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The generalized version of Hamilton’s rule 

Abstract. The main ingredient of this paper is the derivation of the generalized version of 
Hamilton’s rule. This version is derived with the Generalized Price equation. The generalized 
version of Hamilton’s rule generalizes the original rule, in the sense that it produces a set of 
rules; one rule for every different model of how social interactions affect fitnesses. Every 
such Hamilton-like rule is generally valid; they all correctly determine when altruism, or 
costly cooperation, will be selected for, whatever model they are combined with. Every such 
rule, however, only has a meaningful interpretation in combination with the model it 
belongs to. The classic Hamilton’s rule is the generalized Hamilton’s rule that goes with the 
linear model. The insight that there are many Hamilton-like rules, all of which are generally 
valid, but none of which is generally meaningful, helps understand the controversy 
surrounding Hamilton’s rule, and provides a constructive way to always find a rule that both 
gets the direction of selection right, and has a meaningful interpretation.  

  
1. Introduction 

Hamilton’s rule is probably the most famous rule in evolutionary biology. The rule states that 
altruism will evolve if 𝑟𝑏	 > 	𝑐, where 𝑏 is the fitness benefit to the recipient, 𝑐 is the fitness 
cost to the donor, and 𝑟 is the genetic relatedness between them. The paper in which it was 
presented has about half as many citations as Darwin's “On the Origin of Species” [27] and 
the rule is one of the core ingredients of “The Selfish Gene” by Richard Dawkins [28], which is 
the most popular of all popular science books. The generality of Hamilton’s rule however has 
always been a topic of contention, and positions range all the way from “Hamilton's rule 
almost never holds” [29] to “Inclusive fitness is as general as the genetical theory of natural 
selection itself”[30]. This raises a range of questions. One of them, obviously, is how 
generally Hamilton’s rule applies. Other questions concern the debate itself and include 
what explains the lack of convergence.  

The crucial ingredient for answering all of these questions has to do with the Price equation. 
This equation was not used in the original derivation of Hamilton’s rule [31]. The 1964 paper 
contains a model, and the results in it follow from its assumptions (see also [32], for a 
missing step in the derivation, and [24], for the relation with other well-known results at the 
time). Later versions do use the Price equation. Hamilton himself started using it in [33] and 
[34], and also later in the literature, the Price equation approach (a.k.a. the regression 
method) has been used for deriving Hamilton’s rule. Examples include [7], [10-12], [15], [19], 
[20], [36]. Along with the Price equation came the claim of generality. 

In the twin TI discussion paper on the Generalized Price equation, I show that what is 
missing in [1] is a few lines of essential algebra. Without these, the Price equation loses the 
link to normal statistics and modeling. With them, the link is restored, and the Generalized 
Price Equation is derived. This produces a Price-like equation for every (statistical) model, as 
long as it includes a constant and a linear term. All of these equations are general, in the 
sense that they are identities, also for all models other than the ones that they belong to, or 
for datasets that give us no reason to think they are generated by the statistical model they 
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are formulated for. The terms in these Price equations however are only meaningful within 
the confines of their own model.  

Both the shortcomings of the original Price equation, and the ways to mend them by using 
the generalized version, are mirrored in the shortcomings of Hamilton’s rule as we know it, 
and ways to address those. Just like there is not just one Price equation, but a multitude of 
Price-like equations, there is not just one Hamilton’s rule, but a multitude of Hamilton-like 
rules. All of them are correct, and all of them are general, but none of them is generally 
meaningful; all of them only have meaning under the model they are associated with. 

In Section 2 we look at three models and three Hamilton-like rules. If the genetic setup is 
binary, in the sense that it features the presence or absence of a (possibly social) gene, then 
these three models exhaust all possibilities. The Hamilton-like rules for all three are derived 
using the Generalized Price equation. This follows Section 5 of the twin TI discussion paper, 
but with a social interpretation of the p-scores and the q-scores featuring there. (The 
notation here will also deviate a bit for clarity of exposition; instead of using 𝛽’s for all 
coefficient in all models, we will use one Greek letter, with subscripts, per model). This 
illustrates the possibility that there can be multiple rules, all of which are general, in the 
sense that they all get the direction of selection right for all models, while the terms in them 
only have a meaningful interpretation in a restricted set of models. In other words, this 
illustrates that rules, like models, can be over- or underspecified.  

In Section 3 I derive the Generalized Hamilton’s rule, allowing for a richer genetic setup, 
where p-scores and q-scores are not restricted to be binary. This comes with a richer set of 
Hamilton-like rules implied by the Generalized Price equation.  

 
2. Three models, three Price-like equations, three Hamilton-like rules 

There are a few things that we keep simple. Reproduction is asexual. That means that we 
cannot think of pairs of interacting individuals as siblings or cousins, because that would 
require sexual reproduction. Hamilton’s rule however is not confined by what causes 
relatedness between interacting individuals. The literature abounds with models with 
asexual selection and, for instance, local interaction structures, which induce relatedness 
(see for instance the overview by [36]). Asexual reproduction is easier to model, and what 
we find will carry over to models with sexual reproduction and kin recognition.   

The classical setup with the Price equation assumes a parent population consisting of 𝑛 
individuals. Individual 𝑖 is characterized by a p-score 𝑝!  and a q-score 𝑞!. Something else that 
we keep simple, is that in this section, we assume that 𝑝!  is binary; it is 1 if a certain gene is 
present, and 0 otherwise. In Section 4 of the twin TI discussion paper on the Generalized 
Price equation, we have assumed that q-scores represent the presence or absence of a gene 
or a set of genes other than those represented by the p-score in person 𝑖 herself. Here we 
switch to q-scores representing the presence or absence of the same gene that is 
represented by the p-score, but in the individual that individual 𝑖 is interacting with. With 
sexual reproduction, we could think of this as a sibling or a cousin. With asexual 
reproduction this could for instance be an individual linked to individual 𝑖 in homogeneous 
graph [37], or an individual within the same group [38]. The derivation of the Generalized 
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Price equation is not affected by the interpretation or the mode of reproduction (see the 
twin TI discussion paper on the Generalized Price equation).  

The different models below represent different ways in which an individual’s fitness can 
depend on its p-score and on its q-score (which is the p-score of its relative). In Model 1, the 
q-score does not affect individual 𝑖’s fitness. In Models 2 and 3 it does, and there, the p-
score of individual 𝑖 will represent 𝑖’s level of cooperation. In evolutionary game theory 
terms, 𝑝! = 0 implies that individual 𝑖 plays 𝐷, and 𝑝! = 1 implies that individual 𝑖 plays 𝐶.  

The number of offspring that any individual can have must be an integer. A model would 
specify or imply a random variable over these integers, and the fitness of an individual is the 
expected value of this random variable. The models below will therefore include an error 
term to reflect the randomness. We will however assume that the population is sufficiently 
large for us to approximate it with an infinitely large population. In this infinite population, 
the number of offspring of any individual with a certain p-score and a certain q-score is still a 
random variable, but the average of all individuals with the same combination of p-score and 
q-score coincides with the expected value that the model specifies. Assuming an infinite 
population therefore allows us to apply the Generalized Price equation to the model, which, 
at the population level, has become deterministic. Not all papers in the literature are explicit 
or precise about this, but here we would like to not skip over this; see also Section 5 in the 
twin TI discussion paper on the Generalized Price equation. 

The simple setup, with asexual reproduction, and binary p-scores and q-scores, limits the 
scope of possibilities to three models. This is however enough to illustrate that there can be 
different rules, all of which are equally valid, and equally general, while none of these rules, 
at the same time, is generally meaningful. They are meaningful for their own model but are 
over- or underspecified when applied to other models.     

Model 1, Price equation 1, rule 1. The first is the linear model, in which the p-score of the 
individual only affects her own fitness, and nobody else’s. Consequently, the q-score, or the 
p-score of the individual it interacts with, has no effect on her fitness:  

𝑤! = 𝛽" + 𝛽#𝑝! + 𝜀!  

In an infinite population, the Generalized Price equation for the first model is 

𝑤3Δ�̅� = 𝛽6#Var(𝑝) 

where 𝛽6# is independent of the composition of the parent population, and equal to 𝛽#. This 
is straightforward, but just to be sure, we do this step-by-step in Appendix A.1, also to stress 
the role of the assumption of large populations.  

From this, we can see that Δ�̅� > 0 if and only if 𝛽6# > 0. This is clearly a rule, and it is so 
straightforward that everyone in evolutionary biology uses it for non-social traits with linear 
fitness effects, often without even referring to it as a rule. The coefficient 𝛽6# has a 
meaningful interpretation; it is the effect of the gene on its carrier, and absent any effect on 
or from interaction partners, this is all that matters for whether this gene will be selected.  
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Later, when we compare the different models and the different rules, it may help to define 
𝑐 = −𝛽6# . One could write a payoff matrix for this model as follows: 

=−𝑐 −𝑐
0 0 > 

The payoff to an individual is 𝛽# = −𝑐 with a p-score of 1, and 0 with a p-score of 0, and the 
fitness would then be the baseline fitness 𝛽" plus the payoff. 

Model 2, Price equation 2, rule 2. The second is also a linear model, but one in which the 
cooperation level of the individual itself not only has an effect on her own fitness (typically 
thought of as negative), but also on the fitness of the relative (typically thought of as 
positive):  

𝑤! = 𝛾"," + 𝛾#,"𝑝! + 𝛾",#𝑞! + 𝜀!  

