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Yigit Aydede*

Assortative preferences in choice of major

Abstract
The primary objective of this study is to examine the contribution of available information 
constrained by parents’ fields of study to the observed assortative preferences in their children’s 
choice of major. Comparable to panel models, we define within-family transmission functions 
with 1-to-2 matches (1 for each parent). Using the confidential major file of the 2011 National 
Household Survey from Canada, the results show that children’s choice of field of study exhib-
its significant assortative preferences isolated from ability sorting and unobserved differences 
across majors and other family characteristics. With some caution, we attribute this persisting  
assortative tendency to the information asymmetry across alternative majors built on by  
parents’ educational backgrounds within families.
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1 Introduction
Evidence shows that expectations about earnings, employment opportunities, marriage 
options, job–family balance, enjoying course work, social status of available jobs, and own 
ability to successfully complete the study associated with each major are fundamental factors 
in the choice of field of study. The evidence also shows that there is a substantial error in beliefs 
(subjective expectations) about the population values of these determinants (Stinebrickner and 
Stinebrickner, 2014). When students are provided correct information, they update their beliefs 
and their choice of field of study (Wiswall and Zafar, 2015; Arcidiacono et al. 2012).

According to the 2013 National Graduate Survey, close to 60% of university graduates in 
Canada report that their parents’ recommendations played a very important role in their choice 
of major. This is not surprising because the information and its value from different sources 
become more dispersed and questionable. Altonji et al. (2015), for instance, documented that 
Princeton pushes students to consider departments with fewer students. Some postsecond-
ary institutions prefer a distribution of students across majors in such a way that it correlates 
with the distribution of faculty members in those majors. Departments in high (low) demand 
make their own field of study less (more) attractive when counseling students in their choice 
of major. As complex education choices are made under uncertainty about the achievement of 
choice-specific outcomes and personal preferences and abilities, parents become the least costly 
and most trustworthy channels of information, especially in Canada, where switching majors 
is not costless.1,2 Yet, a significant assortativity (a child predictably becomes a teacher because 
it is his father’s and/or mother’s job) could also suggest systemic biases in decision-making, 
specially when the information about the achievement of the future major-specific outcomes is 
bounded by parents’ fields of study.3

What then is the parents’ role in the belief formation? To understand that information 
is not distributed symmetrically across majors with the same value and volume, imagine that 
both parents are accountants and working in the finance industry. The cost of obtaining the 
same level of information about other majors, say on biochemistry, is obvious. This brings us 
to the question of how the field-of-study homogamy (FSH) and whether the parents work in 
related occupations affect the magnitude of information asymmetry. The following 2 empirical 
questions need to be answered to assess the role of information asymmetry in the choice of 
major more formally: How can we quantify the resemblance of fields of study between parents 
and children beyond a binary proposition that reflects the assortative tendency, an association 
that exposes the attraction of each child to their own parents’ majors? How can we identify 
the role of information asymmetry in this assortative tendency, after removing the other fac-
tors that are not observed by the researcher, such as implicit randomness, ability sorting, and 

1 As expected, studies (e.g., Hoxby and Avery, 2013) show that less well-educated parents with no specialization would not 
be good transmitters of information.

2 Although the system is different from one where the major is chosen at entry into the university through a centralized 
test or using a threshold grade point average (GPA) required for each major, students in Canada are usually accepted to 
universities at three main faculty levels: Arts, Science, and Business/Commerce. Each of these requires different courses 
to be completed in high school with competitive GPAs at grades 11 and 12. Therefore, although the majors are decided 
after the second year, roughly after completing 14–16 core courses within each faculty, switching majors across faculties 
imposes a significant cost on students and parents.

3 In addition to information asymmetry, parents could also impose their preferences on their child’s educational 
attainment by their willingness to use financial transfers to “distort” their child’s choice toward (or against) a specific 
field of study. Zafar (2012) investigates this issue in his recent paper titled, “Double majors: one for me, one for the 
parents?”
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individual tastes, embedded in the resemblance of majors between each parent and child? We 
will try to answer both questions in this paper.

This study’s primary objective is to investigate the role of information asymmetry in 
children’s attraction to their parents’ field of study reflected by assortative tendencies in child–
parent matches. We apply conventional intergenerational transmission functions that relate 
the children’s assortative preferences to FSH and whether parents work in their trained jobs 
within Canadian families. We use the confidential major file of the 2011 National Household 
Survey (NHS) so that the size of the data and the availability of different levels of aggregation 
in the Classification of Instructional Programs (CIP) allow us to develop 3 indicators: the 
degree of children’s attraction to their parents’ field of study (field of study attraction or FSA), 
the degree of FSH, and the degree of relatedness between each parent’s field of study and occu-
pation (field-of-study relatedness or FOR). To identify the role of information asymmetry in 
assortative patterns, we define quasi-likelihood transmission functions, where the response 
variables take on fractional values of FSA between each child (son/daughter) and parent 
(father/mother) as a function of FSH and FOR. Similar to the difficulties in identifying the 
role of expected earnings in college major choice, the challenge here is also to control for selec-
tion into each major. To tackle this problem, we define within-family transmission functions 
based on an assortative matching model with 1-to-2 matches (1 for each parent), inspired by  
Diamond and Agarwal (2016). Comparable to panel models, this allows us to reduce unob-
served heterogeneity so that the results provide new and more direct evidence about the  
intergenerational association of field of study due to information asymmetry reflected in assor-
tative tendencies, which is, to the best of our knowledge, the first of its kind in the literature.

The first part of our results shows that children’s choice of field of study exhibits signifi-
cant assortative preferences. This finding is a new contribution that reports intergenerational 
skill transfers as opposed to educational mobility. We also find that the assortative tendency 
is the highest between fathers and sons relative to all other pairs, namely, father–daughter, 
mother–son, and mother–daughter. This evidence becomes even stronger when we use more 
disaggregated CIP codes and control for educational degrees. A significant skill sorting in 
mating is also revealed by the FSH measures, which also indicate gender differences in the 
attractiveness of each major in marriage. This finding is consistent with the evidence that the 
gain from the marriage could be different for each spouse (Choo and Siow, 2006) and with 
the evidence of a substantial degree of gender heterogeneity in the preferences for each major 
(Wiswall and Zafar, 2015). These findings, on significant intergenerational skill transfers and 
greater assortative mating for skills, are in line with the concerns about the possible progressive 
skill stratifications and earning inequalities in societies.

In the second part, the estimation results show that higher assortativity in each child–
parent combination is strongly associated with greater homogamy and field-of-study related-
ness in parents’ jobs. The empirical approach that we apply here aims to identify the role of 
information boundaries in this relationship. Our findings indicate that asymmetric informa-
tion is a significant contributor to children’s assortative tendencies in their choice of major.

The remainder of the paper is organized as follows: Section 2 introduces the data, homog-
amy, assortative preferences, and occupational relatedness; Section 3 introduces the concep-
tual background that links the subjective expectations in choice of major to information 
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entropy; the empirical framework is explained in Section 4; the estimation results are reported 
in Section 5; and we provide the concluding remarks in Section 6.

