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Abstract

Most macroeconomic models, both fully structural models as well as SVAR
models, view economic outcomes as the product of a combination of endogenous
and exogenous dynamic forces. In particular, the exogenous forces are generally
modeled as a set of linearly independent dynamics processes. In this paper we begin
by showing that this dual dynamic structure is sufficient to identify the entire set
of structural impulse responses inherent to any such model. No extra restrictions
are necessary. We then use this observation to suggest how it can be used to
evaluate common SVAR restrictions (impact restrictions, long-run restrictions and
proxy-VAR), as well as help transpire the role of cross-equation restrictions inherent
to more structural models.
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Introduction

Macroeconomists are often interested in knowing how the economy reacts to different

types of shocks1. There are two main approaches to look at this issue. On the one hand,

one can build a fully specified Dynamic Stochastic General Equilibrium (DSGE) model,

estimate it using full information methods2, and look at its implied impulse response

functions (IRF). These IRF are generally referred to as structural impulse responses. The

advantage of such an approach is that identification is generally granted3, given the many

restrictions imposed by the (generally small scale) structural model. One caveat though

—the flip side of the same coin— is that a DSGE model imposes many constraints on the

data and, consequently, is prone to mis-specification. On the other hand, one can follow

the Structural Vector Autoregressive (SVAR) literature4 and impose a more limited set of

identification restrictions —restrictions more loosely motivated by theory or alternatively

motivated by institutions— to derive structural impulse responses using a VAR.5 SVARs

are less prone to mis-specification, but mapping their implications into the language of

models and exogenous shocks is not uncontroversial.

It is important to note that the SVAR approach is aimed at obtaining the same objects

than those obtained using a DSGE, that is, it is aimed at recovering impulse responses

that can be interpreted as being the outcome of an economy subjected to particular

exogenous driving forces. It is this last observation that we want to exploit in this paper.

In particular, we will show that when a VAR is viewed as the reduced form of a DSGE

model, then one can immediately obtain the desired structural impulses responses without

the need of any additional identification restrictions. Because of this property, most

identifying restrictions used in the SVAR literature can be thought of as overidentifying

restrictions and therefore can be visually evaluated or formally tested. This observation

will allow for the evaluation of impact restrictions, long-run restrictions and proxy VAR

restrictions.
1See Ramey [2016] and Stock and Watson [2017] for very detailed accounts of the recent macroeconomic

literature.
2See e.g. Smets and Wouters [2007], Christiano, Trabandt, and Walentin [2010] and Lindé, Smets,

and Wouters [2016]
3See e.g. Canova and Sala [2009], Iskrev [2010], Komunjer and Ng [2011]
4See Section 4 in Stock and Watson [2016] and Kilian and Lütkepohl [2016] for a complete review.
5We use the generic term VAR, which also includes Vector Error Correction Models (VECM).
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Dynamic Identification. Identification is best understood from the simple recognition

that IRFs implied by DSGE models reflect both propagation mechanisms associated

with the functioning of the economy as well as external dynamics associated with the

exogenous driving forces. For these exogenous driving forces to have a clear structural

interpretation, it is usually assumed that the exogenous processes are linearly independent,

both contemporaneously and over time. The fact that the processes for the exogenous

driving forces are restricted is key. For example, a common assumption is that the

exogenous driving forces are governed by linearly independent AR(1) processes. As we

shall show, because DSGEs share this structure, one can recover structural IRFs directly

from the implied VAR without the need of any of the additional assumption used in the

SVAR literature. In other words, the specification of the lag structure and the set of

variables of a SVAR is sufficient to identify a set of shocks with a structural interpretation.

No additional assumptions are needed to obtain the desired set of structural IRFs. Because

it explicitly makes use of restrictions on the dynamic structure of the underlying model,

we dub that particular SVAR a “D-SVAR”. By dynamic structure, we mostly mean the

process of the exogenous (forcing) variables in the model, although the state variables

and the lag structure also (obviously) need to be specified. By identification of structural

shocks, we mean that there generically exists a unique6 vector of mutually orthogonal

shocks in the D-SVAR that satisfies the restrictions imposed by the dynamic structure

of the DSGE model. In loose and over-simplified terms, if the economy is moved by

exogenous variables that follow linearly independent AR(1) processes, then the economy

follows a D-SVAR and identification of structural shocks is granted. This theoretical

result will be shown in Section 2.

Testing commonly used SVAR restrictions. Our identification result is not complete

since the structural shocks recuperated by our D-SVAR approach are immediately labelled.

This is where the standard SVAR restrictions (impact, long-run, sign . . . ) usually play a

key role: they are used to label the shocks as they are identified. However, they may not

conform with the restrictions imposed by the structure of a DSGE. This can be used in

two ways in our approach. We can use these additional restrictions to label, ex-post, our

shocks. In that case, note that these restrictions are not used to identify the shocks but
6Uniqueness is up to the sign and/or a permutation of the shocks.

3



just to label them. Or we can use our approach to test these restrictions.

To fix ideas, consider the bi-variate environment examined in the seminal paper by

Blanchard and Quah [1989]. This paper aimed at deriving the impulse responses associated

with supply and demand shocks. The identification restriction used to separate the two

shocks under consideration imposed that a demand shock has no long-run (permanent)

impact on GDP, while a supply shock does. Instead, our approach allows us to first obtain

the two unique structural impulse response consistent with a DSGE, and then to examine

the extent to which the Blanchard and Quah’s [1989] restrictions are consistent with our

D-SVAR.

We will provide three examples drawn from the literature to show how our approach

can be used to evaluate SVAR strategies. We first present the Blanchard and Quah [1989]

example discussed above. Then we examine the proxy VAR strategy used in Gertler and

Karadi [2015] to identify monetary shocks by exploiting a high frequency instrument7.

Finally, we assess the validity of the impact restrictions used in Christiano, Eichenbaum,

and Evans [2005] to also identify monetary shocks. We will show that, for two of these

examples (Blanchard and Quah [1989] and Christiano, Eichenbaum, and Evans [2005]),

the identifying restrictions cannot be rejected within our D-SVAR, while they are in the

proxy-VAR of Gertler and Karadi [2015].

D-SVARs as representation of DSGE models. While we focus most of the paper

on showing why and how our D-SVAR approach can be used to help evaluate SVAR

identification schemes, we will also discuss how it can be useful for researchers working with

fully specified DSGE models. In particular, our D-SVAR approach offers an intermediate

step when estimating a DSGE model, as it exploits its general structure but does not

impose any cross-equation restriction. To keep exposition simple in this introduction, let

us assume that all endogenous state variables are observable.8 Heuristically, the D-SVAR

can be interpreted as follows (we provide formal proofs in the paper). When estimating

DSGE models by full information methods, macroeconomists typically impose two sets of

assumptions on the auto-covariance function of the data that constrain the estimation.
7See Kuttner [2001], Gürkaynak, Sack, and Swanson [2005], Bernanke and Kuttner [2005] and

Gürkaynak, Sack, and Swanson [2007] for early work on High Frequency Identification of monetary policy
shocks.

8This assumption is not strictly needed, but is made for exposition purposes. Formally, it guarantees
that the solution of the model admits a VAR (instead of a VARMA) representation. We address the
more general case of unobserved (latent) state variables in the paper.
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The first set comes from the specification of the state-space, the lag structure and the

process of the shocks. The second set comes from the micro-foundations of the model that

impose cross-equation restrictions on the auto-covariance function. Our result states that

—for the vast majority of DSGE models— the first set of assumptions is enough to identify

a vector of orthogonal shocks in an estimated VAR model. The D-SVAR parameters

can be estimated either by a direct Maximum Likelihood approach or by Asymptotic

Least Squares (see e.g. Gouriéroux and Monfort [1995]) making use of (i) the first set of

assumptions and (ii) the VAR estimates as auxiliary parameters for estimation. What

the second set of assumptions adds is to further constrain the D-SVAR by adding extra

cross-equation restrictions and may help identifying deep parameters of the DSGE model.

More specifically, we show that these deep parameters can be consistently estimated in

two stages, using the results on Asymptotic Least Squares of Gouriéroux and Monfort

[1995]. The first stage amounts to estimate our D-SVAR representation. The parameters

of this representation are then treated as auxiliary parameters, which are, in turn, used to

estimate the DSGE deep parameters in the second stage. This two stage approach is then

showed to be asymptotically equivalent to a direct ML approach.