In an infinite population, the Generalized Price equation for the second model is 

𝑤3Δ�̅� = 𝛾@#,"Var(𝑝) + 𝛾@",#Cov(𝑝, 𝑞) 

where 𝛾@#," and 𝛾@",# are independent of the composition of the parent population 
(represented by 𝑝 and 𝑞), and are equal to 𝛾#," and 𝛾",#, respectively. This can also be 
rewritten as  

𝑤3Δ�̅� = E𝛾@#," +
Cov(𝑝, 𝑞)
Var(𝑝) 𝛾@",#FVar(𝑝) 

From this, we can see that Δ�̅� > 0 if and only if 𝛾@#," +
%&'(),*)
,-.())

𝛾@",# > 0. In infinite population 

models, %&'(),*)
,-.())

 will coincide with relatedness 𝑟 between the individuals that interact, and if 

we then define 𝑐 = −𝛾#," and 𝑏 = 𝛾",#, we can rewrite this as 

𝑤3Δ�̅� = (−𝑐 + 𝑟𝑏)Var(𝑝) 

Here we naturally recognize Hamilton’s rule. The payoff matrix for model 2 moreover makes 
this a prisoner’s dilemma with equal gains from switching: 

=𝑏 − 𝑐 −𝑐
𝑏 0 > 

Model 2, Price equation 1. It is worth noticing that we can also apply the first Price-like 
equation to the second model. If we do, we get  

𝑤3Δ�̅� = 𝛽6#Var(𝑝) 

Calculations in Appendix A.2 show that 𝛽6" = 𝛾"," + G1 −
%&'(),*)
,-.())

H �̅�𝛾",# and 𝛽6# = 𝛾#," +
%&'(),*)
,-.())

𝛾",# minimize the sum of squared errors for Price-like equation 1 in combination with 
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Model 2.1 The first, 𝛽6", does not feature in the Price equation, but 𝛽6# does. Here, I write 𝛽6#, 
because it minimizes the least squares of the errors relative to Model 1. That means it would 
be equal to 𝛽#, when applied to Model 1, but now that it is applied to Model 2, it does not 
coincide with any parameter. This Price-like equation is however still an identity, also when 
applied to the second model, and it still gets the direction of selection right; Δ�̅� > 0 if and 
only if 𝛽6# > 0 (in fact, it would get the direction of selection right for any model that has a 
constant and a linear term).  

The natural interpretation of this rule would be that the effect of having the gene on the 
individual herself is 𝛽6#, which is equal to 𝛾#," + 𝑟𝛾",#. This is clearly not the case, unless 
𝛾",# = 0, in which case we are back in the situation of Model 1. It is however important to 
note that we now have two rules, both of which we applied to Model 2, and both of which 
get the direction of selection right. There is a silly one, in which we would choose 𝑐 =
−I𝛾#," + 𝑟𝛾",#J, and, if one would insist on making it look similar to Hamilton’s rule, 𝑏 = 0; 
and a more sensible one, with 𝑐 = −𝛾#," and 𝑏 = 𝛾",#, that everyone would agree is the right 
one for this model. We will get back to the reasons why we choose Price-like equation 2 
here, and not Price-like equation 1, when we compare Models 2 and 3.  

Symptoms of underspecification  

If we combine the Generalized Price equation for Model 1 with Model 1, in an infinite 
population, then the sum of squared errors is equal to the variance of the noise term 
𝑉𝑎𝑟(𝜀). If we combine the Generalized Price equation for Model 1 with Model 2, in an 
infinite population, then the sum of squared errors becomes larger than the variance of the 
noise term 𝑉𝑎𝑟(𝜀). This is the result of under-specification.  

In Fig. 4, we see a very simple example of how underspecification can increase the sum of 
squared errors over the unavoidable level induced by the noise. The example does not 
illustrate the specific form of underspecification that we get if we leave out the q-score as an 
explanatory variable. Instead, it illustrates the principle by considering an even simpler form 
of underspecification, in which the p-score is left out as an explanatory variable. Both 
symptoms of underspecification show up here; the sum of squared errors is higher than is 
justified by the error term of the true model; and the estimator of the coefficient depends 
on the composition of the parent population. Both of these disappear when we use the 
correctly specified model instead. 

 
1 One can also derive 𝛽"! in a more direct way than is done in Appendix A.2. Given that both Price-like equation 
1 and Price-like equation 2 are identities, and both have 𝑤$Δ�̅� on the left-hand side, it must be that their right-
hand sides are also equal. This implies that 𝛽"!Var(𝑝) = .𝛾!,# +

$%&((,))
+,-(()

𝛾#,!1Var(𝑝), and therefore that 𝛽"! =

.𝛾!,# +
$%&((,))
+,-(()

𝛾#,!1. This direct way is possible here because there is only one variable, 𝛽"!, and one equation. 
For some later combinations of models and Price-like equations, there is still one equation, but more degrees 
of freedom. 
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Fig. 4|Symptoms of underspecification. The red bars indicate frequencies of parents with a p-score of 0, and 
with 0, 1, …, 10 offspring for the example described in the text. The blue bars indicate frequencies of parents 
with a p-score of 1, and with 0, 1, …, 10 offspring. The composition of the parent population differs between 
the panels; in the top panel, 1 out of 4 parents has a p-score of 1; in the middle panel, this is 2 out of 4 parents; 
and in the bottom panel, it is 3 out of 4 parents. For the correctly specified model 𝑤. = 𝛼 + 𝛽𝑝. + 𝜀., the red 
and the blue dotted lines indicate the values for 𝛼 and for 𝛼 + 𝛽, if those are chosen so as to minimize the sum 
of squared errors relative to the correct model. The 𝛼 is the expected value of the number of offspring for 
parents with a p-score of 0, while 𝛼 + 𝛽 is the expected value of the number of offspring for parents with a p-
score of and 1. The 𝛼 and 𝛽 that minimize the sum of squared errors do not depend on the composition of the 
population. For the mis-specified model 𝑤. = 𝛼 + 𝜀., the black dotted lines indicate the 𝛼’s for which the sum 
of squared errors is minimized. These do move around. The sum of squared errors when using the mis-
specified model is also much larger at the minimum.  
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In the example, parents with a p-score of 0 draw their offspring from a binomial distribution 
with 10 trials and a success probability of #

/
, while parents with a p-score of 1 draw their 

offspring from a binomial distribution, also with 10 trials, but with a success probability of 0
/
. 

Their p-score therefore determines the expected value of their number of offspring; the 
expected number of offspring is 10 ∙ #

/
= 2 for parents with a p-score of 0, and 10 ∙ 0

/
= 4 for 

parents with a p-score of 1. If we ignore this, and mis-specify the model by leaving out the p-
score as an explanatory variable, then the model becomes 𝑤! = 𝛼 + 𝜀!. Which value of the 𝛼 
minimizes the sum of squared errors will now depend on the composition of the population.  
In the first panel, 1 out of 4 parents has a p-score of 1, and the sum of squared errors is 
minimized at 𝛼 = 2 #

0
; in the second panel, 1 out of 2 parents has a p-score of 1, and the sum 

of squared errors is minimized at 𝛼 = 3; and in the third panel, 3 out of 4 parents has a p-
score of 1, and the sum of squared errors is minimized at 𝛼 = 3 #

0
. These are the black dotted 

lines.  

The sum of squared errors is significantly reduced if we do include the p-score as an 
explanatory variable, so the model becomes 𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!. In that case the expected 
number of offspring of parents with a p-score of 0 is 2, and the expected number of offspring 
of parents with a p-score of 1 is 4, both regardless of the composition of the parent 
population.  

 

Model 3, Price equation 3, rule 3. The third model allows for an interaction effect between 
the p-score and the q-score. This could for instance reflect an efficiency gain from joint 
cooperation, if positive:  

𝑤! = 𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀!  

In an infinite population, the Generalized Price equation for the third model is 

𝑤3Δ�̅� = 𝛿6#,"Var(𝑝) + 𝛿6",#Cov(𝑝, 𝑞) + 𝛿6#,#Cov(𝑝, 𝑝𝑞) 

where 𝛿6#,", 𝛿6",#, and 𝛿6#,# are independent of the composition of the parent population, 
represented by 𝑝 and 𝑞, and they are equal to 𝛿#,", 𝛿",#, and 𝛿#,#, respectively. This can be 
rewritten as  

𝑤3Δ�̅� = E𝛿6#," +
Cov(𝑝, 𝑞)
Var(𝑝) 𝛿6",# +

Cov(𝑝, 𝑝𝑞)
Var(𝑝) 𝛿6#,#FVar(𝑝) 

From this, we can see that Δ�̅� > 0 if and only if 𝛿6#," +
%&'(),*)
,-.())

𝛿6",# +
%&'(),)*)
,-.())

𝛿6#,# > 0. If we 

then define 𝑐 = −𝛿#,", 𝑟",# =
%&'(),*)
,-.())

, 𝑏",# = 𝛿",#, 𝑟#,# =
%&'(),)*)
,-.())

, and 𝑏#,# = 𝛿#,#, then we 

can rewrite this as 

𝑤3Δ�̅� = I−𝑐 + 𝑟",#𝑏",# + 𝑟#,#𝑏#,#JVar(𝑝) 
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This does not give us the Hamilton’s rule we are familiar with, but it does give us a correct 
criterion for when higher p-scores are selected for, in the same way that the derivation of 
the familiar Hamilton’s rule did for Model 2, and the derivation of the first rule did for Model 
1;  Δ�̅� > 0 if and only if 𝑟",#𝑏",# + 𝑟#,#𝑏#,# > 𝑐. This is the rule suggested by Queller [39], if 
we assume that genotype and phenotype correlate perfectly. 
 
The payoff matrix for this model is a prisoner’s dilemma without equal from switching: 

S
𝑏",# + 𝑏#,# − 𝑐 −𝑐

𝑏",# 0 T 

As before, it is worth noticing that we can apply the earlier Price-like equations to the third 
model too.  
 
Model 3, Price equation 1. If we apply the Price-like equation that goes with the first model 
to the third model, we get  

𝑤3Δ�̅� = 𝛽6#Var(𝑝) 

with 𝛽6# = 𝛿#," +
%&'(),*)
,-.())

𝛿",# +
%&'(),)*)
,-.())

𝛿#,#. Here we use the more direct calculation, 

suggested in footnote 8 for Price equation 1 applied to Model 2. This Price-like equation is 
still an identity, also when applied to the third model, and it still gets the direction of 
selection right; Δ�̅� > 0 if and only if 𝛽6# > 0.  
 