2  Data, assortative preferences, homogamy, and  
occupation match

2.1 Data

This study uses the confidential major file of the 2011 NHS. We restricted the data to include 
only non-Aboriginal native-born individuals living in 10 provinces. We also dropped non-de-
gree-holder parents (i.e., those with no education or an education degree that does not grant 
a major) and those whose field of study contains <10 workers. After these restrictions, we 
obtained about 2.3 million observations. The 2011 NHS enables the classification of individu-
als’ major field of study in which the highest postsecondary certificate, diploma, or degree was 
granted. Statistics Canada classifies the major fields of study by using the CIP, which includes 
1,688 instructional program classes.4

One major challenge in identifying children’s choice of field of study in relation to their 
parents’ educational background is the availability of data. There is no survey in Canada in 
which respondents are directly asked about their parents’ field of study. Although parents’ 
schooling years are more accessible, many studies on educational transmission face the same 
challenge. In a recent study, e.g., Chevalier et al. (2013) use a subsample from a pool of Labour 
Force Surveys in the UK, which include children aged 16–18 years and living at home, so the 
parental information can be matched to the child’s record. In order to identify field-of-study 
resemblance between parents and children, we use the same approach and create a subsample 
that is composed of children living at home. Although this restriction reduces the total sample 
size, it becomes less severe for the comparable age groups between 16 and 25 years of age. For 
example, while there are 122,000 females with an identified field of study between the ages of 
19 and 21 years in the whole sample, our subsample includes 26,000 children who live with 
their parents. Moreover, we use this subsample only for FSA calculations, while the indices for 
parental homogamy and occupational relatedness use the full sample. We are aware that using 
a subsample of observations raises a question of selectivity. To ensure that the final sample 
is representative of the population, we first compare the distribution of parents (fathers and 
mothers, separately) living with their children to that of the whole sample across CIP codes 
classified into 12 and 41 groups based on 5-year age classes. We applied the same comparison 
for children based on gender and age. The results seem to confirm that the distribution of chil-
dren and parents across fields of study by age and gender in our restricted subsample mirrors 
the same distributions in the full sample.5

Although we are forced to study only those children who live with their parents, this issue 
has to be well thought out. Our sample’s distributional representativeness of population by age 

4 For more information on CIP classification, see www.statcan.gc.ca/concepts/classification-eng.htm. The most 
aggregated level classifies CIP codes into 12 major groups. This aggregation is reduced to 41 and 372 groups and is 
classified down to the most detailed level, where all majors are presented with 1,688 CIP codes.

5 Hilger (2016) has developed a new method to adjust the data to recover the outcomes of “missing” independent 
children. However, their educational outcome is measured in terms of years of schooling. We have also applied the 
inverse probability weights method to our subsample to address the possible selectivity problem. The results on FSA 
calculations do not change significantly.
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and gender is just one aspect of the matter. It is possible, for instance, that those individuals who 
live at home are more likely to attend their closest higher education institution and thus their pro-
gram choice set would be limited by a regional concentration in a particular industry, in which 
the parents work. Although we address this problem by controlling for unobserved regional 
heterogeneity, another issue would be that children who have a good relationship with their  
parents are more likely to stay at home and may therefore hold their parents as likely role models 
and follow in their footsteps. If this is the case, using our sample would lead to an upward bias in 
the parent–child assortativeness of field of study.6 More descriptive information about the data 
and our samples are provided in the following sections, which explain FSH, FSA, and FOR.

2.2 FSH measures

Assortative mating has long been documented by demographers using nonparametric 
log–linear models based on contingency tables of ethnicity, education, religion, and other 
attributes (Schwartz, 2013). Following Becker’s (1973, 1974) theory on marriage markets, 
economists have also investigated assortative mating in relation to match gains and returns 
to marriage. Chiappori and Salanie (2016), for instance, show that educational homogamy 
of posterity is likely to be reinforced by increases in the human capital of parents, who are 
matched homogamously themselves. Bicakova and Jurajda (2016) are the first to analyze  
mating by field of study for European countries.

Unlike joint or conditional probabilities that define the likelihood of a match, we choose 
the following identity that recognizes the randomness inherent in the matching process and 
specifies to what extent the match is driven by assortative mating on the field of study and to 
what extent it reflects the marginal distributions of each major:

( )( ) ( )= − FSH Pr Pr | Pr ,M F M F  (1)

where F and M are indicators of fields of study for the female and male mates, respectively, in 
matching couples. As recognized in the literature, the observed matches in a marriage market 
are jointly determined by the preferences of both partners. For example, Choo and Siow (2006) 
argue that the observed marriage patterns positively depend on the gross gains to marriage in 
which the individual returns could be different for each spouse, reflecting a spousal “appreci-
ation” or “attraction” of each field of study in mating.

With the number of matches, mij, where i and j reflect the husband’s and wife’s major in 
each row and column in the resulting contingency table, the FSH matrix can be calculated by 
Equation (2):

−
m
T

m m
T

,ij i j
2

 (2)

where mi and mj represent the row and the column totals, respectively, and T is the total number 
of pairs. While the FSH matrix reveals the assortativeness between, e.g., a male accountant and 
a female historian in mating, it would be quite possible that a male accountant’s attraction to a 

6 Gratefully, this point has been brought to our attention by one of our referees. Another point raised by the referee 
is that the financial crisis before the 2011 Census is likely to have an impact on choices of field of study. Issues like 
oversensitivity to uncertainty and a higher level of risk aversion may have strong effects on the choice set of majors for 
the cohort of students that we investigate in our study. 
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female historian would be different from her attraction to a male accountant. In order to reflect 
a differential “appreciation” of each field of study for each spouse in mating, we use a simple 
horizontal (vertical) normalization for each row (column) of the FSH matrix between 0 and 1. 
The results are reported in Table 1.

For example, the match between a male accountant (Business) and a female historian 
(Humanities) is ranked at 0.30 in terms of its assortativity, among all possible matches avail-
able for a male accountant with other different major holders. The same match is ranked at 
0.53 among those available for a female historian reported in the bottom section of the table. 
These indices simply order each partner’s appeal by his/her field of study and do not impose 
cardinal restrictions. It is obvious from the diagonal of both sections of the table that the 
evidence supports a strong FSH. Although not reported here, FSH becomes even stronger 

Table 1 Field-of-study homogamy (FSH) by prime CIP codes (weighted)

Wife’s major

1 2 3 4 5 6 7 8 9 10 11

Husband’s major Normalized by husband’s major
Education 1 1.00 0.25 0.27 0.19 0.00 0.27 0.26 0.25 0.26 0.18 0.19
Arts 2 0.18 1.00 0.42 0.42 0.00 0.29 0.31 0.29 0.30 0.01 0.28
Humanities 3 0.43 0.43 1.00 0.42 0.00 0.38 0.36 0.32 0.35 0.14 0.25
Law 4 0.37 0.36 0.47 1.00 0.00 0.34 0.32 0.28 0.31 0.01 0.17
Business 5 0.23 0.26 0.30 0.33 1.00 0.28 0.27 0.22 0.23 0.00 0.11
Science 6 0.47 0.44 0.58 0.43 0.00 1.00 0.85 0.42 0.47 0.34 0.26
Math/Comp. 7 0.25 0.51 0.51 0.61 0.39 0.50 1.00 0.43 0.42 0.00 0.30
Engineering 8 0.00 0.35 0.17 0.17 1.00 0.35 0.45 0.66 0.44 0.70 0.79
Agriculture 9 0.30 0.19 0.09 0.16 0.00 0.30 0.19 0.22 1.00 0.36 0.21
Health 10 0.28 0.29 0.30 0.26 0.00 0.34 0.29 0.29 0.31 1.00 0.25
Services 11 0.00 0.32 0.18 0.25 0.54 0.28 0.36 0.35 0.38 0.63 1.00

Normalized by wife’s major
Education 1 1.00 0.29 0.50 0.29 0.00 0.37 0.01 0.07 0.14 0.18 0.10
Arts 2 0.37 1.00 0.57 0.47 0.23 0.41 0.15 0.18 0.23 0.20 0.26
Humanities 3 0.43 0.48 1.00 0.46 0.14 0.45 0.15 0.13 0.20 0.17 0.18
Law 4 0.42 0.46 0.67 1.00 0.09 0.47 0.12 0.11 0.20 0.04 0.08
Business 5 0.37 0.31 0.53 0.47 0.97 0.38 0.04 0.00 0.00 0.00 0.00
Science 6 0.41 0.39 0.59 0.42 0.20 1.00 0.87 0.20 0.30 0.28 0.19
Math/Comp. 7 0.37 0.44 0.55 0.48 0.32 0.48 1.00 0.20 0.23 0.17 0.22
Engineering 8 0.00 0.00 0.00 0.00 1.00 0.00 0.13 1.00 0.16 0.68 1.00
Agriculture 9 0.41 0.35 0.47 0.40 0.27 0.45 0.07 0.18 1.00 0.34 0.26
Health 10 0.38 0.31 0.49 0.36 0.05 0.46 0.00 0.12 0.17 1.00 0.17
Services 11 0.30 0.33 0.42 0.37 0.39 0.30 0.11 0.17 0.23 0.42 0.68

