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ABSTRACT 
 
Roads are vital to support the transportation of people, goods, and services, among others. To 
yield their optimal socioeconomic impact, proper maintenance of existing roads is required; 
however, this is typically underfunded. Since detecting road quality is both labor and capital 
intensive, information on it is usually scarce, especially in resource-constrained countries. 
Accordingly, the study examines the feasibility of using satellite imagery and artificial intelligence 
to develop an efficient and cost-effective way to determine and predict the condition of roads. 
With this goal, a preliminary algorithm was created and validated using medium-resolution 
satellite imagery and existing road roughness data from the Philippines. After analysis, it was 
determined that the algorithm had an accuracy rate up to 75% and can be used for the preliminary 
identification of poor to bad roads. This provides an alternative for compiling road quality data, 
especially for areas where conventional methods can be difficult to implement. Nonetheless, 
additional technical enhancements need to be explored to further increase the algorithm’s 
prediction accuracy and enhance its robustness.1 
 
 
Keywords: road quality, road maintenance, Sustainable Development Goals, remote sensing, 
deep learning 
 
JEL codes: O18, R42 
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I. INTRODUCTION 
 
A. Background 
 
Roads are critical conduits that enable the flow of economic activity in every country and are an 
indispensable component of every country’s physical infrastructure. Roads facilitate the 
movement of goods and services, connect rural areas to urban areas and economic centers, 
enable easy access to education and health care, and facilitate the free mobility of labor and ideas 
within and across countries. The importance of access to good quality roads is further highlighted 
in a development target 9.1 set by the Sustainable Development Goals, which aims to “develop 
quality, reliable, sustainable and resilient infrastructure, including regional and transborder 
infrastructure, to support economic development and human well-being, with a focus on 
affordable and equitable access for all” (United Nations 2015). 
 
Given the socioeconomic impact of roads, governments spend significant portions of their budgets 
to build and maintain road networks, and other types of infrastructures, in general. A study 
conducted by the Asian Development Bank (2017) estimates that for developing Asia to maintain 
its growth momentum, tackle poverty, and respond to climate change, Developing Asia needs to 
invest $1.7 trillion per year in infrastructure until 2030. Of this amount, $8.4 trillion is needed for 
transport infrastructure.  
 
Since 2011, the Philippines has adopted a policy defining 20-year design life for concrete roads 
and 10-year design life for asphalt road (Department of Public Works and Highways 2011). 
Nonetheless, roads should not reach the end of their design life to retain their serviceability and 
avoid the need for reconstruction or replacement. For the Philippines, major maintenance 
activities are ideally conducted by the Department of Public Works and Highways for national 
roads every 10 years for concrete pavement and every 5 years for asphalt pavement, while the 
maintenance of local roads is handled by local government units. However, the need for 
maintenance may vary depending on the external factors experienced by the road such as rainfall, 
temperature, and traffic volume, among others, which may affect the deterioration of the road. 
Given these conditions, road maintenance and regular monitoring are key elements in ensuring 
that transport infrastructures yield optimal socioeconomic impact; however, these elements are 
typically underfunded (Burningham and Stankevich 2005). On average, countries spend 20%–
50% of what they should be spending on maintenance, and this is compounded by the costs of 
collecting data to identify roads in need of maintenance. Given that detecting the quality of roads 
is both capital and labor intensive, data on the quality of roads is usually scarce, especially in 
resource-constrained countries. 
 
The Rural Access Index, an indicator under Sustainable Development Goal 9, measures the 
proportion of the rural population living within 2 kilometers of an all-season road. This index may 
provide insights about areas where road infrastructure gaps exist, particularly in rural settings. 
Compiling the Rural Access Index requires three types of geospatially tagged data: population, 
road networks, and all-season roads. However, there are several technical challenges when 
collecting data about all-season roads. First, the concept used can be operationalized in different 
ways. Some countries assess the all-season status based on visual assessment of road 
conditions, others on the average speed of vehicles, while others on roughness, making 
intercountry comparisons challenging (Workman and McPherson 2021). Second, collecting the 
data itself is also challenging. For instance, conventional methods of detecting road quality include 
the measurement and collection of road survey instrument data. The international roughness 
index (IRI) is a common metric that is used in several countries to measure road quality and is 
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calculated using a mathematical simulation of a single car wheel traveling along a given road 
predetermined speed. Road quality surveys are expensive to undertake and are therefore rarely 
used, particularly in low-income countries. Using smartphones to capture images of roads offers 
promise, although this solution also presents its own challenges. Such an approach is likely to be 
limited to only urban areas with high bandwidth and internet connectivity. 
 