The natural interpretation of this rule would be that the effect of having the gene on the 
individual herself is 𝛽6#, which is equal to 𝛿#," +

%&'(),*)
,-.())

𝛿",# +
%&'(),)*)
,-.())

𝛿#,# here. This is 
clearly not the case, unless 𝛿",# = 𝛿#,# = 0, in which case we are back in Model 1.  
 
Model 3 with Price equation 2. If we use the Price-like equation that goes with the second 
model, and apply it to the third model, we get  

𝑤3Δ�̅� = E𝛾@#," +
Cov(𝑝, 𝑞)
Var(𝑝) 𝛾@",#FVar(𝑝) 

with 	

𝛾@#," = 𝛿#," − 𝛿#,# U
Cov(𝑝, 𝑝𝑞)Var(𝑞) − Cov(𝑝, 𝑞)Cov(𝑞, 𝑝𝑞)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V	

𝛾@",# = 𝛿",# + 𝛿#,# U
Cov(𝑝, 𝑞)Cov(𝑝, 𝑝𝑞) − Cov(𝑞, 𝑝𝑞)Var(𝑝)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V 

 
The derivation is a bit long and boring and can be found in Appendix A.3. This Price-like 
equation is still an identity, also when applied to the third model, and it still gets the 
direction of selection right; Δ�̅� > 0 if and only if 𝛾@#," +

%&'(),*)
,-.())

𝛾@",# > 0.  
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The natural interpretation of this rule would be that the effect of having the gene on the 
individual herself is 𝛾@#,", of which the first formula above describes how it depends on 𝛿",# 
and 𝛿#,#, while the effect of the q-score is 𝛾@",#, of which the first formula above describes 
how it depends on 𝛿",# and 𝛿#,#. This is clearly not the case, unless 𝛿#,# = 0, in which case we 
are back in the situation of Model 2.  
 
The last expression looks like the traditional Hamilton’s rule, with 𝑐 = −𝛾@#," and 𝑏 = 𝛾@",#. It 
should be noted, though, that the expressions for the 𝑏 and the 𝑐 are not constants, and 
while they depend on both model parameters, which could in principle be fine, they also 
depend on population state properties, which is not.  
 
For model 2, we chose rule 2 (the traditional Hamilton’s rule), and not rule 1 (the standard 
rule for non-social traits). The reason to do this, is not that rule 1 gets the direction of 
selection wrong; it does not. The reason is that the latter mistakenly suggests that having the 
trait comes with a fitness benefit to oneself, which is not true; it comes with a cost to 
oneself, and a benefit to the other. The reason it can nonetheless go up in frequency, is that 
because of relatedness, those that bear the costs are also disproportionately often on the 
receiving end. Rule 2 does, and rule 1 does not, reflect that. A symptom of the 
misspecification, if we nonetheless use rule 1, is that 𝛽6# (the estimator of the effect on 
oneself) depends on the composition of the population. 
 
If we follow the same logic regarding choosing rules for model 3, then we should go with rule 
3, that is, 𝑟",#𝑏",# + 𝑟#,#𝑏#,# > 𝑐, or Queller’s rule, and not rule 2, which is the traditional 
Hamilton’s rule. The latter would still get the direction of selection right, but it would 
mistakenly suggest that the effect of having the trait on the other is independent of whether 
or not the other has it too (or in other words: it would be blind to the fact that there is an 
interaction term). A symptom of this misspecification is that 𝛾@#," and 𝛾@",# (the estimator of 
the effect on oneself and the other, respectively) both depend on the composition of the 
population.   
 
The relation between these examples can be summarized in a table that, for three models 
and three rules, represents all nine combinations of them.  
 
For the combinations in yellow, the rules are more general than the models need them to 
be. We did not discuss those combinations above, but they are relatively easy to check. Since 
the rules are nested, in the sense that rule 1 is a special case of rule 2, and rule 2 is a special 
case of rule 3, all we need to do is choose zeros for the unused variables. In that sense these 
combinations do not really produce rules that are different, or invite different 
interpretations; they are only written a bit more inefficiently, by adding terms that end up 
being 0. All of these are stable across population states. 
 
That is not true for the combinations in red. There the 𝑐 and the 𝑏’s vary with the population 
state, and the rules are not general enough for their model.  For the combinations in green, 
none of the 𝑏’s and 𝑐’s in the rule is 0 (which implies that the rule is not overspecified for the 
model) and none of them depend on population properties (which implies that they are also 
not underspecified).     
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  Model 1: Model 2: Model 3: 

  𝛼 + 𝛽𝑝!  𝛼 + 𝛾",$𝑝! + 𝛾$,"𝑞!  𝛼 + 𝛿",$𝑝! + 𝛿$,"𝑞! + 𝛿","𝑝!𝑞!  
Rule 1:     

0 > 𝑐 𝑐 = −𝛽 −-𝛾",$ + 𝑟$,"𝛾$,"/ −-𝛿",$ + 𝑟$,"𝛿$," + 𝑟","𝛿","/ 
Rule 2:     

𝑟𝑏 > 𝑐 𝑐 = −𝛽 −𝛾",$			 −𝛿",$ + 𝑠%𝛿","				 
 𝑏 = 0 𝛾$," 𝛿$," + 𝑠&𝛿"," 

Rule 3:     
𝑟$,"𝑏$," + 𝑟","𝑏"," > 𝑐 𝑐 = −𝛽 −𝛾",$			 −𝛿",$			 

 𝑏$," = 0 𝛾$," 𝛿$," 

 𝑏"," = 0 0 𝛿"," 
 
Fig. 5|Three rules and three models. All combinations of the three rules and the three models. All rules indicate the direction of 
selection correctly for all models. Yellow indicates a combination of a rule and a model, where the rule is more general than is 
needed for the model. This leads to one or more 𝑏’s being 0. Red indicates a combination of a rule and a model, where the rule is 
not general enough for the model. This leads to one or more 𝑏’s and 𝑐’s that depend on the population state. Terms that depend 
on the population state are abbreviated as follows: 𝑟 = 𝑟#,! =

$%&((,))
+,-(()

, 𝑟!,! =
$%&((,())
+,-(()

, 𝑠/ =
$%&((,))$%&((,())0$%&(),())+,-(()

1$%&((,))2
!
0+,-(()+,-())

, and 

𝑠3 =
$%&((,())+,-())0$%&((,))$%&(),())

1$%&((,))2
!
0+,-(()+,-())

. Rule 1 is the standard rule for non-social traits. Rule 2 is the classical Hamilton’s rule. Rule 3 

is a rule that allows for an interaction effect. An appropriate name for this rule would be Queller’s rule [39]. This rule can in turn 
be nested in a sequence of ever more general rules if we allow for p- and q-scores that are not restricted to be binary. 
 

This matrix of combinations of models and rules also helps understand what causes the 
contentiousness of the debate on the generality of Hamilton’s rule, and why there are no 
signs of convergence. Rule 2, which is the rule that we get from applying the standard Price 
equation (also known as using the regression method), is a completely general rule, in the 
sense that whatever the true model is, it always gets the direction of selection right. This is 
true, but that fact is not a good argument for singling this rule out as more helpful, 
meaningful, or insightful than other rules. In the example above, we have seen that if we 
apply the Generalized Price equation (which is also using the regression method, but now 
with a richer menu of alternative underlying statistical models), then this can also give us 
Rule 1 or Rule 3, depending on the statistical model we use. These rules are equally correct, 
in the sense that they also always get the direction of selection right, and they are also 
equally general, in the sense that they get it right for every possible model. Being a general 
rule, that always gets the direction of selection right, therefore, cannot be a criterion for 
elevating Rule 2 (which is the classical Hamilton’s rule), above the other ones, because Rules 
1 and 3 are also general rules, that always get the direction of selection right.  
 
Since being completely general and always getting the direction of selection right does not 
single out any of the possible rules, we need additional criteria. A natural criterion would be 
that besides being correct, the terms in the rule would have to be meaningful. More 
precisely, we think the rule should do what Rule 1 does for Model 1, and what Rule 2 does 
for Model 2, and that is to separate model parameters from properties of the population 
state. As described above, we do not apply Rule 1 – the rule for non-social traits – to a social 
trait with fitnesses effects described by Model 2, and the reason why we do not do this is not 
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that it does not get the prediction right. It does. The reason why we do not apply Rule 1 to 
Model 2 is that Rule 1 is mis-specified for Model 2, as it does not reflect the fact that Model 
2 allows for a trait with a fitness cost to the individual itself, that is nonetheless selected, 
because of the positive fitness effects between related individuals that outweigh the 
negative fitness effect on oneself. In other words, it would be wrong to interpret a negative 
𝑐 in Rule 1, applied to Model 2, as the fitness effect on oneself.  
 
The exact same reason would suggest not to apply Rule 2, which is the traditional Hamilton’s 
rule, to models of social interactions that do not fit Model 2, such as for instance Model 3. 
The argument against interpreting the 𝑐 in Rule 1, applied to Model 2, as the fitness effect 
on oneself carries over to this combination of rule and model, as it implies that we can also 
not interpret the 𝑐 and 𝑏 in Rule 2, when applied to Model 3, as the costs and benefits of the 
social behaviour.  
 
One of the reasons why the debate in the literature on the generality of Hamilton’s rule is so 
long-lasting, is that it focuses on whether or not rules are correct, and not on whether they 
are (also) meaningful. One side of the debate has always returned to the argument that Rule 
2 is general and correct – whatever the model or the data (see for instance [16], [18], [19], 
[30], [40]). This is true, but it is not an argument for elevating Rule 2 above other rules. The 
other side of the debate keeps bringing up models that do not fit Model 2 (see for instance 
[39], [41], [42]). Sometimes arguments on this side take a completely different approach, 
and rather than describing selection with the Price equation, and then worry about whether 
or not one can interpret regression coefficients in it as benefits and costs, they start with 
models with a priori interpretable definitions for 𝑏 and 𝑐, for instance by using what is called 
the counterfactual approach, rather than the regression approach, to define costs and 
benefits ([22], [24]). Starting at the opposite end, this can then result in rules that end up 
getting the direction of selection wrong.   

