sH eH sL eLt t t t  chosen freely, and the arrival rate being discontinuous at sLt  and eLt , the 

transversality conditions at these times are: 

( ) 0,  ( ) 0    [transversality condition for , ]H sH H eH sH eHH t H t t t= = ,                 (22) 

( ) ( )                 [transversality condition for ]H sL L sL sLH t H t t= ,                    (23) 

( ) ( )                 [transversality condition for ]H eL L eL eLH t H t t= .                    (24) 

Condition (22) implies that the MEC is zero at the start and end of the peak period. It also 

means that switching the marginal user to an even earlier (later) moment does not lower costs. 

Finally, it dictates that the arrival rate is zero when the first and last travelers arrive. Equations 

(23) and (24) ensure the optimality of sLt  and eLt . Otherwise, these times would not be optimal, 

and the regulator could reduce total travel costs by adjusting the schedule. We note that when 

optimizing directly with Lagrangians without turning (12) into Hamiltonians, the first-order 

conditions of sLt  and eLt  imply the same results as the last two transversality conditions. 
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It remains for us to determine the optimal path of ( )if t . The optimal arrival rates follow: 

( )( ) ( ) ( ) ( ) 0
( ) ( )

H
H H H H

H H

c tL c t f t t t
f t f t

λ θ∂∂
= − − ⋅ + + =

∂ ∂
,                           (25) 

( )( ) ( ) ( ) ( ) 0
( ) ( )

L
L L L L

L L

c tL c t f t t t
f t f t

λ θ∂∂
= − − ⋅ + + =

∂ ∂
,                             (26) 

( ) 0,  ( ) 0,  ( ) ( ) 0
( ) H H H H

H

L f t t f t t
t

θ θ
θ
∂

= ≥ ≥ ⋅ =
∂

,                              (27) 

( ) 0,  ( ) 0,  ( ) ( ) 0
( ) L L L L

L

L f t t f t t
t

θ θ
θ
∂

= ≥ ≥ ⋅ =
∂

.                                (28) 

The KT condition shows that if ( )if t   is positive and finite during an open time interval 

containing t, then ( ) 0i tθ = . It also implies that the types must travel separately: it is impossible 

for these conditions to hold if fL and fH are positive at the same time. Conditions (20)-(28) form 

a multi-point optimal control problem.12 
 

Lemma 3. (i) At the start and end of the peak, arrival rates are zero: ( ) ( ) 0H sH H eHf t f t= = . 

(ii) At the separation times of the types, the arrival rate is discontinuous, jumping upward at tsL 

and downward at teL. It follows: 

1
1( ) ( ) 1

( ) ( )
H sL H eL L

L sL L eL H

f t f t
f t f t

χα
α

+ 
= = < 

 
. 

(iii) At tsL and teL, ( ) ( ) ( ) ( )H H L Lf t MEC t f t MEC t⋅ = ⋅ holds, indicating that the 'collective' 

instantaneous MEC, weighted by the arrival rate, is equal for both types of users. 

Proof. See Appendix E. □ 
 

Lemma 3 provides insights for travel delays. Specifically, at the beginning and end of the 

                                                   
12 We could also transfer problem (12)-(17) into a two-step Lagrangian optimization. Given the unknown continuity of the travel delay, let 

( )( ) ( )
L sL H sL

f t f t rχ
=  . From sL eLt tβ γ− =   and ( ) ( ),L sL L eLp t p t=   we can obtain [ ] [ ]( ) ( ) ( ) ( )

L sL H sL L eL H eL
f t f t f t f t rχ χ

= =  . 

Specifically, r=1 means the travel delay curve is continuous; otherwise, it is discontinuous at the interchange points. Then the TC minimization 

problem can be studied as a two-step optimization. In the first step, for any given r, travelers decide their arrival times by minimizing the travel 

cost. In the second step, the regulator decides r to minimize the total travel cost. This approach yields the same outcome as our Hamiltonian-

based method. 
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peak period, the travel delay is zero. At the switching moments between types, there is a sudden 

increase in travel delay at sLt  and a corresponding decrease at eLt  to attain the social optimum. 

Optimality requires the necessary condition that the sum of one's private cost and the MEC 

should not be lower outside one's own arriving window than within it. The intuition is that in the 

social optimum, a marginal shift of the interchange moment cannot lead to a decrease in the total 

social cost. Lemma 3(ii) can confirm its satisfaction. Moreover, Lemma 3(iii) indicates that in the 

social optimum, the marginal social costs of H type exceed those of L type, which is consistent 

with (33). 
 

4.4 Optimal toll and equilibrium travel equilibrium 

We now turn to the resulting toll and equilibrium in the social optimum. It will be shown 

that the toll rule is consistent with the toll expression in Chu (1995) of homogeneous users, and 

boils down to an intuitive dynamic generalization of the well-known Pigouvian MEC toll rule. 
 

Proposition 4. In dynamic equilibrium, the optimal toll equals the MEC but exhibits non-

continuity at the switching point. It can be expressed as: 

( ) ( )( ) ,     t (t ,t ]
( )

( )
( ) ( )( ) ,   t [t ,t ] (t ,t ]
( )

L L
L L sL eL

L

H H
H H sH sL eL eH

H

c t f tf t
f t K

t
c t f tf t
f t K

χ

χ

α χ
τ

α χ

∂  ⋅ = ⋅ ∈  ∂  = 
∂   ⋅ = ∈ ∪ ∂  

.                   (29) 

Specifically, at sLt  the toll jumps downward and at eLt  the toll jumps upward. 

Proof. See Appendix F. □ 
 

Remark. In equilibrium, (i) the toll increases at a rate of (1 )βχ χ+   for early arrivals and 

decreases at a rate of (1 )γχ χ+   for late arrivals; (ii) the travel delay increases at a rate of 

( (1 ))iβ α χ+  for early arrivals and decreases at a rate of ( (1 ))iγ α χ+  for late arrivals. These 

rates of changes are consistent with patterns found in Chu (1995). As discussed in Proposition 3, 

neither type would feel tempted to enter the other type's window, given the toll in those windows 

would be anonymous, implying that the discontinuities in travel delay and toll do not undermine 

the stability of the social optimal equilibrium. 
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So far, we have established the toll pattern based on arrival order. The remaining question is 

the travel equilibrium, which includes the timing of arrivals for different types, the arrival rate, 

and the resulting travel price. The derivation is given in Appendix G.13 Specifically, applying the 

toll in (29) yields the following arrival rate patterns: 
1

1

( ) ,  if t [t ,t ]
(1 )

( )
( ) ,   if t (t ,t ]
(1 )

sH
sH sL

H
H

H eH
eL eH

H

t tK
f t

t tK

χ

χ

β
α χ

γ
α χ


 ⋅ − ⋅ ∈  ⋅ +  = 

  ⋅ − ⋅ ∈ ⋅ +  

,                                  (30) 

1

1

1

1

( ) ,   if t (t ,t ]
(1 )

( )

( ) ,   if t (t , t ]
(1 )

sL H
sL

L L

L

eL H
eL

L L

t t NK
K

f t

t t NK
K

χ χ
χ

χ χ
χ

β δ
α χ α χ

γ δ
α χ α χ

+
∗

+
∗


   −  ⋅ + ∈  ⋅ +   

  = 
    − ⋅ + ∈   ⋅ +     

.                       (31) 

Equations (30) and (31) show that the arrival rates display nonlinearity. We can get the 

timing of the peak by combining the above with the transversality conditions and that everyone 

should travel. In contrast to the bottleneck model, tolling shifts the earliest departure to earlier 

and the latest departure later. These timings correspond to the following prices: 
1

1 1 1

1

1 (1 ) (1 )

.

