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We consider the health effects of “precision” screening policies for cancer guided by
algorithms. We show that machine learning models that predict breast cancer from
health claims data outperform models based on just age and established risk factors.
We estimate that screening women with high predicted risk of invasive tumors
would reduce the long-run incidence of later-stage tumors by 40%. Screening
high-risk women would also lead to half the rate of cancer overdiagnosis that
screening low-risk women would. We show that these results depend crucially
on the machine learning model’s prediction target. A model trained to predict
positive mammography results leads to policies with weaker health effects and
higher rates of overdiagnosis than a model trained to predict invasive tumors.
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1. Introduction

Preventive screening is a potentially powerful medical intervention against can-

cer. A timely mammogram, for example, could catch a deadly tumor before it

grows—possibly saving a life and preventing more expensive later-stage treat-

ments. The same mammogram, however, could identify a tumor that would have

never grown enough to cause health issues. This could lead to personal trauma,

needless biopsies, and potentially harsh treatments that could have been avoided.

Weighing the costs and benefits of these outcomes brings us to central question of

preventive intervention: Who should be screened? The most common approach

to this question is to target screening through guidelines.1 Several countries have

developed age-based cancer screening programs, as age is often the best predictor

of any cancer. Empirical data on cancer incidence is often used to determine these

age-based criteria.2

The same cancer incidence data used to set age-based criteria, though, can

now be leveraged differently. The question of who to screen is a prediction policy

problem (Kleinberg et al., 2015). We would like to screen those at high risk of

cancer. As a result, we can potentially construct “precision” screening policies

(e.g. Marcus et al., 2016; Conner et al., 2022) by building richer models of cancer

risk. In this paper, we conduct such an exercise on Danish administrative data and

evaluate its potential health effects.

The health effects of a cancer screening policy set through machine learning

depend on the policy’s ability to target women whose health would improve from

a screen. Each cancer screen can improve health by detecting a tumor early, when

1Smith et al. (2019) reviews cancer screening guidelines and evidence on the effects of screening
across cancer types. Kowalski (2021) reviews and analyzes recent evidence on breast cancer
screening.

2The core empirical challenge in this literature is to estimate the effects of screening guidelines
when counterfactual outcomes are not observed. In recent work, Einav et al. (2020) use a clinical
oncology model of cancer growth to estimate the effects of changing screening recommendation
ages. Kowalski (2023) analyzes data from a clinical trial that randomized screening to estimate
health effects of mammography. Both these papers also discuss how cancer screening guidelines
are more likely to be followed by people at lower risk of deadly cancer.

1



Figure 1: Health effects of screening depend on a tumor’s potential to grow.

Notes – Screening policies aim to diagnose tumors at earlier stages, while keeping
overdiagnosis low. For a tumor that would otherwise grow, early detection through
screening leads to early diagnosis before the tumor grows and may cause health problems.
For a tumor that would otherwise not grow, early detection through screening leads to
overdiagnosis, as the tumor would never grow and cause health problems. Therefore, the
health effects of using a machine learning model to set screening policy depend both on
the model’s predictability (which leads precision screening policies to catch more tumors)
and its ability to target tumors that will grow (which makes catching those tumors
valuable).

it may be easier to treat. A tumor that is not caught early through a screen has the

potential to grow until it causes symptoms. If a tumor is diagnosed after causing

symptoms, it may have spread beyond its original site, require more aggressive

treatment, and result in reduced survival. Figure 1 describes the potential outcomes

of a screen-detectable tumor that is either screened or left unscreened. An effective

screening program increases early diagnosis of cancer—a machine learning model

that can identify women at high risk of cancer can target screening to women who

are likely to receive cancer diagnoses. However, not every cancer diagnosis leads to

health benefits, and treatment of a cancer that would not otherwise grow may cause

harm. Because not every positive screen is valuable, the goal of an effective cancer

screening program is not just to maximize early diagnosis, but also to avoid high
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rates of of overdiagnosis. If we were to target screening using a machine learning

model that predicts screen-detectable cancer, the model’s predictive performance

alone would not determine all of the health effects of using it to guide screening.

Therefore, in this paper we both train machine learning models to predict breast

cancer and estimate the health effects of using these models to determine breast

cancer screening policies.

We begin by training models to predict cancer-related outcomes using Danish

demographic and healthcare claims data. Traditionally, age is the primary charac-

teristic used to set screening criteria as it predicts cancer incidence and is readily

observed. Some of the additional characteristics that could help to assess medical

risks may not be as readily observed and may involve collecting new information

through genetic testing or other costly procedures (e.g. Conner et al., 2022). How-

ever, the rich set of characteristics in health claims data is already available—it

can be used to inform screening recommendations without having to collect costly

new information. These claims data, paired with the existing risk factors, may help

to build better models of cancer risk. For each woman in our dataset, we observe

the breast cancer risk factors of age, age of first birth, and family history, as well

as a large set of medical claims and prescriptions history. For our main analyses,

we train a model using this data to predict an invasive tumor caught through a

screen—not just an abnormal mammogram result—a distinction we will revisit

later. The model is predictive, with an out-of-sample AUC-ROC score of 0.629. The

added flexibility of our machine learning model leads to a large improvement in

predictive performance. Our model improves predictive performance by 55% over

using just age to predict invasive tumors, and by 45% over a model that considers

age along with established demographic and medical risk factors.3

How should we interpret this gain in predictive performance? We can estimate

3Conner et al. (2022) estimate how using risk to target screening guidelines could increase
the effectiveness of screening for chromosomal abnormalities. The authors find that risk scores
obtained from a non-invasive procedure can predict subsequent positive test results from an
invasive procedure. Huang et al. (2021) estimate how much machine learning models trained
on healthcare claims data to predict bacterial test results can improve performance over models
trained on just demographic data.
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how effectively policies informed by our risk model catch tumors compared to

policies informed by age. In the sample used to train the algorithm, Danish women

aged 50-69 were targeted for mammography through a national screening pro-

gram. A counterfactual policy that would raise the eligibility age for the program

would both reduce overall screening and reduce the number of invasive tumors

caught through the program. We use data on tumors caught through the program

and screens conducted through the program to estimate effects of counterfactual

policies with different eligibility criteria. We show that when compared to policies

that determine program eligibility using age thresholds, policies that determine

program eligibility using risk thresholds could both increase the number of inva-

sive tumors caught and reduce overall screening. Compared to a policy that would

raise the eligibility age for the program by three years, a policy that would target

mammograms using the risk model would miss 31% fewer invasive tumors while

keeping the overall number of screens constant. A different risk-based policy could

keep the overall number of invasive tumors found constant, but would lead to an

additional 31% reduction in total screens.4 In addition to improving the efficiency

of screening, we show policies that are targeted through risk models would screen

women with larger tumors, which the medical literature has shown are more likely

to become deadly.

The previous results demonstrate that algorithms can more effectively target

screens to women for whom these screens would catch invasive tumors. How-

ever, these results do not yet speak to whether precision screening policies set

by algorithms would lead to long-run health benefits. Catching some tumors

early through screening might not lead to any health benefits. For example, some

screen-caught tumors might never become symptomatic or deadly—a policy that

catches these kinds of tumors at screen-detectable stages would not improve health

outcomes, and would result in overdiagnosis of cancer. To make claims about

4These results have an analogy in clinical testing—the optimal level of testing depends on
diagnostic skill. Abaluck et al. (2016) and Currie and MacLeod (2017) argue that the key question
is more than just how much to test, because clinicians vary in diagnostic skill. In the context of
screening, we are comparing the diagnostic skill of different risk models. Differences in skill imply
that policies with the same welfare effects need not hold fixed the total level of screening.
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long-run health effects, we must estimate how observed outcomes would differ

from counterfactual outcomes if women were not targeted for screening. As we do

not observe these counterfactuals in the data, these estimates are subject to a causal

inference challenge. For a woman whose cancer was caught through screening,

we do not know how the cancer would have developed if she had not received

early treatment. For a woman who was not covered by the screening program but

developed a symptomatic cancer, we do not know whether early screening would

have improved her health outcomes. We require some other source of variation in

the data to produce credible counterfactual estimates.

To construct these counterfactuals and estimate the health effects of screening,

we use a natural experiment produced by the widespread introduction of breast

cancer screening in Denmark from 2007-2010. Over this period, most Danish

women aged 50-69 were introduced to a population-level screening mammography

program. If a counterfactual population of women who were not targeted by the

screening program would have the same cancer incidence patterns in the years

following the policy change as in the years before the policy change, this natural

experiment allows us to evaluate the health effects of screening by comparing

post-policy health outcomes to pre-policy health outcomes. The clinical literature

suggests we estimate these effects on a natural set of health outcomes related to

long-run cancer incidence and early detection rates.