When Queller’s rule [39] was published, this opened the door to the idea that Hamilton’s 
rule was nested in a more general rule, or a more general set of rules. A News and Views 
responding to it [40] however immediately closed that door again, by claiming that “the 
third, synergistic, term in Queller's form can be made to disappear by agreeing to define 
benefit and cost as the average effects on individual’s fitnesses, rather than as arbitrary 
terms in a model of fitness. So in Queller's simple model, Hamilton’s rule, with costs and 
benefits correctly understood, is perfectly adequate for deciding the direction of change in 
gene frequency.”  

This is first of all a representative example where Hamilton’s rule getting the direction of 
selection right is treated as a decisive argument in its favour, and as an argument against a 
different rule, even though this other rule also gets the direction of selection right. 
Regarding the interpretation, Appendix B4.4 moreover shows that this claim is simply 
incorrect; the benefits and costs that make Hamilton’s rule work are the ones that we get by 
applying the Generalized Price equation for Model 2 to Model 3, and these are not the 
average effects on the individual’s fitnesses. Also, there is nothing about the terms in 
Queller’s rule [39] that makes them conceptually any different from the terms in Hamilton’s 
rule. Suggesting that Queller’s rule [39] includes terms that are arbitrary in ways that terms 



 12 

in Hamilton’s rule are not, therefore, is also incorrect. The literature has nonetheless 
effectively abandoned this path forward immediately after Queller [39] pointed to it.  

3. The general version of Hamilton’s rule. 

If p- and q-scores can only be 0 or 1, there are only four possibilities combinations of a p- 
and a q-score that one can have. If we denote the expected number of offspring of an 
individual with a p-score of 𝑝 and a q-score of 𝑞 as 𝐸(𝑤),*), then there are also only four of 
those. In Model 3 above, fitness depends on p- and a q-scores as follows: 

	
𝑤! = 𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀!  

That implies that 𝐸(𝑤",") = 𝛿",", 𝐸(𝑤#,") = 𝛿"," + 𝛿#,", 𝐸(𝑤",#) = 𝛿"," + 𝛿",#, and 
𝐸(𝑤#,#) = 𝛿"," + 𝛿#," + 𝛿",# + 𝛿#,#. With only four values for 𝐸(𝑤),*) and four 𝛿’s, there is 
no scope for introducing more coefficients in the model. 

If we also allow for p- and q-scores other than 0 and 1, fitnesses may depend on those in 
richer ways than the three models above allow for. Below, we will consider a general set of 
models, which are described by the coefficients that are included. The set of (non-zero) 
coefficients is denoted by 𝐸, and if (𝑟, 𝑠) ∈ 𝐸, then the model includes the term 𝛽1,2𝑝!1𝑞! 2. 
Given a set of coefficients 𝐸, the model would be 

𝑤! = Z 𝛽3,4𝑝!3𝑞!4
(3,4)	∈	7

+ 𝜀!  

where 𝜀!  is a noise term with expected value 0. Whether including a term in the model 
would be of added value in describing actual fitness effects in a real-life example is of course 
a matter of statistics. For every behaviour, there is a point where additional coefficients are 
not going to be statistically significant, even with a lot of data. Depending on the behaviour 
that the model aims to describe, it is an empirical question for what set 𝐸 – or, for what 
model – that happens. For non-social behaviours, Model 1 above could be enough, which 
would imply that only the coefficients for 𝑝!"𝑞!" = 1 and 𝑝!#𝑞!" = 𝑝!  are needed. 
Alternatively, it could be that the behaviour is non-social, but the fitness is not linear in the 
p-score. This does of course require non-binary p-scores, and if we allow for those, then 
higher order terms could be included. Those would be terms 𝑝!!𝑞!" = 𝑝!!. If the q-score 
represents the p-score of the interaction partner, and the behaviour is non-social, then the 
q-score does not affect fitness, and hence only coefficients where the exponent of 𝑞!  is 0 are 
included.  

For social behaviours, Model 2 could describe the fitness accurately, and for those the set of 
nonzero coefficients would be 𝐸 = {(0,0), (1,0), (0,1)}. Model 3 is also an option, and this 
would amount to choosing 𝐸 = {(0,0), (1,0), (0,1), (1,1)}. This setup however also allows 
for larger sets 𝐸 that include coefficients that are not included in Model 3. 

The Generalized Price equation in regression form can now be stated for any statistical 
model, specified by the set of coefficients 𝐸 we include. If we choose a set 𝐸, and we choose 
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the coefficients 𝛽61,2 so as to minimize the sum of squared errors relative to the model given 
by 𝑤! = ∑ 𝛽3,4𝑝!3𝑞!4(3,4)	∈	7 + 𝜀!, then the Generalized Price equation for this choice of 𝐸 
reads 

𝑤3Δ�̅� = U Z 𝛽63,4
(3,4)∈7

Cov(𝑝, 𝑝3𝑞4)
Var(𝑝) VVar(𝑝) + 𝐸(𝑤∆𝑝) 

Here it is worth emphasizing that this produces a Price-like equation for every choice of the 
set of coefficients 𝐸. That implies that one can make any combination of a set of coefficients 
𝐸 that is used for writing a Price-like equation, and a set of coefficients 𝐸′ for the model that 
one would want to consider. Even if these sets differ, the Price-like equation for 𝐸, applied 
to a model specified by 𝐸′, remains an identity. If 𝐸 is a subset of 𝐸′, then the Price-like 
equation is underspecified. If 𝐸′ is a subset of 𝐸, then the Price-like equation is 
overspecified, and the coefficients that are in 𝐸, but not in 𝐸′, will be 0. It is also possible 
that 𝐸 is not a subset of 𝐸′, and 𝐸′ is also not a subset of 𝐸. For such a combination, one 
could say that the Price-like equation based on the set of coefficients 𝐸, and applied to a 
model specified by 𝐸′, is both over- and underspecified. If 𝐸 and 𝐸′ coincide – that is, if the 
model used as a basis for the Price-like equation and the model we are studying are the 
same – then 𝛽63,4 = 𝛽3,4  for all coefficients, or, in other words, the coefficients in the Price-
like equation coincide with the coefficients of the model we are considering. This generalizes 
the point made earlier, which is that all of these Price-like equations are identities, but the 
regression coefficients 𝛽63,4  in it only have a meaningful interpretation if the model is 
correctly specified.  

If we define 𝑟3,4 =
%&'(),)4*5)
,-.())

, then the Generalized Hamilton’s rule is that Δ�̅� > 0 if 

 

Z 𝑟3,4𝑏3,4
(3,4)∈7

> 0 

 

where 𝑏3,4 = 𝛽3,4, and 𝑟3,4 =
%&'8),)6*79
,-.())

, both for all (𝑘, 𝑙) ∈ 𝐸′.  

Because 𝑟"," =
%&'8),)8*89

,-.())
= %&'(),#)

,-.())
= 0, it does not matter if we leave the coefficient for 

(0,0) in or take it out. We can moreover write 𝑐 for −𝑏#," = −𝛽6#,", and put it on the right-
hand side of this inequality.  

The rule for selection of non-social traits with linear effects is a special case, if we choose the 

model that only contains 𝛽#,". Because 𝑟#," =
%&'8),)9*89

,-.())
= ,-.())

,-.())
= 1, this produces the rule 

that a trait is selected if it increases an individual’s fitness, or, in other words, if 𝛽6#," > 0. 
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This still requires that the model is correctly specified, because only then do we have 𝛽6#," =
𝛽#,". 

For non-social traits with (also) quadratic fitness effects, we would have to allow 𝛽#," and 

𝛽0," to be non-zero. The rule then is 𝑏#," + 𝑏0,"
%&'8),):9
,-.())

> 0. If we additionally assume 

random mating, then this simplifies to 𝑏#," + 𝑏0," G
#
0
+ 𝑝H, as we have seen in Section 5 of 

the twin TI discussion paper on the Generalized Price equation. 

The original Hamilton’s rule is also a special case, if we choose the model that contains only 

𝛽#," and 𝛽",#. Because 𝑟",# =
%&'8),)8*99

,-.())
= %&'(),*)

,-.())
, the rule then becomes that Δ�̅� > 0 if 

𝑟#,"𝑏#," + 𝑟",#𝑏",# > 0, and with 𝑟#," = 1, 𝑐 = −𝛽6#,", 𝑟 = 𝑟",#, and 𝑏 = 𝛽6",#, this gives us the 
Hamilton’s rule we are familiar with. This also still requires that the model is correctly 
specified, because only then do we have 𝛽6#," = 𝛽#," and 𝛽6",# = 𝛽",#. 

The message from the Generalized Price equation now carries over to the Generalized 
Hamilton’s rule. There is in fact a Hamilton-like rule for every choice of 𝐸, and they all get 
the direction of selection right, but only if the set of coefficients matches the set of 
coefficients of the model we are considering, do they have a meaningful interpretation. 

4. Relatedness 

There are two final remarks to be made regarding relatedness.  

The first is that in models, both the classic relatedness 𝑟 from Hamilton’s original rule, and 
the general relatednesses 𝑟3,4 =

%&'(),)4*5)
,-.())

, of which the classical relatedness is a special 

case (𝑟 = 𝑟",#), are properties of the population structure. That means that in models where 
we assume infinitely large populations, the law of large numbers guarantees that the 
randomness disappears, and probabilities and frequencies coincide. For instance, if we 
consider full siblings, and assume random mating, then that implies that the probability that 
one sibling has a gene if the other has it, is (1 − 𝑟)�̅� + 𝑟 = #

0
�̅� + #

0
, where �̅� is the share of 

the population that has it (see Appendix B4). The model assumptions, including the 
assumption of an infinitely large population, then imply that the share of individuals whose 
sibling has the gene, out of those that have it themselves, is in fact #

0
�̅� + #

0
.  