(1 )

L H H L
H H L

H H L L

H L
L L

L L

N N Np
K K K

N Np
K K

χ χ
χ χ χ

χ
χ

α δ δ δα χ α χ
α α χ α χ α χ

δ δα χ
α χ α χ

+ + +

+

  
       = − + + ⋅ + +               


  = ⋅ + ⋅ +   

     (32) 

Taking the derivative of (32) with respect to the number of different types of users yields 

( ) ( ) 1L H L Lp N p N∂ ∂ ∂ ∂ =   and ( ) ( ) 1H H H Lp N p N∂ ∂ ∂ ∂ >  . All users exert the same price 

effects on L-type users, since L type arrives in the center of the peak period and the toll varies at 

the same slope. However, an extra L-type user has a smaller impact on type H's travel price than 

an extra type-H user. The difference in marginal price effects is caused by the jump in the toll at 

                                                   
13 Mangasarian (1966) asserts that necessary conditions are also sufficient when the Hamiltonian is concave in state and control variables, 

given the satisfaction of an appropriate constraint qualification. It can be verified that the derived optimum minimizes the total cost globally. 

The proof is available upon request. 
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the switching moments between types. 
 

Remark. Taking the difference between Hp  and Lp  yields: 

1
1 1

1 (1 ) 0,L H
H L H

H H

Np p p
K

χ
χ χα δα χ

α α χ

+ +
 

    ∆ = − = − + >        
 

                      (33) 

implying that H-type users experience a higher travel price than L-type users, due to the peak 

spreading. Specifically, when H Lα α= , the price in (32) converges to the price found in Chu 

(1995). Note that in the bottleneck model different user types incur an equal travel price. 
 

Proposition 5. (Distributional effects) Under dynamic flow congestion with ratio heterogeneity, 

both types of users lose from tolling. 

Proof. See Appendix H. □ 
 

Compared to the bottleneck model, where H type users are not affected, and L type lose from 

tolling (Van den Berg and Verhoef, 2011a), Proposition 5 shows that in the presence of dynamic 

flow congestion proposed by Chu (1995), all users lose from tolling, due to the fact that the travel 

delay cannot be fully eliminated by tolling, and the peak period is widened. We note that as the 

BPR power χ  approaches infinity, the congestion function becomes increasingly similar to that 

of the bottleneck model, and we indeed find H type users will remain unaffected by tolling. 

Consequently, ignoring flow congestion would overlook the loss of H type users. 
 

5. Two-type proportional heterogeneity in dynamic flow congestion 

The second type of heterogeneity we explore is proportional heterogeneity, as introduced by 

Vickrey (1973). In this context, all three values of time and schedule delay vary proportionally: 

i iα µ β= ⋅   and i iγ η β= ⋅  , where µ   and η   are homogeneous ratios. 14  This type of 

heterogeneity may reflect income differences, whereby a higher income would reduce the 

marginal utility of income and thus increase all values proportionally. In our analysis, we focus 

on a two-type case in which H type has higher values, but both H and L types share the same ratio 

of VOT to values of schedule delay. The following subsections investigate the no-tolling and 

                                                   
14 Consequently, 

H L H L H L
α α β β γ γ= =  holds under proportional heterogeneity. 
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social optimum, respectively. 
 

5.1 Two-type proportional heterogeneity in dynamic flow congestion: no tolling 

We start with no-toll equilibrium. Since the ratios i iβ α  and i iγ α  are identical across 

types, according to (6), travel delay follows the same triangular pattern. As illustrated in Fig. 4, 

the iso-cost curves for the two types overlap, indicating that they travel jointly, not separately, in 

time. 

 
Fig. 4. Travel delay under proportional heterogeneity without tolling. 

Note: All users travel jointly. 
 

As a result of the joint travel of the two different types, the travel cost can be expressed as: 

( )   i=H, L; t t( ) ( )( )
( )    i=H, L; t>t

iH L
i i

i

t tf t f tc t
K t t

χ β
α

γ

∗ ∗

∗ ∗

 ⋅ − ≤+  = ⋅ +  
⋅ −  

.                      (34) 

At equilibrium, travelers of the same type incur equal travel costs regardless of their arrival 

times. With the first and last travelers encountering no travel delay, we can determine the start 

and end times of travel,15 yielding the equilibrium travel cost as: 

1 1( ) ( )1 1,  H H L H H L
H H L L

H H

N N N Nc c
K K

χ χ
χ χδ δχ χα α

α χ α χ

+ +   + ++ +
= ⋅ = ⋅   

   
.            (35) 

These costs indeed, again, reduce to those reported by Chu when we make the two groups equal. 

Notably, H type incurs a higher travel cost than L type, due to the larger VOT. Specifically, with 

a constant mean value for all users' VOT, this difference increases with the degree of proportional 

                                                   
15 By solving the equilibrium conditions, the start and end times of the peak period can be derived as:  

1( ) 1
,H H H L

sH sL

H H

N N
t t

K

χ

χα δ χ

β α χ

++ +
= = − ⋅

 
 
 

 
1( ) 1

.H H H L

eH eL

H H

N N
t t

K

χ

χα δ χ

γ α χ

++ +
= = ⋅
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heterogeneity, H Lα α . 

The resulting total travel cost is: 

( )
1( ) 1H H L

H H L L
H

N NTC N N
K

χ
χδ χα α

α χ

+ + +
= + ⋅ ⋅ 

 
.                             (36) 

With a fixed mean VOT, the degree of proportional heterogeneity has no impact on total travel 

cost. All users travel jointly, experiencing no gains or losses from heterogeneity.16 

By taking the derivate of the travel cost with respect to the number of travelers, we establish 

the relationship of the congestion externality in the absence of time-varying tolling: 

L L L H L H

H L H H H L

c c c c
N N N N

α α
α α

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
 with 

1
1( ) 1H H H H L

H H

c N N
N K K

χδ δ χ
α χ

−
+ ∂ + +

= ⋅ ∂  
.      (37) 

implying that under proportional heterogeneity, H type causes a smaller congestion externality 

for L type than for themselves, with a ratio of L Hα α . The single reason for the difference is that 

L-type users value additional time losses at a lower Lα . In contrast, L type causes less congestion 

externality for themselves than for H type, with the same ratio of L Hα α . This results in an equal 

MEC of both types: 
1

1( ) 1H L H H L
H L H L

H H

N NMEC MEC N N
K K

χδ α δ χ
α α χ

−
+   + +

= = ⋅ + ⋅ ⋅   
   

.               (38) 

Eq. (38) implies that under proportional heterogeneity, as all users travel jointly, they have the 

same MECs. 
 

Proposition 6. Under proportional heterogeneity in the absence of tolling, H LMEC MEC=  

always holds, with the MEC depending on the degree of proportional heterogeneity, the number 

of travelers of each type, and the elasticity of travel delay with respect to travel flow. 
 

5.2 Two-type proportional heterogeneity in dynamic flow congestion: social optimum 

Similar to the case of ratio heterogeneity, travel delay will not be eliminated by an optimal 

time-varying toll under dynamic flow congestion. In the dynamic equilibrium, users of the same 

                                                   
16 Substituting (35) into the travel cost function of (34), we can derive the joint arrival rate of different types Nonetheless, due to the joint 

travel, the arrival rate for a certain type cannot be distinguished without further assumptions. 
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type should have identical prices. Solving ( ) 0idp t dt =   yields that for early arrivals 

( ) ( )i id t dt dT t dtτ α β+ ⋅ =   holds, and for late arrivals ( ) ( )i id t dt dT t dtτ α γ+ ⋅ = −   holds. 

Different types of users cannot travel jointly if the toll varies over time. 

Solving the corresponding optimal control problem of total cost minimization, we find that 

the toll rule under ratio heterogeneity still applies. The time-varying toll equals the MEC caused 

by different types of users. Again, due to the non-continuity of the arrival rate, different types of 

users impose a different MEC at the switching time. Solving the associated equilibrium conditions, 

we can derive the travel equilibrium in the social optimum. Detailed derivations are shown in 

Appendix I. Here we will concentrate on presenting the main insights. 