Considering the constraint of resources in middle- and low-income areas, this paper proposes an 
alternative approach to detecting road quality that leverages artificial intelligence and advances 
in satellite imagery technologies. The proliferation of institutions with access to satellite images 
has made it possible to capture high-resolution images of up to 30–50 centimeters in any region 
in the world. Moreover, developments in artificial intelligence, particularly transfer learning1 and 
convolutional neural networks (CNNs)2, provide a method to measure road quality while 
leveraging large datasets. Our approach utilizes data from Google Earth, which are at a lower 
resolution of 10 meters per pixel, but also leverages other satellite data that are likely to be 
correlated with road quality, including temperature, precipitation, terrain, and population density. 
 
Using the Philippines presents an interesting feasibility study for this proposed alternative 
approach of compiling data on road conditions. To address the infrastructure deficit and for the 
continuous growth of the country, the Government of the Philippines has an initiative that 
prioritizes allotting investments on infrastructure development. It covers various projects that 
target specific aspects of the Philippines’ transportation infrastructure, such as the construction 
of new (or the improvement of existing) roads, bridges, ports, transport terminals, flood control 
infrastructure, and communication facilities. As access to roads expands under such projects, it 
is also important to explore cost-effective approaches of monitoring the condition of these 
infrastructures over time. 
 
The approach uses three types of neural networks to extract features of road quality from satellite 
images of roads. These include CNNs trained over road image data, neural networks trained on 
tabular data, and a combined neural network trained on both visual and tabular data. Covariates 
likely to affect road quality such as gradient level, precipitation, population density, and 
temperature variation are collected from satellite sources, and are supplemented with information 
collected from shapefiles3 on road classification and pavement type. Thereafter, a combined CNN 
that takes concatenated image and tabular data is used to classify the roads. 
 
This approach has the following advantages over conventional survey methods of measuring road 
quality: (i) it is cheaper and therefore allows for more frequent collection of data on road quality, 
(ii) it is less labor intensive and therefore can be used by countries that do not have skilled 
personnel in road quality monitoring, and (iii) it allows dynamic measuring of road quality over 
time. 
 
  

 
1 Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for 
a model on a second task. 
2 A Convolutional Neural Network (CNN) is a deep learning algorithm that can take in an input image, assign importance 
(learnable weights and biases) to various aspects/objects in the image, and be able to differentiate one from the other. 
3 A shapefile is a simple, nontopological format for storing the geometric location and attribute information of geographic 
features. 
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B. Literature Review 
 
Literature on the identification of road quality has seen significant advancement with the advent 
of machine learning algorithms (MLAs) and, in particular, the use of neural networks trained on 
large datasets. A large literature exists on methods for automated processing of large datasets of 
instrument data, on road segmentation using unsupervised learning of image data, and (most 
recently) on the determination of the quality of roads. 
 
Cadamuro, Muhebwa, and Taneja (2018) built a CNN to predict road quality in Kenya, using IRI 
data as a proxy for road quality. Their study was limited to 1,150 kilometers of data, where they 
predicted five classes of roads based on IRI data, as well as a binary classification model. They 
predicted outcomes using three CNN variants: AlexNet,4 SqueezeNet,5 and Visual Geometry 
Group (VGG).6 Their models achieved an accuracy of at least 87% on the binary classification 
model, but performance fell on the five-class variant of the problem to 64%. The homogeneity of 
any given section of road has positive correlation with the ability to predict road quality, suggesting 
that a sequential approach may yield better results. Our study mirrors this approach, using publicly 
available data from the Google Earth Engine platform. 
 
Mnih and Hinton (2010) trained one of the first neural networks to detect roads from high-
resolution aerial imagery obtained from road maps. The road map data specified the centerline of 
each road, and the authors approximated pixels within the width of the road. Their neural network 
was pretrained using a procedure that made use of restricted Boltzmann machines, and further 
trained using labeled road map data. Their results were better than any preexisting published 
research based on automatic road detection. 
  
Oshri et al. (2018) analyzed several types of infrastructure throughout Africa, including roadways, 
to predict infrastructure accessibility and quality. They combined infrastructure assessments from 
Afrobarometer data with satellite imagery. Using a residual neural network (ResNet) with transfer 
learning, they were able to correctly classify roadway quality 70.5% of the time. Their predictive 
accuracy was robust to separately train the model on urban and rural areas as well as across 
countries, although the authors noted concerns about potential overfitting. 
 
Gerke and Heipke (2008) utilized the sequential nature of roadway networks to improve the 
extraction of roadway imagery from satellite imagery. They first applied standard computer vision 
techniques to build a baseline map of roadways, and then used the resulting network structure to 
fill in gaps and improve the accuracy of image extraction. Their paper suggests that a network or 
sequential based approach may be useful for predicting road quality, by utilizing the contiguity of 
road segments. 
 