Welch et al. (2016) argue that an effective screening policy reduces the long-

run incidence of large (≥ 2cm diameter) tumors, which are more likely to cause

health problems. The authors also argue that an effective screening policy should

not increase the long-run detection of small (< 2cm diameter) tumors too much

relative to the decrease in large tumors, as this suggests that some of these small

tumors would have never become large, and were therefore overdiagnosed. We first

estimate effects of the existing Danish universal screening policy on these outcomes,

and then estimate how these effects differ across high-risk and low-risk women.

Across the full population covered by the Danish screening policy, we estimate

that large tumor incidence decreased by 41 per 100,000 person-years while small

tumor detection increased by 99 per 100,000 person years. The universal screening
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policy decreased large tumor incidence by 31% and led to an overdiagnosis rate of

59%.

While these estimates correspond to health outcomes of the entire population of

women covered by the screening policy, women at higher risk might benefit more

from screening than women at lower risk. We find for women with high risk, large

tumor incidence would decrease by an additional 61 per 100,000 person-years.

In addition, small tumor detection would increase by 53 per 100,000 person-

years. We estimate that for women at high risk, the health effects of screening for

reducing large tumor incidence are 4.4 times larger than for women at low risk.

The overdiagnosis rate of these women is also much lower, at 32% compared to

72%. Moreover, we find that women at high risk would have larger decreases in

cancer mortality from the policy—women with high invasive tumor risk would

have 32 fewer cancer deaths per 100,000 person-years.

While the previous estimates correspond to the effects of policies that differ-

entially target women aged 50-69 for screening, it may also be of high value to

target younger women for screening if they are at sufficiently high risk of cancer.

Estimating the effects of such policies requires additional structure beyond our

current environment, as there is no historical variation in screening eligibility for

women younger than 50 in Denmark. We turn to a clinical oncology model of

breast cancer development (Tan et al. 2006, as calibrated in Einav et al. 2020) to

produce these estimates. We estimate that a policy that screens high-risk women

starting at 40, and all women starting at 50, would reduce the share of tumors that

become large by 15%.

In isolation, these results demonstrate that machine learning models can effec-

tively predict cancer-related outcomes and can lead to large benefits when used

to guide health policy. However, we also present a cautionary tale that illustrates

that predictability alone is not enough to determine the health benefits of a pol-

icy guided by machine learning. One design choice was crucial for our results:

We trained our main model to predict invasive tumors. A perhaps more natural

choice would have been to train the model to predict abnormal mammography re-

sults. “Positive,” abnormal mammograms are a direct product of screening—they
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are identified before any additional invasive procedures, and finding a screen-

identified abnormality could suggest that the mammogram was of high value. A

model trained on abnormal mammograms also has similar predictability as our

main model, with an AUC-ROC of 0.625. These results alone may suggest that

targeting screening using abnormal mammogram risk could be as effective as

targeting screening using other cancer-related risks.

However, using the same estimation strategies as we use to evaluate our main

invasive tumor model, we find that policies set using the abnormal mammogram

model would have much smaller health benefits. We estimate women at high risk

of abnormal mammograms experience a 16% reduction in large tumor incidence,

compared to 31% among women at high risk of invasive tumors. We estimate the

cancer overdiagnosis rate of women at high risk of abnormal mammograms is 61%,

compared to 32% for women at high risk of invasive tumors. To understand why

policies set using abnormal mammogram risk would produce poorer outcomes,

consider that common outcomes from screening mammography are false positive

and earlier-stage cancers. A model trained to identify women at higher risk of an

abnormality may also identify women at higher risk of false positives or cancers

that may not grow.

This analysis demonstrates that the alignment between the prediction target

and welfare objective is crucial in prediction policy problems. The fact that a model

is predictive does not determine whether its prediction target is welfare-aligned.

In this paper we show that a seemingly-intuitive prediction target—abnormal

mammography result—may lead an algorithm to target screening to women whose

cancers may never grow. A model trained on a prediction target that reflects cancer

at later stages—invasive tumor—leads to more effective policy. Making decisions

based on machine learning models whose prediction targets are misaligned can

lead to inefficiency (Mullainathan and Obermeyer, 2017) and inequity (Pierson et

al., 2021), and changing the prediction target to better match the welfare-relevant

objective can lead to large improvements in health outcomes (Obermeyer et al.,

2019). Finding the right prediction target requires domain knowledge and the

ability to evaluate the decisions made using the model’s outputs.
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2. Background and Data

2.1. Breast cancer screening

Breast cancer is the most prevalent cancer in women worldwide. In 2018, an

estimated 2.1 million new breast cancer diagnoses were made globally. More than

30% of these cases occurred in the European Union and the United States. In the

same year 626,679 women died of breast cancer, making it the leading cause of

cancer death in women throughout the world. Breast cancer is also the second

most common cause of cancer death among women in the EU and the US, after

lung cancer.5

Breast cancer screening is the medical screening of asymptomatic women for

breast cancer with the aim of detecting cancers early and of improving health

outcomes. The most basic form of screening includes a clinical breast exam—a

physical examination of the breast by a health care provider. Although clinical

breast exams were widely recommended in the past, the standard screening method

currently recognized by expert organizations, including the American Cancer

Society and the European Commission, is mammography. During a mammography

screening, a radiologist takes low-dose X-ray pictures of a woman’s breasts from one

or two angles (frontal and profile) and interprets the images to form diagnoses.6

Virtually all developed countries have policies concerning coverage of mam-

mography screening. We compare screening programs across OECD countries in

Table 1. In Europe, mammography screening is typically provided through orga-

nized screening programs (Altobelli and Lattanzi, 2014; Guthmuller et al., 2023).

During the 1980s and 1990s, mammography screening was offered by a handful of

5These statistics come from the Global Cancer Observatory, owned by the International Agency
for Research on Cancer. The estimates are based on the most recent data available from population-
based cancer registries, the World Health Organization, or on publicly available information online.
More information is available at this link.

6Mammography is also used as a diagnostic tool. Diagnostic mammograms are generally
offered to women with previous abnormal screening mammograms or with family histories of
breast cancer, as well as in the presence of certain symptoms (e.g., lumps in the breast, changes in
the breast structure or the nipple).
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EU Member States, primarily at the local level. The increase in organized screening

programs followed the European Commission’s 2003 recommendation to imple-

ment population-based nationwide screening for women aged 50–69. By 2014, 22

of the then 28 EU Member States had established population-based nationwide

breast cancer screening programs. Although there are national variations in the

details, these programs share key features across target ages, screening intervals,

and screening methods. In a typical program, women aged 50–69 are sent an

invitation letter every two years to receive mammography screening free of charge.

Most countries rely on digital mammography and use double reading of normal

mammograms.

The United States does not have a universal breast cancer screening program.

Instead, mammography screening is tied to insurance status. For women with

private health insurance, subsidized breast cancer screening was initially imple-

mented through state laws that required private health insurance plans to include

screening mammograms as a covered benefit (Bitler and Carpenter, 2016). Even

though more than 42 states enacted these laws between 1987 and 2000, there was

substantial variation in target age groups across states, as well as in the frequency

of screenings. The 2010 Affordable Care Act streamlined these differences through

a national policy where all private insurance plans are required to cover the full

cost of screening mammograms for eligible women. Mammography screening

for uninsured women is primarily organized through the National Breast Cancer

and Cervical Cancer Early Detection Program, a federal program that provided

earmarked funds to states to provide cancer screening to uninsured low-income

women. The program was rolled out across states between 1991 and 1999. The

US Preventive Services Task Force recently issued new draft recommendations for

biennial screening mammography for women aged 40 to 74, which increased the

range from its previous recommendation to stop screening for women aged 40–49

in 2009.7

These widespread screening recommendations have recently come under scrutiny

7More information is available at this link. Churchill and Lawler (2023) document the effects
of the task force’s previous recommendation for women aged 50–74.
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because of the potential harms that may outweigh the benefits. In particular, mam-

mography screening can result in high false-positive rates and overdiagnosis—the

diagnosis of a cancer that would not have been detected during the remaining

lifetime of the woman in the absence of screening (Bleyer and Welch, 2012; Løberg

et al., 2015; Welch et al., 2016). Recent reviews put the cumulative rate of false

positives over the recommended screening age range at around 20% in Europe

and 30% in the US (Hofvind et al., 2012; Hubbard et al., 2011). The overdiagnosis

rate is more difficult to calculate in observational studies because it depends on

assumptions about the evolution of detected cancers in the absence of screening.