In the social optimum, exchanging travel delays for tolls involves greater amounts per user 

closer to t∗  , which is particularly attractive for high-VOT travelers. Fig. 5 illustrates the 

equilibrium in which the travel delay slope remains consistent for both user types. However, the 

toll for H type changes more rapidly than for L type, due to the larger value of schedule delay. 

Notably, in contrast to ratio heterogeneity, the travel delay curve now features a downward jump, 

whereas the toll curve exhibits an upward jump at the switching point for early arrivals, and vice 

versa for late arrivals. The properties of the arrival rate, travel delay, and toll are summarized in 

Proposition 7. 
 

 
(a) Travel delay                             (b) Optimal toll 

Fig. 5. Travel time and time-varying tolling under proportional heterogeneity. 
Note: H type users travel in the center and L type users travel in the shoulder of the peak period. 

 

Proposition 7. In the social optimum with proportional heterogeneity: (i) travelers with a higher 

VOT travel in the center of the peak period, and travelers with a lower VOT travel in the shoulder; 
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(ii) at the switching moments between types, there is a sudden decrease in travel delay at sHt  and 

a corresponding increase at eHt  to attain the social optimum; and (iii) there is a sudden increase 

in toll at sHt  and a corresponding decrease at eHt . 

Proof. See Appendix I. □ 
 

Specifically, the equilibrium travel price is: 

1
1 1

1

(1 ) ( ) ( )

.

(1 )

H H L L L L L L
L L

H H L H

H H L L
H H

H H

N N N Np
K K K K

N Np
K K

χ
χ χχ
χ χ

χ
χ

δ δ δ δα χ
α χ α χ α χ α χ

δ δα χ
α χ α χ

+
+ +

+

  
   = ⋅ + + + −       


  = ⋅ + ⋅ +   

            (39) 

As the H type travel in the center of the peak period, incurring lower travel delays with a 

higher toll, they experience a higher travel price than L type.17 Taking the derivative of (39) with 

respect to the number of each type of users yields the ratio of marginal price effects being 

( ) ( ) 1H H
H L

H L

p p
N N

δ δ∂ ∂
= >

∂ ∂
 and ( ) ( ) 1L L

H L

p p
N N
∂ ∂

>
∂ ∂

.18 Consequently, an additional H-type user 

adds more to both types' travel price than an additional L-type user. This happens because H type 

users have a larger slope in the optimal toll schedule. 
Comparing (39) and (35), we find that under proportional heterogeneity, users may gain or 

lose from tolling. The specific results are summarized in the following proposition. 
 

Proposition 8. (Distributional effects) Under proportional heterogeneity, H-type users may gain 

or lose from tolling, depending on the degree of proportional heterogeneity, the distribution of 

user types, and the elasticity of travel delay concerning arrival flow. Specifically, when 

1 1
1(1 ) H H H L

H H L L

N N
N N

χ
χ

χ δ δχ
δ δ

+
+  +

+ >  + 
 is satisfied, H-type users lose from tolling; otherwise, they gain. 

Conversely, L-type users always lose from tolling. 

Proof. See Appendix J. 
                                                   
17 Taking the difference between Lp  and Hp  in (39) yields: 

1
1 1( ) (1 ) (1 ) ( ) ( ) 0.H H L L L L L L

L H L H L

H H L H

N N N N
p p

K K K K

χ
χ χ

χ
χ χ

δ δ δ δ
α α χ α χ

α χ α χ α χ α χ

+
+ +− = − ⋅ + + + ⋅ + − <

  
  

   
 

18
1 1

1 1
L L L L L L L

L H L L L L

L H H

N N
p N p N p N

K K K K

χ χ

χ χδ δ δ δ α

α χ α χ α

− −
+ +

∂ ∂ = ∂ ∂ + − > ∂ ∂
   
   
   

. 
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Proposition 8 indicates that under proportional heterogeneity, the distributional effect on H 

type is ambiguous. In fact, the outcome depends on the balance between the benefits from the 

self-separation and the loss from the toll: if the former effect dominates, H type users benefit from 

tolling; otherwise, they lose. Fig. J1 shows that H Hp c−  increases with H LN N  and decreases 

with H Lα α . Specifically, H Hp c>  is more likely to happen when H LN N  is relatively large, 

and H Hp c<  is more likely to happen when H LN N  is relatively small. As for the L type, they 

always lose from tolling due to the peak widening. Again, it should be noted that, when the BPR 

power goes to infinity, H type benefit from tolling and L type are unaffected, which is consistent 

with the distributional effects found with the bottleneck model (e.g., Vickrey, 1973; Van den berg 

and Verhoef, 2011a). Therefore, ignoring the dynamic flow congestion will underestimate the 

adverse effects of pricing on travelers. 
 

6. Comparison with the bottleneck model 

It is insightful at this point to highlight some differences between the present flow-based 

model and the bottleneck model. 

(i) Unlike the fixed arrival rate at capacity that applies to the bottleneck model, flow 

congestion has a varying arrival rate, which is continuous without tolling but has discrete 

discontinuities in the social optimum. Here, the intuition is that the equality of marginal social 

cost that characterizes the social optimum typically implies a discontinuity in travel delay and 

hence in flow at the moment that the groups switch. Specifically, in contrast to the bottleneck 

model, in which tolling eliminates travel delays, flow congestion presents discontinuities in both 

the travel delay and toll. 

(ii) For ratio heterogeneity with identical scheduling preferences, the arrival order in the 

social optimum differs between the two models. In the bottleneck model, types travel jointly. 

Under flow congestion, different types travel separately: users with a lower VOT travel in the 

center, whereas users with a higher VOT travel in the shoulder of the peak period. The intuition 

is that the lower VOT makes the remaining time losses in the central peak less harmful for the 

lower-VOT travelers. 

(iii) In the un-tolled equilibrium, the congestion effects differ from those in the bottleneck 

model. In particular, under ratio heterogeneity, the bottleneck model shows that L-type users 

always impose a lower congestion externality than H-type users (e.g., Van den Berg, 2011b). 

However, in the flow congestion setting, L-type users may impose a higher or lower congestion 
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externality than H-type, which depends on the degree of ratio heterogeneity and the number of 

each type of users. 

(iv) The distributional effects of tolling also differ significantly. Prior bottleneck studies 

indicated that under ratio heterogeneity, L-type users lose from tolling and H-type users are 

unaffected (e.g., Arnott et al., 1994; de Palma and Lindsey, 2002); under proportional 

heterogeneity, tolling benefits H-type users, whereas L-type users are unaffected (e.g., Vickrey, 

1973). In contrast, we find when dynamic flow congestion is considered, under ratio heterogeneity, 

both types of users lose from tolling, whereas under proportional heterogeneity, L type always 

loses, and H type may benefit or lose from tolling, depending on the elasticity of travel delay with 

respect to arrival rate, the number of each type of users, and the preference parameters. 
 

7. Numerical model 

7.1 Base-case calibration 

Here, we try to keep the result comparable with previous works (Van den Berg and Verhoef, 

2011a, b). We consider 9000 users with a free-flow travel time of 30 min. The capacity, K, is such 

that the un-tolled travel costs are the same as in a bottleneck model with a capacity of 3600. 

Following Chu (1995), the elasticity of travel delay with respect to arrival rate is χ = 4.08. The 

number of H- and L-type users is 4500 each. 

The average VOT is €10.00/h, which is close to the official Dutch average (Kouwenhoven 

et al., 2014; Knoope, 2023). The values of schedule delay follow from their ratios to the VOT in 

Small (1982) and Arnott et al. (1993). Therefore, under ratio heterogeneity, we use αL = €6.5/h, 

αH = €13.5/h, β = €6.09/h, and γ = €23.76/h. The calibration targets discussed result in a choice of 

K = 4141. 