Hence, we can compare the impulse responses implied by the general structure of the

model (the outcome of our D-SVAR) with those associated with the full set of restrictions

implied by theory, including the cross-equation restrictions. If these two sets of impulse

responses are very similar, this can give credibility to specific DSGE model as it implies

that the cross-equation restrictions are not driving the properties of impulse responses

but are instead accepted by the data.

Related Literature. Our identification result relates to several papers including, among

others, McGrattan [2010], Pagan and Robinson [2019], Bai and Wang [2015] and Gourieroux

and Jasiak [2022]. While several of our theoretical results have precedents in the literature,

our contribution is to establish how and when the implicit assumptions behind SVARs

regarding the underlying data generating process allows for the identification of the full

set of structural impulse responses.

McGrattan [2010] derives conditions for identification of an unrestricted state-space

representation associated with a specific small-scale Real Business Cycle model.9 In
9See also Kascha and Mertens [2009] for simulation experiments in a similar setup.
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particular, the paper shows that, when the model includes a permanent technology shock

and a stationary labor wedge shock (in the form of a labor income tax), the unrestricted

state-space representation is identified. Our paper provides conditions for identification

in a broader class of DSGE models, admitting a VAR or a VARMA representation

of the solution. Pagan and Robinson [2019] note that SVARs may face difficulty to

properly uncover the loading matrix of DSGE models because standard estimation of

SVAR models avoids imposing the type of statistical restrictions commonly used in DSGE

models —e.g. that structural shocks follow mutually orthogonal univariate autoregressive

processes. The two authors discuss conditions for local identification in SVARs when the

autoregressive matrix is diagonal and shocks are normalized. Our formal analysis shows

more generically the conditions on the autoregressive matrix that allows to identify the

structural shocks. Bai and Wang [2015] study identification in dynamic factor models

similar to our unrestricted state space representation. Their approach, in line with the

conventional way of identifying shocks in the VAR literature, imposes restrictions on

the loading matrix while leaving unrestricted the autoregressive matrix of factors. In

this paper, we take the opposite viewpoint and determine which type of organisation of

the autoregressive matrix allows to freely identify the loading matrix in the state-space

representation. Finally, Gourieroux and Jasiak [2022] provide conditions for identification

in multivariate undetermined convoluted systems when the exogenous shocks (the “sources”

in their terminology) follow linearly independent autoregressive process of order one and

when there is no intrinsic dynamics of the endogenous variables. They show that when the

autoregressive parameters are distinct, the loading matrix (the “mixing matrix” in their

terminology) is identified. Our paper departs from theirs in at least three dimensions.

First, we consider a larger class of dynamic models and makes connections with the DSGE

literature. Second, we extent the identification problem to non diagonal autoregressive

processes. Third, we determine conditions for partial identification when the practitioner

seeks to identify only a subset of structural shocks.

Outline. The paper is structured as follows. Section 1 presents the main results of the

paper. It shows how the D-SVAR representation can be derived, explains heuristically why

it is identified and presents an application. Section 2 formally proves local identification.

Section 3 discusses estimation and inference in the D-SVAR setup. Section 4 illustrates
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the use of D-SVARs to asses the cross-equation restrictions of a simple New-Keynesian

model. Finally, Section 5 illustrates the use of D-SVARs to assess SVARs in the context of

monetary policy shocks. A last section concludes. All proofs are reported in an appendix.

1 A Primer on D-SVARs

This section shows how to derive our D-SVAR representation, while explaining its

relationship with a (linearised) DSGE model. It then explains intuitively why this

D-SVAR should be identified, by checking the necessary order condition, leaving proof

of identification to the next section.10 Finally, it presents a simple application to an

output growth–unemployment VAR.11

1.1 A Basic Setup

Let us assume that the Data Generating Process (DGP hereafter) is an economic model

(typically a DSGE model) of the type

Xt = M1Xt−1 +M2Et[Xt+1] +M3Zt,

Zt = RZt−1 + εt.
(1)

where Et[·] denotes the expectation operator conditional on period t information set, Xt

is a nx × 1 vector of endogenous variables and Zt is a nz × 1 vector of structural shocks.

Those shocks are assumed to be autoregressive of order one.12 The structural innovations

εt are normally distributed, with zero mean and their covariance matrix is identity. Note

that this implies that the loading matrix M3 encapsulates the size of the shocks. The

vector Xt splits between the (ny × 1) vector Yt of observed variables and the (nk × 1)

vector of unobserved (latent) variables Kt. Note that some substitutions might be needed

to obtain a system featuring as many observed variables as shocks (ny = nz).

Matrices M1, M2, M3 are functions of the vector of deep parameters, θ, and encapsulate

any cross-equation restrictions imposed by the micro-foundations of the DSGE model.

Note in particular that those matrices Mi may contain some zero elements. Finally matrix

R gathers all the parameters pertaining to the dynamics of the shock processes. In this
10Here we refer to the first order condition for identification. However, local identification may still be

possible using higher order conditions (see Sargan [1983] and Dovonon and Hall [2018]).
11In this application, we will make use of results that will be discussed later in the paper.
12To keep exposition simple at this stage, we present only the case of a model with one lead and one

lag and an order one process for shocks. Conceptually, everything extends to higher order models.
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section, it is assumed that all the variables in Xt are observable, while the shocks Zt are

not.13 The case of non-observable state variables will be dealt with in Section B.1. The

solution of the model admits14 the following state space representation

Kt = GKt−1 + FZt,

Yt = ΠykKt−1 + ΠyzZt,

Zt = RZt−1 + εt.

(2)

where G, F , Πyk and Πyz are functions of M1,M2,M2 and R, and therefore of θ and R,

as represented by the mapping

(G,F,Πyk,Πyz, R) = Φ(θ, R).

Shall the system (2) by identified, one can then go a step further and identify the model

parameters, provided that the mapping Φ is invertible.

Having set the stage for system (2), we are now in a position to discuss the identification

of shocks.

1.2 Heuristic Approach to Identification

We consider the case where the state vector Xt only consists of observed variables Yt,

which, as we will show, can be directly written as a VAR. The case of latent endogenous

state variables is presented in Appendix B.1, and is treated in full generality in the

next section. We also assume that there are as many such observed variables as shocks

(n = ny = nz). In this case, Πyk = I and Πyz = 0, such that the system reduces to

Xt = GXt−1 + FZt,

Zt = RZt−1 + εt.
(3)

Eliminating Zt, solution (3) can be written as a SVAR(2) process, that we dub a

D-SVAR:

Xt =
(
G+ FRF−1

)
Xt−1 − FRF−1GXt−2 + Fεt. (4)

Estimating a VAR(2) on the data, one can obtain the non structural VAR representation:

Xt = Γ1Xt−1 + Γ2Xt−2 + νt. (5)
13Shall the shocks be observable, then the identification of shocks problem is trivially solved.
14This implicitly assumes that the dynamic system admits a saddle path. When the system is locally

indeterminate, the Zt vector can be extended to capture extrinsic uncertainty.
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where νt is a vector of canonical innovations with covariance matrix Σν . The representation

(5) is referred to as the non structural VAR. Matrices Γ1, Γ2 and Σν are functions of G,F

and R according to the mapping

(Γ1,Γ2,Σν) = Ψ(G,F,R).

Note that provided the D-SVAR representation can be recovered –i.e. if the mapping Ψ is

invertible, one can compute the theoretical impulse responses functions of the structural

model, the variance decomposition, conditional correlations . . .

Identifying the D-SVAR (4) means recovering matrices G, F and R from Γ1, Γ2 and

Σν . Absent any restrictions, each matrix contains n2 elements, so that 3n2 unknown

coefficients need to be recovered. The available information is the non structural VAR is

given by (Γ1,Γ2,Σν). The system of equations that determines the elements of F ,G and

R is, using (4) and (5): 
Γ1 = G+ FRF−1,
Γ2 = −FRF−1G,
Σν = FF ′.