Notes: The sample used in this table contains all working spouses, regardless of whether 
they have children with or without an identified CIP code. Because of the very few obser-
vations, the table does not report “Others” classified under CIP code 12. The details of 
majors are as follows: (1) Education, (2) Visual and performing arts, and communication 
technologies, (3) Humanities, (4) Social and behavioral sciences and law, (5) Business, 
management and public administration, (6) Physical and life sciences and technologies, 
(7) Mathematics, computer and information sciences, (8) Architecture, engineering, and 
related technologies, (9) Agriculture, and natural sources and conservation, (10) Health 
and related fields, and (11) Personal, protective, and transportation services.
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when we use 41 CIP codes matrix calculated based on 12 and 41 major CIP codes. The results 
indicate a slightly increasing FSH as we use more detailed CIP codes.7

2.3 Quantifying assortative preferences: FSA

The FSA index compares the field of study of each parent to that of each child in a family and 
calculates the degree of attraction between the 2 based on the probability distributions. We cre-
ate 4 contingency tables using the restricted subsample explained earlier. Each table reports the 
number of field-of-study matches between sons and fathers, daughters and fathers, sons and 
mothers, and daughters and mothers. Similar to Equation (1), to identify the observed match-
ing patterns, we choose the following identity that reflects the differences between observed 
and expected frequencies under independence:

( )( ) ( )= − FSA Pr Pr | PrP K P K  (3)

where P and K are indicators of fields of study for parents and children in matching, respec-
tively. When it is normalized for each parental field of study between 0 and 1, the resulting 
measures imply the attraction of children to their parents’ majors evaluated by the observed 
distribution of all possible matches between parents and children. The number of different 
matching possibilities between the parent and the child comes from the fact that it is the child 
who faces many different alternatives before making a decision on a major.

The assortativity exposed by FSA reflects only the child’s preferences as they are defined 
over children, not over parents in matches. While we use 12, 41, and 137 major groups of CIP, 
in the 4 match tables, we report only the sons’ match calculated with 12 major CIP codes in 
Table 2. The higher values of FSA on the diagonal indicate that the most likely matches happen 
between the same fields of study. In each row, for any given major that the parent holds, the 
normalized FSA indicates the son’s attraction to all other majors relative to the most likely 
match. The premise of this measure is that the child’s attraction to each parent’s major could 
be different even if the parents have the same field of study. Intuitively, the same major could 
be more(or less) attractive for the son, e.g., if it is held by his father, which may reflect not only 
the differences between maternal and paternal influence but also gender differences in occupa-
tional distributions. While dissimilarities in each cell between the upper and lower parts of the 
table may expose this fact, the presence of a strong assortativity indicates that parents’ field of 
study is a fundamental factor in children’s choice of field of study.

Although we refrain from using more space to interpret the results here, one may ask to 
compare the extent of field-of-study attraction between parents and children across 4 match 
tables. We use an index that computes the ratio of 2 diagonal shares of a match matrix as follows:

=
∑

∑
−









H

m T
m m T

100
/
/

1ij

i j
2

 (4)

which is the sum of the joint probabilities on the diagonal relative to the sum of the products 
of their marginal probabilities. Hence, it provides the ratio of the actual share of matches with 

7 We use H-index (explained in the next section) to compare two FSH contingency tables. The index provides the ratio of 
the actual share of matches with the same field of study (on the diagonal) to the share of matches that one would expect 
under the random matching assumption.
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the same field of study (on the diagonal) to the share of matches that one would expect under 
the random matching assumption.8 The indices calculated for the 41 major CIP codes are as 
follows: 119.56 for Father–Son, 31.28 for Mother–Son, 60.02 for Father–Daughter, and 48.88 for 
Mother–Daughter. These sharp differences, tested by 95% bootstrapped confidence intervals, 
indicate that a randomly picked father–son pair with the same field of study is about twice 
as likely than would be predicted under random matching. Moreover, a very low index for 
mother–son pairs suggests that the overall attraction of sons to their mother’s major is slightly 
higher than what would be predicted if sons randomly pick their majors. Although these 
observations are very informative, they would not provide answers that explain the underlying  
reasons. In Section 3, we will attempt to confront this challenge.

2.4 Field-of-study occupation relatedness - FOR

The evidence shows that when people do not work in their trained jobs, the value of their field 
of study diminishes (Aydede and Dar, 2016; Robst, 2007). A recent study by Lemieux (2014) 
finds that this wage penalty varies by each field of study in the range of 16% for engineers 

8 When the children’s choice of major is not affected by their parents’ field of study, each joint probability on the diagonal 
(nominator) approaches the product of its marginal probabilities; then the whole index becomes zero. Thus, any 
departure from zero indicates the tendency toward the same field-of-study matches. 

Table 2 Field-of-study homogamy (FSH) by prime CIP codes (weighted)

Son’s major

Father’s major 1 2 3 4 5 6 7 8 9 10 11
Education 1 0.94 0.80 1.00 0.81 0.80 0.74 0.74 0.00 0.70 0.88 0.63
Arts 2 0.32 1.00 0.37 0.35 0.31 0.36 0.32 0.00 0.21 0.35 0.38
Humanities 3 0.60 0.72 1.00 0.73 0.51 0.59 0.57 0.00 0.56 0.59 0.48
Law 4 0.65 0.72 0.87 1.00 0.77 0.68 0.66 0.00 0.60 0.68 0.53
Business 5 0.55 0.54 0.64 0.69 1.00 0.61 0.57 0.00 0.50 0.56 0.43
Science 6 0.64 0.63 0.67 0.73 0.60 1.00 0.69 0.00 0.51 0.63 0.35
Math/Comp. 7 0.64 0.76 0.88 0.63 0.73 0.98 1.00 0.00 0.52 0.64 0.54
Engineering 8 0.17 0.14 0.00 0.02 0.00 0.08 0.18 1.00 0.20 0.14 0.21
Agriculture 9 0.23 0.10 0.01 0.11 0.02 0.20 0.16 0.00 1.00 0.26 0.51
Health 10 0.69 0.66 0.76 0.75 0.63 1.00 0.57 0.00 0.57 0.84 0.59
Services 11 0.25 0.21 0.08 0.06 0.00 0.12 0.25 0.51 0.24 0.23 1.00
Mother’s major
Education 1 0.98 0.84 0.94 1.00 0.86 0.84 0.77 0.00 0.77 0.85 0.46
Arts 2 0.38 1.00 0.65 0.62 0.40 0.45 0.42 0.00 0.37 0.42 0.15
Humanities 3 0.62 0.71 1.00 0.78 0.70 0.74 0.67 0.00 0.57 0.58 0.46
Law 4 0.52 0.59 0.69 1.00 0.75 0.53 0.47 0.00 0.55 0.54 0.47
Business 5 0.21 0.14 0.06 0.00 0.37 0.17 0.29 1.00 0.25 0.16 0.38
Science 6 0.72 0.64 0.70 0.66 0.75 1.00 0.70 0.00 0.60 0.64 0.57
Math/Comp. 7 0.39 0.44 0.51 0.38 0.00 0.96 1.00 0.45 0.30 0.20 0.05
Engineering 8 0.14 0.19 0.10 0.09 0.00 0.27 0.23 1.00 0.17 0.33 0.25
Agriculture 9 0.39 0.43 0.27 0.40 0.00 0.42 0.32 0.69 1.00 0.34 0.42
Health 10 0.45 0.18 0.00 0.07 0.02 0.42 0.34 0.84 0.57 1.00 0.96
Services 11 0.21 0.27 0.06 0.00 0.02 0.21 0.26 1.00 0.28 0.22 0.60

Notes: See the notes to Table 1 for the full description of majors.
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and 5.7% for degree holders in the Humanities. The quality of parents’ occupational match 
would also contribute to the formation of subjective expectations about the major-specific 
outcomes. An accountant working as a chef, for instance, would be a less-reliable channel 
of information on the prospects of an accounting major than one who works as a certified 
public accountant.