Under proportional heterogeneity, to avoid too small a value of schedule delay early, we use 

αL = €9.48/h, αH = €10.52/h, βL = €4.73/h, βH = €5.26/h, γL = €18.95/h, and γH = €21.05/h. Again, 

for ease of comparison, we keep the un-tolled travel cost for the L-type the same as under 

bottleneck congestion, which now results in K = 4391.19 

 

 

                                                   

19 With ratio heterogeneity, we have 
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7.2 Base-case numerical model under ratio heterogeneity 

Fig. 6 depicts the arrival rate and travel delay in the no-toll equilibrium. L type travels in the 

center of the peak period, and H type in the shoulder. The arrival rate displays continuous 

nonlinearity. Given the power of the BPR function, this is needed to achieve linearity of travel 

delays, as shown in Fig. 6(b). The lower VOT for L-type users results in faster changes in travel 

delay than for H-type users. 

In the social optimum, the arrival rate, travel delay, and toll all show discontinuities, as 

presented in Fig. 7. Fig. 7(a) illustrates an upward jump in arrival rate at time -1.01 and a 

downward jump at time 0.28. Fig. 7(b) shows that the travel delay for L-type users changes more 

quickly than that of H-type users, with an upward jump at time -1.10 and a downward jump at 

time 0.28. Fig. 7(c) reveals a consistent slope of the toll for both user types, jumping downward 

at time -1.10 and upward at time 0.28. 

The detailed outcomes for the ratio heterogeneity case are given in Table 1. For presentation 

purpose, 'H' represents H type users and 'L' represents L type users. Some interesting observations 

emerge from these results. (i) With bottleneck congestion, optimal tolling keeps the peak duration 

unchanged. Conversely, with flow congestion, it induces peak widening. (ii) With bottleneck 

congestion, H-type drivers are unaffected and L-type drivers lose from optimal tolling. In contrast, 

with flow congestion, all users lose. (iii) With bottleneck congestion, optimal tolling eliminates 

100% of travel delay costs, reducing H-type schedule delay costs by 33.3% and increasing L-type 

schedule delay costs by 100%. With our flow congestion, optimal tolling reduces travel delay 

costs by 72.8% for the H-type and 61.7% for the L-type; while it increases schedule delay costs 

by 30.5% for the H-type and 27.6% for the L-type, both due to peak widening. 
 

  
(a) Arrival rate                          (b) Travel delay 
Fig. 6. Un-tolled equilibrium patterns with ratio heterogeneity. 
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(a) Arrival rate 

   
(b) Travel delay                         (c) Optimal toll 

    Fig. 7. Equilibrium patterns under social optimum with ratio heterogeneity. 
 

Table 1. Outcomes of ratio heterogeneity under base-case calibration 
 Bottleneck model Flow congestion model 
 No toll Social optimum No toll Social optimum 
Arrival interval H [-1.99,-0.10], 

[0.26,0.51] [-1.99,0.51] [-2.12,0.88], 
[0.22,0.54] 

[-2.81,-1.10], 
[0.28,0.72] 

Arrival interval L [-0.10,0.26] [-1.99,0.51] [-0.88,0.22] [-1.10,0.72] 
Private travel cost H 18.87 12.81 19.65 19.23 
Private travel cost L 12.23 9.31 12.23 8.98 
Travel price H 18.87 18.87 19.65 23.88 
Travel price L 12.23 15.37 12.23 18.98 
Travel delay cost H 3.03 0 4.19 1.14 
Travel delay cost L 5.95 0 6.40 2.45 
Schedule delay cost H 9.09 6.06 8.70 11.35 
Schedule delay cost L 3.03 6.06 2.57 3.28 
Total travel cost 139,950 99,540 143,432 126,998 
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7.3 Varying the degree of ratio heterogeneity 

We vary the degree of ratio heterogeneity, H Lα α , by maintaining the mean VOT at 10, and 

keeping the values of schedule delay unchanged.20 Fig. 8(a) shows the impact on total travel cost. 

Increasing ratio heterogeneity reduces total travel cost, both with and without tolling, reflecting 

the benefit of travelers' self-ordering. With higher ratio heterogeneity, the difference between no 

tolling and tolling narrows due to the faster reduction in travel delay in the absence of tolling 

compared to the social optimum.21 

Fig. 8(b) depicts the distributional effects of tolling by measuring the percentage change in 

generalized prices. Positive values indicate increased prices caused by tolling. Both user types 

lose from tolling, L type facing the greater impact. As ratio heterogeneity increases, the relative 

price rise from tolling increases for L type and decreases for H type. A more detailed 

decomposition of the equilibrium travel price is provided in Appendix K. 
 

   
(a) Total travel cost                 (b) Distributional effects 

Fig. 8. Effects of ratio heterogeneity. 

Note: Distributional effects are measured by ( ) 100SO NT NT
i i ip c c− ⋅ . 

7.4 Varying the elasticity of travel delay with respect to arrival rate 

Fig. 9 depicts the effects of varying χ, which gives the elasticity of travel delay with respect 

to arrival rate. Fig. 9(a) shows that as χ increases, total travel cost decreases, especially with 

tolling. Indeed, the shift in travel interval reduces the travel delay cost, causing the schedule delay 

cost to rise initially and then fall. Overall, the decrease in travel delay cost dominates, leading to 
                                                   
20 This average value of time is close to the official Dutch average (Kouwenhoven et al., 2014). 
21 In the absence of tolling, the travel delay varies with a rate of β/αi (or γ/αi), whereas in the social optimum the travel delay varies with a 

rate of β/(αi (1+χ)) for early arrivals and γ/(αi (1+χ)) for late arrivals. 
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a reduction in total travel cost with an increase in χ. In the social optimum, optimal tolling results 

in a greater decrease in total travel cost compared to no tolling, and the gap widens with χ, 

reflected in the increasing toll schedule. This matches the intuitive notion that with a higher χ, 

and thus a more strongly curved travel delay function, fewer drivers would have to move away 

from the busiest moments to obtain significant gains in travel time reductions. 

As for the distributional effects, Fig. 9(b) shows that as χ increases, the percentage price 

increase from tolling first rises and then falls. This implies that for a relatively small χ, the travel 

price without tolling decreases more rapidly due to the dominating effect of peak widening caused 

by tolling. However, for χ exceeding 3, the travel price with tolling decreases more quickly, as 

the flatter travel delay induced by the increasing χ dominates. Specifically, when varying χ from 

0 to 1000, we can observe that as χ approaches infinity, the distributional effects converge to the 

results in the bottleneck model: H type users are unaffected and L type users lose from tolling. 
 

 
(a) Total travel cost                   (b) Distributional effects 

Fig. 9. Effects of elasticity of travel delay with respect to arrival rate χ. 
 
7.5 Numerical analysis under proportional heterogeneity 

We now turn to proportional heterogeneity and first look at the results in the base case. Fig. 

10(a) depicts the joint arrival rate without tolling, displaying continuous nonlinear patterns 

starting from a rate of 0 at time -1.79, peaking at 4470 at time 0, and reaching 0 again at 0.71. Fig. 

10(b) depicts the arrival rate in the social optimum. Now the rate is discontinuous and nonlinear. 

Notably, there is a downward jump at time -1.07 and an upward jump at time 0.43. 

Fig. 11 depicts the travel delay and toll in the social optimum. The identical linear travel 

delay slope for both types (Fig. 11(a)) is due to the equal ratio of the VOT to the value of schedule 

delay. Our flow congestion set-up causes an upward jump in delays at time -0.17 and a downward 
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jump at time 0.43. In the toll schedule (Fig. 11(b)), the toll for H-type users changes more rapidly 

than for L-type users due to the higher value of schedule delay. Although difficult to see, the toll 

jumps upward at switching time -1.07 and drops at time 0.43. 
 

   
      (a) Without tolling                         (b) Social optimum 

Fig. 10. Arrival rate under proportional heterogeneity. 

    
(a) Travel delay (b) Optimal toll 

Fig. 11. Travel delay and toll under social optimum with proportional heterogeneity. 
 