Fiorentini et al. (2021) compared predictions of vertical displacement measures of road quality by 
MLAs with road roughness surveys in Italy. The aim of the study was to examine the robustness 
of MLA predictions of road quality to establish whether they can replace expensive and time-

 
4 AlexNet has eight layers with learnable parameters. The model consists of five layers with a combination of max 
pooling followed by three fully connected layers (Krizhevsky, Sutskever and Hinton 2012). 
5 SqueezeNet is a CNN architecture designed to have an equivalent accuracy to AlexNet with lesser parameters. As a 
result, it requires less communication across servers during distributed training and less bandwidth to export a new 
model from the cloud to an autonomous car. It is also more feasible to deploy on field programmable gate arrays and 
other hardware with limited memory (Iandola et al. 2006). 
6 VGG is a deep CNN architecture that aimed to improve the accuracy in the large-scale image recognition setting by 
pushing the depth up to 19 weight layers (Simonyan and Zisserman 2014). 
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consuming profilometric road surveys. Further, the study applied a persistent scatter 
interferometric algorithm to obtain data from satellite images and compared these to IRI values 
from a laser profiler. The study found that significant correlations between conventional IRI values 
and MLA predictions were associated with exogenous factors, while weak correlations were 
attributed to endogenous (local) factors such as traffic loading. The authors recommend 
calibrating MLAs with endogenous (local) road conditions to improve prediction accuracy. 
 
Leduc and Assaf (2022) used 298 road images captured using GoPro cameras at an angle of 60 
degrees to identify and classify road deformations. The authors used an automated machine 
learning model and CNN to identify and classify road deformations. The study showed that the 
automated machine learning ranges from 0.50 to 0.92. Visual data used to validate the machine 
learning (ML) results showed 71% of true positives. 
 
Marcelino, Lurdes Antunes, and Fortunato (2018) evaluated road pavement conditions on a 157-
kilometer motorway in Portugal. The study used continuous data such as IRI, mean profile depth, 
and cracking area. Further, the study applied a regularized regression with a lasso algorithm to 
predict an indicator for road quality. The results showed models from the MLA had lower mean 
squared errors than conventional methods of examining pavement conditions. The study 
concluded that machine learning techniques are a promising solution for predicting road quality 
relative to conventional road evaluation methods. 
 
Bashar and Torres-Machi (2021) applied artificial neural network (ANN), random forest, and 
support vector machine (SVM) algorithms to predict IRI scores, using data from a number of 
selected studies. Random forests showed the best results in predicting IRI scores with an overall 
performance of 0.995, while ANN had consistently accurate results over a significant number of 
studies. SVM algorithms showed completely different results to ANN and random forest models. 
 
Eisenbach et al. (2019) analyzed nearly 2,500 images of pavement taken from German highways 
to predict the distress level of the pavements. They trained three neural networks: VGG, ResNets, 
and SVM on a binary decision problem (distress versus no distress). Both ResNets and VGG 
networks outperformed classical machine learning models like SVMs in prediction accuracy. In 
conclusion, ResNet was found to be the most suitable for detecting pavement distress since it 
uses less computational power. 
 
Abdelaziz et al. (2020) utilized long-term pavement performance data from the Government of 
the United States to predict IRI classification on highway data from the United States. They found 
that a standard CNN outperforms a linear regression classification model, with an R-squared of 
0.75 compared to 0.57. 
 
The literature highlights three challenges faced in conducting research using image data. First is 
the level of resolution of satellite imagery, whereby poor resolution data will not show road defects. 
Second, there may be a temporal mismatch between survey data used for training purposes and 
satellite imagery, which could be highly problematic given that road quality can change drastically 
over a short period because of weather or construction. Third, road quality data may be sequential 
in nature, restricting the assignment of data into train and test datasets. This requires the division 
of data into longer sections before assignment to each dataset. Existing literature suggests that 
using CNNs to predict road quality has enjoyed some success. Neural networks have been more 
successful and have generally outperformed other classification methods. A key factor is the 
quantity and quality of data, which affects model performance. 
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II. Materials and Methods 
A. Data 
 
The international roughness index data, and remotely sensed and modeled data are utilized in 
the model: 
 
1. International Roughness Index Data 
 
The IRI, introduced by the World Bank in the 1980s, is commonly used (Bennett, De Solminihac, 
and Chamorro 2006) in several countries to measure road quality. The IRI measures how an 
idealized vehicle responds to a given road’s profile and is calculated using a mathematical 
simulation of a single car wheel traveling along the road profile at a predetermined speed, usually 
80 kilometers per hour. The IRI expresses a ratio of the accumulated suspension motion of a 
vehicle, divided by the distance traveled during the test (Gillespie, Paterson, and Sayers 1986). 
The data may be measured through a variety of methods, such as the vertical distance that a 
laser mounted on a profiler van jumps as the van moves along a road. The IRI is standardized 
and measured in one of three units: meters per kilometer, inches per mile, and millimeters per 
meter. There are different scales of measuring the IRI such as response type road roughness 
meters and the present serviceability rating. A standard scale that contains IRI values from 0 to 5 
is commonly used to measure IRI road values. 
 