(6)

Because Σν is a symmetric, this system only provides us with 3n2 − n(n−1)
2 independent

equations for 3n2 unknowns. This is the well-known problem of the identification of shocks

in SVARs. If one adds some extra identifying assumptions (at least n(n−1)
2 ), then F , G

and R can be identified. Of course, this order condition is only necessary, and a rank

condition also needs to be satisfied (see Section 2). For now, let us simply count the

number of restrictions and check a necessary condition for identification. A restriction

typically imposed in the VAR literature assumes that F is lower triangular, which amounts

to restrict the effect of shocks on impact (see Sims [1980]). This puts exactly n(n−1)
2

restrictions, so that the VAR is just identified. But, shall the loading matrix F be obtained

from solving a standard DSGE, F is a complicated function of the matrices M1, M2, M3

and R, and may not necessarily comply with the lower triangular assumption unless some

specific assumptions are placed in the timing of agent’s decisions (see e.g. Christiano,

Eichenbaum, and Evans [2005]). Likewise, restricting the long-run, as in Blanchard and

Quah [1989], imposes a particular structure on the loading matrix F that not all DSGE

share.

Our D-SVAR approach does not hinge on restricting the loading matrix F and rather

relies on assumptions placed on the dynamic structure of the shocks only —i.e., on the

autoregressive matrix R. To fix ideas, let us assume that the shocks in Zt are mutually
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orthogonal at all leads and lags – i.e. that R is a diagonal matrix with distinct diagonal

elements. In other words, let us assume that all the shocks in the DSGE model are

linearly independent AR(1) processes. While this assumption may appear very restrictive

at first sight, it is shared by the vast majority of the DSGE literature.15 In that case, the

necessary order condition is satisfied: R only consists of n non zero elements, so that we

have 2n2 + n unknowns to determined. Note however that, as we will show in the next

section, counting restrictions does not guarantee identification. For example, a diagonal

autoregressive matrix with identical elements (i.e. R = ρIn) cannot be identified as, in

that case, F drops from the first two equations of System (6). We will follow another

strategy to prove formally identification in the next section

1.3 Application to a Bivariate VAR

Here we apply our dynamic identification to a bivariate VAR featuring the growth rate of

output per capita, ∆yt, and a measure of the unemployment rate gap, ut, computed as

the gap between the actual and non-cyclical rate of unemployment. Blanchard and Quah

[1989] (BQ hereafter) used a similar VAR to uncover the permanent, εP , and transitory,

εT , component of output by imposing that the latter has no long-run effect on the level of

output. We estimate a VAR for the 1960Q1–2007Q4 period using two lags of data, as

selected by BIC, and recover the D-SVAR representation.16 A J-test can be designed,

that does not reject the over–identifying restrictions imposed by the D-SVAR.17 Impulse

responses to our two structural shocks are displayed in Figure 1. Table 1 reports the

associated forecast error variance decomposition at various horizons.

We uncover an interesting and familiar pattern. There is a shock, ε2, that increases

output and decreases unemployment on impact. Then the response of output is hump-

shaped and goes back to almost zero in the long-run. This shock explains more than

80% of unemployment volatility at any horizon, about 75% of the volatility of output on

impact, but about 0% in the long-run. The other shock, ε1, exerts a permanent effect

on output and little effect in unemployment. The two shocks look pretty much like the

permanent and temporary shocks of BQ. This is confirmed by the dash lines on Figure 1,
15In fact, one can somehow relax this assumption as what is actually needed is that R be at least as

sparse as a triangular matrix for the necessary order condition to hold.
16As we will show in Section 3, we use by an Asymptotic Least Squares estimation method (see Corollary

1) using the unrestricted VAR as auxiliary model.
17See Section 3 for details.
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Figure 1: Comparing the D-SVAR with Blanchard and Quah’s [1989] Identification
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Notes: Sample is 1960Q1-2007Q4. y is the real GDP, u is the unemployment rate gap. Estimation is
done with (∆y,u) using two lags. The grey area represents 68% confidence bands obtained from 1,000
Bootstrap replications.

Table 1: Forecast Error Variance Decomposition, (∆y, u), D-SVAR and Blanchard and
Quah [1989]

Output Unemployment gap
Horizon ε1 ε2 εP εT ε1 ε2 εP εT

1 24.7 75.3 34.0 66.0 15.9 84.1 9.2 90.8
4 18.4 81.6 27.0 73.0 4.7 95.3 1.3 98.7
8 22.3 77.7 31.3 68.7 2.6 97.4 1.2 98.8
20 42.1 57.9 49.1 50.9 2.0 98.0 1.7 98.3
∞ 99.8 0.2 100.0 0.0 2.0 98.0 1.7 98.3

Notes: Sample is 1960Q1-2007Q4. Estimation is done with (∆y,u) using two lags, where y is the real
GDP and u is the unemployment rate gap. ε1 and ε2 correspond to the D-SVAR, εP and εT to Blanchard
and Quah [1989].
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which correspond to the BQ identification. Responses are indeed very similar. Figure 2

shows scatter plots of the BQ’s permanent and transitory shocks against ε1 and ε2: the

correlation between the D-SVAR and BQ shocks is almost perfect in both cases.

As we will make it explicit in Section 3, the estimation of the D-SVAR allows to test

the BQ identification restriction. If one restricts the data to be generated by a model

in which the two latent shocks are linearly independent AR(1) processes, then, as can

be seen on Figure 1, one cannot reject at 0% that one shock has a permanent effect on

output. Figure 1 seems to indicate that the impact response of the unemployment gap

differs across the two identifications. However, a formal test of the null hypothesis of

equality between the two IRFs does not reject the null hypothesis, with a p-value of 40%.

Figure 2: Correlation between D-SVAR and BQ shocks
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Notes: Sample is 1960Q1-2007Q4. Estimation is done with (∆y,u) using two lags, where y is the real
GDP and u is the unemployment rate gap.

Our dynamic identification hence recovers dynamics that are extremely similar to

Blanchard and Quah [1989], whose identifying restrictions can be tested (and not rejected)

under the D-SVAR. An advantage of our approach though is that the identification of the

shocks does not require the estimation of the spectral density of, at least, one variable at

frequency 0 —an object which is usually hard to estimate and at best very imprecise (see,

e.g. Fernald [2007]).18

In the two next sections, we formally prove the results we have been using informally

in this preview section.
18See Appendix 1.3 for an illustration of the problem.
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2 D-SVAR Identification

This section formally proves local identification of the D-SVAR. We start by fixing some

notations that will be used throughout the proof, we then analyze identification relying

on covariance matrix restrictions only and finally add dynamic restrictions.

2.1 Setup

Consider an economy whose DGP is described by the following state-space representation

(we abstract from constant vectors without any loss of generality)

Kt︸︷︷︸
nk×1

= G︸︷︷︸
nk×nk

Kt−1︸ ︷︷ ︸
nk×1

+ F︸︷︷︸
nk×nz

Zt︸︷︷︸
nz×1

, (7)

Yt︸︷︷︸
ny×1)

= Πyk︸︷︷︸
ny×nk

Kt︸︷︷︸
nk×1

+ Πyz︸︷︷︸
ny×nz

Zt︸︷︷︸
nz×1

, (8)

Zt︸︷︷︸
nz×1

= R︸︷︷︸
nz×nz

Zt−1︸ ︷︷ ︸
nz×1

+ εt︸︷︷︸
nz×1

, (9)

where the (ny × 1) vector Yt gathers all observed variables, (nk × 1) vector Kt collects

all of possibly unobserved (latent) state variables, Zt represents the (nz × 1) vector of

unobserved exogenous variables and εt is the (nz × 1) vector of structural innovations

to Zt. In particular, εt satisfies Et−1εt = 0, where Et−1 denotes the expectation operator

conditional on the information set of histories until period t−1, i.e. all past realizations and

histories of {Kt, Yt, Zt}.19 This framework is general enough to represent the (log-)linear

solution of most (dynamic general) equilibrium model, including among others DSGE

models. This solution usually depends on a limited number of parameters, that we denote

by θ gathering all “deep” structural parameters (representing preferences, technology,

institutions, policies . . . ), together with the stochastic process of the exogenous forcing

variables present in the structural model. In this case, the matrices in the state-space

representation (7)–(9) will be functions of θ. In this paper, we do not consider the

identification of θ, but instead the identification of the state-space parameters that freely

enter in the matrices of the state-space representation. We denote this vector of state-

space parameters ψ. It must be clear to the reader that system (7)–(9) imposes less

restrictions than the (possibly underlying) DSGE model. The only restrictions that we

will explore apply to the matrix R and the covariance matrix of the structural innovations
19Shall some elements Kt be observed, those elements should be reassigned to vector Yt and the matrices

Πyk and Πyz should be adjusted accordingly.
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εt in Equation (9). Finally, the shocks εt are zero mean weak white noise processes with

covariance matrix E(εtε′
t) = Σε.