Fig. 12 varies the degree of proportional heterogeneity by keeping the average VOT at 10, 

and the ratios i iβ α   and i iγ α   identical across types.22  Fig. 12(a) shows that in the social 

optimum, total cost decreases with the degree of proportional heterogeneity, reflecting the 

benefits of diverging preferences for reducing congestion. Without tolling, proportional 

heterogeneity has no impact on total cost, as all users travel jointly. In Fig. 12(b), L-type users 

always lose from tolling, with more intensified losses as proportional heterogeneity increases. 

                                                   
22 The degree of proportional heterogeneity is measured by H Lβ β , which indeed equals H Lα α . 
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Conversely, for H-type users, the loss from tolling decreases with proportional heterogeneity. 

Notably, when the proportional heterogeneity exceeds a threshold of around 3, tolling even 

becomes beneficial for H-type users. 
 

    
(a) Total travel cost                 (b) Distributional effects 

Fig. 12. Effects of proportional heterogeneity. 

Note: Price effects are measured by ( ) 100SO NT NT
i i ip c c− ⋅ . 

Fig. 13 varies the elasticity of travel delay with respect to arrival rate χ. With increased 

elasticity, total travel cost decreases, especially with tolling. With regard to distributional effects, 

the percentage change in travel price first increases, and then decreases. Indeed, although travel 

price decreases with elasticity, the reduction is more significant without tolling when χ is small. 

As χ increases, the decrease with tolling exceeds that without tolling. Again, when varying χ from 

0 to 1000, we can observe that as χ approaches infinity, the distributional effects converge to the 

results in the bottleneck model: H type users benefit from tolling and L type users are unaffected. 

    
(a) Total travel cost (b) Distributional effect 

Fig. 13. Effects of BPR power χ  under proportional heterogeneity. 
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8. Discussion of other forms of heterogeneity 

After examining ratio and proportional heterogeneity separately, deriving equilibrium when 

both types coexist is relatively straightforward. In the un-tolled equilibrium, the arrival order 

aligns with that in bottleneck congestion: travelers with a higher i iβ α  and i iγ α  arrive in the 

center of the peak period (e.g., Arnott et al., 1988, 1994). In the social optimum, unlike under 

bottleneck congestion, dynamic flow congestion could result in two possible optima: i) travelers 

with a higher i iβ α  (or i iγ α  for late arrivals) travel in the center of the peak period (as with 

ratio heterogeneity); and (ii) travelers with a higher iβ  (or iγ  for late arrivals) travel in the 

center (as with proportional heterogeneity). The global optimum depends on the specific 

parameters. 

More general heterogeneity in multiple dimensions may be a combination of the results 

under the various types of separate heterogeneities mentioned above, if t∗  is homogeneous. But 

there may exist several possible equilibria. If it
∗  is heterogeneous, the equilibrium will become 

much more complicated—as was shown for the Chu model by Verhoef (2020) and the bottleneck 

model by Hall (2021, 2023). It seems interesting to investigate this in a future study. 

When adding more and more types of users for the same form of heterogeneity, it is to be 

expected that discontinuities in travel delays and tolls will decrease, and that they disappear for 

continuous forms of heterogeneity. Even though we report them as features of the first-best 

optimum, we may not believe that, in reality, these discontinuities would be significant. However, 

the effects of heterogeneity on the overall and distributional effects of tolling will probably remain 

qualitatively similar. 
 

9. Conclusion 

This paper investigated how preference heterogeneity affects travel behavior and congestion 

pricing in a dynamic flow-congestion framework. We extended the Chu (1995) model, in which 

speed is assumed constant during the trip and a function alone of the flow at the road's exit. The 

properties of travel equilibrium, congestion externality, and congestion pricing were explored 

analytically and compared under different types of heterogeneity. The welfare and distributional 

effects of tolling were examined explicitly.  

Arrival rates, travel delays, and toll patterns differ significantly from those in the bottleneck 

model. In the absence of tolling, the arrival rate varies over time, unlike the constant arrival rate 
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in a bottleneck. In the social optimum of our discrete groups model, preference heterogeneity 

introduces discontinuities in the arrival rate, travel delay, and toll. The slope of the travel delay 

and the toll depends not only on preference parameters, but also on the elasticity of travel delay 

with respect to the arrival rate. 

In most instances, heterogeneous travelers have the same arrival order as in the bottleneck 

model, except for the social optimum under ratio heterogeneity. We showed that users with a 

lower VOT travel in the center and users with a higher VOT travel in the shoulder of the peak 

period. This contrasts sharply with the bottleneck model, in which travelers arrive in a pooled 

equilibrium. 

Under ratio heterogeneity, users with a higher VOT may impose a greater or lower 

congestion externality than users with a lower VOT, depending on the degree of ratio 

heterogeneity and the numbers of each type of user. At the boundary time between types, the 

collective instantaneous MEC, weighted by the arrival rate, is equal for both types of users. This 

contrasts with the bottleneck literature, which suggests that users with a lower VOT impose a 

lower congestion externality (e.g., Van den Berg and Verhoef, 2011b). Under proportional 

heterogeneity, different types of users have the same MEC, as in the bottleneck model. However, 

the MECs differ between the models; although, in the limit, as the elasticity of travel delay with 

respect to arrival rate approaches infinity, the MECs become the same. 

Finally, in our dynamic flow congestion setting, the efficiency gains from tolling are smaller 

than those in the bottleneck model. Tolling always harms users with a lower VOT. The impact of 

tolling on users with a higher VOT is ambiguous, depending on the type of heterogeneity and the 

parameters, but does not result in a worse outcome than for users with a lower VOT. Compared 

to the bottleneck model, tolling is less attractive for users and has different distributional effects. 

Our results thus confirm that it is important to consider not only preference heterogeneity, but 

also the congestion type when analyzing user travel behavior and assessing the implementation 

of congestion pricing. 

Although this paper provides some new insights into dynamic congestion with 

heterogeneous users, some further interesting extensions should be made in future studies. An 

obvious follow-up question is how step tolling would perform (see, e.g., Lindsey et al., 2012; Van 

den Berg, 2014). Additionally, it would be interesting to consider multiple dimensions of 

heterogeneity or have different congestion models. In particular, Verhoef (2020) and Hall (2021, 

2023) have shown that adding heterogeneity into the preferred arrival time can lead to an 

enormous change in the effects of tolling. Another pertinent question would how results change 
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if there were continuous distributions of preferences or more discrete groups. Finally, the 

congestion model adopted in this paper ignores the direct congestion interactions between 

travelers arriving at different moments. An important avenue for future research would be to 

consider alternative congestion technologies in which interactions between travelers arriving at 

different instants are still present. So, for example, the bathtub/MFD model or Mun (1999, 2002)'s 

model. 
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Appendix 

Appendix A. Proof of Proposition 1 
In Fig. 1, if an H-type user chooses to arrive at time t  during ( , ]sL eLt t , the desired travel 

delay to keep the original equilibrium travel cost, T1, is obtained from the crossover point of the 

dashed line and the vertical line at time t. However, the actual travel delay T2 is determined by 

the travel delay of L type, implying that H type arriving at ( , ]sL eLt t  will experience a higher 

travel delay and, consequently, a higher travel cost. Therefore, they will prefer not to arrive during 
( , ]sL eLt t  but in one of the two shoulder periods. Similar logic explains why the two shoulder 

periods are less attractive for L-type users. □ 
 

Appendix B. Derivation of the no-toll equilibrium under ratio heterogeneity 
We first look at H-type users. According to ( ) ( ) ( )H H sH H eHc t c t c t= = , the arrival rate of H 

type can be expressed by sHt  and eHt : 
1

1

( ) ,  for t [ , ]
( )

( ) ,   for t ( , ]

sH
sH sL

H
H

eH
eL eH

H

t tK t t
f t

t tK t t

χ

χ

β
α

γ
α


 − ⋅ ∈   = 

  − ⋅ ∈ 
  

.                                   (B1) 

Substituting (B1) into ( ) ( )sL eH

sH eL

t t

H H Ht t
f t dt f t dt N+ =∫ ∫  yields: 

1 11 1
( ) ( )1 1 1 1sL sH eH eL H

H H H

t t t t N
K

χ χβ γ
β α γ α α χ

+ +
   − −  

+ = ⋅ +     
    

.                       (B2) 

Combining sH eHt tβ γ− =   and sL eLt tβ γ− =   yields ( ) ( )sL sH eH eLt t t tγ
β

− = ⋅ −  . Substituting 

it into (B2) yields: 

11H H
eH eL

H

Nt t
K

χ
χα δ χ

γ α χ

+ +
− = ⋅ ⋅ 

 
, 

11H H
sL sH

H

Nt t
K

χ
χα δ χ

β α χ

+ +
− = ⋅ ⋅ 

 
.               (B3) 

Now we look at L-type users. Note that at sLt  and eLt , all users have the same travel delay. 