Current estimates come from randomized control trials (Miller et al., 2014; Kowal-

ski, 2021) or natural experiments (Welch et al., 2006), and find overdiagnosis rates

ranging from 14-81%.

In response to these concerns, there are now global calls for changes to breast

cancer screening policies. Academic researchers and policymakers have proposed

and examined the effects of various such changes to current practices. For example,

recent academic work estimates the effects of proposals to raise the eligibility age

for screening recommendations (e.g., Einav et al., 2020). In a more radical ap-

proach, the members of the Swiss Medical Board, an agency that assesses medical

cost-effectiveness, contemplate the effects of abolishing mammography programs

altogether (Biller-Andorno and Jüni, 2014). Denmark has increased the population

coverage of its breast cancer screening programs, with a nationwide push begin-

ning in 2007. We discuss the Danish breast cancer screening context further in

Appendix A.1.

2.2. Data

We use national administrative data from Denmark over the period 2004–2019.

Using individual identification numbers, we are able to add information from

several other sources of administrative data. First, we use the Danish Breast Cancer

Cooperative Group data set, which covers the near-universe of invasive breast can-

cer diagnoses over our sample period, with detailed data on clinical characteristics
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(including tumor size), and date and type of surgery. Information on screening

comes from the Danish Quality Database of Mammography Screening database,

which covers the nationwide screening program from 2008–2016 (Langagergaard

et al., 2013; Mikkelsen et al., 2016). We obtain medical history and demographic

information from other registers, which we describe further in Appendix A.2

Our sample is constructed as follows. Over the period 2004–2019, we identify

in each year women with no invasive breast cancer history aged 50-69—the age

range targeted by the nationwide program. We restrict our analysis to women

living in regions of Denmark that did not have existing screening programs, which

account for 75% of women in the target age range across the country. Our data

frame covers a total of 8,580,783 person-years and 973,310 women. Out of these

observations, 4,945,009 occurred starting in 2011, after the mammography screen-

ing introduction had concluded. Based on the invasive cancer data from the Danish

Breast Cancer Cooperative Group (Christiansen et al., 2016), we also identify can-

cer characteristics for every woman diagnosed with invasive cancer in our sample,

and whether the cancer was found through the screening program. The incidence

of invasive cancers found across our entire sample was 307 per 100,000 person-

years, of which 99 per 100,000 person-years were large tumors with diameter

greater than or equal to 2cm. We use the Danish Quality Database of Mammog-

raphy Screening to identify abnormal mammography results identified through

the screening program. Table 2 describes the composition of our data across these

categories.

2.3. Model training and comparison

We randomly split our main sample into a 50% training sample and 50% evaluation

sample. We split the data by individual so each woman appears solely in either the

train or evaluation sample. We develop and evaluate the performance of our cancer

risk models on a subsample of 441,515 women aged 50-69 who were screened

through the population program in 2009 and 2010.8 We train gradient-boosted

8Although the national program was announced in 2007, the widespread introduction of
population-level screening mammography did not begin until the middle of 2008. Our dataset has
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trees using age, family history, nulliparity, age at first birth, and 581 variables

that correspond to previous medical and prescription claims. We include more

information about our training procedure in Appendix A.2.

For our main model, we predict whether the screen led to an invasive tumor di-

agnosis. As cancer is a rare event, to evaluate our model’s predictive power we con-

sider the area under the curve of the receiver operating characteristic curve (AUC-

ROC).9 The AUC-ROC corresponds to the probability that the model correctly

ranks a randomly-selected positive class–negative class pair. Our full model yields

an AUC-ROC of 0.629. For comparison, using just age to predict invasive tumor

has an AUC-ROC of 0.583. A gradient boosted-tree model model that includes age,

nulliparity, age of first birth, and family history increases the AUC-ROC to 0.585,

and adding history of progestogens, estrogens and angiotensin receptor blockers—

drugs often found to be correlated with breast cancer—increases the AUC-ROC to

0.589. Compared to a random classifier, which would have an AUC-ROC or 0.5,

our model increases predictive performance by (0.629 – 0.5)/(0.583 – 0.5) ≈ 55%

over using just age to predict invasive tumor incidence. Our model also increases

predictive performance by (0.629 – 0.5)/(0.589 – 0.5) ≈ 45% over using a model

trained on established risk factors.

We additionally train a model to predict abnormal screening mammography

results among the women who were screened during this period. This predictor

has similar performance as the invasive tumor predictor, with an AUC-ROC of

0.625. It may be intuitive to target a screening policy to women who are likely to

have an abnormal screen result. We will revisit this question in Section 5.

3. Turning Predictions into Screening Policies

How can we interpret the gain in predictive performance from this machine

learning model? In this section, we compare how effectively the invasive tumor

comprehensive labels for cancers caught through the program in 2009 and 2010.
9Raw accuracy scores are less appropriate for predicting a rare event than the AUC-ROC metric.

A classifier that predicts no cancer for all women would have an accuracy higher than 99 percent,
but would not provide useful rankings of women by breast cancer risk.
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predictor can predict invasive tumors compared to using just age as a predictor. We

show that using risk to guide cancer screening policies can catch more cancers and

reduce overall screening compared to using age to guide cancer screening policies.

Furthermore, we show that risk-based policies target screening to women with

tumors with larger diameter, which may be more problematic. All our calculations

are performed on the 50% evaluation subsample consisting of women whose health

data were not used to train our models.

3.1. Algorithms can target screening more effectively

In our sample we observe if an invasive tumor was caught through the screening

program. This presents a clear counterfactual test: If a subset of those women had

not been screened by the program, how many program-caught tumors would be

missed? This empirical exercise nests the existing policy discussions around the

effects of raising minimum screening ages: For example, how many screen-caught

tumors would be missed if the minimum age were raised from 50 to 53? We

can conduct a similar counterfactual analysis by restricting the screened subset

according to risk scores: How many screen-caught tumors would be missed the

20% lowest-risk women were not screened?10

Figure 2 presents tradeoffs between reduced screening and missed cancers

according to age- and risk-based policies that sequentially restrict screening criteria.

Across every reduction in total screens arising from raising the eligibility age, there

exists a risk-based policy that misses fewer tumors. For example, compared to

raising the eligibility age by three years, reallocating screens using the risk model’s

ranking could miss 31% fewer invasive cancers. Alternatively, total screening could

be reduced 31% further under the model’s ranking while keeping the total number

of tumors missed constant. Table 3a and Table 3b present these counterfactual

10These policy counterfactuals considering reducing screening program coverage across a sub-
population that accepted the invitation to pursue mammography. As opportunistic mammography
is rare in Denmark (Jensen et al., 2005), and our outcome variable is cancer caught through the
screening program, we are less likely to be overestimating the number of women who comply with
mammography recommendations—a policy evaluation challenge discussed in Einav et al. (2020)
and Kowalski (2023).
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estimates for algorithmic policies and policies that consider a range of potential

minimum screening age increases.

Across the board, targeting screening through risk improves the efficiency of

screening. For any policy change that raises screening eligibility criteria using age,

there exist risk-based policies that reduce total screening or catch more invasive

tumors.

3.2. Algorithms do not miss more dangerous-looking tumors

So far we have shown that precision screening policies catch more invasive tumors

per screen than age-based policies do. However, it is also helpful to test that

reprioritizing screens using a risk model does not miss women with cancers that

appear more likely to be dangerous. One way to test for this concern is to compare

the characteristics of tumors cut by narrowing screening according to age versus

the algorithm: If an algorithmic policy cuts screens that find dangerous-looking

tumors more often than an age-based policy does, the algorithmic policy may be

missing more problematic cancers. We conduct one such exercise in Figure 3,

where we compare the tumors cut by either policy regime across their diameters, a

proxy for cancer severity. Narrowing screening criteria according to risk misses

tumors that are no larger, on average, than those missed by narrowing using age

thresholds. In fact, narrowing screening criteria using risk-based policies would

target screening to women who have larger tumors on average.

Our comparisons are on the characteristics of the cancer at the time it is caught.