System (7)-(9) can be rewritten in the more compact form

St+1 = ASt +Bεt+1, (10)

Yt = ΠSt, (11)

with

St︸︷︷︸
ns×1

=
[
Kt

Zt

]
, A︸︷︷︸

ns×ns

=
[

G FR
0nz×nk

R

]
, B︸︷︷︸

ns×nz

=
[
F
Inz

]
and Π︸︷︷︸

ny×ns

=
[
Πyk Πyz

]
,

where ns = nk + nz. System (10)-(11) finally can also be expressed as the Fernández-

Villaverde, Rubio-Ramírez, Sargent, and Watson’s [2007] ABCD representation

St+1 = ASt +Bεt+1, (12)

Yt+1 = CSt +Dεt+1, (13)

where C = ΠA and D = ΠB. Note that, in the sequel, we consider the case where the

number of observables is equal to the number of shocks. Some assumptions need to be

placed on the ABCD representation (12)-(13).

Assumption 1 For any z ∈ C, det(I − Az) = 0 implies |z| > 1.

Assumption 1 restricts the class of matrices A to those with eigenvalues lying inside the

unit circle. Under Assumption 1 and using (10)-(11) and/or (12)-(13), the process {Yt}

admits the following infinite Vector Moving Average (VMA) representation:

Yt = Π(I − AL)−1Bεt =
[
C(I − AL)−1BL+D

]
εt =

∞∑
j=0

h(j;ψ)εt−j.

and H(z, ψ) = ∑∞
j=0 h(j;ψ)zj is called the transfer function. For every ψ ∈ Ψ, E(Yt) = 0

and

E(YtY ′
s ) ≡ Γ(s− t;ψ) =

∞∑
j=0

h(j;ψ)Σεh(j + s− t;ψ)′,

for all t, s ≥ 1, where ψ = (vec(A)′, vec(B)′, vec(C)′, vec(D)′, vech(Σε)′)′ is the vector

collecting all the parameters of the state-space representation (7)–(9).

For any weakly stationary process {Yt} implied by Assumption 1 and under the

assumption that the shocks ϵt are Gaussian, the unconditional mean and auto-covariance
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function completely characterize the properties of the process. Let us therefore define the

auto-covariance generating function as:

Ω(z, ψ) =
∞∑

j=−∞
Γ(j;ψ)zj,

for any z ∈ C. Evaluating Ω(z, ψ) at z = exp(iω) for any ω ∈ [−π, π] and rescaling it by

(2π)−1 yields the spectral density of the observable {Yt} as

Ω(exp(iω), ψ) = 1
2π

∞∑
j=−∞

Γ(j;ψ) exp(iωj) = 1
2π

Γ(0;ψ) + 2
∞∑
j=1

Γ(j;ψ) cos(jω)
 ,

which is always positive semi-definite. To simplify, we hereafter refer to Ω(z, ψ) as the

spectral density as well.

As will be clear later, it will prove useful to defined observational equivalence for this

class of multivariate covariance stationary process. We closely follow Komunjer and Ng

[2011] and define it with respect to the entire auto-covariance function of the observable

(or the spectral density).

Definition 1 Two sets of state-space parameters ψ and ψ̃ are observationally equivalent

if Ω(z;ψ) = Ω(z; ψ̃), for all z ∈ C or, equivalently, Γ(j;ψ) = Γ(j; ψ̃) at all j ≥ 0.

In other words, two stationary state-space models are observationally equivalent is they

share the same auto-covariance (spectral) properties. This then allows us to define local

identification.

Definition 2 The state-space representation (10)-(11) is locally identifiable from the

spectral density of Yt (or equivalently from the auto-covariances of Yt) at ψ ∈ Ψ if there

exists an open neighborhood of ψ such that for every ψ̃ in this neighbourhood, ψ and ψ̃

are observationally equivalent if and only if ψ̃ = ψ.

In state space system, the spectral density function can be simply obtained from the

transfer function and the covariance matrix of the shocks, Σε, as

Ω(z, ψ) = H(z;ψ)ΣεH(z−1;ψ)′,

where, in our ABCD representation of the dynamics,

H(z;ψ) = Π(I − Az)−1B ≡ C(I − Az)−1B +D,
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with z = exp(iω) for any ω ∈ [−π, π]. As explained in Komunjer and Ng [2011], this

representation of the spectral density then makes it clear that equivalent spectral density

function can obtain because (i) for given Σε, two distinct vectors of state space parameters,

ψ and ψ̃, yield the same transfer function (H(z;ψ) = H(z; ψ̃)) or (ii) many pairs of

H(z;ψ) and Σε give rise to the same spectral density.

In general, the state-space parameter ψ is not identifiable from the second order

moments of the observable variables. As an illustration, let us consider the following two

state-space representations (Kt is observable):

S =


Kt = GKt−1 + FZt−1,

Yt = ΠykKt + ΠyzZt,

Zt = RZt−1 + εt,

S̃ =


Kt = GKt−1 + F̃ Z̃t−1,

Yt = ΠykKt + Π̃yzZt,

Z̃t = R̃Z̃t−1 + ε̃t,

where Z̃t = U−1Zt, F̃ = FU , Π̃yz = ΠyzU , R̃ = U−1RU and Σ̃ε = U−1ΣεU
−1′ for some

full rank matrix U . The two representations S and S̃ are observationally equivalent

with respect to the spectral function since Ω(z, ψ) = Ω(z, ψ̃) for all z ∈ C where the

vectors ψ and ψ̃ gather, respectively, the elements of the vectorization of matrices defining,

respectively, S and S̃.

Following Komunjer and Ng [2011] (see Proposition 1-S), the following property obtains

in the case of the ABCD representation

Property: Two distinct vectors of state-space parameters ψ, ψ̃ ∈ Ψ are observationally

equivalent respective to the transfer function and the spectral density if and only if there

exists a full rank ns×ns matrix T and a full rank nz ×nz matrix U such that Ã = TAT−1,

B̃ = TBU , C̃ = CT−1, D̃ = DU and Σε̃ = U−1ΣεU
−1′.

This property obtains as follows. First, the equalities Ã = TAT−1, B̃ = TB, C̃ = CT−1

are necessary and sufficient for the equivalence of the transfer function H(z; ψ̃) = H(z;ψ).

Sufficiency follows directly from the observation of the transfer function in the ABCD

representation

H(z; ψ̃) = C̃(I − Ãz)−1B̃ +D

= CT−1(I − TAzT−1)−1TB +D

= CT−1T (I − Az)−1T−1TB +D = H(z;ψ).

The necessary condition follows directly from a well known result in control theory

under the condition of minimality of the state-space representation (See Theorem 3.10 in
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Antsaklis and Michel [1997] and Chapter 8 in Gouriéroux and Monfort [1995] ). A system

is minimal if and only if it is controllable and observable (see Appendix A.1 for formal

definitions), implying that, among all systems leading to the same output spectral density,

it is driven by the minimal number of state variables. This equivalence class is function of

a non-singular transformation that corresponds to a rotation of the state, i. e., T−1St.

The equivalence of the spectral density is obtained for a full rank matrix U such that:

H(z;ψ)ΣεH(z−1;ψ)′ = H(z;ψ)UU−1ΣεU
−1′
U ′H(z−1;ψ)′.

Fixing B̃ = BU , D̃ = DU and Σε̃ = U−1ΣεU
−1′, this yields

H(z; ψ̃) = H(z;ψ)U = DU + C [I − Az]−1 BU.

Observational equivalence follows immediately.

We therefore established that identification of ψ or a subset of ψ cannot obtain without

placing additional restrictions on the covariance matrix, Σε. This is what we do in the

next section.

2.2 Covariance Matrix Restrictions

This section provides a key proposition on local identification when restrictions are placed

on the covariance matrix only. In particular, we consider the case where the structural

innovations are mutually orthogonal and their covariance matrix is normalised to the

identity matrix such that E(εtε′
t) = Inz – a common identifying assumption in the SVAR

literature. In this case, the matrices F and Πyz in (7)–(9) encapsulate any scale effect

from the shocks —i.e. contains information about the volatility of the shocks. A direct

implication of this assumption is that the only admissible matrix U which allows for

Σε̃ = U−1ΣεU
−1′ = Inz is an orthonormal matrix—i.e. UU ′ = Inz (see Corollary 1 of

Kocięcki and Kolasa [2018]).