To measure FOR beyond a binary proposition, related or not, we use the following contin-
uous index suggested by Aydede and Dar (2016):

=
L L
L L

FOR
/
/

of f

o T
of  (5)

where L is the number of workers, o is the occupation, f is the field of study, and T denotes the 
whole workforce. Given the large sample at our disposal, we use the frequency distribution 
of 41 fields of study across 40 occupations classified according to the National Occupational 
Classification (NOC–2011), which gives us 1,640 cells to calculate FOR. For each of the 41 fields 
of study, when we normalize FOR between 0 and 1 by using the highest FOR as numeraire, 
the resulting index, NFOR, reveals the ranking of each occupation for each major based on 
the native-born workers’ distribution. To provide a descriptive summary for FOR, we classify 
the NFOR in 2 class intervals (1–0.8 and 0.8–0.0) and report the distribution of spouses across 
these classes and 11 major fields of study in Table 3. If, for any given field of study, we consider 
the occupations with NFOR between 1.0 and 0.8 as relatively better-matching occupations, we 
see that 32% of husbands work in related occupations, with the same ratio slightly lower for 
wives. As expected, the ratio varies across majors from 10% for wives in humanities to 57% for 
husbands in education.

Finally, to see the relationship between parents’ education–job relatedness and children’s 
attraction to their parents’ field of study, we summarize the FSA for each child–parent pair by 

Table 3  Distribution of fathers and mothers by NFOR and 12 prime CIP codes (% and 
weighted)

Father Mother

NFOR Major’s NFOR Major’s

Majors 1.0–0.8 0.8–0.0 share 1.0–0.8 0.8–0.0 share
Education 1 57.32 42.68 7.41 56.80 43.20 8.74
Arts 2 28.50 71.50 3.44 28.33 71.67 3.55
Humanities 3 11.03 88.97 4.86 10.05 89.95 5.16
Law 4 23.89 76.11 9.62 23.51 76.49 11.15
Business 5 16.34 83.66 20.02 14.98 85.02 22.94
Science 6 26.53 73.47 3.33 26.28 73.72 3.21
Math/Comp. 7 32.11 67.89 3.61 29.01 70.99 3.27
Engineering 8 42.99 57.01 26.26 42.10 57.90 16.79
Agriculture 9 25.39 74.61 2.93 23.51 76.49 2.55
Health 10 36.15 63.85 11.91 33.22 66.78 16.08
Services 11 36.91 63.09 6.61 34.58 65.42 6.58

Total 32.15 67.85 29.62 70.38

Notes: (1) See the notes to Table 1 for the full description of majors. (2) The sample used in 
this table contains all working spouses, regardless of whether they have children with or 
without an identified CIP code.
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the parents’ occupational relatedness. In the first row, both father (F) and mother (M) work in 
occupations that are related to their majors. This relatedness is reflected with a binary variable, 
NFORC, which is 1 if NFOR is between 1 and 0.2; and 0, otherwise. Although this classification 
is arbitrary, it seems that, in all parent–child pairs, a higher FSA is associated with a greater 
NFOR. More interestingly, the highest average FSA in each column is observed when the match-
ing parent works in a related job irrespective of the other parent’s occupational relatedness.

For example, in the first column of Table 4, the average FSA is much higher (0.466 and 
0.469) when the father’s NFOR is 1 and not affected by the mother’s field-of-study relatedness. 
This observation recurring in each column implies that the FSA calculated for each child–par-
ent pair is strongly related to the matching parent’s occupational relatedness but not to that of 
the other parent. If this positive relationship is statistically meaningful, which we investigate 
in the following sections, it also implies that FSA indices properly retrieve parental differences 
in assortativity.

3 Conceptual background
Although theoretical work incorporates the uncertainty in schooling decisions, earlier empir-
ical studies assume that individuals are rational and use the achieved (observed) outcomes 
to infer decision rules. The recent literature shows that this is not a valid assumption and the 
difference between beliefs on choice-specific outcomes and their true population values is not 
trivial. A few recent studies (Wiswall and Zafar, 2015; Zafar, 2012, 2013; Arcidiacono et al., 
2012; Stinebrickner and Stinebrickner, 2014) address this identification problem by directly 
eliciting subjective beliefs from a sample of university students. While the evidence in these 
studies reveals that subjective expectations on major-specific outcomes greatly vary across 
individuals, there is a lack of evidence as to why beliefs are so dispersed around the true pop-
ulation values.

In this study, we want to understand the role of parents’ educational background in the 
process of expectation formation by looking at the assortative preferences that result from 
asymmetric information. The main driver of child i’s attraction to major m revealed in his/
her choice is the expected lifetime utility from the vector of future outcomes (Z) of a specific 
human capital endowment with the subjective joint probability distribution, G(Z|m,t), at time 
t, defined as follows:

∑β ( )( )= ∫
=

−E V U dG m tZ Z| ,i i m

t

T
t

i,

1

1  (6)

Table 4 Average FSA by NFOR based on 41 major CIP codes (weighted)

NFORC Father–son Mother–son Father–daughter Mother–daughter
F = 1, M = 1 0.466 0.534 0.525 0.445
F = 1, M = 2 0.469 0.515 0.527 0.425
F = 2, M = 1 0.418 0.535 0.502 0.443
F = 2, M = 2 0.417 0.517 0.492 0.428

Note: The sample used in this table contains all working spouses regardless of whether they 
have children with or without an identified CIP code.
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This implies that the appeal of major m would be different from that of major k for 
individual i due to differences in beliefs reflected in the subjective joint probability distribu-
tions G(Z|m,t) and G(Z|k,t), even if the majors have identical distributions in terms of their 
observed outcomes, F(Z|m,t) = F(Z|k,t). What makes the uncertainty on the same major dif-
ferent for each individual? Or what makes the uncertainty different for each major for the 
same individual?

The concept of information entropy in computer science, introduced by Shannon (1948) 
and used in economics by Sims (2003), argues that people have limited information-processing 
capacity, which alters the information for each individual and thus differentiates their behav-
iors. The “fundamental problem of communication” is for the “receiver” (user of the infor-
mation) to be able to identify what data were generated by the “source”, based on the signal it 
receives through the (potentially noisy) “channel”. Sim’s “noisy information model” provides a 
convenient framework in our context because the information flow is modeled by the discrep-
ancy in probability distributions of the same event at the source and the receiver.

In our context, parents serve as communication channels, not as the source of data, in 
transmitting publicly available information on choice-specific outcomes to their child, the 
“receiver”. The parents’ capacity (the level of complexity in their communication and the amount 
of time for them to convey the data) will be determined and bounded by their own majors. To 
understand the differences in this capacity and related entropy, one can imagine a biochemist 
father obtaining, carrying, and sustaining the information on possible outcomes of choosing 
nuclear physics or accounting as opposed to a father who is a nuclear physicist or an accountant.

The channel capacity, which reflects the information entropy on major m defined by the 
Kullback–Leibler (DKL) divergence (the difference between the subjective and objective prob-
ability distributions of the future outcomes, Z), can be expressed as follows when the father’s 
field of study (FOS) is set to m:

γ α δ β ρ( )= = + + + +E D m m t z| ,FOS , FSH FOR FOR FSH ,i KL
F M F M M  (7)

where superscripts F and M denote father and mother, respectively. Equation (7) implies that 
when FOSF = m, the expected level of information received by the child on major m is equal 
to an index number, g, the father’s level of information-processing capacity on his own major 
plus how compatible the mother’s major is with the father’s major (FSMM), and the degree of 
relatedness between the parents’ fields of study and their occupations (FOR). The key element 
in this expression is FSMM, which reflects the degree of relatedness (normalized between 0 and 
1) between the fields of study of the parents. Suppose that the mother’s major is the least-related 
major to her husband’s major (FSMM = 0). It implies that she is not a “high capacity” channel for 
the information on major m but becomes one on her own major. Hence, a higher degree of field-
of-study resemblance between parents makes them more efficient channels (less noisy) for more 
reliable information on major m by decreasing information entropy. However, a greater homog-
amy also means that parents become less efficient channels for other majors, with rising relative 
entropy. Therefore, the level of FSH defines the level of information asymmetry in a family.9

9 It could be argued that parents are not the only channels in accessing the information on majors. We assume that the 
information obtained from all other channels (child’s peers, councillors in his/her school, his/her close relatives, and 
the parents of his/her best friends) that a child would receive would be filtered through parents. This assumption is in 
line with the evidence that parental approval is the most important factor in the choice of major (Zafar, 2012). However, 
this assumption is not required in our empirical setting, as will be evident later.
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This example becomes less intuitive when we compare 2 cases where the father is  
an accountant in both cases but the mother is a biochemist in the first case and a historian 
in the second. How different would the parents be in terms of channeling reliable informa-
tion on accounting? Although the values of FSMM would be different, it appears that these 
2  cases should be the same in terms of available information on accounting, especially 
relative to the case where both parents are accountants. However, one has to think that the 
information entropy on a major in a family will be determined by not only the fact that it 
is the major of one of the parents, but also how much the major (accounting) is appreci-
ated, shared, understood, and discussed within the family, which is collectively ref lected 
in FSMM.10 The details of the conceptual framework summarized here can be found in the 
Appendix.