As the cancers caught in this subsample were treated, we cannot draw comparisons

between the effects of screening on eventual health outcomes across the risk distri-

bution. To do this, we require additional variation in the sets of people who are

screened, which we will find in the natural experiment that introduced widespread

nationwide screening to Denmark.
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4. Health Effects of Screening Policies

While we have demonstrated machine learning models can predict various types

of cancer in a hold-out set, these results are not sufficient to make claims about

the health effects of algorithmic screening policies. In this section we present a

series of counterfactual policy estimates using policy evaluation methods to show

that our main risk model can indeed be used to target screens to improve health

outcomes. All our calculations are performed on the 50% evaluation subsample

consisting of women whose health data were not used to train our models.

4.1. Longer-term impacts of precision screening policies

So far, our counterfactual analyses have considered the effects of risk-based policies

on tumors caught through screening. However, once cancers become symptomatic

or harmful enough, they may be caught eventually without a screen. How can

we be sure catching these tumors early is valuable? Making claims about the

longer-term impacts of precision screening therefore requires estimates of the

eventual health effects of screening programs. We consider one such estimation

framework using the natural experiment created by the Danish implementation of

population-level breast cancer screening.

From 2007-2010, most Danish municipalities were introduced to widespread

breast cancer screening for women aged 50-69. We show in Figure 4 that the

screening program increased the detection of small tumors. Moreover, the longer-

run incidence of large tumors decreased, suggesting screening reduced the eventual

incidence of cancers at more difficult-to-treat stages. If we take large tumor

reduction as a policy goal, as is considered elsewhere in the clinical literature

(e.g. Welch et al., 2011), the results suggest screening had positive health impacts

on this population.11

11Our results consider health outcomes before and after the Danish universal screening program
was introduced, and our effects should be interpreted as applying to the population of Danish
women who comply with the program. Einav et al. (2020) discuss the importance of estimating
health effects of screening policies on compliers. In the Danish context compliers are a relatively
larger portion of the population: Opportunistic mammography (outside of a screening program) is
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Who were the women for which this decrease in large tumor incidence was

more pronounced? In Figure 5 we show changes in the number of large tumors

caught after the policy was introduced, separating the population into above- and

below-median risk. The figure shows that the reduction in large tumors was more

pronounced among the high-risk population. This result implies that the cancer

risk model targets women who benefited more from screening.

We estimate the effects of the screening policy using the following regression

specification

LargeTumori,t = β
large
0 +β

large
1 ·Postt + εi,t (1)

where LargeTumori,t indicates large tumor incidence per 100,000 person-years

and Postt indicates whether the observation occurs after 2007.

We further estimate the effects of the screening policy by risk using the follow-

ing regression specification

LargeTumori,t =γ
large
0 +γ

large
1 ·Postt +γ

large
2 ·HighRiski,t

+γ
large
3 ·Postt ·HighRiski,t + εi,t (2)

where LargeTumori,t indicates large tumor incidence per 100,000 person-years,

Postt indicates whether the observation occurs after 2007, and HighRiski,t is an

indicator for above-median risk. We report the results of these regressions in

Table 4, and consider alternative specifications in Appendix B. High risk predicts

61 fewer large tumors per 100,000 person-years after the introduction of screening.

For women at high risk, this corresponds to a –γlarge
3

/(γlarge
0 +γ

large
2 ) = 61/(79 + 118) ≈

31% decrease in large tumor incidence.

These results show that screening reduces large tumor incidence, and that

higher-risk women especially benefit on this health outcome. How does the even-

rare in Denmark (Jensen et al., 2005), while compliance with the screening program is close to 80%
(Lynge et al., 2017). While our results do not speak to the effects of screening onn women who do
not comply with screening programs, strategies to encourage participation among this population
are an interesting topic for future research.
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tual reduction in large tumors trade off with the increase in small tumors caught

through screening? Table 5 reports estimates of the effects of screening on small

tumor detection, using the specifications

SmallTumori,t = βsmall
0 +βsmall

1 ·Postt + εi,t (3)

SmallTumori,t =γsmall
0 +γsmall

1 ·Postt +γsmall
2 ·HighRiski,t

+γsmall
3 ·Postt ·HighRiski,t + εi,t (4)

In the full sample, large tumor incidence decreased by 41 per 100,000 person-

years and small tumor incidence increased by 99 per 100,000 person-years. These

results suggest that the universal screening policy led to an overdiagnosis rate of

(βsmall
1 –βlarge

1 )/βsmall
1 = (99 – 41)/99 ≈ 59%. However Table 5 shows that for women at

high risk, the relative decrease in large tumors from the policy is larger than the

relative increase in small tumors. We estimate that the overdiagnosis rate for screen-

caught tumors for women with low risk is (γsmall
1 –γlarge

1 )/γsmall
1 = (64 – 18)/64 ≈ 72%.

We estimate that the overdiagnosis rate for screen-caught tumors for women with

high risk is ((γsmall
1 +γ

small
3 ) – (γlarge

1 +γ
large
3 ))/(γsmall

1 +γ
small
3 ) = ((64 + 53) – (18 + 61))/(64 +

53) ≈ 32%. The overdiagnosis rate for women at high risk is less than half the

overdiagnosis rate for women at low risk. In Appendix B, we consider alternative

specifications that omit the screening policy introduction years and add controls

for age, and find similar results.

4.2. Precision screening policies and cancer mortality

In addition to effects on reductions in large tumors, we also estimate the effects

of screening on cancer mortality. We estimate these effects using the following
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regression specification

CancerMortalityi,t =γ
mortality
0 +γ

mortality
1 ·Postt +γ

mortality
2 ·HighRiski,t

+γ
mortality
3 ·Postt ·HighRiski,t + εi,t (5)

where CancerMortalityi,t indicates cancer mortality per 100,000 person-years,

Postt indicates whether the observation occurs after 2007, and HighRiski,t is an

indicator for above-median risk. We report the results of this regression in Ta-

ble 6. High risk predicts 32 fewer cancer deaths per 100,000 person-years after

the introduction of screening. For women at high risk, this corresponds to a

–γmortality
3

/(γmortality
0 +γ

mortality
2 ) = 32/(23 + 41) ≈ 50% decrease in cancer mortality. These

results indicate that high risk women also experienced large decreases in cancer

mortality after the screening program was introduced.

However, given the contemporaneous improvements in breast cancer treatment

technology over this period, we cannot rule out that the Danish medical system

differentially improved its ability to treat high-risk women. For example, we have

previously shown that high-risk women have larger diameter tumors on average

than low-risk women. If treatment technology improved more for larger diameter

tumors or tumors with more complications over this period, some of our estimated

effect on cancer mortality could be driven by this differential improvement in

treatment technology. This is why our main empirical design uses size of caught

tumors as the outcome variable, not cancer mortality. This follows from the

observation in Welch et al. (2016) that compared to estimating mortality effects,

estimating tumor size-related effects requires the weaker assumption that the

underlying disease burden does not change differently across groups over time.

4.3. Effects of more flexible precision screening policies

So far, we have only considered policies that narrow the set of women to screen.

These counterfactuals speak to the existing policy discussions on raising recom-

mended screening ages. However, these counterfactuals may not fully describe
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the benefits of using machine learning to guide screening policy. Specifically,

expanding screening to higher-risk, younger women might catch tumors at earlier

stages and prevent the eventual incidence of deadly cancer. To estimate the effects

of such policies, we require additional structure beyond that provided for by policy

environment and natural experiments. We calibrate the Erasmus clinical oncology

model of cancer development (Tan et al., 2006) to the Danish context to cancer

incidence rates across our sample.

We summarize its key aspects here and include a more detailed discussion in

Appendix C. The model considers a population of 20-year-old cancer-free women

who, each year, may develop a tumor. In the model, probability of developing

a tumor is increasing in age, and tumors develop at variable rates. Tumors may

either be invasive—which become detectable symptomatically if they grow enough,

or ductal carcinoma in situ (DCIS)—which are only detectable through screening

and may never become invasive. We largely follow the parameterization of the

model in Einav et al. (2020), while allowing for tumor incidence to be influenced

by risk. We calibrate the full model on Danish cancer incidence data, and augment

our main sample with the cancer history of women aged 40-49.

With the model, we can estimate health outcomes under counterfactual policies

that take risk into account. We consider the health effects of policies that lower

the screening age to 45 or 40. We also consider policies that only screen younger

women at high risk: These policies only screen those women with risk greater than

the median risk of a 50-year-old woman. In addition, we consider the effects of

screening higher-risk women starting at 40 and all women starting at 55. Table 7

reports the estimated incidence of screens and tumors after the introduction of

screening on each of these counterfactual populations. We estimate that setting

the screening threshold to 40 for high-risk women, and continuing to cover all

women aged 50 and older for screening would reduce large tumor incidence for

women aged 40-69 by 15%.
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5. Alignment

Our analysis has shown that targeting screening based on invasive tumor risk could

lead to large health benefits. However, we will show that an crucial decision for

training this model was the choice of training label. Even if models are similarly

predictive, they may lead to policies with very different health outcomes. In this

section we discuss how an intuitive alternative strategy—determining risk by

predicting abnormal mammograms—could lead to worse health outcomes than

our approach would.