We further make the following assumption, that adapts Assumption 1 to our initial

state space representation (7)–(9).

Assumption 1′ For any z ∈ C, det(I −Az) = 0 implies |z| > 1 and the matrices G and

R have no eigenvalues in common.

Since matrix A is block triangular (see System (10)–(11)), we have det(I − Az) =

det(I − Gz)det(I − Rz). Matrices G and R have all their eigenvalues lying within the
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unit circle and do not have any common eigenvalue. The latter assumption is necessary to

disentangle the dynamics of the latent variables Kt from those of the exogenous process

Zt. Endowed with Assumption 1′, the next proposition shows that the rotation matrix T

is block upper triangular.

Proposition 1 Under Assumption 1′, we have

• When the state variables Kt are unobserved, the full rank matrix T has the form

T =
[
T11 T12

0nz×nk
V

]
, (14)

with T11 a full rank (nk × nk) matrix.

• When the state variables Kt are observed, the full rank matrix T has necessarily the

following form:

T =
[
Ink

0nk×nz

0nz×nk
V

]
, (15)

In both cases, V is an orthonormal (nz×nz) matrix such that V V ′ = Inz and V = U ′ = U−1

defined above.

Proof : See Appendix A.2.

Proposition 1 implies that, as long as state variable Kt is observed, matrices G and

Πyk can be identified using the observed spectral density function.20 However, it does not

allow for proper identification of the loading matrix F relying on the properties of Zt.

Indeed, a direct implication of the proposition is that there exists at least one equivalent

exogenous process to (9):

Zt = V RV ′Zt−1 + εt. (16)

Observational equivalence in terms of transfer function (and spectral density) holds if and

only if sub-matrix V in matrix T defined in (15) is orthonormal (V V ′ = Inz). In that

case, pre-multiplying (16) by V ′ we get

Z̃t = RZ̃t−1 + ε̃t,

where Z̃t = V ′Zt, ε̃t = V ′εt and E(ε̃tε̃′
t) = Inz . In other words, the sole knowledge of the

spectral properties of Zt is not sufficient to identify F . Further (dynamic) restrictions

need to be placed on the autoregressive matrix R.
20The observed spectral density (or equivalently the auto-covariance) function can be obtained by the

estimation of a VAR, a VARMA or by the ML estimation of a state space representation.
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2.3 Covariance Matrix and Dynamic Restrictions

This section focuses on the local identification of the exogenous process Zt relying on

second order moments information (spectral density of observables Yt). Our strategy is

to show that the only admissible permutation matrix in equation (16) is V = Inz (up to

changes of sign and/or permutation of the identity matrix) and hence that there indeed

only exists one Zt process that is compatible with the spectral properties of observables

Yt. We examine the following four cases (commonly encountered in the DSGE literature):

1. R is a diagonal matrix;

2. R is a lower (identically upper) triangular matrix;

3. R is a symmetric matrix;

4. R is a block diagonal matrix with blocks corresponding to cases 1 and 2;

and prove the identification problem in each case.

2.3.1 R is a Diagonal Matrix

The case of a diagonal matrix is of particular interest. It implies, together with the

restriction on the covariance matrix, that all processes in the Zt vector are mutually

orthogonal at any leads and lags. While this assumption may sound very restrictive,

it actually corresponds to the common practice in the DSGE literature, and hence

echoes economic theory. The next proposition derives the sufficient condition for local

identification.

Proposition 2 If R is a diagonal matrix with distinct diagonal elements (ri,i ̸= rj,j, ∀i ̸=

j) then the state-space model (10)-(11) is locally identifiable.

Proof : See Appendix A.3.

In other words, the loading matrix F and the autoregressive matrix R are locally

identifiable if all the autoregressive parameters of the nz linearly independent forcing

variables are all different. Henceforth, if one has in mind a “standard” DSGE featuring

mutually orthogonal shocks at any leads and lags, dynamic identification easily obtains.

From an intuitive point of view, identification obtains because, given an economic structure,
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differences in the persistence of shocks implies that the impulse response functions to each

shock all bring different information regarding the dynamics. To see this more concretely,

it may prove useful to consider the following example.

Example 1: Identification of Demand/Supply Shocks in a New-Keynesian

Model. Consider the following textbook 3-equation New Keynesian (NK) model (see

Galí [2015]) featuring two structural shocks

yt = Etyt+1 − (it − Et[πt+1]) + z1,t,

πt = βEt[πt+1] + κyt + z2,t,

it = ϕππt,

where yt, πt and it denote respectively aggregate output, the rate of inflation and the

nominal interest rate and Et[·] denotes the conditional expectation operator. Parameter

β ∈ (0, 1) is the discount factor, κ ≥ 0 denotes the slope of the Phillips curve and ϕπ is

the degree of aggressiveness of monetary policy to inflation. The random shock z1,t can

be interpreted as a demand shock shifting the IS curve, whereas z2,t is a cost-push shock

shifting the Phillips curve. For expositional purposes, we assume that the demand shock,

z1,t is serially uncorrelated (as a benchmark case), while z2,t exhibits serial correlation.

Assuming the Taylor principle holds (ϕπ > 1), the solution takes the form

Xt = FZt,

where F is a 2×2 matrix that depends on the structural parameters and the persistence of

the cost-push shock (ρ). The vector Xt = (yt, πt)′ contains the two endogenous variables

and Zt = (z1,t, z2,t)′ is the vector of the two structural shocks which is assumed to follow

the autoregressive process

Zt = RZt−1 + εt with R =
[
0 0
0 ρ

]
and εt =

[
ε1,t
ε2,t

]
,

where εt is a zero mean weak noise and where we impose the normalisation E(εtε′
t) = I2.

Our problem is then to identify the vector of five parameters ψ = {ρ, f11, f12, f21, f22}

from the auto-covariance function of yt and πt. Each element of the vector Xt can be
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expressed as a linear combination of the innovations of the shocks as

yt = f11ε1,t + f12

∞∑
i=0

ρiε2,t−i

πt = f21ε1,t + f22

∞∑
i=0

ρiε2,t−i

from which the auto-covariances of yt and πt can easily be obtained. For instance the

variance and auto-covariances of output express as (similarly for inflation)

γy(0) = f 2
11 + f 2

12
1 − ρ2 ,

γy(h) = ρh
f 2

12
1 − ρ2 for h > 0.

Note that computing the ratio γy(h+1)/γy(h) for any h > 0 allows to immediately identify

ρ. Given ρ, the knowledge of any γy(h) for h > 0 is sufficient to identify f12 (up to its sign).

Then, f11 (up to its sign) straightforwardly obtains from γy(0). Using the same approach

with the auto-covariance function of inflation identifies f21 and f22. It is worth noting

that when ρ = 0, so the two shocks z1,t and z2,t display the same dynamic properties and

the parameters fij are not identified. Indeed, in this case, the model reduces to[
yt
πt

]
=
[
f11 f12
f21 f22

] [
ε1,t
ε2,t

]
,

which is not identifiable from the covariance matrix of Xt (3 moments to identify 4

parameters). This example therefore illustrates in what sense the dynamic structure of

exogenous forcing variables is key to identify the state–space representation.

2.3.2 R is a Lower Triangular Matrix

We now extend the autoregressive matrix R to the case of lower triangular shape, hence

relaxing its diagonal feature. Let us define the matrix

Λ =


λ1Inz1 0 · · · 0

0 λ2Inz2 · · · 0
... . . . ...
0 0 · · · λLInzL

 ,
with λi ≠ λj for i ̸= j, and nzl be positive integers for l = 1, . . . , L such that nz1+. . .+nzL =

nz and nzl = m(λl) denotes the multiplicity of eigenvalue λl.

Proposition 3 If R is a lower triangular matrix with the same main diagonal as Λ

and all elements on the first sub-diagonal are different from zero, i.e. ri+1,i ̸= 0 for

i = 1, . . . , nz − 1, the state-space model is locally identifiable.
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Proof : See Appendix A.4.