Substituting (B1) into the travel delay function and combining the user equilibrium conditions, 

we can obtain the arrival rates for L-type users, expressed as: 
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1

1

( )( ) ,  for t (t ,t ]
( )

( )( ) ,   for t (t , t ]

sL sH
sL sL

L H
L

eH eL
eL eL

L H

t tK t t
f t

t tK t t

χ

χ

ββ
α α

γγ
α α

∗

∗


 ⋅ − ⋅ − + ∈   = 

  − ⋅ − + ∈ 
  

.                         (B4) 

Substituting (B3) into (B4) and inserting ( )eL

sL

t

L Lt
f t dt N=∫  yields: 

1 11 1
( ) ( ) 1( 1)eH eL eH eL L

eL
H L H L

t t t t Nt
K

χ χγ γ δγ
α α α χ α

+ +
   − −

+ − = +   
   

.                       (B5) 

Substituting (B3) into (B5), we can derive eLt  as: 

11( 1) ( )L H L L
eL H

H L

N Nt
K K

χ
χα δ δ α

γ χ α α γ

+ 
= + ⋅ + − Ψ 

 
,                                 (B6) 

with 
11 1H

H
H

N
K

χ
χδ

α χ

+  
Ψ = ⋅ +  

  
 . Combining (B6), (B3) and sL eLt tβ γ− =   and further solving 

leads to the following arrival times of the first and last traveler of a type: 

1 1

1

1 1( 1) ( ),  ( 1) ,

1 1( 1) ,  ( 1)

L H L H L H L L
sH H L sL H

H L H L

L H L L L H L
eL H eH

H L H L

N N N Nt t
K K K K

N N N Nt t
K K K K

χ χ
χ χ

χ
χ

α δ δ α δ δ αα α
β χ α α β β χ α α β

α δ δ α α δ δ
γ χ α α γ γ χ α α

+ +

+

      Ψ
= − + ⋅ + − ⋅ − = − + ⋅ + + Ψ               

     
= + ⋅ + − Ψ = + ⋅ +         

1

( ).H
H L

χ
χ

α α
γ

+





  Ψ + ⋅ −    

    

(B7) 

The equilibrium travel cost for H-type users can be derived by H sHc tβ= −   and 

( )L sL L sLc t T tβ α= − + ⋅ , as presented in (9). 

 
Appendix C. Proof of Proposition 2 

Substituting (11) into H L
i H L

i i

c cMEC N N
N N
∂ ∂

= +
∂ ∂

 yields the marginal external costs as: 

1 1
1 1

1
1

( ) ( )1 1 ,

( )1 .

H L L H L H H L H
H

H L H H H

H L H L
L

H L

N N N N N NMEC
K K K K K

N N N NMEC
K K K

χ χ

χ

δ δ δα δ δ α αχ χ
χ α α α α χ α

δ δ δχ
χ α α

− −
+ +

−
+


    + −+ + = ⋅ + ⋅ + ⋅ ⋅           


    ++ = ⋅ + ⋅      

(C1) 
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Taking the difference between HMEC  and LMEC  yields: 

1 1
1 1( )1 1(1 ) (1 ) 0H L L H L H L H

L H
H L H H H

N N N N N NMEC MEC
K K K K K

χ χδ δ α δ δ α δχ χ
χ α α α α χ α

− −
+ +    ++ +

− = ⋅ + ⋅ − ⋅ − ⋅ ⋅ − <         
, 

(C2) 

which can be further simplified as 

1 1
1 1

( )H L H
H L H

H L H

N N NN N N
χ χ

α α α

− −
+ +   

+ ⋅ + <   
   

 . This also 

implies 
( )( 1)1 1L HH

L L H

N N
N N

χ
α
α

++ −
< . 

 
Appendix D. Proof of Proposition 3 

Proposition 3 is proven by contradiction. We assume H-type users travel in the center of the 

peak period, with H type arriving within ( , ]sH eHt t  and L type arriving within [ , ] ( , ]sL sH eH eLt t t t∪ . 

The marginal effect of H type on travel delay is 
1( )( )

( )
H

H

f tdT t
df t K K

χχ −
 = ⋅ 
 

. Given the higher VOT 

for H type users, moving a marginal H-type user to L type's interval reduces the total travel delay 

cost. Consider arrival time sHt  and an arbitrary small value ε ; if we move a marginal H user 

from sHt ε+   to sHt ε−  , the decrease in the travel delay cost for H type users exceeds the 

increase for L type users. Consequently, total travel costs decrease with this rescheduling, 
indicating that H type arriving in the center of the peak period is suboptimal. □ 
 
Appendix E. Proof of Lemma 3 

The equation of motion of iλ   in (20) and (21) shows that this shadow cost should be 

constant over time: ( ) ,  ( ) .H H L Lt tλ λ λ λ= =  Inserting into (22) and combining (27)-(28), we 

obtain: 

2

2

[ ]( ) ( ) ( ) ( ) ( ) [ ] ( [ ]) 0
[ ]
[ ]( ) ( ) ( ) ( ) ( ) [ ] ( [ ]) 0
[ ]

H
H sH H sH H sH H sH H sH sH H sH

H

H
H eH H eH H eH H eH H eH eH H eH

H

c tH t c t f t t f t t f t
f t
c tH t c t f t t f t t f t
f t

λ

λ

∂
= − ⋅ + ⋅ = ⋅ =

∂
∂

= − ⋅ + ⋅ = ⋅ =
∂

.        (E1) 

According to the travel cost expression, the only way for (E1) to hold is ( ) ( ) 0H sH H eHf t f t= = . 
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This completes the proof of part (i) of the lemma. 

The sLt   and eLt   separate different types, and ( ) 0i sLf t ≠   and ( ) 0i eLf t ≠   both hold. At 

these points ( ) ( ) ( ) ( ) 0H sL L sL H eL L eLt t t tθ θ θ θ= = = =  holds. Combining (25) and (26) yields: 

[ ] [ ],  t [t ,t ] (t ,t ]
[ ][ ] [ ] [ ],  t (t ,t ].
[ ]

H H sH H eH sH sL eL eH

L
L L sL sL L sL sL eL

L

c t c t
c tc t t f t
f t

λ

λ

= = ∈ ∪
∂

= + ⋅ ∈
∂

，

.                                    (E2) 

By combining (18), (23), and (24), we can further obtain the relationship between ( )H sLf t  

and ( )L sLf t , and between ( )H eLf t  and ( )L eLf t : 

1 1
1 1( ) ( ) ( ) ( ),  

( ) ( )( ) ( )
H sL L L sL H eL L L eLL L

L sL H L eL HH H sL H H eL

f t c t f t c t
f t f tc t c t

χ χλ λα α
α αλ λ

+ +   − −
= = = =   − −   

,             (E3) 

This relationship is presented in Lemma 3(ii). Lemma 3(iii) follows as a result of conditions (23) 

and (24). 
 