IRI data are obtained for a collection of roads in the Philippines, covering a total of 15 regions 
within 3 major island groups: Luzon, Visayas, and Mindanao. Road identifier data contain road 
names, as well as geographical identifiers of the island, region, province, and congressional 
district where the road is located. IRI data were collected as of 2019. Road quality data are 
collected for road segments that are roughly 100 meters long, for a total of 124,462 observations.7 
Road segments are also grouped into a total of 1,046 road sections. Road quality is measured 
with an average IRI reading for each 100-meter segment, which is also translated into an IRI 
rating. In total, there are four IRI ratings: bad, poor, fair, and good; the corresponding IRI range 
of values is shown in Table 1 (Department of Public Works and Highways 2021).  
 

Table 1: International Roughness Index Rating 
 

IRI Rating IRI Value Range 
Bad >7 
Poor >5–7  
Fair >3–5 
Good 1–3 
 
IRI = international roughness index. 
Source: Government of the Philippines, Department 
of Public Works and Highways. 

 
Road segments are numbered sequentially, therefore allowing the identification of adjacent 
segments. In addition, all roads are classified as either primary or secondary. In addition to the 
IRI data, other information is provided within additional shapefiles, which are merged with the IRI 
data. The data includes road carriage number of lanes, surface type, pavement type, width, flow 
type, and type of road shoulder. 

 
7 Road segments in the dataset range from 1 to 107 meters, with most segments ranging from 99 to 101 meters. The 
last segment measured for any given road is most likely to have a length less than 100 meters. 
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2. Remotely Sensed and Modeled Data 
 
The remotely sensed data source considered for the analysis is the Copernicus program, headed 
by the European Space Agency. Copernicus consists of the Sentinel satellites, which are a 
constellation of satellites that take weather radar images, medium-resolution optical images, 
ocean data, and land data to monitor the environment, climate, and air quality. The study used 
the medium-resolution imageries taken in 2019 from the Sentinel-2 (Copernicus Sentinel Data 
2021) multispectral satellite imaging mission with a global 5-day revisit frequency. The Sentinel-
2 Multispectral Instrument samples 13 spectral bands: visible and near-infrared at a resolution of 
up to 10 meters, red-edge, and shortwave infrared at a resolution of 20 meters, and atmospheric 
at a resolution of 60 meters. 
 
First, remotely sensed data were collected for all relevant road segments using publicly accessible 
Google Earth application programming interfaces (APIs) (Figure 1). To match the remotely 
sensed data to the IRI data, latitude, and longitude coordinates of the road’s bounding box are 
obtained.8 The bounding box is then used to isolate the corresponding Sentinel-2 imagery from 
Google Earth within a 90-day window centered on the date the IRI was surveyed. The collection 
of images within this window that has a maximum cloud cover of 6% is then downloaded, and 
identified cloudy pixels are masked. The median value for each pixel is then selected across all 
images in the image collection, thereby producing a single image. The image is then cropped to 
include only the pixels within the bounding box, which are selected with a resolution of 10 meters 
per pixel, which is Sentinel-2’s resolution.9 A 90-day window is selected to ensure that a significant 
number of images is available for each road segment, given the cloud cover parameters, as well 
as the frequency with which the satellites visit each location. 
 
Lower image resolution means that image contrast is restricted to a small number of pixels. On 
the other hand, satellite data utilized in Cadamuro, Muhebwa, and Taneja (2018) has a typical 
resolution of 0.5 meters per pixel, which is 20 times higher. A 100-meter segment is therefore 
covered by fewer than 10 pixels with publicly available data, compared to 200 pixels from a high-
resolution data source. A rule of thumb is that higher resolution is generally better for analysis, 
although the authors are not aware of any literature concerning the impact of resolution on the 
accuracy of road classification. It is instructive to note that from a visual perspective, individual 
defects within a road, such as surface cracks or potholes, are not visible to the naked eye in both 
the publicly available and high-resolution satellite data. However, high-resolution data clearly 
allows identification of the road type. Sabottke and Spieler (2020) find that for binary classification 
problems, resolutions above 224 × 224 pixels only provide a modest additional return regarding 
classification accuracy. 
 