Proposition 3 indicates that, contrary to the strict diagonal case, the lower triangular

case does not require all diagonal elements to be different to permit identification. Should

there be some identical elements on the diagonal, they should appear in consecutive order

—i.e. all gathered in one of the matrices λℓInzℓ
. The proposition also implies that while not

all elements below the diagonal have to be non-zero, those lying on the first sub-diagonal

have to be non zero. Again, intuitively, the condition for proper local identification is that

all shocks should lead to distinguishable dynamics (as captured for example by Impulse

Response Functions), hence some elements have to be distinct to guarantee that different

shocks generate different dynamics.

Example 2: Identification of News and Surprise Shocks The identification of

news and surprise shocks (see e.g. Beaudry and Portier [2006] and Beaudry, Fève, Guay,

and Portier [2019]) provides a clear showcase of a lower triangular structure. Let us

consider a simple asset pricing model with risk neutral agents. The price of an asset, pt,

is simply given by the expected present value of dividends, dt

pt = Et
∞∑
i=0

βidt+i,

where Et is the conditional expectation operator and β ∈ (0, 1). Dividends are assumed

to follow an exogenous process of the form

dt = αε1,t−1 + ε2,t.

and therefore has two mutually orthogonal components: a surprise (unexpected) shock

ε2,t and a news (expected) shock ε1,t. We normalise the variance ε2,t to unity, so that α

represents the volatility of the news shock relative to the surprise shock. Plugging the

dividend process into the asset price formula, the solution asset price is simply given by

pt = dt + αβε1,t. Denoting Zt = (z1,t, z2,t)′, z1,t = ε1,t, z2,t = dt and εt = (ε1,t, ε2,t)′, the

process of exogenous variables rewrites

Zt = RZt−1 + εt where R =
[
0 0
α 0

]
.

Note that matrix R has all its diagonal elements equal to 0, while the first sub-diagonal α

is assumed to be non-zero. Matrix R therefore satisfies the requirements of Proposition 3.
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Let us now assume that dividend, as this is the case in Beaudry and Portier [2006]), is

subject to measurement errors. As illustrated in Kurmann and Sims [2021], dividends

immediately react to a news shock. To account for this phenomenon, let us define

observed dividends, dot , as dot = µε1,t + dt, where parameter µ measures the pass–through

of measurement errors to dividends. The vector of observed variables then consists of

observed dividends and the asset price, Xt = (dot , pt)′. We therefore need to identify four

parameters in the loading matrix F 21 and the relative volatility parameter α. Hence the

vector of the state space parameters consists of five parameters ψ = {α, f11, f12, f21, f22}

that need to be identified. As shows in Appendix A.7, these five parameters are identifiable

from the joint auto-covariances of (dot , pt) for various leads and lags. In other words, the

news shock and the unexpected shock to dividend are identified from observed dividends

and prices, even when measurement errors are introduced in the model.

2.3.3 R is a Symmetric Matrix

For simplicity, we restrict the presentation the case with two shocks. The matrix R is

symmetric with the same value on the diagonal, and the same value on the anti-diagonal.

While such a configuration may appear as a curiosity at first sight, it is actually of very

practical interest in the international macroeconomic literature since the seminal work of

Backus, Kehoe, and Kydland [1992] 22. For this specification, the autoregressive matrix

takes the following form:

R =
[
ρ τ
τ ρ

]
with τ ̸= 0. (17)

The previous non-zero restriction on τ is critical. When τ = 0, matrix (17) implies a lack

of identification, as it reduces to a diagonal matrix with identical elements and therefore

does not satisfy Proposition 2. Provided τ ̸= 0, the following proposition holds.

Proposition 4 For the 2 × 2 symmetric matrix R (eq. 17), the state-space model is

locally identifiable.

In particular, and contrary to the diagonal case, we show in the Appendix A.5 that the

diagonal elements must necessarily be identical for local identification of the state-space
21This is a consequence of the measurement error. Without measurement errors, this matrix only

contains three parameters and those elements can be identified using a Cholesky decomposition (See
Beaudry and Portier [2006]).

22This dynamic structure of autoregressive matrix has widely been used, among others, by Backus,
Kehoe, and Kydland [1994], Baxter and Crucini [1995], Heathcote and Perri [2002] and Kehoe and Perri
[2002].
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model.23

2.3.4 Partial Identification.

Finally, Proposition 5 establish that the model is partially identifiable. In other words,

even though some shocks can not be identified, it is still possible to identify a subset.

Proposition 5 In the case of a block diagonal organisation of the R matrix with one

block corresponding to one of the preceding cases, the state–space model is partially locally

identifiable for this block.

Proof : See Appendix A.6.

We illustrate this proposition in the case of partial identification of monetary policy

shocks in a New Keynesian model.

Example 3: Partial Identification and Shocks to Monetary Policy Let us consider

the textbook 3-equation NK model developed in Example 1, in which we introduce a

monetary policy shock, labeled z3,t, that exogenously shifts the interest rate set by the

monetary authority —i.e. it = αππt + z3,t. To ease exposition, we assume that the two

shocks z1,t and z2,t are not serially correlated, while third one z3,t is. As will be clear later,

the two serially uncorrelated shocks cannot be separately identified, whereas the third one

one can be identified as long as it is serially correlated. Just as in Example 1, assuming

the Taylor principle holds, the model can be solved forward and yields the state-space

representation

Xt = FZt,

where F is a (3 × 3) matrix. The vector Xt = (yt, πt, it)′ gathers the three endogenous

variables and Zt = (z1,t, z2,t, z3,t)′ is the vector of the three structural shocks. Given our

assumptions on the dynamics of the shocks, Zt evolves as

Zt = RZt−1 + εt where R =

0 0 0
0 0 0
0 0 ρ

 and εt =

ε1,t
ε2,t
ε3,t

 .
εt is a zero mean weak white noise and E(εtε′

t) = I3.
23Appendix B.7 offers an illustration of the symmetric autoregressive matrix, R, with an application to

the international transmission of shocks between the US and the Euro area.
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Similarly to Example 1, the moving average representation of output (likewise for the

inflation rate and the nominal interest rate) writes

yt = f11ε1,t + f12ε2,t + f13

∞∑
i=0

ρiε3,t−i,

from which we get the output auto-covariance functions as

γy(0) = f 2
11 + f 2

12 + f 2
13

1 − ρ2 when h = 0,

γy(h) = f 2
13ρ

h

1 − ρ2 when h > 0.

The persistence parameter ρ can be directly identified by computing the ratio γy(h +

1)/γy(h) for h > 0, which is free from any parameter f13. Given ρ, the direct observation

of γy(h), for any h > 0, allows to recover parameter f13 (up to a sign term). In other

words, the effect of a monetary policy shock on output is identified. Applying the same

procedure on inflation and the nominal interest allows for the identification of f23 and

f33 (up to a sign term). It is therefore possible to identify the monetary transmission

mechanism for all variables in the D-SVAR model.

Note that, on the contrary, the knowledge of γy(0) only helps identify the sum f 2
11 +f 2

12,

not f11 and f12 separately, In other words, the effect of two remaining shocks ε1,t and

ε2,t cannot be separately identified. The reason for this result is that the dynamics of

these two shocks do not bring any information to disentangle them. This result obviously

extends to the inflation rate and the nominal interest rate. This example simply illustrates

that one shock can be identified in so far as it displays a dynamic structure that differs

from the other shocks in the economy.

3 Estimation and Inference

This section discusses estimation and inference in the D-SVAR approach and shows how

this approach can be used to evaluate DSGE and SVAR models.

3.1 Estimation

To simplify the exposition, and without loss of generality, let us consider the simplified

state space representation

Xt = FZt (18)

Zt = RZt−1 + εt , (19)
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where E(εtε′
t) = Inz. In the sequel, we will restrict ourselves to cases where the parameter

vector ψ = (vec(F )′, vec(R)′)′ is indeed locally identified, such that the conditions for

the validity of Propositions 2-5 are satisfied. Vector ψ can thus be estimated either by

Maximum Likelihood (ML) from (18)-(19) or equivalently by a two step Asymptotic Least

Square (ALS) approach (See Corollary 1 below). Let us denote ψ̂T the ML estimator

of ψ for a sample size T . Absent any unobserved variables, the D-SVAR representation

rewrites as a VAR(1) model:

Xt =
(
FRF−1

)
Xt−1 + Fεt (20)

where the F is identified using the dynamic structure of unobserved structural shocks. So

the loading matrix F is obtained without any restriction. Consider now the reduced-form

VAR(1) representation :

Xt = ΓXt−1 + ut (21)

with E(ut) = 0 and E(utu′
t) = Σu. This implies that ut = Fεt.