With data, on the other hand, the %&'(),)
4*5)

,-.())
 term is an estimator of a property of the true, 

underlying population structure. With few observations, this estimator will be off, on 
average, more than with many observations. In the twin Tinbergen discussion paper on the 
Generalized Price equation, we stressed that this is true for the coefficients in it (the 𝛽’s, 𝛾’s, 
and 𝛿’s), when considering data, but it is worth stressing that this is also true for the terms 
%&'(),)4*5)
,-.())

, when these relate to properties of the population structure. 

The second remark is that relatedness 𝑟 = 𝑟",# from the classical Hamilton’s rule is 
frequency-independent in infinite population models. This is not true for other properties of 
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the population structure, which do determine relevant properties of population states at 
different frequencies. In Appendix B4.1 we for instance calculate that  
	

𝑟#,# = (1 − 𝑟)�̅� + 𝑟 

which changes with �̅�. That implies that, while the rule for selection of non-social traits and 
the classical Hamilton’s rule either predict one of the other to go to fixation, richer models 
allow for richer equilibrium properties, such as coexistence or bistability. For coefficients 
that are actual constants, that requires the relatedness coefficients to vary with �̅�, which is 
not the case for 𝑟",#, but it is for the others.   
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Appendix 
A.1 Price-like equation 1, applied to Model 1 

As a finger exercise, we first apply Price-like equation 1 to Model 1. That helps make a few 
observations that are relevant, when we minimize squared errors, not in a statistical setting, 
but in a setting with a model.  

We get Price-like equation 1 from minimizing the sum of squared errors, relative to Model 1. 
The true parameters are indicated by 𝛽" and 𝛽#, their estimates by 𝛽6" and 𝛽6#. The actual 
errors are indicated by 𝜀!, and the errors, the squared sum of which we minimize, are 
indicated by 𝜀!̂.  

The sum of squared errors is 

Z𝜀!̂
0

:

!;#

=ZG𝑤! − I𝛽6" + 𝛽6#𝑝!JH
0

:

!;#

=ZG𝛽" + 𝛽#𝑝! + 𝜀! − I𝛽6" + 𝛽6#𝑝!JH
0

:

!;#

 

If we minimize this, we begin with setting the derivative to 𝛽6" to 0.  

−2ZG𝛽" + 𝛽#𝑝! + 𝜀! − I𝛽6" + 𝛽6#𝑝!JH
:

!;#

= 0 

ZI𝛽" − 𝛽6"J
:

!;#

+ZI𝛽# − 𝛽6#J𝑝!

:

!;#

+Z𝜀!

:

!;#

= 0 

𝛽" − 𝛽6" + I𝛽# − 𝛽6#J�̅� +
1
𝑛Z𝜀!

:

!;#

= 0 

Then we set the derivative to 𝛽6# to 0 

−2Z𝑝! G𝛽" + 𝛽#𝑝! + 𝜀! − I𝛽6" + 𝛽6#𝑝!JH
:

!;#

= 0 

ZI𝛽" − 𝛽6"J
:

!;#

𝑝! +ZI𝛽# − 𝛽6#J𝑝!0
:

!;#

+Z𝜀!𝑝!

:

!;#

= 0 

I𝛽" − 𝛽6"J�̅� + I𝛽# − 𝛽6#J
1
𝑛Z𝑝!0

:

!;#

+
1
𝑛Z𝜀!𝑝!

:

!;#

= 0 

Although outside the Price equation literature, it is unusual to apply minimization of squared 
errors in a modeling context – where we know what the true model is, and therefore what 
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𝛽" and 𝛽# are – we can nonetheless still do it. In an infinite population, we can use that the 
errors have mean 0, which implies that lim

:→=

#
:
∑ 𝜀!:
!;# = 0, and we can use that the errors are 

uncorrelated with the p-scores, which implies that lim
:→=

#
:
∑ 𝜀!:
!;# 𝑝! = 0. Then we have two 

equations: 

𝛽" − 𝛽6" + I𝛽# − 𝛽6#J�̅� = 0 

I𝛽" − 𝛽6"J�̅� + I𝛽# − 𝛽6#J
1
𝑛Z𝑝!0

:

!;#

= 0 

It is clear that both of these hold if 𝛽6" = 𝛽" and 𝛽6# = 𝛽#. In a statistical context, one cannot 
do this, because there we do not know the 𝛽" and 𝛽#, and the purpose of the estimation 
procedure is to get an estimate of those. Here, however, we do know what the actual model 
is, and we can simply pick 𝛽6" = 𝛽" and 𝛽6# = 𝛽#.  

Of course, on its own, this is a futile exercise, as it unveils something that is not veiled. It 
does however illustrate that Price equation 1 applied to Model 1 gets the model right. This is 
an instructive benchmark for when we go on to allow for Price-like equations that are 
applied to non-matching models. An observation that may also help comparisons with this 
benchmark, is that the errors that are found by the minimization coincide with the actual 
errors. Here we use that we chose 𝛽6" = 𝛽" and 𝛽6# = 𝛽#. 

𝜀!̂ = 𝑤! − I𝛽6" + 𝛽6#𝑝!J = 𝛽" + 𝛽#𝑝! + 𝜀! − I𝛽6" + 𝛽6#𝑝!J = 	 𝜀!  

for 𝑖 = 1, . . , 𝑛. 

If we would leave out the actual errors 𝜀!  at the very beginning, then the calculations come 
out the same. This would amount to assuming that 𝜀! = 0 for all 𝑖, which is more than just 
assuming that errors have mean 0 (which implies that lim

:→=

#
:
∑ 𝜀!:
!;# = 0) and that they are 

uncorrelated with p-scores (which implies that lim
:→=

#
:
∑ 𝜀!𝑝!:
!;# = 0). It can be seen, though, 

as a shortcut for assuming infinitely large populations, as we do here. In that case, we would 
get 𝜀>g = 0 for 𝑖 = 1, . . , 𝑛. 

I will not repeat this for Price equation 2 applied to Model 2, or Price equation 3 applied to 
Model 3, as I hope it is clear that all minimizations will result in the estimators coinciding 
with the actual coefficients. This is also verified in the shortcuts provided in Appendix B 
below.  
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A.2 Price equation 1, applied to Model 2  

We now apply Price-like equation 1 to Model 2. The sum of squared errors is 

Z𝜀!̂
0

:

!;#

=ZG𝑤! − I𝛽6" + 𝛽6#𝑝!JH
0

:

!;#

=ZG𝛾"," + 𝛾#,"𝑝! + 𝛾",#𝑞! + 𝜀! − I𝛽6" + 𝛽6#𝑝!JH
0

:

!;#

 

If we minimize this, we begin with setting the derivative to 𝛽6" to 0.  

−2ZG𝛾"," + 𝛾#,"𝑝! + 𝛾",#𝑞! + 𝜀! − I𝛽6" + 𝛽6#𝑝!JH
:

!;#

= 0 

𝑛I𝛾"," − 𝛽6"J + I𝛾#," − 𝛽6#JZ𝑝!

:

!;#

+ 𝛾",#Z𝑞!

:

!;#

+Z𝜀!

:

!;#

= 0 

I𝛾"," − 𝛽6"J + I𝛾#," + 𝛾",# − 𝛽6#J�̅� +
1
𝑛Z𝜀!

:

!;#

= 0 

In the last step, we use that �̅� = 𝑞h. Then we set the derivative to 𝛽6# to 0 

−2Z𝑝! G𝛾"," + 𝛾#,"𝑝! + 𝛾",#𝑞! + 𝜀! − I𝛽6" + 𝛽6#𝑝!JH
:

!;#

= 0 

I𝛾"," − 𝛽6"JZ𝑝!

:

!;#

+ I𝛾#," − 𝛽6#JZ𝑝!0
:

!;#

+ 𝛾",#Z𝑝!𝑞!

:

!;#

+Z𝜀!𝑝!

:

!;#

= 0 

I𝛾"," − 𝛽6"J�̅� + I𝛾#," − 𝛽6#J
1
𝑛Z𝑝!0

:

!;#

+ 𝛾",#
1
𝑛Z𝑝!𝑞!

:

!;#

+
1
𝑛Z𝜀!𝑝!

:

!;#

= 0 

In an infinite population, we can use that the errors are assumed to have mean 0, which 
implies that #

:
∑ 𝜀!:
!;#  becomes 0 for large 𝑛. We also use that the errors are uncorrelated 

with the p-scores, which implies that #
:
∑ 𝜀!𝑝!:
!;#  also becomes 0 for large 𝑛. The we multiply 

the first equation by �̅�, which gives us two equations: 

	
I𝛾"," − 𝛽6"J�̅� + I𝛾#," + 𝛾",# − 𝛽6#J�̅�0 = 0 

and 

I𝛾"," − 𝛽6"J�̅� + I𝛾#," − 𝛽6#J
1
𝑛Z𝑝!0

:

!;#

+ 𝛾",#
1
𝑛Z𝑝!𝑞!

:

!;#

= 0 
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These combine to  

I𝛾#," + 𝛾",# − 𝛽6#J�̅�0 = I𝛾#," − 𝛽6#J
1
𝑛Z𝑝!0

:

!;#

+ 𝛾",#
1
𝑛Z𝑝!𝑞!

:

!;#

 

0 = I𝛾#," − 𝛽6#J i
1
𝑛Z𝑝!0

:

!;#

−
1
𝑛0 UZ𝑝!

:

!;#

V
0

j + 𝛾",# i
1
𝑛Z𝑝!𝑞!

:

!;#

−
1
𝑛0 UZ𝑝!