5.1. Which “cancer” to predict?

Throughout our analyses, we have focused on a model trained to predict invasive

tumors. However, we could have also used a number of other models trained

to predict different cancer-related outcomes. In particular, we could have fol-

lowed a seemingly more natural approach—to decide who to invite for screening

mammography, we could have targeted those women who are likely to receive an

abnormal, “positive” mammogram result. These abnormal results are produced

by the screening procedure, and are observed before any further procedures. If

the goal of a screening policy was to target screening to those who would have

abnormal mammogram results, using such a predictor may be an intuitive one.

The ultimate health effects of using such a predictor to guide policy, however, hinge

on its ability identify women with tumors that benefit from early catching. The

diagnostic skill of an algorithm that predicts abnormalities, therefore, depends on

the diagnostic skill of the machines and clinicians who produce the abnormal label.

If those women whose mammograms are likely to be flagged for abnormalities are

not those women who are at highest risk for potentially-dangerous cancers, such a

predictor may be misaligned.
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5.2. Effects of screening by abnormal mammography risk

To test the health effects of targeting policy using such a predictor, we conduct our

main counterfactual policy analysis using a model trained to predict abnormal

mammography results. We consider the long-run effects of screening on large

and small tumor incidence among those women who are labeled as high-risk and

low-risk by the abnormal mammogram model. Column (3) of Table 4 re-estimates

Equation (2) and Column (3) of Table 5 re-estimates Equation (4), by replacing

HighRiski,t with above-median abnormal mammogram risk.

We find that women labeled as “high risk” by the abnormal mammogram

predictor have both lower reductions in long-run large tumor incidence and higher

rates of cancer diagnosis from screening, compared to women labeled as “high

risk” by the invasive tumor predictor. We find that high abnormal mammogram

risk predicts 26 fewer large tumors per 100,000 person-years after the introduction

of screening. For women at high abnormal mammogram risk, this corresponds

to a –γlarge
3

/(γlarge
0 +γ

large
2 ) = 26/(104 + 54) ≈ 16% decrease in large tumor incidence.

Note that for our main invasive tumor risk model, the corresponding decrease

in large tumors was 31%. In addition, we estimate that the overdiagnosis rate

for screen-caught tumors for women with high abnormal mammogram risk is

((γsmall
1 +γ

small
3 ) – (γlarge

1 +γ
large
3 ))/(γsmall

1 +γ
small
3 ) = ((60 + 77) – (28 + 26))/(60 + 77) ≈ 61%. The

corresponding overdiagnosis rate was 32% for women with high invasive tumor

risk.

As the Erasmus clinical oncology model implies, women who have invasive

tumors are more likely to develop deadly cancers than women who have abnormal

mammography results. The abnormal mammogram predictor may oversample

women who have abnormalities that are unlikely to become problematic relative to

the invasive tumor predictor. As false positives and cancers that may never grow

are common outcomes of screening mammography, targeting screening based

on abnormal mammogram risk may be more likely to target women at risk of

false positives and cancers that may never grow than targeting screening based on

invasive tumor risk. Our analysis in Table 4 reveals that although the abnormal
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mammogram model is predictive, it is not as welfare-aligned—using it to guide

policy would improve health outcomes less than an invasive tumor model would.

6. Discussion

We consider the health impacts of using machine learning to form precision screen-

ing policies for cancer. We first demonstrate that more complex machine models

trained on health data can predict cancer better than simpler models that use

established risk factors. Although these results show that machine learning models

can be predictive, they do yet demonstrate that such models can be used to form

beneficial screening policies. We do this using a series of policy evaluation methods

that find such screening policies could lead to large health benefits. Moreover, we

demonstrate the choice of prediction target is key—not all models with similar

predictive performance can be used to construct policies with similar health effects.

Our results demonstrate that a key consideration when using machine learning

models to make policy decisions is the model’s prediction target.
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Figure 2: Precision screening policies improve the yield of screening over
age-based policies.

Notes – This figure shows the share of invasive tumors caught through screening that
would be missed if the eligibility criteria were to be narrowed using age-based or
risk-based criteria. The red dots consider the effects of raising the minimum age from 50.
The blue curve considers the effects of raising the risk threshold for screening. We include
95% confidence intervals that correspond to re-estimates of the risk curve by randomly
re-sampling the dataset with replacement. For every counterfactual policy that increases
the minimum age for screening, there is an algorithmic policy that misses fewer tumors.
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Figure 3: Narrowing screening criteria through age would miss larger tumors than
the tumors that would be missed by narrowing screening criteria using risk.

Notes – This figure shows the cumulative mean diameter of screen-caught tumors that
would be missed if the eligibility critiera were to be narrowed using age-based or
algorithmic rules. The red curve considers the cumulative mean diameter of tumors
missed by narrowing the criteria via age-based rules, and the blue curve considers the
cumulative mean diameter of tumors missed by narrowing the criteria via the algorithm’s
risk rankings. We include 95% confidence intervals that correspond to re-estimates of the
risk curve by randomly re-sampling the dataset with replacement. Narrowing screening
eligibility using the algorithm would miss smaller tumors than those missed by raising
eligibility ages.
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Figure 4: Population-level screening increased small tumor detection and reduced
large tumor incidence.

(a) Small tumors (< 2cm)

(b) Large tumors (≥ 2cm)

Notes – This figure plots the incidence of small and large tumors per 100,000 person-years
from 2004-2019 across the main sample. The introduction of screening from 2007-2010 is
shaded in blue. The screening policy increased the detection of small tumors and
decreased the long-run incidence of large tumors.
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Figure 5: High-risk women targeted by precision screening policies have stronger
decreases in large tumor incidence.

Notes – This figure plots the incidence of large tumors per 100,000 person-years from
2004-2019 across the main sample, split by invasive tumor risk. High risk, plotted in blue,
corresponds to risk above median. Low risk, plotted in red, corresponds to risk below
median. The introduction of screening from 2007-2010 is shaded in blue.
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Table 1: Breast cancer screening programs across OECD countries.

Country Start date (regional / national) Ages screened Invitation interval (years)

Australia 1991 / 1995 50–74 2
Austria 2014 45–69 2
Belgium 2001 50–69 2
Canada1 1988 50–743 1 / 2
Chile —
Colombia —
Costa Rica —
Czech Republic 2002 45+ 2
Denmark 1991 / 2008 50–69 2
Estonia 2003 50–69 2
Finland 1987 50–69 2
France 1989 / 2004 50–74 2
Germany 2001 / 2005 50–69 2
Greece —
Hungary 1995 / 2001 45–65 2
Iceland 1987 40–74 2 / 34

Ireland 2000 50–69 2
Israel 1992 / 1998 50–74 2
Italy2 1990 50–695 2 / 16

Japan 2004 40+ 2
Korea 2002 40+ 2
Latvia 2009 50–68 2
Lithuania 2005 50–69 2
Luxembourg 1992 50–69 2
Mexico —
Netherlands 1989 50–74 2
New Zealand 1999 45–69 2
Norway 1996 / 2005 50–69 2
Poland 2006 50–69 2
Portugal2 1990 / 2009 45–697 2
Slovak Republic 2019 50–69 Ongoing
Slovenia 2008 / 2018 50–69 2
Spain2 1990 / 2001 50–698 2
Sweden 1986 40–74 2
Switzerland2 1999 50–699 2
Turkey 2004 / 2007 40–69 2
United Kingdom2 1988 50–7010 3
United States —

Notes – 1 Programs at the province and territory level do not cover the entire population.
2 Programs at the regional level, covering the entire population. 3 40–74 in some regions.
4 Invitations are sent every 2 years to women 40–69 years old and every 3 years to women 70–74
years old. 5 45–74 in some regions. 6 Invitations are sent every 2 years to women 50–69 years old
and every year to women 45–49 years old. 7 45–74 or 50–69 in some regions. 8 45–69 in some
regions. 9 50–74 in some regions. 10 Some regions send invitations to women as young as 47 or as
old as 73.



Table 2: Summary statistics for the main sample.