4 Empirical framework
The key challenge in understanding the potential contribution of information asymmetry to 
the observed assortative patterns is to control for other characteristics that are not observed 
by the researcher but aggregated in FSA. To address this issue, we use a conventional inter-
generational transmission framework, wherein we define quasi-likelihood functions with 
the response variables that take on fractional values of FSA between each child (son/daugh-
ter) and parent (father/mother) as a function of the spousal “appreciation” of each partner’s 
major and field-of-study relatedness. Intergenerational transmission refers to a process that 
outlines the transfer of individual characteristics, including abilities, preferences, and out-
comes, from parents to their children, which we choose as our empirical framework. For 
example, an intergenerational model of schooling estimated in the literature (Becker and 
Tomes, 1979; Solon, 2013; Black and Devereux, 2010; Becker et al., 2015) can be expressed as 
follows:

α α α α= + + + +S S h f ec
0 1

p
2

p
2

p c  (8)

This reduced-form equation explains the child’s schooling (Sc) as a function of the parent’s 
schooling (Sp), heritable attributes that parents may genetically pass on to children (hp), parent-
ing skills and preferences (f p), and child-specific characteristics (ec) independent from Sp, hp, 
and f p. Coefficient a1 reflects the causal effect of the parent’s schooling on the child’s schooling 
joined with, among others, the income effect that more education would be associated with 
better parental education. It can be shown that, if Equation (8) reflects the true model, a direct 
estimation of Equation (8) with unobserved hp and f p cannot identify a1, unless one assumes 
that endowments, hp and f p, are unrelated to Sp.11 Hence, an estimation of Equation (8) with-
out controlling for ability sorting and better parenting reveals the intergenerational elasticity 
between parent–child years of schooling, a summary measure of correlational associations 
between children’s outcome and parental educational background. Although it cannot answer 
whether more educated parents have more educated children because of their education, the 

10 It is true that more and better information on a major would not necessarily make it more attractive.
11 Holmlund et al. (2011) investigate the findings of a large number of studies to answer the following question: do more 

educated parents have more educated children because of their education? They show that the evidence is inconsistent 
across the other strategies (twins, adoptions, and Instrumental Variables models) and they could also encounter 
problems in obtaining bias-free estimates of causal intergenerational coefficients.
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intergenerational elasticity of schooling is a fundamental metric that has been used to measure 
the mobility across generations.12

Inspired from this literature, we propose a different identification strategy and start with 
4 reduced-form matching functions that use the child’s assortative preferences aggregated in 
FSA as an outcome of transmission, a process that is built on available information based on 
the parents’ educational background.

α α α α α α α= + + + + + + +h f h f eFSA NFSH NFOR ,F,S 0 1
M

2
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where scripts M, F, S, and D denote mother, father, son, and daughter, respectively. With the 
normalized FSH (NFSH) and FOR (NFOR), these equations reflect the idea that a child’s assor-
tative tendencies observed in his/her choice of major is related to the FSH and the degree of 
relatedness between each parent’s field of study and occupation within a family.13

As long as a higher homogamy (and occupational match) suggests a greater limitation 
in available information on alternative majors, the coefficients of NFSH (NFOR) capture the 
underlying field-of-study transmission that relates the children’s assortative preferences to 
the level of information asymmetry. The variable NFSHM in Equation (9), for instance, is 
bounded between 0 and 1. It reflects a perfect homogamy as it approaches 1. Intuitively, the 
a1 coefficient reveals how much the son’s preference for his father’s major will be affected by 
the extent to which his mother’s field of study becomes comparable. This reminds us of the 
earlier example: how much the son’s aspiration for his father’s major, accounting, will be 
affected if his mother was a biochemist instead of an accountant. Similarly, a positive and 
significant coefficient of NFOR validates the transmission as the parents would be more reli-
able transmitters of information when they work in their trained jobs. Hence, the presence 
of intergenerational transmission requires that the coefficients of NFSH and NFOR in those 
4 equations should be positive, with dissimilarities reflecting the difference between maternal 
and paternal influences.

Yet, the identification of transmission due to information asymmetry across alternative 
majors requires controlling for ability sorting and unobserved heterogeneity. Defining each 
child’s FSA separately for each parent provides an opportunity to create a setting similar 
to panel models. Since we observe 2 matches for each child, when we take the difference 
between them, the dependent variables in these matching functions better reflect the assor-
tative tendency because the omitted heterogeneity across children are differenced out from 
the equations as shown below.

ω ω ω ω ω τ− = + − + − +FSA FSA NFSH NFSH NFOR NFOR ,M,S F,S 0 1
F

2
M
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M

4
F c  (13)

12 There are several studies examining intergenerational education and income mobility (elasticity) in Canada: Turcotte 
(2011), Aydemir et al. (2013), McIntosh (2010), Corak (2001, 2017).

13 Given the parent’s major, the FSA reflects the child’s decision on a major that maximizes his/her expected utility. The 
theoretical foundation of this decision-making process is well-defined in the literature (Altonji et al. 2015). For now, we 
omit other child, parent, and family-specific attributes in Equations (9)–(12).
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σ σ σ σ σ υ− = + − + − +FSA FSA NFSH NFSH NFOR NFOR ,M,D F,D 0 1
F

2
M

3
M

4
F c  (14)

A similar identification method is also recognized and applied by Diamond and Agarwal 
(2016) by using the repeated measurements made available when each agent on one side of the 
market is matched to at least 2 agents on the other side. The intuition is that the same value of 
the unobservable characteristic of an agent determines multiple matches of that agent and can 
be differenced out in a measurement error model (Hu and Schennach, 2008).14 Unlike in other 
matching markets, this is particularly effective in our case because the assortativity revealed 
by FSA reflects only the child’s preferences defined over children, not over parents in matches.

These equations with within-parents differencing suggest that the difference FSAM,S 
and FSAF,S, for instance, should be smaller when NFSHM decreases, holding other covariates 
constant. Intuitively, if the mother married to an accountant holds a degree in biochemistry, 
NFSHM approaches its lower limit.15 As the mother becomes another channel of information 
on an alternative major, viz., biochemistry, the family information boundaries expand. Unlike 
the case when the mother was an accountant, this increase in the level of available informa-
tion in turn reduces the son’s bias toward his father’s major, i.e., accounting. Therefore, FSAF,S 
(the son’s attraction to his father’s major) should be smaller when NFSHM (resemblance of 
the mother’s major to her husband’s, measured by spousal differences in the appeal of their 
majors) becomes lower. Hence, the differences in w1 and w2, as well as s1 and s1, will provide 
information about the difference in transmission between fathers and mothers. However, the 
value (and the volume) of the available information provided by the homogamy measures in 
the family depends on whether the parents work in related occupations. This could be better 
understood if we change the accountant–biochemist example to one where the father works 
as a chartered accountant while the biochemist mother works as a branch manager in a bank, 
which diminishes the value of information on biochemistry from the mother. Since the par-
ents would be a better channel of information conditional on the quality of their occupational 
match, an increasing NFORM in Equation (13) should have both a negative impact on FSAF,S 
and a positive effect on FSAM,S. Hence, a positive and significant coefficient of NFORM indicates 
the existence of a transmission of field of study reinforced by expanding the reliable informa-
tion within the family.