:

!;#

V
0

j 

With ∑ 𝑝!:
!;# = ∑ 𝑞!:

!;# , this is also 

0 = I𝛾#," − 𝛽#JVar(𝑝) + 𝛾",#Cov(𝑝, 𝑞) 

or 

𝛽6# = 𝛾#," + 𝛾",#
Cov(𝑝, 𝑞)
Var(𝑝) = 𝛾#," + 𝑟𝛾",# 

Then combining with the first equation gives 

I𝛾"," − 𝛽6"J + G𝛾#," + 𝛾",# − I𝛾#," + 𝛾",#𝑟JH �̅� = 0 

𝛽6" = 𝛾"," + (1 − 𝑟)�̅�𝛾",# 

If we now go back to the errors, we find that 

𝜀!̂ = 𝑤! − I𝛽6" + 𝛽6#𝑝!J
= 𝛾"," + 𝛾#,"𝑝! + 𝛾",#𝑞! + 𝜀! − I𝛾"," + (1 − 𝑟)�̅�𝛾",# + I𝛾#," + 𝑟𝛾",#J𝑝!J
= 	𝛾",# G𝑞! − I(1 − 𝑟)�̅� + 𝑟𝑝!JH + 𝜀!  

for all 𝑖 = 1, . . , 𝑛. The errors, the squared sum of which is minimized, therefore do not 
coincide with the actual errors, and include 𝛾",# times the gap between 𝑞!  and (1 − 𝑟)�̅� +
𝑟𝑝!. The first is the q-score of individual 𝑖, the second would be a predictor for 𝑞!  based on �̅� 
and 𝑝!. This part represents the misspecification-induced part of the estimated errors.  

If we again assume 𝜀! = 0 for all 𝑖 as a shortcut for assuming an infinitely large population, 
then 𝜀!̂ = 𝛾",# G𝑞! − I(1 − 𝑟)�̅� + 𝑟𝑝!JH only reflects the misspecification. 
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A.3 Price equation 2, applied to Model 3  

We now apply Price-like equation 2 to Model 3. The derivation is rather boring, but there is 
no way around it (see Footnote 8). The sum of squared errors is 

Z𝜀!̂
0

:

!;#

=ZG𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀! − I𝛾@"," + 𝛾@#,"𝑝! + 𝛾@",#𝑞!JH
0

:

!;#

 

If we minimize this, we begin with setting the derivative to 𝛾@"," to 0.  

−2ZG𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀! − I𝛾@"," + 𝛾@#,"𝑝! + 𝛾@",#𝑞!JH
:

!;#

= 0 

𝑛I𝛿"," − 𝛾@","J + I𝛿#," − 𝛾@#,"JZ𝑝!

:

!;#

+ I𝛿",# − 𝛾@",#JZ𝑞!

:

!;#

+ 𝛿#,#Z𝑝!𝑞!

:

!;#

+Z𝜀!

:

!;#

= 0 

Then we set the derivative to 𝛾@#," to 0 

−2Z𝑝! G𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀! − I𝛾@"," + 𝛾@#,"𝑝! + 𝛾@",#𝑞!JH
:

!;#

= 0 

I𝛿"," − 𝛾@","JZ𝑝!

:

!;#

+ I𝛿#," − 𝛾@#,"JZ𝑝!0
:

!;#

+ I𝛿",# − 𝛾@",#JZ𝑝!𝑞!

:

!;#

+ 𝛿#,#Z𝑝!0𝑞!

:

!;#

+Z𝜀!𝑝!

:

!;#
= 0 

Finally we set the derivative to 𝛾@",# to 0 

−2Z𝑞! G𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀! − I𝛾"," + 𝛾@#,"𝑝! + 𝛾@",#𝑞!JH
:

!;#

= 0 

I𝛿"," − 𝛾@","JZ𝑞!

:

!;#

+ I𝛿#," − 𝛾@#,"JZ𝑝!𝑞!

:

!;#

+ I𝛿",# − 𝛾@",#JZ𝑞!0
:

!;#

+ 𝛿#,#Z𝑝!𝑞!0
:

!;#

+Z𝜀!𝑞!

:

!;#
= 0 

If we then use that lim
:→=

#
:
∑ 𝜀!:
!;# = lim

:→=

#
:
∑ 𝜀!𝑝!:
!;# = lim

:→=

#
:
∑ 𝜀!𝑞!:
!;# = 0, we can rewrite 

these three equations as 

I𝛿"," − 𝛾@","J + I𝛿#," − 𝛾@#,"J�̅� + I𝛿",# − 𝛾@",#J𝑞h + 𝛿#,#𝑝𝑞hhh = 0 

I𝛿"," − 𝛾@","J�̅� + I𝛿#," − 𝛾@#,"J𝑝0hhh + I𝛿",# − 𝛾@",#J𝑝𝑞hhh + 𝛿#,#𝑝0𝑞hhhhh = 0 

I𝛿"," − 𝛾@","J𝑞h + I𝛿#," − 𝛾@#,"J𝑝𝑞hhh + I𝛿",# − 𝛾@",#J𝑞0hhh + 𝛿#,#𝑝𝑞0hhhhh = 0 
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If we multiply the first equation by �̅�, it becomes 

I𝛿"," − 𝛾@","J�̅� + I𝛿#," − 𝛾@#,"J(�̅�)0 + I𝛿",# − 𝛾@",#J(�̅�)(𝑞h) + 𝛿#,#(�̅�)(𝑝𝑞hhh) = 0 

Combining it with the second equation, we get 

I𝛿#," − 𝛾@#,"JI(�̅�)0 − 𝑝0hhhJ + I𝛿",# − 𝛾@",#JI(�̅�)(𝑞h) − 𝑝𝑞hhhJ + 𝛿#,# G(�̅�)(𝑝𝑞hhh) − 𝑝0𝑞hhhhhH = 0 

If we multiply the first equation by 𝑞h, and combine it with the third equation, we get 

I𝛿#," − 𝛾@#,"JI(�̅�)(𝑞h) − 𝑝𝑞hhhJ + I𝛿",# − 𝛾@",#J G(𝑞h)(𝑞h) − 𝑞0hhhH + 𝛿#,# G(𝑞h)(𝑝𝑞hhh) − 𝑝𝑞0hhhhhH = 0 

This can be written more succinctly as 

I𝛿#," − 𝛾@#,"J𝑉𝑎𝑟(𝑝) + I𝛿",# − 𝛾@",#JCov(𝑝, 𝑞) + 𝛿#,#𝐶𝑜𝑣(𝑝, 𝑝𝑞) = 0 

I𝛿#," − 𝛾@#,"J𝐶𝑜𝑣(𝑝, 𝑞) + I𝛿",# − 𝛾@",#J𝑉𝑎𝑟(𝑞) + 𝛿#,#𝐶𝑜𝑣(𝑞, 𝑝𝑞) = 0 

If we multiply the second equation with ,-.())
%&'(),*)

, it becomes 

I𝛿#," − 𝛾@#,"J𝑉𝑎𝑟(𝑝) + I𝛿",# − 𝛾@",#J
Var(𝑞)Var(𝑝)
Cov(𝑝, 𝑞) + 𝛿#,#

Cov(𝑞, 𝑝𝑞)Var(𝑝)
Cov(𝑝, 𝑞) = 0 

Combining that with the first equation gives us 

I𝛿",# − 𝛾@",#JCov(𝑝, 𝑞) + 𝛿#,#Cov(𝑝, 𝑝𝑞)

= I𝛿",# − 𝛾@",#J
Var(𝑞)Var(𝑝)
Cov(𝑝, 𝑞) + 𝛿#,#

Cov(𝑞, 𝑝𝑞)Var(𝑝)
Cov(𝑝, 𝑞)  

which we rewrite as 

I𝛿",# − 𝛾@",#J ECov(𝑝, 𝑞) −
Var(𝑞)Var(𝑝)
Cov(𝑝, 𝑞) F + 𝛿#,# ECov(𝑝, 𝑝𝑞) −

Cov(𝑞, 𝑝𝑞)Var(𝑝)
Cov(𝑝, 𝑞) F = 0 

 

I𝛿",# − 𝛾@",#J + 𝛿#,# m
Cov(𝑝, 𝑝𝑞) − Cov(𝑞, 𝑝𝑞)Var(𝑝)Cov(𝑝, 𝑞)

Cov(𝑝, 𝑞) − Var(𝑞)Var(𝑝)Cov(𝑝, 𝑞)

n = 0 

𝛿",# + 𝛿#,#m
Cov(𝑝, 𝑝𝑞) − Cov(𝑞, 𝑝𝑞)Var(𝑝)Cov(𝑝, 𝑞)

Cov(𝑝, 𝑞) − Var(𝑞)Var(𝑝)Cov(𝑝, 𝑞)

n = 𝛾@",# 

 

𝛾@",# = 𝛿",# + 𝛿#,# U
Cov(𝑝, 𝑞)Cov(𝑝, 𝑝𝑞) − Cov(𝑞, 𝑝𝑞)Var(𝑝)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V 
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This means we found 𝛾@",#. In order to also find 𝛾@#,", we fill this in in the equation  

I𝛿#," − 𝛾@#,"JVar(𝑝) + I𝛿",# − 𝛾@",#JCov(𝑝, 𝑞) + 𝛿#,#Cov(𝑝, 𝑝𝑞) = 0 

which gives us 

I𝛿#," − 𝛾@#,"JVar(𝑝) − 𝛿#,# U
Cov(𝑝, 𝑞)Cov(𝑝, 𝑝𝑞) − Cov(𝑞, 𝑝𝑞)Var(𝑝)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V Cov(𝑝, 𝑞)

+ 𝛿#,#Cov(𝑝, 𝑝𝑞) = 0 

This we can rewrite as follows 

I𝛿#," − 𝛾@#,"J𝑉𝑎𝑟(𝑝) − 𝛿#,# U
ICov(𝑝, 𝑞)J0Cov(𝑝, 𝑝𝑞) − Cov(𝑝, 𝑞)Cov(𝑞, 𝑝𝑞)Var(𝑝)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V