Figure 1 summarizes the process of downloading satellite imagery for each road segment, which 
is broken down into three steps: (i) coordinates of the road’s bounding box were obtained; (ii) the 
corresponding Sentinel-2 road imagery was downloaded from Google Earth Engine; and (iii) 
imagery of individual road segments with available IRI data was cropped to the size of its bounding 
box. 
 

 
8 Image bounding boxes are extracted from polygons within the IRI data shapefiles and imported into Google Earth 
based on the WGS84 (EPSG:4326) geographic coordinate system. Image data are downloaded from Google Earth in 
a GeoTIFF format, and thereafter converted into a JPEG format to allow analysis within a CNN. 
9 As the highest-resolution imagery is downloaded, and there are no other bands with higher resolution than 10 meters 
per pixel, there is no opportunity to increase resolution through techniques such as panchromatic sharpening. 
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Figure 1: Satellite Imagery Downloading Flowchart 

 
Source: The flowchart was generated by the authors using basemaps from OpenStreetMap 
(accessed 04 March 2022) and satellite imagery from Sentinel-2 daytime imagery downloaded 
using Google Earth Engine (accessed 04 March 2022). 
 
In addition to visual road segment data, the following remotely sensed and modeled data were 
aggregated within the bounding boxes of every 100-meter road segment to produce the following 
tabular dataset: 
(i) Average daily temperature at a height of 2 meters, from the European Centre for Medium-

Range Weather Forecasts’ fifth-generation reanalysis for global climate and weather with a 
resolution of 0.25 arc degrees.10 

(ii) Average total precipitation from the European Centre for Medium-Range Weather Forecasts’ 
fifth-generation reanalysis (Copernicus Climate Change Service 2017), with a resolution of 
0.25 arc degrees. 

(iii) Land gradient calculated using the Shuttle Radar Topography Mission of the National 
Aeronautics and Space Administration (NASA) (Farr et al. 2007), with a resolution of 30 
meters. Elevation is measured at each corner of the bounding box, and gradient calculated 
as the difference between the two values. 

(iv) Total population from WorldPop (Gaughan et al. 2013), estimated per 100 meter-by-100 
meter grid square. The population within a neighborhood of 1 square kilometer is included to 
give an indication of the total population within a given area. 

 
The above tabular data supplement visual data for each road segment and are collected as they 
are likely to influence road quality. Temperature and precipitation are important factors that 
influence how quickly a road degrades. In addition, land gradient determines land surface flow of 

 
10 A resolution of 0.24 arc degrees corresponds to about 25 kilometers. For comparison, the average daily land surface 
temperature from the NASA MODIS satellite (resolution of 1,000 meters) is also used. 
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water, which impacts road quality. Population within the vicinity of a road segment is an indicator 
of the frequency of use of a given road segment. 
 
B. Summary Statistics 
 
Data on road quality covers the islands of Luzon, Visayas, and Mindanao (Table 2). Tertiary roads 
are excluded from the coverage, and the data collected is restricted to only primary and secondary 
roads. The largest number of road segments is in the Visayas, which accounts for 43% of all road 
quality data, while Luzon accounts for the smallest number of road segments. The average IRI 
value of the sample is 4.68, with IRI values across all islands ranging from 1.00 to 17.03. Roads 
in Mindanao have the highest average IRI value while those in Luzon have the lowest. 

 
Table 2: Road Segment Summary Statistics 

Island No. of Road Segments Average IRI Minimum IRI Maximum IRI 
Luzon 28,194 4.10 1.03 17.03 
Visayas 53,808 4.75 1.03 14.75 
Mindanao 42,460 4.97 1.00 15.17 
Total 124,462 4.68 1.00 17.03 
 
IRI = international roughness index. 
Source: Government of the Philippines, Department of Public Works and Highways. 

 

 
Of the roads covered, 62% are rated either poor or fair, while 25% are rated good. In total, 13% 
of roads are rated bad (Table 3). The highest concentration of roads rated good is in Region IV-
A in Luzon, where 57% of roads are rated good. Also, more than half of the roads in Region V in 
Luzon are rated good. The highest concentration of lower quality roads is also within Luzon, within 
the Cordillera Administrative Region, where 25% of its roads are rated bad and an additional 46% 
are rated poor. Region XII and Region XI within Mindanao Island, as well as the National Capital 
Region, are ranked with a high relative share of roads classified as bad. 
 