Appendix F. Proof of Proposition 4 

Proof. The toll starts at zero at sHt  and becomes zero again at eHt . The travel price for H-type 

users equals [ ] [ ]H H sH H eHc t c tλ = = . Hence, when [ , ] ( , ]sH sL eL eHt t t t t∈ ∪ , the optimal toll is: 

[ ] [ ] ( )( ) ( ) [ ] [ ] ( ) [ ]
[ ] [ ]

H H H
H H H H H H H

H H

c t c t f tt c t c t f t c t f t
f t f t K

χ

τ λ α χ∂ ∂  = − = + ⋅ − = ⋅ =  ∂ ∂  
.     (F1) 

Similarly, the travel price for L-type users is ( ) ( ) ( ) ( ) ( )L L L sL sLp t c t t c t tτ τ= + = +  . Combining 

(E2), we can obtain: 

[ ] ( )( ) [ ] ,  t (t ,t ]
[ ]

L L
L L sL eL

L

c t f tt f t
f t K

χ

τ α χ∂  = ⋅ = ⋅ ∈ ∂  
,                              (F2) 

as presented in Eq. (29). 

According to Lemma 3, the properties of the toll at the separation times of the types, sLt  

and eLt , can be further derived. □ 
 
Appendix G. Derivation of the equilibrium in social optimum under ratio heterogeneity 

To solve the travel equilibrium, we first consider H-type users, as they travel in the shoulder 



41 
 

 
 

of the peak period. In equilibrium, the following constraints should be satisfied: (i) At sHt  and 

eHt  , the schedule delay cost is the same, i.e., H sH H eHt tβ γ− =  ; (ii) H-type users arrive during 

[ , ] ( , ]sH sL eL eHt t t t∪ , i.e., ( ) ( )sL eH

sH eL

t t

H H Ht t
f t dt f t dt N+ =∫ ∫ ; (iii) For H-type users, the travel price at 

any time t  is the same as that at sHt  for early arrivals and at eHt  for late arrivals. 

Solving the above equilibrium conditions yields the relationship between the travel interval 

and the arrival rate for H-type users, which is presented in (30), with 
1 1

1 1(1 ) ,  (1 )H H
sL sH H eH eL Ht t t tχ χα αχ χ

β γ
+ +− = ⋅ + Ψ − = Ψ ⋅ ⋅ + .                     (G1) 

To further solve the specific travel interval, we now consider L-type users. The travel price 
for L-type users is: 

( )(1 ) ,  if t (t ,t ]
( ) .

( )(1 ) ,   if t (t ,t ]

L
L sL

L

L
L eL

f t t
K

p t
f t t
K

χ

χ

α χ β

α χ γ

∗

∗

  ⋅ + ⋅ − ∈    = 
  ⋅ + ⋅ + ∈   

                               (G2) 

Similar to H type users, for L-type users, in equilibrium, the following equilibrium conditions 

should be satisfied: sL eLt tβ γ− =  , ( )eL

sL

t

L Lt
f t dt N=∫  , ( ) ( ) ( )L sL L eL Lp t p t p t= =  , and the 

transversality condition 

1
1( ) ( )

( ) ( )
L sL L eL H

H sL H eL L

f t f t
f t f t

χα
α

+ 
= =  

 
 . The arrival rate of L-type users can be 

expressed as a function of sLt  and eLt , as presented in (31). Substituting (G1) and sL eLt tβ γ− =  

into (31), and solving ( )eL

sL

t

L Lt
f t dt N=∫ , we can obtain: 

1 1 1

1 1

1

(1 ) (1 )

(1 )

(1 )

L H H L H H
sH

L L L H

L H H L
sL

L L L

L H L H
eL

L L L

N N N Nt
K K K K

N N Nt
K K K

N N Nt
K K

χ χ χ
χ χ χ

χ χ
χ χ

χ
χ

α δ δ δ α δχ χ
β α χ α χ α χ β α χ

α δ δ δχ
β α χ α χ α χ

α χ δ δ δ
γ α χ α χ α

+ + +

+ +

+

 
      = + − + − +             

 
    = + − +         

 ⋅ +
= + − 

 

1

1 1 1

.

(1 ) (1 )L H L H H H
eH

L L L H

K

N N N Nt
K K K K

χ
χ

χ χ χ
χ χ χ

χ

α χ δ δ δ α δχ
γ α χ α χ α χ γ α χ

+

+ + +












           
        ⋅ +  = + − + +               

              (G3) 
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From ( ) ( )H H sH sHp t p t tβ= = −  and ( ) ( )L Lp t p t∗= , we can derive the equilibrium travel 

price, as presented in (32). □ 
 

Appendix H. Proof of Proposition 5 

Based on (32) and (9), for the L type, taking the difference between Lp  and Lc  yields: 

11 1(1 ) ( 1)H L H L
L L L L

L L H L

N N N Np c
K K K K

χχ
χχδ δ δ δα χ α

α χ α χ χ α α

++     
− = ⋅ + ⋅ + − + ⋅ +         

.          (H1) 

For presentation purposes, let H L uα α =  and H LN N v= . Eq. (H1) can be rewritten as: 

1 1
( ) (1 ) ( 1) (1 ) 1L L

L L L L
L L

N NvF u p c v
K u K

χ χ
χ χδ δα χ α χ

α χ α χ

+ +    = − = ⋅ + ⋅ + − + ⋅ +    
    

.          (H2) 

Taking the derivative of ( )F u  with respect to u  yields: 

1
1

2

1
1

2

( ) (1 ) 1 (1 )
1

          (1 ) 1 0

L L
L

L L

L L

L

N NF u v v
u u K K u

N Nv v
u K K u

χ
χ

χ
χ

δ δχα χ χ
χ α χ α χ

δ δχ
α χ

−
+

−
+

 ∂  = + ⋅ + +  ∂ +   

  = + ⋅ + >  
  

.                   (H3) 

Specifically, when 1u = , we can easily obtain (1) 0F > . Hence, 0L Lp c− >  always holds, and, 

as the degree of ratio heterogeneity increases, the difference in the travel price between the 
different types becomes larger. 

Using the same logic, we can prove 0H Hp c− >  holds. Fig. H1 further gives a numerical 

illustration under χ=4. 

 
(a) L type users                 (b) H type users 

Fig. H1. Contour plot of the sign-determined part of i ip c−  under χ=4. 
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Appendix I. Equilibrium under social optimum with proportional heterogeneity 
(i) Arrival order 
Similar to ratio heterogeneity, the arrival order in Proposition 7 can be proven by 

contradiction. The properties of the travel delay and toll at the switching time are derived from 
the transversality condition in Eq. (I2). Details are available upon request. 

(ii) Solving the travel equilibrium 
Formulating the corresponding optimal control problem and solving the Hamiltonian yield 

the same toll rule as ratio heterogeneity. The travel price function thus becomes: 

( )   for early arrivals of  type( )( ) (1 )
( )    for late arrivals of  type

ii
i i

i

t t if tp t
K t t i

χ β
α χ

γ

∗

∗

 ⋅ − = ⋅ + ⋅ +   ⋅ −  
.              (I1) 

Then we start to solve the equilibrium. At sHt  and eHt , the transversality condition shows: 

1 1
( ) ( )
( ) ( )

H sH H eH L

L sH L eH H

f t f t
f t f t

χ χ
α
α

+ +
   

= =   
   

.                                       (I2) 

We first look at L-type users. According to ( )L sL eLp t t tβ γ= − =   and 

( ) ( )sH eL

sL eH

t t

L L Lt t
f t dt f t dt N+ =∫ ∫ , the arrival rate for L-type users can be expressed as: 

1

1

( ) ,  for [ , ]
(1 )

( )
( ) ,  for ( , ]
(1 )

L s
sL sH

L
L

L e
eH eL

L

t tK t t t
f t

t tK t t t

χ

χ

β
α χ

γ
α χ


 − ⋅ ∈  ⋅ +  = 

  − ⋅ ∈ ⋅ +  

.                                  (I3) 

Combining (I2), H type's arrival rates at sHt  and eHt  are, respectively: 

1 1 1 1
1 1( ) ( )( ) ,  ( ) .