Main Sample
(2004-2019)

Post Policy Sample
(2011-2019)

n observations 8,580,783 4,945,009
n women 973,310 804,094

Age 59.1 59.2
Invasive Tumor 328.6 310.9
Large Tumor 99.1 73.8
Abnormal Mammogram Result 714.4

Notes – This table reports population counts and means for key outcomes. The
cancer-related outcome variables are scaled by 100,000 so that they correspond to
outcome per 100,000 observations. The main sample ranges from 2004-2019, and consists
of women aged 50-69 who lived in a region that adopted universal screening for the first
time during the nationwide Danish screening program introduction in the late 2000s. The
second panel reports statistics over the sample from 2011-2019, after the introduction of
the universal screening policy had concluded.
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Table 3: Precision screening policies can miss fewer cancers and lead to fewer
overall screens.

(a) Number of screens held constant:

Years Screening Age Raised Cancers Missed Cancers Missed (Risk Ranking)

1 3.0% 2.1%
2 6.7% 4.6%
3 10.1% 7.5%
4 13.4% 10.2%
5 16.6% 13.0%

Notes – Screen-caught invasive tumors missed by an age-based policy that raises the
minimum screening age from 50, and an algorithmic policy that raises the risk threshold
to conduct the same number of screens as as the corresponding age-based policy.

(b) Cancers caught held constant:

Years Screening Age Raised Screens Reduced Screens Reduced (Risk Ranking)

1 5.5% 7.4%
2 10.9% 14.7%
3 16.3% 21.3%
4 21.5% 27.2%
5 26.6% 32.5%

Notes – Share of screens reduced by an age-based policy that raises the minimum
screening age from 50, and an algorithmic policy that raises its risk threshold to miss the
same number of screen-caught tumors as the corresponding age-based policy.
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Table 4: Screening reduces large tumor incidence, particularly among women with
high invasive tumor risk.

Large tumor (per 100,000 person-years)
(1) (2) (3)

Post -40.6∗∗∗ -17.9∗∗∗ -28.0∗∗∗

(3.1) (4.2) (5.0)
Post × High invasive tumor risk -61.1∗∗∗

(8.3)
Post × High abnormal mammogram risk -26.2∗∗∗

(7.1)
High invasive tumor risk 118.1∗∗∗

(7.6)
High abnormal mammogram risk 53.8∗∗∗

(7.2)
(Intercept) 131.4∗∗∗ 79.1∗∗∗ 104.1∗∗∗

(3.6) (3.7) (4.5)

Observations 4,208,756 4,208,756 4,208,756
R2 2.99× 10–5 0.0001748 6.16× 10–5

Notes – This table reports estimates of the effect of screening policies on large tumor
incidence. Each “high risk” variable corresponds to risk score above median. Standard
errors are clustered by person, and *,**, and *** denote statistical significance at the 10%,
5%, and 1% level, respectively.
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Table 5: Screening increases detection of small tumors.

Small tumor (per 100,000 person-years)
(1) (2) (3)

Post 99.4∗∗∗ 64.1∗∗∗ 60.4∗∗∗

(4.5) (4.1) (5.7)
Post × High invasive tumor risk 52.6∗∗∗

(9.2)
Post × High abnormal mammogram risk 76.8∗∗∗

(8.9)
High invasive tumor risk 102.2∗∗∗

(7.5)
High abnormal mammogram risk 36.3∗∗∗

(7.2)
(Intercept) 129.8∗∗∗ 84.9∗∗∗ 111.1∗∗∗

(3.6) (3.9) (4.7)

Observations 4,208,756 4,208,756 4,208,756
R2 8.81× 10–5 0.0003398 0.0002106

Notes – This table reports estimates of the effect of screening policies on small tumor
incidence. Each “high risk” variable corresponds to risk score above median. Standard
errors are clustered by person, and *,**, and *** denote statistical significance at the 10%,
5%, and 1% level, respectively.
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Table 6: Screening reduces cancer mortality, particularly among women with high
invasive tumor risk.

Cancer mortality (per 100,000 person-years)
(1) (2) (3)

Post -15.0∗∗∗ -1.7 -3.1
(2.2) (2.3) (2.6)

Post × High invasive tumor risk -31.8∗∗∗

(4.6)
Post × High abnormal mammogram risk -24.2∗∗∗

(4.4)
High invasive tumor risk 40.6∗∗∗

(4.3)
High abnormal mammogram risk 25.7∗∗∗

(4.0)
(Intercept) 40.4∗∗∗ 22.6∗∗∗ 27.8∗∗∗

(1.1) (1.1) (2.3)

Observations 4,208,756 4,208,756 4,208,756
R2 1.42× 10–5 5.28× 10–5 2.8× 10–5

Notes – This table reports estimates of the effect of screening policies on cancer mortality.
Each “high risk” variable corresponds to risk score above median. Standard errors are
clustered by person, and *,**, and *** denote statistical significance at the 10%, 5%, and
1% level, respectively.
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Table 7: Estimates of total screens and tumor incidence for additional
counterfactual screening policies.

Outcome per 100,000 person-years

Policy Large Tumor Small Tumor

Everyone at 50 80 185
Everyone at 45 70 193
High-risk at 45, everyone at 50 73 191
Everyone at 40 67 198
High-risk at 40, everyone at 50 68 191
Everyone at 55 91 168
High-risk at 40, everyone at 55 83 175

Notes – This table reports estimates of total screens and tumor incidence per 100,000
person-years under counterfactual screening policies. Using the calibrated clinical
oncology model, we estimate each of these quantities for women aged 40-69 from
2008-2019 in the simulated populations.
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For Online Publication: Internet Appendix

A. Additional Details on Data and Context

A.1. Breast cancer screening in Denmark

Since the establishment of the National Cancer Register in 1943, breast cancer has

remained the most common cancer among women in Denmark (Olsen et al., 2003).

Denmark has been slower to introduce breast cancer screening programs than other

European countries. A number of early adopters of screening programs in the

European Member States conducted randomized control trials on the effectiveness

of mammography screening during the 1980s. Following the results of these trials,

which suggested that screening could reduce breast cancer mortality, Denmark

started a number of regional screening programs during the 1990s.

The first program started in the municipality of Copenhagen in 1991, followed

by Funen County in 1993, and the Frederiksberg municipality in 1994.12 Across

all regional programs, the target group consisted of women aged 50 to 69 (approxi-

mately 20 percent of Danish women in the targeted age range) and the screening

interval was two years. Eligible women in the target age range received an invi-

tation that included information about the screening program in general, how a

mammography screening is conducted, and a (changeable) date for screening.13

Women born in January received a date in the first two months of the invitation

round, women born in February were assigned a date in the next two months, and

so on (Jacobsen et al., 2017). Those who did not respond to the first invitation

received two reminders or another invitation (Lynge et al., 2017). The protocol

12The Frederiksberg screening program was merged with the Copenhagen program in 1996.
13The screening eligibility criteria differed between Copenhagen and the Funen county. In

Copenhagen, initially only women who were treated for breast cancer were deemed ineligible for
screening. As a result, 95% of the women in the target age range were sent invitations. In Funen,
ineligible women included those who were diagnosed with breast cancer in the last five years as
well as women with a prior benign breast lesion. Based on these, the share of ineligible women
in the target group was 12%. In both settings, women who wanted to opt out of screening were
excluded from future invitation rounds (Domingo et al., 2013).
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for these early programs, until 2001, included two-view mammography at the

first examination, followed by one-view (for women with fatty breast tissue) or a

two-view (for women with mixed/dense tissue) mammography in future invitation

rounds. Starting in 2001, all examinations included two-view mammography.

The screening method was based on analog mammography until 2006, when the

programs switched to digital mammography. The images were always read by two

radiologists.

Following the EU recommendations in 2003 and the results of a study that

showed reductions in breast cancer mortality in Copenhagen after the introduction

of the screening program (Olsen et al., 2005), the Danish Ministry of Health ruled

that all regions start screening programs. The universal nationwide screening

began in 2007 and the introduction across Denmark was complete by the end of

the decade. The national screening program adopted all the main features of the

regional programs (Lynge et al., 2017).

Key considerations in screening programs are the coverage and participation

rates.14 According to the European guidelines for quality assurance, screening

programs should have a participation rate of at least 70% in order to be rated as

acceptable while rates over 75% are desirable (Euler-Chelpin et al., 2008). Several

independent studies examined coverage and participation in the Danish screening

programs. Those investigating the regional programs find that the coverage rate

in Copenhagen and Frederiksberg started at around 70% in the first invitation

round and declined to 65% by the fourth invitation round, but participation

remained stable at around 70% (Euler-Chelpin et al., 2008; Jacobsen et al., 2017).