As outlined earlier, in addition to the level of information asymmetry built on the par-
ents’ fields of study, children’s assortative preferences could also reflect ability sorting. The 
suggested within-family specifications can address this identification problem conditional on 
the assumption that the effects of unobserved parental traits in Equations (9) and (10), as well 
as in Equations (11) and (12), are statistically similar. Without this assumption and excluding 
NFOR for now, Equation (13) can be expressed as follows:
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where w3 = (β3−a3), w4 = (β4−a4), w5 = (β5−a5), and w6 = (β6−a6). When estimated by ordinary 
least squares (OLS), identification of w2 (w1) requires either that NFSHM (NFSHF) is indepen-
dent of unobserved parental traits or that w3, w4, w5, and w6 are 0, as shown below.

14 Models based on many-to-one matches are not new and are well-discussed in the literature (Roth and Sotomayor, 1992). 
The consequence of possible measurement errors in the dependent variable in our case may not result in attenuation 
bias but may inflate the standard errors of the estimates. 

15 This statement is justified based on a strong field-of-study homogamy reported in Section 2.2.
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First, we think that parents’ child-rearing skills, f M and f F, should not be significantly cor-
related with the homogamy measures NFSHM and NFSHF. It would be hard to find a systemic 
reason why individuals who choose their spouses in the same field of study would also be the 
future parents with more skills in rearing their children. Thus, a possible bias in the estimate 
of w2 should mostly originate from heritable traits, i.e., hM and hF, and their correlation with 
homogamy measures. To the extent that a field of study reveals the person’s overall ability 
endowments, it would be reasonable to question the role of ability sorting in field-of-study 
matches. But, it is ambiguous how this possibility translates into nonzero cov(NFSHM,hF) and 
cov(NFSHM,hM).

If we assume that h represents heritable mathematical skills, for instance, a higher NFSHM 
could be related to a higher and a lower hF (or hM) at the same time.16 To test this ambiguity, 
we can use matches where both spouses have at least a university degree in one of the follow-
ing majors: science, technology, engineering, and math (STEM). Hence, what we observe by 
a higher or lower NFSH among STEM majors should be the differences in assortative prefer-
ences isolated from ability sorting. In other words, if NFSH is relatively higher for electrical/
computer engineers, it means that they mostly choose their partners in similar fields instead 
of in theoretical statistics or chemical engineering, which are otherwise comparable in terms 
of ability requirements. The size of the data enables us to reduce the effect of cov(NFSHM,hF) 
and cov(NFSHM,hM) on the bias by estimating specifications (13) and (14) only for families 
that have similar ability endowments. Hence, as shown below, introducing a binary variable – 
STEM, which is 1 if both parents hold at least a university degree in one of the STEM majors, 
and 0 otherwise – into Equation (15), would help us address a possible bias in the transmission 
coefficients.
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The coefficients of interaction terms will reveal the differences in the sons’ assortative 
preferences in STEM families. With the within-family specification, 2 factors will shrink 
the bias on these coefficients: first, the differential effects of unobservables, w8 = (β3−a3) and 
w10 = (β5−a5) in Equation (17), as opposed to their levels in specifications (9)–(12), will diminish 
their size; and second, cov(STEM × NFSHM,hF) and cov(STEM × NFSHM,hM) will be close to 0 
for a subsample as specified by Equation (17). The definition of the bias in the estimate of w5, 
for instance, can be expressed as follows:

16 While we could observe a high NFSH for engineers and historians, they would have different mathematical skill 
endowments.
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Hence, the size and the significance of the coefficients w5 and w6 will reveal whether 
cov(NFSHM,hF) and cov(NFSHM,hM) can reasonably be assumed to be 0. The next section will 
provide the results.

5 Estimation results
5.1 Without within-family differencing

We start with the 4 equations from Equation (9) to Equation (12). To reduce the unobserved 
heterogeneity across families, we expand the equations by controlling for household income, 
provincial fixed effects, first spoken official language, household size, and whether the family 
resides in an urban or rural area. We also control for homogamy in terms of parents’ highest 
educational degree.17 After these additions, Table 5 reports 2 sets of estimation results for the 
selected variables.18 The first 4 columns report the estimation results, which include NFSH for 
each parent without accounting for parents’ occupational relatedness. We control for FSH in 
the last 4 columns as a binary variable –1 if both parents have the same field of study, and 0 
otherwise – and add FOR, for both father and other, as a categorical variable, FORC, which is 
equal to 1 if the normalized FOR is <0.2 and 0 otherwise. The first 4 specifications use larger 
subsamples because they exclude FOR, which can be identified only if the person’s occupation 
is known.

The results reported in Table 5 are informative as they reflect the maternal and paternal 
differences in children’s assortative preferences in choosing majors. The robust and positive 
NFSH coefficients provide evidence for the existence of what we call intergenerational trans-
mission of field of study. As outlined before, the results reflect the combination of ability sort-
ing, differences in parenting skills, and unobserved heterogeneity in individual and family 
characteristics, in addition to the limited information accessibility constrained by the par-
ents’ fields of study. The first 2 columns show that the son’s attraction to his parents’ majors is 
strongly related to the FSH, measured by spousal “appreciation” of each parent’s major. A com-
parison of the coefficients (0.10 and 0.05) indicates that the paternal influence is more domi-
nant in educational transmission for sons. A similar gap is not observed for daughters reported 
in the third and fourth columns. The robust NFSH coefficients still suggest that daughters will 
also be attracted to their parents’ field of study, yet mothers have more influence on daughters.

17 Education-degree homogamy (EDH) is calculated similar to FSH by using Equation (1). A total of 11 major granting 
educational degrees are identified in the 2011 NHS: trades, registered apprenticeship, college - <1 year, college - 1–2 years, 
college - >2 years, university - below bachelor’s, bachelor’s, above bachelor’s - less than master’s, medicine-dentistry-
veterinary, master’s, and PhD.

18 Since our specifications have fractional response variables that have values ranging between zero and one, their linearity 
in this range becomes a question. To address this issue, we have also estimated all specifications in this section with 
quasi-likelihood methods where the response variables are transformed to log odds using the binomial distribution 
(Papke and Wooldridge, 1996). Since the results are almost the same, we report here only the linear specifications 
estimated by OLS.
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In the last 4 specifications, we distinguish the parents who have the same field of study 
and control for their occupational match. The results are consistent with those of the first 4 
specifications. The effect of having homogamous parents on the son’s attraction to his father’s 
major (0.055) is much higher than his attraction to his mother’s field of study (0.002). Again, 
the same significant but smaller difference can be observed for daughters. The second channel 
to identify the transmission is the relatedness of parents’ field of study to their occupation, 
which is controlled by FORC in the last 4 estimations. The results confirm a strong and positive 
relationship between the parents’ occupational match and the children’s attraction to their par-
ents’ majors. The parental difference in this effect is also noticeable and in line with the earlier 
findings with FSH: the paternal effect is greater than the maternal influence for sons, while 
the same difference is less magnified for daughters. When it comes to other factors, a higher 
homogamy in terms of educational degree (EDH) is positively and significantly associated with 
FSA. Similarly, a higher household income has a positive effect on FSA. Among the other vari-
ables not reported in Table 5, only the urban–rural distinction in households’ location is signif-
icant. Children from families in larger cities experience higher FSA.19

19 To test the robustness of the results in Table 5, we also used different levels of the CIP and occupation classifications 
available in the 2011 NHS. The results are not sensitive to using larger or smaller dimensions of match tables. 

Table 5 Intergenerational transmission of field of study with 41 major CIP codes

1 2

FSA–Son FSA–Daughter FSA–Son FSA–Son

Father Mother Father Mother Father Mother Father Mother
FSH = 1 (if same major) 0.055 0.002 0.025 0.015

0.001 0.008 0.001 0.062
NFSHM 0.050 0.051

0.006 0.005
NFSHF 0.100 0.038

0.003 0.002
FORCF = 1 −0.044 −0.027

0.002 0.001
FORCM = 1 −0.020 −0.016

0.001 0.003
EDH 0.046 0.027 0.018 0.025 0.040 0.045 0.025 0.026

0.003 0.002 0.01 0.007 0.001 0.003 0.001 0.002
Household income 0.009 0.002 0.006 0.001 0.007 −0.002 0.005 0.001

0.001 0.009 0.001 0.002 0.001 0.009 0.001 0.004
Constant 0.347 0.529 0.464 0.434 0.390 0.615 0.464 0.434

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Number of Obs.  23,748  23,748  22,254  22,254  21,101  20,016  20,195  19,159 

Notes: (1) Dependent variables are indicated in each column’s heading. (2) Standard  
errors reported under the coefficients are adjusted by using the two-way clustering 
method (Cameron et al., 2011) at the individual and household levels. (3) EDH reflects 
education-degree homogamy and is a continuous variable normalized between 0 and 
1. HH Income is the annual disposable income for the household. Other variables that 
are not reported in the table control for household size, first spoken official language, 
whether the family is in rural area, and provincial fixed effects. (4) We also ran the regres-
sions with and without the parental age variables. The results are insensitive to the  
inclusion of parental age variables. (5) When we control for field-of-study fixed effects, 
the results do not change significantly.
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5.2 Within-family differencing

We address the identification with a within-family differencing as described in the previous 
section and report the results in Table 6.