(1 ) (1 )
L sH s L e eHL L

H sH H eH
H L H L

t t t tf t K f t K
χ χ χ χβ γα α

α α χ α α χ

+ +       − −
= ⋅ ⋅ = ⋅ ⋅       ⋅ + ⋅ +       

      (I4) 

Substituting (I3) into ( ) ( )sH eL

sL eH

t t

L L Lt t
f t dt f t dt N+ =∫ ∫  yields: 

1 1

( ) ( )
(1 ) (1 )

sH eL

sL eH

t tL s L e L
t t

L L

t t t t Ndt dt
K

χ χβ γ
α χ α χ
   − −

+ =   ⋅ + ⋅ +   
∫ ∫ .                              (I5) 

Combining (I5) with L sL L eLt tβ γ− = , H sH H eHt tβ γ− =  and H H L Lγ β γ β=  gives the travel lengths 

for early and late arrivals of L-type users: 
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1(1 )L L L
sH sL

L L

Nt t
K

χ
χα χ δ

β α χ

+ ⋅ +
− =  

 
, 

1(1 )L L L
eL eH

L L

Nt t
K

χ
χα χ δ

γ α χ

+ ⋅ +
− =  

 
.             (I6) 

Next, we look at H-type users. According to (I1), the travel price at sHt   and eHt   is, 

( )( ) (1 ) H sH
H sH H H sH

f tp t t
K

χ

α χ β = ⋅ + ⋅ − 
 

 , and ( )( ) (1 ) H eH
H eH H H eH

f tp t t
K

χ

α χ γ = ⋅ + ⋅ + 
 

 , 

where ( )H sHf t   and ( )H eHf t   are given by (I4). Combining ( ) ( )H H sHp t p t=  and 

( ) ( )H H eHp t p t= , the arrival rate for H-type users can be further expressed as: 

1

1 1

1

1 1

( ) ,  for ( , ]
(1 )

( )

( ) ,  for ( , ]
(1 )

H sH L L L
sH

H H L

H

H eH L L L
eH

H H L

t t NK t t t
K

f t

t t NK t t t
K

χ χ χ
χ χ

χ χ χ
χ χ

β α δ
α χ α α χ

γ α δ
α χ α α χ

+ +
∗

+ +
∗


     −  ⋅ + ⋅ ∈    ⋅ +       = 

      − ⋅ + ⋅ ∈     ⋅ +       

.               (I7) 

Substituting (I7) into ( ) ( )eH

sH

t t

H H Ht t
f t dt f t dt N

∗

∗
+ =∫ ∫  yields: 

1 1

1 1( ) ( ) ( ) ( ) .
(1 ) (1 ) (1 ) (1 )

eH

sH

t tH sH L sH s H eH L e eHL L H
t t

H H L H H L

t t t t t t t t Ndt dt
K

χ χχ χ
χ χβ β γ γα α

α χ α α χ α χ α α χ

∗

∗

+ +
   

   − − − −   + ⋅ + + ⋅ =      ⋅ + ⋅ + ⋅ + ⋅ +         
∫ ∫    (I8) 

Using (I6) to further simplify (I8), we can obtain: 

1 1

(1 )
H sH H H L L L L

H H H H

t N N N
K K K

χ χ
χ χβ δ δ δ

α χ α χ α χ α χ

+ +   −
= + −   ⋅ +    

.                             (I9) 

As a result, 
1 1

(1 ) (1 )H L L H H H L L
sH

H H H H H

N N Nt
K K K

χ χ
χ χα δ α δ δχ χ

β α χ β α χ α χ

+ +   
= ⋅ + − ⋅ + +   

   
.          (I10) 

Combining (I10) and (I6), we can further derive the expression of sLt , eLt  and eHt . Substituting 

them into (I3) and (I7) yields the arrival rates. The equilibrium travel price for H type is obtained 

from ( ) ( )H Hp t p t∗= , and for L type is derived from L L sLp tβ= − , as presented in (39). This 

completes the derivation of the equilibrium. □ 
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Appendix J. Proof of Proposition 8 

According to (39) and (35), for H-type users, solving H Hp c>  yields: 

1 1( ) 1(1 ) H H L L H H L
H H

H H H

N N N N
K K K

χ χ
χ χδ δ δ χα χ α

α χ α χ α χ

+ +   + +
⋅ + ⋅ + > ⋅   

   
,                 (J1) 

which can be simplified as: 
1 1

1(1 ) H H H L

H H L L

N N
N N

χ
χ

χ δ δχ
δ δ

+
+  +

+ >  + 
 . To gain more insights, we use 

simulation.23 Fig. J1 plots the contour of H Hp c−  under 4χ = . We can see H Hp c>  is more 

likely to happen when H LN N  is relatively large. 

 

Fig. J1. Contour of H Hp c−  under 4χ = . 

For L-type users, solving L Lp c>  and simplifying further gives: 

11 1 1 1
1( ) (1 )H H L L L L L L H H L

H L H H

N N N N N N
χ χ χ χ
χ χ χ χ

χδ δ δ δ δ χ
α α α α

+ + + + −
+       + +

+ − > +       
       

,      (J2) 

which also means 

1

1
1

1 1 1

( )

(1 )

H H L

H

H H L L L L L L

H L H

N N

N N N N

χ
χ

χ
χ χ χ
χ χ χ

δ
α

χ
δ δ δ δ

α α α

+

+

+ + +

 +
 
 + >

     +
+ −     

     

.                      (J3) 

                                                   

23 Let H Lu α α=  and H Lv N N= , inequality (J2) can be rewritten as 
1

11 ( 1)(1 )
1

u v
uv

χ
χχχ
+

+ + + >  + 
. 
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To prove (J3) always holds, let H L uα α =   and H LN N v=  ; (J3) can be rewritten as 

( )

( )

1 1
1

11

( 1)
(1 )

1 1

u v

uv u

χ
χ

χ
χχ
χχ

χ
+

+

++

+
+ >

+ + −

. Let ( ) ( )
1

1 11 1( ) (1 ) 1 1 ( 1)F v uv u u v
χχ χ

χ χχ χχ + ++ +
 

= + + + − − + 
  

. 

Taking the derivative of ( )F v  with respect to v  yields: 

( ) ( )
1 1 1

1 1 1(1 ) 1 ( 1)
1 1

F u uuv u v
v

χ χ χ
χ χχ
χ χ

− −+ + +
∂

= + + − +
∂ + +

.                          (J4) 

From ( )1 ( 1)
1
uv u v

χ
 +

< + + 
 , we can further obtain: ( )

1
11

1
1 ( 1)

1
uv u v

χ
χ

χ

−
+ −

+
 +

> + + 
 . Hence, 

( ) ( )
1 1 1

1 1 1(1 ) 1 ( 1)uv u vχ χ χχ − −+ + ++ + > +   holds, which means 0F v∂ ∂ >  . Considering 0v ≥   and 
1

1 1 1(0) (1 ) 0F u u
χ χ

χ χ χχ + + += + − >  , we thus show that ( ) 0F v >   always holds. Therefore, 

L Lp c> .□ 

 
Appendix K. Decomposition of the equilibrium travel price under ratio heterogeneity 

Fig. K1 presents a detailed decomposition of equilibrium travel price for different types of 

users, with varying degrees of ratio heterogeneity. It can be seen that increased ratio heterogeneity 

raises the travel price for H type users, as shown in Fig. K2(a) and Fig. K2(c), and lowers the 

travel price for L type users, as shown in Fig. K2(b) and Fig. K2(d). Overall, L type users are 

more impacted by tolling. 
 

    

(a) H type users (without tolling)        (b) L type users (without tolling) 
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(c) H type users (social optimum)         (d) L type users (social optimum) 
Fig. K1. Decomposition of the travel price under ratio heterogeneity. 
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