Coverage and participation rates were considerably higher in the county of Funen:

coverage started at around 85% in the first round and was still at around 83%

in the fourth round, while participation increased from 85% in the first round

to almost 94% in the fourth round (Euler-Chelpin et al., 2008; Jacobsen et al.,

2017). During the first four rounds of the nationwide screening program, national

14Coverage is defined as ratio of the number of women screened to the number of women in the
target group. Participation refers to the share of screened women among those who are invited for
screening.
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coverage remained relatively stable at 75–77% but coverage was again lower in the

Capital Region (Lynge et al., 2017). Existing evidence suggests that opportunistic

screening is rare in Denmark and that the difference in coverage rates between

Copenhagen (Capital Region) and other regions cannot be explained by differences

in opportunistic screening. Based on data on all diagnostic mammographies

performed in Denmark in 2000, Jensen et al. (2005) find that only 3% of women

aged 50 to 69 used diagnostic mammography and that take-up of opportunistic

screening was not higher among non-participants of organized screening programs

(3% in Copenhagen and 1% in Funen).

Despite the widespread incidence of these programs, there is controversy in

both the medical community and in public debates concerning the effectiveness

of screening programs. Existing concerns mirror the global discussions on false

positives and overdiagnosis. Estimates of overdiagnosis, on the other hand, largely

depend on the methods used. Previous studies based on individually linked data

from cohorts of women invited to screening tend to find overdiagnosis rates of

2-3% (Njor et al., 2013). Studies relying on data from fixed age-groups, however,

find overdiagnosis rates ranging from 30% to close to 50% (Jørgensen and Gøtzsche,

2009; Jørgensen et al., 2017)

A.2. Danish data registers and model training

The National Patient Register records all hospital visits since 1977 with detailed

information such as the hospital and department identifiers, exact date of the

visit, type of visit (outpatient, inpatient, or emergency room), date of discharge if

applicable, main diagnosis, and date and type of any procedure performed. The

National Health Service Register tracks all visits since 1990 to private practitioners

that are covered by the public health insurance plan. These include all visits to

general practitioners (GP) and to specialists when referred by a GP. The register

provides the unique identification number of the practice, the specialty of the

physician, the type and cost of the service provided, and the date when the practice
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submitted the payment request to the national health insurance.15 The National

Prescription Drug Register documents, for all the prescription filled in Denmark

since 1995, the personal identification number of the person filling the prescription,

the date when the prescription was filled, the identification number of the practice

that issued the prescription, the Anatomical Therapeutic Chemical Classification

(ATC) code of the drug, the quantity, and its price. Finally, the Causes of Death

Register records the exact date, manner, main cause, and up to three contributing

causes for all deaths since 1970. The Danish Population Register provides a

snapshot of the population on January 1, starting from 1980, detailing for each

person their age and municipality of residence.

We collect medical features from the National Patient Register, National Health

Service Register, and National Prescription Drug Register. The dependent variables

for each woman in each year are the number of each type of claim filed for in the

previous five years. The family history variable is an indicator for whether the

woman’s mother had an invasive cancer in prior years. We train models using

the XGBoost library (Chen and Guestrin, 2016). We split the sample into a 50%

training sample and 50% test sample, where the set of women in each sample is

disjoint. We select hyperparameters for each model across each outcome variable

and each set of features using five-fold cross-validation on the training sample. We

conduct a grid search over the maximum tree depth, which we vary from two to

five, and the learning rate, which we vary from 0.001 to 0.1 across a logarithmic

five-parameter grid. During training, we set the XGBoost parameter for positive

weight scaling so that the positive and negative labels are balanced in the training

set. The main text reports AUC-ROC scores for each model on the test sample.

B. Additional Results on Long-Run Effects of Screening

In this section, we report additional results that follow the specification of Equa-

tion (2).

15While this is not the actual date when the service is provided, Statistics Denmark indicates
that it is reasonable to assume that the two dates are relatively close.
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Exclude policy introduction period. Table A1, Table A2, and Table A3 re-

estimate Equation (2) while excluding observations from 2007-2010 that occurred

during the policy introduction period. Invasive tumor risk continues to correspond

with reduced large tumor incidence and cancer mortality after policy introduction.

Age controls. Table A4, Table A5, and Table A6 add controls for Agei,t and

Agei,t ·Postt to Equation (2). These specifications allow us to estimate differences

in effects of screening that are not driven by differences in age. We find similar

results in these specifications.

Effects of screening by continuous risk measure. Table A7, Table A8, and

Table A9 re-estimate Equation (2) using a continuous measure of risk. Risk scores

are standardized to have zero mean and unit variance. We find similar results

using this alternative specification of risk.
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Table A1: Screening and large tumor incidence (excluding policy introduction
years).

Large tumor (per 100,000 person-years)
(1) (2) (3)

Post -34.6∗∗∗ -14.2∗∗∗ -17.8∗∗∗

(4.1) (4.5) (5.3)
Post × High invasive tumor risk -49.3∗∗∗

(8.3)
Post × High abnormal mammogram risk -32.6∗∗∗

(8.1)
High abnormal mammogram risk 41.7∗∗∗

(7.3)
High invasive tumor risk 93.0∗∗∗

(7.6)
(Intercept) 114.1∗∗∗ 71.3∗∗∗ 92.8∗∗∗

(3.6) (3.9) (4.7)

Observations 3,427,656 3,427,656 3,427,656
R2 2.55× 10–5 0.0001271 3.95× 10–5

Notes – This table reports estimates of the effect of screening policies on large tumor
incidence. The table excludes observations from 2007-2010, which corresponded to the
period of policy introduction. Standard errors are clustered by person, and *,**, and ***
denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A2: Screening and small tumor incidence (excluding policy introduction
years).

Small tumor (per 100,000 person-years)
(1) (2) (3)

Post 80.8∗∗∗ 62.0∗∗∗ 56.1∗∗∗

(4.6) (5.3) (6.2)
Post × High invasive tumor risk 28.3∗∗∗

(9.3)
Post × High abnormal mammogram risk 50.1∗∗∗

(9.1)
High invasive tumor risk 79.9∗∗∗

(7.5)
High abnormal mammogram risk 14.1∗∗

(7.3)
(Intercept) 114.4∗∗∗ 77.5∗∗∗ 106.7∗∗∗

(3.7) (4.1) (5.0)

Observations 3,427,656 3,427,656 3,427,656
R2 7× 10–5 0.0002184 0.0001163

Notes – This table reports estimates of the effect of screening policies on small tumor
incidence. The table excludes observations from 2007-2010, which corresponded to the
period of policy introduction. Standard errors are clustered by person, and *,**, and ***
denote statistical significance at the 10%, 5%, and 1% level, respectively.

46



Table A3: Screening and cancer mortality (excluding policy introduction years).

Cancer mortality (per 100,000 person-years)
(1) (2) (3)

Post -8.1∗∗∗ 0.7 -2.8
(2.2) (2.5) (2.8)

Post × High invasive tumor risk -21.6∗∗∗

(4.5)
Post × High abnormal mammogram risk -11.1∗∗∗

(4.3)
High invasive tumor risk 26.5∗∗∗

(4.0)
High abnormal mammogram risk 14.1∗∗∗

(3.9)
(Intercept) 32.6∗∗∗ 20.4∗∗∗ 25.4∗∗∗

(1.1) (2.1) (2.5)

Observations 3,427,656 3,427,656 3,427,656
R2 5.86× 10–6 2.45× 10–5 1.1× 10–5

Notes – This table reports estimates of the effect of screening policies on cancer mortality.
The table excludes observations from 2007-2010, which corresponded to the period of
policy introduction. Standard errors are clustered by person, and *,**, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A4: Screening and large tumor incidence (age controls).

Large tumor (per 100,000 person-years)
(1) (2) (3)

Post -41.9∗∗∗ -16.4∗∗∗ -54.1∗∗∗

(4.0) (5.9) (8.8)
Post × High invasive tumor risk -65.9∗∗∗

(12.3)
Post × High abnormal mammogram risk 24.2

(15.4)
High invasive tumor risk 130.5∗∗∗

(11.4)
High abnormal mammogram risk -14.6

(14.0)
(Intercept) 132.6∗∗∗ 73.7∗∗∗ 139.1∗∗∗

(3.6) (5.3) (8.1)

Controls ✓ ✓ ✓
Observations 4,208,756 4,208,756 4,208,756
R2 7.51× 10–5 0.0001773 7.6× 10–5

Notes – This table reports estimates of the effects of screening policies on large tumor
incidence. Each “high risk” variable corresponds to risk score above median. This table
adds controls for Agei,t and Postt ×Agei,t to Equation (2). Standard errors are clustered by
person, and *,**, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table A5: Screening and small tumor detection (age controls).