The first 2 columns show the estimation results of Equation (13) with the same depen-
dent variable, the difference in the son’s attraction to his parents’ majors. The first column 
reports the estimation results of the restricted version of Equation (13). The estimation results 
for daughters based on Equation (14) are reported in the last columns. The restricted specifica-
tions in the first and the third columns use a new binary variable, NFORC, which reflects the 
difference in NFOR in 3 categories; the base category refers to the case that both parents have 
the same field-of-study relatedness. Either both work in related jobs (e.g., NFOR is between 
1.0 and 0.2 for both parents) or in unrelated jobs (e.g., NFOR is between 0.2 and 0.0 for both 
parents). The second category indicates that while the father works in a matching occupation, 
the mother does not. The third category specifies the opposite situation. Hence, the effect of 
parental differences in field-of-study relatedness can be captured by the last 2 categories.20,21

20 We define the base category with two opposite cases, either both parents work in related jobs or unrelated jobs, because 
we want to estimate the effect of field-of-study relatedness for each parent. Given that the dependent variable is the 
difference in child’s attraction to each parent’s major, this effect can only be captured when parents’ FOR is different.

21 The idea here is to identify the effect of FOR on the children’s attraction to their parents’ major, when the parents work 
in an unrelated occupation. Therefore, we actually tried to find the lowest cutoff point that realistically classifies the 
person’s job completely unrelated to his/her training. We also applied higher thresholds up to 0.4. The results are still 
robust. This is mostly because the distribution of FOR is convex. Hence, increasing the threshold from 0.2 to 0.4 had a 
minor effect because relatively few people exist in the bin of 0.2–0.4.

Table 6  Transmission of field of study by within-family specification with 41 major  
CIP codes

(FSAM,S) − (FSAF,S) (FSAM,D) − (FSAF,D)

1 2 1 2
(NFSHF) – (NFSHM) 0.153 −0.014

0.002 0.012
DFORC
1 Base Base
2 −0.033 −0.027

0.001 0.001
3 0.035 0.163

0.001 0.068
NFSHM −0.101 −0.005

0.001 0.023
NFSHF 0.162 −0.021

0.001 0.018
FORCM = 1 −0.016 −0.016

0.001 0.071
FORCF = 1 0.051 0.029

0.001 0.001
Constant 0.069 0.026 −0.076 −0.070

0.001 0.002 0.001 0.001
Number of Obs. 21,018 21,018 19,942 19,942

Notes: (1) Dependent variables are indicated in each column’s heading. (2) Standard errors 
reported under the coefficients are adjusted by using the two-way clustering method 
(Cameron et al., 2011) at the individual and household levels.
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The results are interesting and in line with the findings in our earlier estimations: the coef-
ficient of NFSHF in the first column, 0.153, confirms that (FSAM,S) – (FSAF,S) is greater when 
the gap between the appeal of each spouse’s major, (NFSHF) – (NFSHM), increases. Although 
this signifies the presence of intergenerational transmission, it does not offer an insight about 
the parental difference. This is because the gap could rise when NFSHF goes up, NFSHM goes 
down, or both occur simultaneously. The second column, based on Equation (15), helps us 
understand the difference. The sign of the coefficients on NFSHF and NFSHM are as expected. 
Since an increase in NFSHM has a positive impact on FSAF,S, it reduces the distance between 
FSAM,S and FSAF,S. When the mother’s major becomes similar to the father’s, NFSHM rises. 
Because higher homogamy implies more constraint in the family in terms of available informa-
tion on other majors, the son’s bias toward his father’s field of study rises. This is confirmed by 
the negative sign of the NFSHM coefficient. Equally, when NFSHF rises, the similarity between 
parents’ major becomes higher. Constrained by less information being available regarding 
other majors, the son’s attraction toward his mother’s field of study increases. This is verified 
by the positive sign of the NFSHF coefficient: because a rise in NFSHF increases FSAMS, the 
distance between FSAMS and FSAFS becomes larger. The difference between these effects (0.101 
and 0.162) again suggests that paternal influence is noticeably greater than maternal influence 
for sons. The same comparison for daughters in both specifications of Equation (14) would not 
offer the same evidence, which is also consistent with the relatively weaker effects for daughters 
reported in Table 5.

The existence of intergenerational transmission is also verified by the effect of the par-
ents’ field-of-study relatedness. In the first column, when evaluated against the base, the 
first category (fathers work in their trained job but mothers do not) has a negative effect on 
(FSAMS) – (FSAFS). Similarly, a significant positive effect is observed for the second category, 
wherein the mother works in her trained job but the father does not. These results are also 
confirmed with the unrestricted specification reported in the second column. Now, using 
FORC, if the mother’s major is not a good fit for her occupation, the negative coefficient 
(–0.016) indicates that FSAMS falls. Yet, when the father faces an educational mismatch in 
his job, the effect on (FSAMS) – (FSAFS) captured by a positive coefficient (0.051) becomes 
much greater. Interestingly, despite the insignificant effects of NFSH in the third and fourth  
columns, significant effects of FORC are observed for daughters, indicating the importance 
of parents’ occupational matching in transmission.

5.3 Within-family differencing among families with STEM majors

With within-family differencing as specified by Equations (13) and (14), the other factors, such 
as the effects of siblings, neighborhoods, and peers, either observed or unobserved, are dif-
ferenced out in the estimations. Hence, the results deliver better evidence about the role of 
information constraint in children’s assortative preferences. However, as outlined earlier, the 
success of this identification strategy is conditional on the extent to which the FSH is driven by 
the ability sorting in parents’ marriage.

One way to address this problem is to use a subsample that includes only those families 
in which both parents hold at least a university degree in one of the STEM majors so that the 
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difference in terms of their ability endowments would not be significant. Table 7 reports the 
estimations of the same specifications shown in the second and the last columns of Table 6 with 
STEM variables as expressed by Equation (17).

When one of the parents holds a degree in one of the non-STEM majors (or less than a 
bachelor’s degree), the coefficients of NFSHM and NFSHF (–0.079 and 0.161) are almost identi-
cal to those reported in Table 6 for sons. This could be plausible given that the share of families 
where both parents have a STEM major with at least a university degree is <20% in the whole 
sample. The insignificant interaction terms indicate that ability sorting may not play a strong 
role in sons’ assortative preferences. Hence, when the comparison is made only among STEM 
parents, the difference between paternal and maternal effects observed in field-of-study trans-
missions tends to remain similar to those found in our earlier results. The significant effect of 
STEM implies that the difference between FSAMS and FSAFS is lower for STEM families than 
for non-STEM families. None of the results are significant for daughters, except for FORC, 
which is in line with our earlier findings. There is a large literature on gender differences in 
occupational preferences and major choices. However, we do not have a satisfactory expla-
nation why daughters’ assortative preferences show no evidence of the link between parents’ 
homogamy and their assortative preferences in their choice of major.

5.4 Limitations

The total elasticity of the assortative preferences in terms of parental homogamy can be 
expressed for sons by the sum of the coefficients NFSHM and NFSHF, which is 0.24 (–0.079 
and 0.161) from Table 7. This measure suggests an important role of information asymmetry in 
children’s choice of major to the extent that the FSH reflects the level of constraint on the avail-
able information when children choose a major. It should be noted that the results reported 
here are conditional on a couple of assumptions. Although our sample, children living with 
their parents, is representative of the whole sample, there would still be a selection problem 
whereby children living with their parents may have different behavioral predispositions that 
affect their assortative preferences.