Our D-SVAR representation imposes more restrictions on the dynamic structure of

the data Xt than the unrestricted VAR model. This offers an opportunity to use the

information contained in the parameters of the unrestricted estimated VAR model (21)

to estimate ψ in the D-SVAR (18)-(19). Let us define η = (vec(Γ)′, vec(Σu)′)′ and the

binding function η̃(ψ). We derive a version of the Corollary in Gouriéroux and Monfort

[1995] (Chap. 10, Section 10.4.2, Corollary 10.2) adapted to our D-SVAR.

Corollary 1 Let η̂T be a consistent and asymptotically normal estimator of η from (21)

and let η(ψ) be the binding function. The ALS estimator ψ̂T obtained by solving

min
ψ

[η̂T − η̃(ψ)]′ ST [η̂T − η̃(ψ)] , (22)

where ST is an estimator of the inverse of the asymptotic covariance matrix of η̂T , is a

consistent estimator of ψ and is asymptotically equivalent to the ML estimator ψ̂T of ψ

obtained from (18)-(19).

Intuitively, Corollary 1 states that estimating the parameter vector ψ in one direct step

(ML approach) or relying on a two step procedure using η as an auxiliary parameter (ALS

approach) yields asymptotic equivalent estimator of ψ. The two-step estimation uses

the constraints Γ = (FRF−1) and Σu = FF ′ to uncover the elements of the R and F
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matrices. This corollary therefore illustrates the strong connection between our approach

and standard VAR modelling.

Consider now the DSGE model that underlies system (18) and (19). This DSGE

model imposes cross-equation restrictions on the elements of the F (θ) matrix together

with those contained in the R(θ) matrix. Let us define the binding function ψ̃(θ) that

expresses the vector of state-space parameters, ψ, as a function of θ. Under the conditions

provided in Komunjer and Ng [2011], vector of parameters θ is also identifiable and can

thus be estimated by ML, a usual practice in the applied macroeconomic literature. Let

us denotes by θ̂T the ML estimator of θ. Because our D-SVAR imposes less restrictions

on the state-space representation (18) and (19) than the DSGE model and provided dim

θ < dim ψ, vector ψ can be used as an auxiliary parameter to estimate θ. The following

corollary, again adapted from Gouriéroux and Monfort [1995], holds.

Corollary 2 Let ψ̂T be the ML estimator of ψ from the unconstrained state-space version

of the representation (18) and (19) and ψ̃(θ) the binding function. The estimator θ̃T
obtained by solving

min
θ

[
ψ̂T − ψ̃(θ)

]′
ST

[
ψ̂T − ψ̃(θ)

]
,

where ST converges to the inverse of the asymptotic covariance matrix of ψ̂T which is

given by the information matrix I(ψ) of the log-likelihood function, is asymptotically

equivalent to the ML estimator θ̂T of θ obtained from the constrained state-space version

of the representation (18) and (19)

Estimating θ is one step or by a two step procedure using ψ as an auxiliary parameter yields

asymptotically equivalent estimator of θ. Our unrestricted state-space representation

features less restrictions than the DSGE model and thus contains potentially useful

information about the relevance of the structural restrictions imposed by the DSGE model.

This corollary illustrates the tight relationship between the DSGE model and the D-SVAR.

3.2 Inference

The D-SVAR offers the possibility to conduct statistical inference both on DSGE and

SVAR models. Let us first consider the DSGE and our D-SVAR, and let us remind

the reader that the D-SVAR imposes no cross-equation restrictions during estimation.

Using ML estimates of the two models, it is then possible to test the relevance of the
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cross-equation restrictions imposed by the DSGE model, and therefore guide modelling.

Let us consider the null hypothesis that the DSGE model can mimic the unconstrained

state-space representation (18) and (19), H0 : ψ = ψ̃(θ). A Wald-type statistic to test

for this null hypothesis is then given by:

WT = T (ψ̂T − ψ̃(θ̂T ))′I(ψ̂T )(ψ̂T − ψ̃(θ̂T )) (23)

which is asymptotically distributed as χ2 with p − q degrees of freedom under the null

hypothesis, where p = dim ψ and the assumption that rank
(
∂ψ(θ)
∂θ′

)
= dim θ = q, where

I(ψ̂T ) is an estimator of the information matrix evaluated at the unconstrained estimator

ψ̂T (see Gouriéroux and Monfort [1995], Section 17.4.1).24 A score test and a Likelihood

Ratio test can also be constructed (see Gouriéroux and Monfort [1995], Section 17.4.2

and Section 17.4.3).

As a particular but interesting case, a test for the equality of the loading matrix F

(restricted (DSGE) and unrestricted (D-SVAR)) can also be performed. The associated

statistic is given by

W F
T = T

(
vec(F̂T ) − vec(F̃ (θ̂T )

)′
I11(ψ̂T )

(
vec(F̂T ) − vec(F̃ (θ̂T ))

)
where vec(F ) is a p1-vector. I11(ψ̂T ) is an estimator of the corresponding block to F

of the information matrix and F̃ (θ) is the binding function linking θ to the loading

matrix F . Under the assumption that rank
(
∂vec(F̃ (θ))

∂θ′

)
= q1 with q1 < p1 this statistics

is asymptotically distributed as a χ2 with p1 − q1 degrees of freedom under the null

hypothesis. Since, the loading matrix F collects the impact response of each variable

to each shock, this test immediately assesses the relevance of the structural restrictions.

Inspecting point by point the impact responses and/or the overall dynamic responses is

also straightforward.

Let us now consider the D-SVAR and VAR models. First and foremost, a specification

test (J-test) can be performed in the case of over-identification, i.e. when the dimension

of the vector η is greater than the dimension of ψ, by multiplying the objective function

(22) by the number of observations. This allows to assess whether the dynamic restrictions
24Under possible misspecification, the estimator of the information matrix I(ψ̂T ) can be replaced by an

estimator of the inverse of the sandwich formulae J (ψ̂T )
−1

I(ψ̂T )J (ψ̂T )
−1

where I(ψ̂T ) is an estimator
of the variance covariance matrix of the score and J (ψ̂T ) an estimator of minus the second derivative of
the log-likelihood function.
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imposed by the D-SVAR model are satisfied and hence evaluate the reliability of our

D-SVAR approach regarding an unconstrained VAR model.

The D-SVAR also offers the opportunity to assess the relevance of various identification

schemes used in SVAR modelling. In particular, it allows to test general null hypotheses

on the loading matrix F . For example, one may be interested in the relevance of

the timing imposed by short-run restrictions. In this case, the null hypothesis writes

H0 : Hvec(F ) = 0, where the selection matrix H is such that the elements above the

diagonal of F are all equals to zero. Likewise, matrix H can be adapted to test for long-run

restrictions à la [Blanchard and Quah 1989]. A Wald statistic can then be computed

with a consistent estimator of the appropriate variance covariance matrix. Likewise, one

may be interested in testing for the dynamic response to a particular shock, as identified

using two competing identification schemes. This can be achieved with a Wald statistic

and using the appropriate asymptotic distribution or by bootstrapping techniques as

proposed by Inoue and Kilian [2016].25 The discussion about the empirical relevance of

our approach, both regarding DSGE and SVAR models are treated in more detail in the

two next sections.

4 Using D-SVARs to Assess DSGEs Cross-Equation
Restrictions

In this section, we illustrate the use of a D-SVAR to assess the cross-equation restrictions

of a simple New Keynesian model. We first estimate the model, illustrate the use f

D-SVARs by estimating a D-SVAR on data generated by the model, and finally assess its

cross-equation restrictions.

4.1 A New Keynesian Model

The model is the textbook three-equation NK model with habit persistence, inflation

indexation and Taylor rule with interest rate smoothing.26 The dynamics of output,

y, inflation, π, and the nominal interest rate, i, are summarised by the following three
25In particular, in the case when the number of structural impulse responses exceeds the number of the

VAR parameters, the asymptotic distribution of a Wald statistic is degenerated but the bootstrap test
can still be implemented following the transformation of the statistic.