Table 3: Regional Summary Statistics 
(%) 

 
  Average Rating 
Location    Bad Poor Fair Good 
Luzon     
Cordillera Admin Region 25.3 46.4 16.9 11.5 
National Capital Region 17.3 27.3 33.3 22.0 
Region I 3.8 17.1 39.8 39.3 
Region II 9.9 28.8 39.3 22.0 
Region III 4.5 16.0 33.2 46.4 
Region IV-A 5.7 8.6 29.0 56.7 
Region V 4.8 10.9 33.6 50.8 
Visayas     
Region VI 14.6 37.6 29.8 18.0 
Region VII 8.9 30.3 39.7 21.1 
Region VIII 12.8 30.1 30.2 26.8 
Mindanao     
Region IX 14.4 35.9 35.4 14.3 
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Region X 8.8 29.5 28.7 33.0 
Region XI 17.1 41.9 24.7 16.4 
Region XII 21.8 32.7 22.0 23.4 
Region XIII 11.4 26.0 29.9 32.7 
Total 12.8 30.8 31.4 25.1 
Source: Government of the Philippines, Department of 
Public Works and Highways. 
 

 

III. Results 
 
A. Training and Results 
 
Analysis is carried out using three neural network architectures: (i) a baseline CNN is trained on 
image data following Cadamuro, Muhebwa, and Taneja (2018); (ii) a two-layer neural network is 
trained on tabular data; and (iii) a combined model is used that includes both visual and tabular 
data.11 Across the different models, a cross-entropy loss function is implemented to show 
deviations of model predictions from actual values; this gives a high penalty for incorrect 
predictions made with a high level of confidence and mean square error.12 
 
1. Convolutional Neural Network Model Results 
 
A CNN is a multilayered feed-forward network with a convoluted structure; it generally consists of 
an input layer, multiple convolution layers, pooling layers, a fully connected layer, and an output 
layer. The baseline architecture used for analysis is the ResNet-34.13 ResNet-34 is pretrained on 
ImageNet, a large-scale image database that consists of more than 14 million labeled images. 
Pretraining optimizes the CNN’s layers to perform fundamental object recognition tasks such as 
edge detection by means of encoding this capacity within the weights of the CNN.14 
 
The CNN model was trained using the transfer learning approach. Using the established weights 
and biases of a pre-trained CNN model, it is repurposed to perform a new classification task. The 
pre-trained CNN model was then trained to predict road quality based on IRI rating data and the 
corresponding satellite imagery of each road segments through the process called fine-tuning. 
The fine-tuning process is restricted to the last layer of the CNN, responsible for the classification. 
 
Image classification is performed for two tasks: (i) a four-class classification task corresponding 
to the IRI ratings (bad, poor, fair, good); and (ii) a two-class classification task corresponding to 
bad and good, where bad and poor, and fair and good are merged. In total, the 2% cloud cover 
and 90-day image window restrictions result in a total of 94,000 valid downloaded image 

 
11 Analysis of the three models is performed within the fast.AI framework, which contains modules that allow for rapid 
programming of neural networks. 
12 The choice of loss function depends on the type of prediction problem. Mean squared error and mean absolute error 
loss functions are commonly used for regressions, while cross-entropy and hinge loss functions are the most 
appropriate for binary classification problems. 
13 ResNets were developed to address the degradation problem of deep CNN, which suggests that difficulties can be 
experienced in approximating identity mappings by multiple nonlinear layers. Further, ResNet eases the optimization 
process by providing faster convergence at the early stage. Resnet-34 is a 34-layer CNN version of the ResNet. This 
is a model that has been pretrained on the ImageNet dataset (He et al. 2015). 
14 The amount of data necessary to train a model is generally an increasing function of the number of model parameters. 
For a model with P parameters, a reasonable lower bound is 10P datapoints (Nasir and Sassani 2021). For deep 
learning networks, training datasets for specific problems are not able to meet this requirement. However, the model is 
able to take advantage of transfer learning. 
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segments that are available as inputs for the CNN. A cross-validation approach was used to tune 
hyperparameters and measure the performance of the model. Table 4 gives results of running 
the analysis for different sample sizes. The analysis is run for 10 epochs of each model. Results 
show a classification accuracy of about 60% for the binary classification of roads, relative to a 
classification accuracy of up to 39% for the classification of roads into four classes. The CNN 
analysis is not completed on the full set of data because of inadequate computational power.15 
However, the analysis by sample shows there is no significant improvement in accuracy based 
on the size of the dataset. 
 

Table 4: Convolutional Neural Network Results by 
Sample Size 

(Decimal accuracy) 
 

Sample Size Binary Four-Class 
1,000 0.61 0.37 
5,000 0.57 0.37 
10,000 0.61 0.38 
 
Source: Authors’ calculations using international 
roughness index data from the Philippine Department of 
Public Works and Highways and daytime imagery from the 
Sentinel-2 satellite (accessed 15 August 2022). 
 

 

 
Robustness tests are given for various CNN architectures. The architectures included are 
ResNet-5016, AlexNet, VGG, and SqueezeNet. These are architectures used for object detection, 
which are comprised of varying number of layers and use different strategies to deliver their 
purpose. This test was conducted to determine if the architecture used would have a significant 
effect on the accuracy of the model. However, as shown in Table 5, there were no significant 
improvements observed using any of the architectures. 
 