Table 7 Within-family specification for STEM parents with 41 major CIP codes

(FSAMS) − (FSAFS) (FSAMD) − (FSAFD)

 Coef. Std. err. Coef. Std. err
NFSHM −0.079 0.002 0.001 0.370
NFSHF 0.161 0.001 −0.020 0.019
STEM −0.151 0.001 0.019 0.176
STEM × NFSHM −0.042 0.101 −0.037 0.306
STEM × NFSHF −0.037 0.098 −0.103 0.423
FORCM = 1 −0.017 0.001 −0.016 0.004
FORCF = 1 0.042 0.002 0.027 0.001
Constant 0.027 0.003 −0.073 0.003
Number of Obs. 21,018 19,942

Notes: (1) Dependent variables are indicated in each column’s heading. (2) Standard errors 
are adjusted by using the two-way clustering method (Cameron et al., 2011) at the individ-
ual and household levels. Coef. = coefficient; Std. err. = standard error.
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Second, our underlying model is static and uses data that includes children mostly with 
completed majors. The evidence in the literature is very clear that students update their beliefs 
in their first years of study and switch majors, if the cost is endurable. We believe that using 
data on completed majors leads to a downward bias in our estimations.

Third, the constraint on available information in a family measured by the FSH would not 
necessarily suggest a positive bias in children’s choice toward their parent’s majors. Although 
it is less likely, 2 accountant parents would not necessarily be in favor of their child taking up 
their major and may deter their children from their own majors. This possibility would also 
create a downward bias in our estimations.

Finally, as is very common in most empirical studies in the field of education econom-
ics, our attempt to remove a possible ability bias from our estimations has its own limits. We 
think that specifications that use within-family differencing and a proxy that groups families 
with similar ability endowments substantially shrink the bias. Still, within-family differencing 
may have some other complications in our estimations. For example, a son’s attraction to both 
parents’ majors may not be homogeneously comparable, when each parent’s attraction to their 
own field of study strongly reflects their gender preferences. There is an extensive literature 
on gender differences in field-of-study preferences (Zafar, 2013). Our hypothesis in this study 
implies that, when his mother’s field of study becomes distinct from his father’s major, the son’s 
attraction to his father’s major will be affected negatively. This is because the field-of-study 
diversity in the family will expand the information boundaries and consequently his choice 
set on majors. This may not be true, i.e., he will not be less attracted to his father’s major, if his 
mother’s choice of field of study is strongly gender based. Our expectation is that a possible bias 
due to this issue would lead to underestimation of the true effect of information constraints.

With all these caveats, we still believe that the transmission coefficients provide very valu-
able information on the intergenerational field-of-study elasticity, which is the first in the liter-
ature, to the best of our knowledge.

6 Concluding remarks
The potential spillover effect of education is a fundamental public policy matter because it may 
lead to progressive skill stratifications and dispersed income distributions in every generation 
if ability sorting in mating and across generations is substantial. Most studies use years of 
schooling as the educational outcome for children, treating education as unidimensional. Yet, 
educational decisions are no longer just about the quantity but about the specialization to be 
pursued as well. This study quantifies assortative mating by estimating FSH and intergenera-
tional transmission of skills by measuring assortative preferences in the choice of major. As 
uncertainty increases with the complexity of educational choices, misinformed decisions made 
by students in choosing their field of study or by administrators in allocating their limited 
resources across disciplines would curtail social and economic progress. This study’s primary 
objective is to investigate children’s attraction to their parents’ field of study, reflected by assor-
tative tendencies in child–parent matches as an outcome of information asymmetry.

To identify the role of information asymmetry in assortative patterns in each field- 
of-study match between parents and children, we define quasi-likelihood transmission 
functions, wherein the response variables take on fractional values of FSA between each 
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child (son/daughter) and parent (father/mother) as a function of the spousal “appreciation” 
of each partner’s field of study. We use the confidential major file of the 2011 NHS so that 
the size of the data and the availability of different levels of aggregation in the CIP allow 
us to develop 3 indicators: the degree of children’s attraction to their parents’ field of study 
(FSA), the degree of FSH, and the degree of relatedness between each parent’s field of study 
and occupation (FOR).

Comparable to panel models, we define within-family transmission functions with 
1-to-2 matches (1 for each parent). The results show that children’s choice of field of study 
exhibits significant assortative preferences isolated from ability sorting and unobserved dif-
ferences across majors and other family characteristics. We also find that the assortative 
tendency is the highest between fathers and sons relative to all other pairs, namely, father–
daughter, mother–son, and mother–daughter. This evidence becomes even stronger when 
we use more disaggregated CIP codes and control for the educational degrees. With some 
caution, we attribute this persisting assortative tendency to the information asymmetry 
across alternative majors built on by parents’ educational backgrounds within families.
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Appendix on Equation (7)
The concept of information entropy in computer science was introduced by Shannon in 1948. 
The theory defines the basic model of information processing with 3 elements: a source of data, 
a communication channel, and a receiver. The “fundamental problem of communication” is for 
the receiver to be able to identify what data were generated by the source, based on the signal it 
receives through the (potentially noisy) channel.

Different from the “sticky price model” (Mankiw and Reis, 2002), in which the agents 
receive the data with delay yet without error, Sims uses Shannon’s information theory and 
argues that people have limited information-processing capacity, which alters the infor-
mation for each individual and thus differentiates their behaviors. His model, called the 
“noisy information model”, provides a convenient framework in our context because the 
information flow is modeled by probability distributions. The difference between the joint 
distribution of population values of choice-specific outcomes (the “input” of the channel, 
Fi(Z|m,t), typically representing the “true” distribution of data) and the subjective beliefs 
on them (the “output” of the channel, Gi(Z|k,t) typically representing an “approximation” 
of Fi(Z|m,t) can be considered as the information loss due to the channel capacity. The 
divergence of Gi(Z|k,t) from Fi(Z|m,t), also called “relative entropy” or Kullback–Leibler  
(DKL) divergence, reflects the amount of information lost when Gi is used to approximate  
Fi and can be expressed as follows:

( ) ( ) ( )= ∑  D f z f z g zlog /KL i i i i,

Since fi represents the “true” (joint, marginal, or conditional) distribution of the data, 
differences in DKL across individuals can only be explained by varying gi, different approxima-
tions of fi for any given value, z.

This example illustrates a more general point: the optimal prediction of fi with gi that 
minimizes the information loss depends on the information-processing capacity of each chan-
nel. Therefore, there must exist 1 optimal channel among the many options for each fi that 
maximizes the mutual information measured by DKL. Yet, when these options are not readily 
and equally available, the optimization problem leads to suboptimal choices that fit the chan-
nel capacity. Sims (2003) suggests that the nature of the “noise” that quantifies the informa-
tion-flow constraint in each channel does not need to be exogenous as in physics. Instead, 
the available information capacity delivers a model for the “noise” in many applications in 
economics.

In our context, parents serve as communication channels, not as the source of data, in 
transmitting publicly available information on choice-specific outcomes to their child, the 
“receiver”. The information on choice-specific outcomes is not generated by the parents. These 
outcomes are random variables, and the information on them is publicly available. The parents’ 
capacity can also be defined by their ability to reach out to available sources. Sims (2003) calls 
this concept as “individuals’ information-processing constraints”.

The channel capacity on major m, defined by DKL, can be expressed as a function of the 
parents’ fields of study (FOS) and whether they practice their majors (FOR):

( )( ) =E D m t f s| , FOS ,FOS ,FOR ,FOR ,i KL
F M F M



Page 25 of 25  Aydede. IZA Journal of Labor Economics (2020) 9:6

All other factors, including public domains that are accessible by the parents of individual 
i and may affect their capacity on major m, are included in vector s. For example, even if both 
parents are teachers (major k), the parents’ friends (or close relatives) who are dentists (major 
m) would reinforce the parents’ capacity and reduce the entropy in transmitting the informa-
tion on major m. Although modeling information flows is a complex task, one simple way to 
approximate the above expression is to define it as conditional on one of the parent’s major. 
Thus, assuming linearity in f(.), the level of information-processing constraint can be expressed 
as Equation (7) in the text.