Small tumor (per 100,000 person-years)
(1) (2) (3)

Post 98.1∗∗∗ 95.4∗∗∗ 93.7∗∗∗

(4.5) (6.7) (9.6)
Post × High invasive tumor risk -11.7

(13.6)
Post × High abnormal mammogram risk 8.9

(16.1)
High invasive tumor risk 134.9∗∗∗

(11.7)
High abnormal mammogram risk 7.1

(13.5)
(Intercept) 130.5∗∗∗ 69.7∗∗∗ 126.9∗∗∗

(3.6) (5.4) (7.7)

Controls ✓ ✓ ✓
Observations 4,208,756 4,208,756 4,208,756
R2 0.0002446 0.0003570 0.0002453

Notes – This table reports estimates of the effects of screening policies on small tumor
incidence. Each “high risk” variable corresponds to risk score above median. This table
adds controls for Agei,t and Postt ×Agei,t to Equation (2). Standard errors are clustered by
person, and *,**, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table A6: Screening and cancer mortality (age controls).

Cancer mortality (per 100,000 person-years)
(1) (2) (3)

Post -15.5∗∗∗ -3.5 -8.9∗∗

(2.2) (3.2) (4.4)
Post × High invasive tumor risk -28.2∗∗∗

(6.5)
Post × High abnormal mammogram risk -13.2∗

(7.7)
High invasive tumor risk 38.4∗∗∗

(6.1)
High abnormal mammogram risk 5.6

(6.9)
(Intercept) 40.9∗∗∗ 23.6∗∗∗ 38.1∗∗∗

(2.0) (2.9) (3.1)

Controls ✓ ✓ ✓
Observations 4,208,756 4,208,756 4,208,756
R2 3.24× 10–5 5.31× 10–5 3.37× 10–5

Notes – This table reports estimates of the effects of screening policies on cancer mortality.
Each “high risk” variable corresponds to risk score above median. This table adds controls
for Agei,t and Postt ×Agei,t to Equation (2). Standard errors are clustered by person, and
*,**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A7: Screening and large tumor incidence (standardized risk).

Large tumor (per 100,000 person-years)
(1) (2) (3)

Post -40.6∗∗∗ -54.4∗∗∗ -41.5∗∗∗

(3.1) (4.3) (3.1)
Post × Invasive tumor risk (standardized) -56.1∗∗∗

(5.4)
Post × Abnormal mammogram risk (standardized) -13.4∗∗∗

(4.1)
Invasive tumor risk (standardized) 91.8∗∗∗

(5.0)
Abnormal mammogram risk (standardized) 27.8∗∗∗

(3.8)
(Intercept) 131.4∗∗∗ 143.7∗∗∗ 132.2∗∗∗

(3.6) (3.1) (3.6)

Observations 4,208,756 4,208,756 4,208,756
R2 2.99× 10–5 0.0003047 6.37× 10–5

Notes – This table reports estimates of the effects of screening policies on large tumor
incidence. Each risk score is standardized. Standard errors are clustered by person, and
*,**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A8: Screening and small tumor incidence (standardized risk).

Small tumor (per 100,000 person-years)
(1) (2) (3)

Post 99.4∗∗∗ 84.2∗∗∗ 98.5∗∗∗

(4.5) (4.7) (4.5)
Post × Invasive tumor risk (standardized) 15.5∗∗∗

(5.8)
Post × Abnormal mammogram risk (standardized) 42.9∗∗∗

(4.7)
Invasive tumor risk (standardized) 83.1∗∗∗

(4.9)
Abnormal mammogram risk (standardized) 16.1∗∗∗

(3.8)
(Intercept) 129.8∗∗∗ 140.9∗∗∗ 130.2∗∗∗

(3.6) (3.9) (3.6)

Observations 4,208,756 4,208,756 4,208,756
R2 8.81× 10–5 0.0005314 0.0002221

Notes – This table reports estimates of the effects of screening policies on small tumor
incidence. Each risk score is standardized. Standard errors are clustered by person, and
*,**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A9: Screening and cancer mortality (standardized risk).

Cancer mortality (per 100,000 person-years)
(1) (2) (3)

Post -15.0∗∗∗ -18.1∗∗∗ -15.4∗∗∗

(2.2) (2.4) (2.2)
Post × Invasive tumor risk (standardized) -23.6∗∗∗

(2.9)
Post × Abnormal mammogram risk (standardized) -13.1∗∗∗

(2.4)
Invasive tumor risk (standardized) 28.3∗∗∗

(2.8)
Abnormal mammogram risk (standardized) 14.6∗∗∗

(2.2)
(Intercept) 40.4∗∗∗ 44.2∗∗∗ 40.8∗∗∗

(1.1) (2.2) (2.0)

Observations 4,208,756 4,208,756 4,208,756
R2 1.42× 10–5 7.76× 10–5 3.16× 10–5

Notes – This table reports estimates of the effects of screening policies on cancer mortality.
Each risk score is standardized. Standard errors are clustered by person, and *,**, and ***
denote statistical significance at the 10%, 5%, and 1% level, respectively.
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C. Clinical Oncology Model of Breast Cancer Development

The Erasmus model (Tan et al., 2006) is a clinical model of cancer development.

We use the model to simulate the health effects of counterfactual screening poli-

cies. The model considers a population of women, starting at age 20, who may

develop cancer. At onset, cancer is either invasive or non-invasive. Non-invasive

cancers are also called ductal carcinoma in situ (DCIS). DCIS cancers are either

DCIS-regressive (they do not become harmful), DCIS-invasive (they eventually

become invasive), or DCIS-clinical (they do not become harmful, but are even-

tually detected clinically). Screening can detect all types of tumors before they

become clinically detected. For the underlying clinical model, we largely follow

the parameterization of Einav et al. (2020), with three points of departure. First,

we calibrate probability of death of other causes to Danish mortality statistics

released by Statistics Denmark. Second, we do not assume that mammography

demand depends on underlying breast cancer stage, as opportunistic screening is

rare and compliance is high in Denmark (Jensen et al., 2005). Third, we calibrate

probability of cancer onset as a function of risk scores.

We modify the parameterization of cancer onset to vary with risk scores. First,

we match the empirical evolution of risk scores across our population. Second,

we calibrate tumor incidence in each year in the model to be a function of risk

score. We extrapolate our empirical measure of cancer risk, which is computed for

women aged 50-69 for whom we have medical information, to women aged 20 and

older using a linear function. We linearly fit the mean risk of women aged 50-69

in our sample as a function of age. We assume the standard deviation of risk is the

same for each age, and parameterize it using the standard deviation of risk scores

in our sample. Using this linear calibration, we then extrapolate the distribution of

risk scores to women aged 20 and assume each woman is endowed with a risk score

at age 20. While our empirical risk score is for invasive cancer, which is observable,

and not for tumor onset, which is unobservable, the extrapolation follows the

assumption in the Erasmus model that the risk of tumor onset is proportional

to the risk of invasive tumor incidence. Next, we calibrate tumor incidence as a
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function of risk score. We assume the probability of onset is a linear function of

risk score, so that P(onseti,t) = a+ b× riski,t. The two parameters to calibrate are

a and b, which we search over the grid formed by a ∈ [0,0.001] and b ∈ [0,0.01],

with 21 candidates for each parameter. Our calibrated model has the parameters

a = 0.00025 and b = 0.0080. We assume that the screening policy starts in 2008.

We match screening compliance after the policy introduction to reported Danish

compliance rates (Lynge et al., 2017). Each parameterization is simulated over a

panel of 10 million women. We calibrate the model to match 48 moments: The

total incidence of small tumors from 2004-2019, the incidence of large tumors

from 2004-2019 for women with above-median risk, and the incidence of large

tumors from 2004-2019 for women with below-median risk.

For counterfactual policy estimates, we simulate panels of 10 million women

under varying policy regimes. The minimum universal screening age is set to 40,

45, 50, or 55. For policies that combine both minimum universal screening ages

and risk-based screening ages, we set the risk cutoff for younger women to be the

median risk of women at the minimum universal screening age cutoff. The main

text reports total screening and tumor incidence per 100,000 person-years in the

simulated panel from 2008-2019 across women aged 40-69.
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