 

Table 5: Convolutional Neural Network Results by 
Architecture 

(Decimal accuracy) 
 

CNN Architecture Binary Four-Class 
ResNet-34 0.57 0.37 
ResNet-50 0.59 0.36 
AlexNet 0.57 0.37 
VGG-11 0.60 0.36 
SqueezeNet 0.59 0.39 

 
15 The analysis is run on Google Colab, which offers access to a graphics processing unit. The creation of the road 
segments dataset is challenging as it requires batch processing from the Google Earth Engine. Processing of thousands 
of batch tasks, which require clipping and saving operations, is a lengthy operation. Optimization of the process requires 
clipping of larger road sections, and local processing and clipping of road segments based on the geo-coordinates of 
each road section’s bounding box. An additional challenge is the processing of a large number of road segments within 
a CNN. Within a Google Colab environment, the computational capacity is insufficient to process close to 100,000 
images, even though each image is a few kilobytes in size. 
16 ResNet-50 is a CNN that is 50 layers deep. Instead of using two-layer blocks like ResNet-34, it uses three-layer 
bottleneck blocks resulting in a higher accuracy. 
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CNN = convolutional neural network, ResNet = residual 
neural network. 
Source: Authors’ calculations using international 
roughness index data from the Philippine Department of 
Public Works and Highways and daytime imagery from the 
Sentinel-2 satellite (accessed 15 August 2022). 

 
2. Tabular Model Results 
 
The tabular model is implemented for 104,000 observations, which correspond to the 
observations where it was possible to obtain corresponding remotely sensed and modeled data.17 
About 20,000 observations were dropped from the initial sample of 124,276 road segments 
because of unavailable remotely sensed data. The baseline implemented model included a 
tabular neural network with three hidden layers, each corresponding to 400, 200, and 100 
neurons. 
 
For robustness, the analysis was also run on a combined dataset composed of information on 
road surface type (classified according to asphalt, concrete, earth, gravel, or surface treatment) 
and pavement type (including a variety of asphalt and concrete categories, as well as roads with 
no pavement), and merged with the aggregated remotely sensed data for each road segment. 
This combined dataset resulted in a total of 82,928 observations. Further, robustness tests were 
run on a deeper neural network architecture that included five hidden layers, each corresponding 
to 1,600; 800; 400; 200; and 100 neurons. 
 
The performance of the baseline model shows an accuracy of about 60% for the four-class 
classification problem, and an accuracy of about 75% for the binary classification problem. The 
results do not show significant differentiation based on the number of hidden layers, with the 
performance similar for both the three- and five-layer networks. Note that unlike CNNs, which are 
pretrained on ImageNet data and fine-tuned to the road segment data, this model is fitted on the 
tabular dataset. A sample of 80% is used for training, and the remaining 20% is used for testing. 
 
However, the remotely sensed dataset shows better performance than the combined dataset, 
showing that the inclusion of additional information on surface type and pavement type does not 
have a significant impact on model performance. In all cases, the remotely sensed data model 
has a better performance by about two percentage points. The number of observations used in 
the analysis therefore has a greater impact on model performance. 
 

 
 Table 6: Tabular Neural Network Results by Architecture 

(Decimal accuracy) 
 

Tabular Data Binary Four-Class 
 Three 

Layers 
Five 

Layers 
Three 
Layers 

Five 
Layers 

Remotely sensed 0.75 0.74 0.60 0.60 
Combined dataset 0.73 0.73 0.58 0.58 

 

 

  

 
17 From this point forward “remotely sensed and modeled data” will be collectively termed as “remotely sensed data.”  
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Notes: 
1. “Remotely sensed” data pertains to aggregated remotely sensed and modeled 
data for each 100-meter road segment. 
2. “Combined dataset” is composed of information on road surface type, pavement 
type, and remotely sensed and modeled data. 
Source: Authors’ calculations using (i) international roughness index data from the 
Philippine Department of Public Works and Highways; (ii) average daily 
temperature, and average total precipitation from the European Centre for Medium-
Range Weather Forecasts (accessed 09 September 2022); land gradients using 
the Shuttle Radar Topography Mission of the National Aeronautics and Space 
Administration (NASA) (accessed 09 September 2022); and total population from 
WorldPop (accessed 09 September 2022). 
 

3. Combined Model Results 
 
The combined model incorporates both visual and tabular data through an architecture that allows 
the utilization of both types of data. The architecture used borrows from the integrated model used 
in the skin melanoma classification challenge organized by the Society for Imaging Informatics in 
Medicine and International Skin Imaging Collaboration (Ha, Liu, and Liu 2020). This classification 
problem entailed merging images of skin lesions and patients’ data such as gender, age, and the 
location of the malignant melanoma, which were then fed into a CNN model and a fully connected 
neural network to generate final predictions. 
 