+ 𝛿#,# U
ICov(𝑝, 𝑞)J0Cov(𝑝, 𝑝𝑞) − Cov(𝑝, 𝑝𝑞)Var(𝑝)Var(𝑞)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V = 0 

 

I𝛿#," − 𝛾@#,"JVar(𝑝) − 𝛿#,# U
Cov(𝑝, 𝑝𝑞)Var(𝑝)Var(𝑞) − Cov(𝑝, 𝑞)Cov(𝑞, 𝑝𝑞)Var(𝑝)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V = 0 

 

I𝛿#," − 𝛾@#,"J − 𝛿#,# U
Cov(𝑝, 𝑝𝑞)Var(𝑞) − Cov(𝑝, 𝑞)Cov(𝑞, 𝑝𝑞)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V = 0 

And thereby we found  

𝛾@#," = 𝛿#," − 𝛿#,# U
Cov(𝑝, 𝑝𝑞)Var(𝑞) − Cov(𝑝, 𝑞)Cov(𝑞, 𝑝𝑞)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
V 
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B. Shortcuts and simple checks 

Given that we know that for every choice for a model, the Generalized Price equation has 
𝑤3Δ�̅� on the left-hand side, and something times Var(𝑝) on the right-hand side, we can also, 
for an infinitely large population, fill in the model to find an expression for Δ�̅�, multiply it by 
𝑤3  and divide by Var(𝑝) to recover what the core term in the Price-like equation would have 
to amount to. This is what we will do here, and it works for Price-like equations that are 
applied to the matching model. We begin with some additional details in describing states of 
the infinite population for the simple setting with asexual reproduction and a binary p-score.  

B.1 Population states 

With asexual reproduction and a binary p-score, a population state in an infinite population 
model is characterized by the share of individuals that has a p-score of 1, which is �̅�. Every 
individual is matched with one partner, and since the q-score represents the p-score of the 
partner, the first observation is that these averages must be the same; �̅� = 𝑞h.  
 
The second observation is that, with a binary p-score E(𝑝0) = E(𝑝), and hence  
 

Var(𝑝) = E(𝑝0) − E0(𝑝) = E(𝑝) − E0(𝑝) = �̅�(1 − �̅�) 
 
Similarly, Var(𝑝) = Var(𝑞) if every individual is matched with one partner. We will also refer 
to those with a p-score of 1 as cooperators and those with a p-score of 0 as defectors. This 
does not describe the trait very well in Model 1, but it is consistent across models. 
 
The population structure is characterized by relatedness 𝑟, which determines the 
probabilities with which the two types are matched with themselves and each other.  
 

𝑃(𝑞! = 1	|	𝑝! = 1) = (1 − 𝑟)�̅� + 𝑟 
 

𝑃(𝑞! = 1	|	𝑝! = 0) = (1 − 𝑟)�̅� 
 

𝑃(𝑞! = 0	|	𝑝! = 0) = (1 − 𝑟)(1 − �̅�) + 𝑟 
 

𝑃(𝑞! = 0	|	𝑝! = 1) = (1 − 𝑟)(1 − �̅�) 
 
Another way to write this is 𝑟 = 𝑃(𝑞! = 1	|	𝑝! = 1) − 𝑃(𝑞! = 1	|	𝑝! = 0), which justifies 
thinking of 𝑟 as the additional probability of being matched to a type, if it is the same type as 
one is oneself (see [24]). 
 
In an infinite population, these probabilities determine the shares of different types of pairs 
in a straightforward way. If 𝑓" is the share of pairs in which both have a p-score of 0, 𝑓# is the 
share of pairs in which one has a p-score of 0, and the other a p-score of 1, and 𝑓0 is the 
share of pairs in which both have a p-score of 1, then these shares are given by 
 

𝑓" = (1 − 𝑟)(1 − �̅�)0 + 𝑟(1 − �̅�) 
 

𝑓# = (1 − 𝑟)2�̅�(1 − �̅�) 
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𝑓0 = (1 − 𝑟)�̅�0 + 𝑟�̅� 

 
This implies that, in this simple setting, with a binary p-score, and every individual being 
matched with one other individual, there is a straightforward expression for Cov(𝑝, 𝑞). 
 
Cov(𝑝, 𝑞) = E(𝑝𝑞) − E(𝑝)E(𝑞) = 𝑓0 − �̅�𝑞h = 𝑓0 − �̅�0 = (1 − 𝑟)�̅�0 + 𝑟�̅� − �̅�0 = 𝑟�̅� − 𝑟�̅�0

= 𝑟�̅�(1 − �̅�) 
 
This is useful for calculating 𝑟 in Model 2, which is also 𝑟",# in Model 3: 
 

𝑟 = 𝑟",# =
Cov(𝑝, 𝑞)
Var(𝑝) =

𝑟�̅�(1 − �̅�)
�̅�(1 − �̅�)  

 
For calculating 𝑟#,# in Model 3, and for calculating 𝑠? and 𝑠@, which feature in the condition if 
we apply Price-like equation 2 to Model 3, we will also need the following covariances. Here 
we again use the fact that they are binary, which means that, for instance 𝑝0𝑞 is 1 if 𝑝 and 𝑞 
are both 1, and 0 in all other cases. 
 
Cov(𝑝, 𝑝𝑞) = E(𝑝0𝑞) − E(𝑝)E(𝑝𝑞) = 𝑓0 − �̅�𝑓0 = (1 − �̅�)𝑓0 = (1 − �̅�)I(1 − 𝑟)�̅�0 + 𝑟�̅�J

= �̅�(1 − �̅�)I(1 − 𝑟)�̅� + 𝑟J 
 
With �̅� = 𝑞h, also  
 

Cov(𝑞, 𝑝𝑞) = E(𝑝𝑞0) − E(𝑞)E(𝑝𝑞) = 𝑓0 − 𝑞h𝑓0 = 𝑓0 − �̅�𝑓0 = Cov(𝑝, 𝑝𝑞) 
 
These are useful for computing the 𝑟#,#, which features in Model 3.  
 

𝑟#,# =
Cov(𝑝, 𝑝𝑞)
Var(𝑝) =

�̅�(1 − �̅�)I(1 − 𝑟)�̅� + 𝑟J
�̅�(1 − �̅�) = I(1 − 𝑟)�̅� + 𝑟J 

There are two more bits of algebra that we will need below. This is not particularly exciting, 
but later we will be happy to have them available.  

𝑠? =
Cov(𝑝, 𝑞)Cov(𝑝, 𝑝𝑞) − Cov(𝑞, 𝑝𝑞)Var(𝑝)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)

=
�̅�(1 − �̅�)I(1 − 𝑟)�̅� + 𝑟JI𝑟�̅�(1 − �̅�) − �̅�(1 − �̅�)J

I𝑟�̅�(1 − �̅�)J0 − I�̅�(1 − �̅�)J0
=
I(1 − 𝑟)�̅� + 𝑟J(𝑟 − 1)

(𝑟0 − 1)

=
I(1 − 𝑟)�̅� + 𝑟J(1 − 𝑟)

1 − 𝑟0 =
(1 − 𝑟)�̅� + 𝑟

1 + 𝑟  

Because Cov(𝑞, 𝑝𝑞) = Cov(𝑝, 𝑝𝑞), we find that 

𝑠@ =
Cov(𝑝, 𝑝𝑞)Var(𝑞) − Cov(𝑝, 𝑞)Cov(𝑞, 𝑝𝑞)

ICov(𝑝, 𝑞)J0 − Var(𝑝)Var(𝑞)
= −𝑠? 
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B.2 Model 1 

Model 1 is  

𝑤! = 𝛽" + 𝛽#𝑝! + 𝜀!  

In an infinite population, this means that the average fitness of “cooperators” and 
“defectors” is  

𝑤3A = 𝛽" + 𝛽# 

𝑤3B = 𝛽" 

The overall average fitness is  

𝑤3 = �̅�(𝛽" + 𝛽#) + (1 − �̅�)𝛽" = 𝛽" + �̅�𝛽# 

This makes 

Δ�̅� =
�̅�(𝛽" + 𝛽#)

𝑤3
− �̅� =

�̅�(𝛽" + 𝛽#)
𝛽" + �̅�𝛽#

−
�̅�(𝛽" + �̅�𝛽#)
𝛽" + �̅�𝛽#

=
𝛽# ∙ �̅�(1 − �̅�)

𝑤3
 

This implies that  

𝑤3Δ�̅� = 𝛽# ∙ �̅�(1 − �̅�) = 𝛽# ∙ Var(𝑝) 

The Generalized Price equation implies that if we take statistical Model 1, then  

𝑤3Δ�̅� = 𝛽6# ∙ Var(𝑝) 

That implies that we do not have to do the actual minimizing of the sum of squared errors 
that we have done in Appendix A.1 to conclude that 𝛽6# = 𝛽# if we apply Price-like equation 1 
to Model 1. 

B.3 Model 2 

Model 2 is 

𝑤! = 𝛾"," + 𝛾#,"𝑝! + 𝛾",#𝑞! + 𝜀!  