The model architecture utilized includes the following (Figure 2): 

(i) a ResNet-34 CNN pretrained on the ImageNet database; 
(ii) a tabular neural network with three hidden layers, each consisting of 400, 200, and 100 

neurons; and 
(iii) a combined neural network that takes the concatenated output of the two models and is 

trained to classify road quality. 
 
 

Figure 2: Combined Model Architecture 

 

CNN = convolutional neural network, ResNet = residual neural network. 
Source: Authors’ visualization. 
 
Results from this network have an accuracy of 45% for the four-class model, whereas the binary 
classification model has an accuracy of 75%. These results are obtained from a random sample 
of 5,000 observations and are a slight improvement from the CNN model and the tabular model 
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at the same sample size. Computational constraints do not allow processing of the full set of 
94,000 observations. However, the utilization of sample sizes from 1,000 to 10,000 observations 
does not show a significant improvement in the results. 
 

IV. Discussion 
 
The use of satellite data offers significant opportunities to contribute to improvements in road 
maintenance. Conventional methods of detecting road quality are expensive and therefore only 
infrequently implemented. This means that deteriorating roads are frequently not detected early 
enough, leading to significantly higher eventual costs of road maintenance. It is estimated that 
the eventual maintenance costs for neglected roads rise to 6 times after 3 years, and up to 18 
times after 5 years of neglect (Burningham and Stankevich 2005). Beyond the issue of timely road 
quality detection, road maintenance is typically underfunded, with estimates that countries spend 
only 20%–50% of what they should be spending on road maintenance. Therefore, any methods 
that lower the cost of road quality detection or road repair have great potential to improve overall 
road maintenance, and thereby allow the realization of the full network effects that are enabled 
by efficient road networks. 
 
Satellite image data and artificial intelligence offer promise in monitoring the quality of roads. This 
paper utilizes remotely sensed data derived Google Earth Engine, which offers a combination of 
visual data on roads at a resolution of 10 meters per pixel (in addition to temperature, precipitation, 
terrain, and population density data) to detect the quality of roads using CNNs, neural networks 
using tabular data, and combined networks that utilize both visual data on road segments and 
tabular data. The results show that tabular data offers potential for the preliminary identification 
of road segments that are likely to require maintenance, with classification accuracy of up to 75%. 
While the classification accuracy using these data sources is above 87%, the accuracy is not 
sufficient to allow full automation of road quality detection. 
 
The analysis offers multiple promising avenues for additional research. Significant resources were 
expended in optimizing algorithms to segment road sections efficiently, and computational 
constraints did not allow utilization of the full set of image data. However, information from tabular 
resources shows that there are improvements from larger tabular datasets. Therefore, leveraging 
more survey data from multiple countries may offer the possibility of improving performance, 
particularly given that transfer learning is not used in a tabular neural network. 
 
Further research is also warranted on the following three key topics. First, it is instructive to assess 
how incorporation of higher-resolution imagery and/or use of super-resolution techniques can 
potentially enhance the predictive power of the model. Super-resolution refers to the use of 
machine learning to clarify, sharpen, and upscale the image without losing its content and defining 
characteristics. Second, it might also be interesting to assess whether an algorithm trained using 
a dataset from one country may also be applied to produce accurate sample predictions for other 
countries. This will determine if the algorithm will be adoptable and still have acceptable accuracy 
rates given the difference in conditions and environments in other countries. Further, the results 
of such a study may be used to reflect on whether the concept of roughness of roads is universal.18 
Third, it could be useful to explore the possibility of predicting the remaining service life of roads 

 
18 The authors did a quick assessment by producing out-of-sample predictions for select roads in Thailand 
using the algorithm trained with data from the Philippines and comparing the predictions with actual 
roughness of road data. Although the results are encouraging (as the models accurately predicted the 
qualitative classification of the roads considered), further examination using a larger sample is needed. 
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following the studies conducted by Ziari et al. (2016) and Al-Suleiman and Shiyab (2003). This 
study should consider several factors such as pavement type, date of construction or last 
rehabilitation, traffic volume, and other environmental and external factors, among others. 
 
Nevertheless, the results presented here underscore the potential of satellite imagery-based 
methods as an alternative way of collecting data on road conditions. Furthermore, by leveraging 
satellite images, national statistical systems that are responsible in compiling Sustainable 
Development Goal indicators may also find this approach useful in the context of making the Rural 
Access Index (Sustainable Development Goal Indicator 9.1.1) widely available at more granular 
levels. 
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