In an infinite population, this means that the average fitness of cooperators and defectors is  

𝑤3A = 𝛾"," + 𝛾#," + I(1 − 𝑟)�̅� + 𝑟J𝛾",# 

𝑤3B = 𝛾"," + (1 − 𝑟)�̅�𝛾",# 

The overall average fitness is  
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𝑤3 = �̅�I𝛾"," + 𝛾#," + I(1 − 𝑟)�̅� + 𝑟J𝛾",#J + (1 − �̅�)I𝛾"," + (1 − 𝑟)�̅�𝛾",#J
= 𝛾"," + �̅�I𝛾#," + 𝛾",#J 

This makes 

Δ�̅� =
�̅�𝑤3A
𝑤3

− �̅� =
�̅�I𝛾"," + 𝛾#," + I(1 − 𝑟)�̅� + 𝑟J𝛾",#J

𝛾"," + �̅�I𝛾#," + 𝛾",#J
−
�̅� G𝛾"," + �̅�I𝛾#," + 𝛾",#JH

𝛾"," + �̅�I𝛾#," + 𝛾",#J

=
�̅�(1 − �̅�)I𝛾#," + 𝑟𝛾",#J

𝑤3
 

This implies that  

𝑤3Δ�̅� = I𝛾#," + 𝑟𝛾",#J ∙ �̅�(1 − �̅�) = I𝛾#," + 𝑟𝛾",#J ∙ Var(𝑝) 

The Generalized Price equation implies that if we take statistical Model 2, then  

𝑤3Δ�̅� = I𝛾@#," + 𝑟𝛾@",#J ∙ Var(𝑝) 

That implies that we do not have to do the actual minimizing of the sum of squared errors to 
conclude that 𝛾@#," = 𝛾#," and 𝛾@",# = 𝛾",# if we apply Price-like equation 2 to Model 2.  

With 𝑏 = 𝛾",# and −𝑐 = 𝛾#,", here we of course recognize Hamilton’s original rule. 

The Generalized Price equation also implies that if we take statistical Model 1, then still 

𝑤3Δ�̅� = 𝛽6# ∙ Var(𝑝) 

That implies that also here, we do not have to do the actual minimizing of the sum of 
squared errors that we did in Appendix A.2 to conclude that, if we apply the Generalized 
Price equation using statistical Model 1 to Model 2, we get 𝛽6# = 𝛾#," + 𝑟𝛾",#. For other 
mismatches, this shortcut does not work, and we will have to do the actual minimization 
(see also footnote 8).  

B.4 Model 3 

Model 3 is 

𝑤! = 𝛿"," + 𝛿#,"𝑝! + 𝛿",#𝑞! + 𝛿#,#𝑝!𝑞! + 𝜀!  

In an infinite population, this means that the average fitness of cooperators and defectors is  

𝑤3A = 𝛿"," + 𝛿#," + I(1 − 𝑟)�̅� + 𝑟JI𝛿",# + 𝛿#,#J 

𝑤3B = 𝛿"," + (1 − 𝑟)�̅�𝛿",# 

The overall average fitness is  
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𝑤3 = 𝛿"," + �̅�I𝛿",# + 𝛿#,"J + �̅�I(1 − 𝑟)�̅� + 𝑟J𝛿#,# 

This makes 

Δ�̅� =
�̅�𝑤3A
𝑤3

− �̅�

=
�̅� G𝛿"," + 𝛿#," + I(1 − 𝑟)�̅� + 𝑟JI𝛿",# + 𝛿#,#JH

1 + �̅�I𝛿",# + 𝛿#,"J + �̅�I(1 − 𝑟)�̅� + 𝑟J𝛿#,#

−
�̅�I𝛿"," + �̅�I𝛿",# + 𝛿#,"J + �̅�I(1 − 𝑟)�̅� + 𝑟J𝛿#,#J
1 + �̅�I𝛿",# + 𝛿#,"J + �̅�I(1 − 𝑟)�̅� + 𝑟J𝛿#,#

=
𝛿#,"�̅�(1 − �̅�) + 𝑟𝛿",#�̅�(1 − �̅�) + I(1 − 𝑟)�̅� + 𝑟J𝛿#,#�̅�(1 − �̅�)

𝑤3
 

This implies that  

𝑤3Δ�̅� = I𝛿#," + 𝑟𝛿",# + I(1 − 𝑟)�̅� + 𝑟J𝛿#,#J ∙ �̅�(1 − �̅�)
= I𝛿#," + 𝑟𝛿",# + I(1 − 𝑟)�̅� + 𝑟J𝛿#,#J ∙ Var(𝑝) 

The Generalized Price equation implies that if we take statistical Model 3, then  

𝑤3Δ�̅� = I𝛿6#," + 𝑟𝛿6",# + I(1 − 𝑟)�̅� + 𝑟J𝛿6#,#J ∙ Var(𝑝) 

That implies that we do not have to do the actual minimizing of the sum of squared errors to 
conclude that 𝛿6#," = 𝛿#,", 𝛿6",# = 𝛿",#, and 𝛿6#,# = 𝛿#,# if we apply Price-like equation 3 to 
Model 3. 

B.5 Price-like equation 2, applied to Model 3 

The Generalized Price equation for Model 2 is  

𝑤3Δ�̅� = I𝛾@#," + 𝑟𝛾@",#J ∙ Var(𝑝) 

If we apply this to Model 3, then this does not allow for a straightforward computation of 
𝛾@#," and 𝛾@",# without having to do the actual minimization of the sum of squared errors. The 
reason for that is that now have one equation, that is, we have 𝛾@#," + 𝑟𝛾@",# = 𝛿#," + 𝑟𝛿",# +
I(1 − 𝑟)�̅� + 𝑟J𝛿#,#, and two variables, 𝛾@#," and 𝛾@",#. What we can do, however, is just verify 
that the 𝛾@#," and 𝛾@",# that we found in Appendix A.3, work. There, we found that 

𝛾@"," = 𝛿"," − (1 − 𝑟)�̅�𝑠?𝛿#,# 

𝛾@#," = 𝛿#," − 𝑠@𝛿#,# 

𝛾@",# = 𝛿",# + 𝑠?𝛿#,# 

with 
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𝑠? =
(1 − 𝑟)�̅� + 𝑟

1 + 𝑟  

𝑠@ = −
(1 − 𝑟)�̅� + 𝑟

1 + 𝑟  

If we then fill those in, we get  

𝑤3Δ�̅� = I𝛾@#," + 𝑟𝛾@",#J ∙ Var(𝑝) = G𝛿#," − 𝑠@𝛿#,# + 𝑟I𝛿",# + 𝑠?𝛿#,#JH ∙ Var(𝑝)
= I𝛿#," + 𝑟𝛿",# + (𝑟𝑠? − 𝑠@)𝛿#,#J ∙ Var(𝑝)
= I𝛿#," + 𝑟𝛿",# + I(1 − 𝑟)�̅� + 𝑟J𝛿#,#J ∙ Var(𝑝) 

This is indeed what we saw above.  

If the true model were Model 2, one would interpret 𝛾@#," as the effect of having the gene on 
oneself. The Generalized Price equation for Model 2 applied to Model 3 gives, as we saw 
above  

𝛾@#," = 𝛿#," +
(1 − 𝑟)�̅� + 𝑟

1 + 𝑟 𝛿#,#, 

This is not a constant and cannot be interpreted as the effect of having the gene on oneself. 
We can search for a possible interpretation, by first calculating the average effect of having 
the gene, from the perspective of those with the gene, on their fitness. This would be 𝛿#," 
plus 𝛿#,# times the probability that carriers are matched with another individual that has the 
gene;  

𝛿#," + I(1 − 𝑟)�̅� + 𝑟J𝛿#,# 

We can also calculate the average effect of having the gene, from the perspective of those 
without the gene. This is 𝛿#," plus 𝛿#,# times the probability that non-carriers are matched 
with an individual that has the gene;  

𝛿#," + (1 − 𝑟)�̅�𝛿#,# 

Finally, one could also average these average effects over carriers and non-carriers. That 
would give  

𝛿#," + (1 − 𝑟)�̅�𝛿#,# + 𝑟�̅�𝛿#,# = 𝛿#," + �̅�𝛿#,# 

We see that neither of these three matches the 𝛾@#," that we get from applying the 
Generalized Price equation for Model 2 to Model 3. 
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Fig. 6|Applying the Generalized Price equation for Model 2 to Model 3. For this figure, we chose Model 3 with 
𝛿!,# = −2, 𝛿!,! = 0, and 𝛿!,! = 3. The red lines are 𝛾=!,# (the lower one), and 𝛾=#,! (the higher one), which, when 
applied to Model 2, would have been the effect on the individual itself and the effect on the partner. The 
average effect on the individual itself is the lower unbroken blue line, which is accompanied by the average 
effect for the defectors (the dashed line below it) and the average effect for cooperators (the dashed line 
immediately above it). The average effect on the partner is the higher unbroken blue line, which is 
accompanied by the average effect for the defectors (the dashed line immediately below it) and the average 
effect for cooperators (the dashed line above it).         

If the true model were Model 2, one would interpret 𝛾@",# as the effect of having the gene on 
one’s partner. The Generalized Price equation for Model 2 applied to Model 3 gives  

𝛾@",# = 𝛿",# +
(1 − 𝑟)�̅� + 𝑟

1 + 𝑟 𝛿#,#, 

This is not a constant either and cannot be interpreted as the effect of having the gene on 
the interaction partner. We can search for a possible interpretation, by first calculating the 
average effect of having the gene, from the perspective of those with the gene, on their 
partner’s fitness. This is 𝛿",# plus 𝛿#,# times the probability that carriers are matched with 
another individual that has the gene.  

𝛿",# + I(1 − 𝑟)�̅� + 𝑟J𝛿#,# 

We can also compare it with the average effect of having the gene, from the perspective of 
those without the gene, on their partner’s fitness. This is 𝛿",# plus 𝛿#,# times the probability 
that non-carriers are matched with an individual that has the gene.  
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𝛿",# + (1 − 𝑟)�̅�𝛿#,# 

Finally, one could also average these average effects over carriers and non-carriers. That 
would give  

𝛿",# + (1 − 𝑟)�̅�𝛿#,# + 𝑟�̅�𝛿#,# = 𝛿",# + �̅�𝛿#,# 

We see that also here, neither of these three matches the 𝛾@",# that we get from applying the 
Generalized Price equation for Model 2 to Model 3.  

Fig. 6 above illustrates this and visualizes that trying to understand the working of Model 3 
through applying the Generalized Price equation for Model 2 on it, is misleading. The values 
for 𝛾@#," and 𝛾@",# that this results in do not coincide with the average effect on the individual 
itself and the average effect on the partner.  
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