26Details of the model are reported in Appendix B.4.
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(log-)linearised equations

yt = h

1 + h
yt−1 + 1

1 + h
Et[yt+1] − 1 − h

γ(1 + h)(it − Et[πt+1]) + zd,t (24)

πt = ζ

1 + βζ
πt−1 + β

1 + βζ
Et[πt+1] + (1 − α)(1 − βα)

α(1 + βζ) (γ + φ)yt + zs,t (25)

it = ρrit−1 + (1 − ρr)(ϕππt + ϕyyt) + zr,t (26)

with zj,t = ρjzj,t−1 + εj,t, where εj,t ; N(0, σ2
j ) with j ∈ {d, s, r}. As long as the Taylor

principle holds, the solution of the model admits a state space representation of the formytπt
it

 = G(θ)

yt−1
πt−1
it−1

+ F (θ)

z1,t
z2,t
z3,t

 where

z1,t
z2,t
z3,t

 = R(θ)

z1,t−1
z2,t−1
z3,t−1

+

ε1,t
ε2,t
ε3,t


where θ collects all the parameters of the model. The state space representation rewrites

as a VAR(2) as27

ytπt
it

 = (G(θ) + F (θ)R(θ)F (θ)−1)

yt−1
πt−1
it−1

− F (θ)R(θ)F (θ)−1G(θ)

yt−2
πt−2
it−2

+ F (θ)

ε1,t
ε2,t
ε3,t


We first estimate the model by a Bayesian Maximum Likelihood Estimation method

on US data excluding the Zero Lower Bound period (1960Q1-2007Q4). Output gap is

measured by the negative of the gap between the unemployment rate and the long-run

natural rate of unemployment. The inflation rate is measured by the annualised quarterly

change in GDP deflator, and the annualised Effective Federal Fund Rate is used as a

measure of the nominal interest rate. Table B.2 in Appendix B.4.2 reports the priors

used during the estimation as well as the posterior mode, mean and 90% high probability

density intervals obtained from a MCMC algorithm.

The dynamic properties of the estimated model, as reported in Figure 3, are in line

with the conventional wisdom. A demand shock (left panel of Figure 3) rises output,

inflation and the nominal interest rate. A cost push shock (center panel) increases inflation,

reduces output and the Fed reacts by raising the policy rate. Finally, the hike in the

interest rate that follows a contractionary monetary policy shock, depresses economic

activity and reduces inflation.
27The VAR representation obtains thanks to the observability of all variables in the state space

representation of the solution. Appendix B.8 considers a standard Real Business Cycle model in which
capital cannot be observed by the econometrician. In that case, the solution does not admit a VAR
representation, but a VARMA. We illustrate that most of the results we will discuss in this section extend
to the VARMA case.
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Figure 3: Impulse responses, Estimated New-Keynesian Model
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Notes: We report here the average theoretical impulse response function (IRF) of output, inflation and the
nominal interest rate across the MCMC chains. The estimated model is the New Keynesian (24)–(26).
Sample is 1960Q1-2007Q4. Estimation is done with minus the unemployment gap (“output”), GDP
deflator inflation and the Federal fund rate.

4.2 Assessing the D-SVAR Approach Using the NK Model as
the DGP

We run the following Monte-Carlo experiment. We use the estimated NK model as the

DGP for output, inflation and the nominal interest rate and simulate it 1,000 times over

the 1,000,000. For each simulation, we estimate the following unrestricted VARytπt
it

 = Φ1

yt−1
πt−1
it−1

+ Φ2

yt−2
πt−2
it−2

+

u1,t
u2,t
u3,t


and then recover the D-SVAR representationytπt

it

 = G

yt−1
πt−1
it−1

+ F

z1,t
z2,t
z3,t

 where

z1,t
z2,t
z3,t

 = R

z1,t−1
z2,t−1
z3,t−1

+

ε1,t
ε2,t
ε3,t


using the ALS estimation method. We then compute the response of each variable to

each shock. Figure 4 reports for each shock the New Keynesian model average theoretical

impulse response function (IRF) of output, inflation and the nominal interest rate across

the MCMC chains (the ones already reported on Figure 3) (plain dark line) alongside the

average IRF as recovered from the simulated D-SVAR (bullet plain line). The shaded

area corresponds to the 95% confidence band of each IRF in the theoretical model, as

obtained from the MCMC chains.

Note that the three shocks are unlabelled in the D-SVAR, so we order them by

minimizing the distance between the model structural shock and each D-SVAR shock.

Inspection of the figure suggests that the D-SVAR allows to recover exactly the three

structural shocks: the IRFs are on top of each other.
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Figure 4: Impulse responses, NK model vs D-SVAR Estimated on Simulated Data
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Notes: The estimated model is a D-SVAR with two lags, data are generated by the estimated New
Keynesian model. We report the average of 1,000 estimations of length 1,000,000. The shaded area
corresponds to the 95% confidence band of each IRF in the theoretical model, as obtained from the MCMC
chains.
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4.3 Assessing the Cross-Equation Restrictions of the NK Model

We first estimate an unrestricted VAR on the same data we used to estimate the New

Keynesian model, and use it as an auxiliary model to recover the D-SVAR representation

by ALS. Figure 5 then reports the impulse response functions of output, inflation and the

Figure 5: Impulse responses, New Keynesian Model vs D-SVAR Estimated on Actual
Data

(a) ε1: IS Shock
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(b) ε2: Cost-Push Shock
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(c) ε3: Monetary Policy Shock
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Notes: The estimated model are the New Keynesian (24)–(26) and a D-SVAR with two lags, using actual
data over the sample 1960Q1-2007Q4. Estimation is done with minus the unemployment gap (“output”),
GDP deflator inflation and the Federal fund rate. The shaded area correspond to the D-SVAR 95%
confidence band as obtained from bootstrap (1,000 draws).

interest rate as obtained from the D-SVAR along with their 95% confidence bands. Again,

we order the responses by similarity with the theoretical ones. Note that this set of impulse

responses ought to differ from those of the estimated New Keynesian model. Indeed,

although the two models share the same dynamic structure (same variables, same lags,

same processes for the latent exogenous variables), the New Keynesian model estimation

imposes more cross-equation restrictions than in the D-SVAR. Strikingly, the responses, as

recovered from our D-SVAR (plain line), show similarities with the theoretical responses
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(dashed line).

Comparison of the theoretical and data IRFs shows that responses to a demand shock

are similarly estimated by the New Keynesian model and the D-SVAR, although inflation

response to the ε1 shock is negative on impact. There is a shock in the D-SVAR, ε2,

that does increase inflation and the nominal interest rate and decreases output after five

periods, as does the cost push in the New Keynesian model. But the short-run response of

output is positive in the D-SVAR, which is not the typical prediction of a New Keynesian

model. As far as the monetary shock is concerned, the ε3 shock in the D-SVAR is indeed

increasing the nominal interest rate and decreasing output, but it increases inflation in

the short-run, while inflation response is always negative in the estimated New Keynesian

model. Such a “price puzzle” is reminiscent of the results in Beaudry, Hou, and Portier

[2020], and can be rationalized in a model with a flat Phillips curve and a cost channel.

Note that scale of the responses to that shock also speaks in favor of a flat Phillips curve:

the response of output is of the same magnitude in the New Keynesian and D-SVAR

model, while the response of the nominal interest is more than twice as small in the

D-SVAR, while inflation is barely moving. Overall, much of the joint dynamics estimated

with the New Keynesian model can already be uncovered with the D-SVAR, without

having to impose all the cross-equation restrictions of the DSGE.28

5 Assessing SVARs: Two Examples With Monetary
Policy Shocks

In this section we revisit through the lens of the D-SVAR two seminal papers that both

proposed to identify monetary policy shocks. The first one, Gertler and Karadi [2015],

relies on an external instrument to identify the shock — the so-called proxy VAR approach.

The second, Christiano, Eichenbaum, and Evans [1999], identifies a monetary policy shock

by imposing zero restrictions on its impact effect on key economic variables.
28This is also confirmed by the inspection of the densities of the elements of matrices R, F , R as

reported in Figures B.7–B.9 of Appendix B.4.4.
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5.1 Revisiting Gertler and Karadi’s [2015] Proxy VAR

In this section, we revisit Gertler and Karadi [2015], who identified a monetary policy

shock relying on a proxy-VAR approach with an external instrument.29 Such an approach

avoid imposing timing restrictions on both the behavior and the impact of the policy rate.

The instrumental variable needs to satisfy two assumptions to identify a given structural

shock: i) the instrument must be relevant, i.e. the contemporaneous correlation between

the structural shock and the external instrument must be non-zero; ii) the instrument

must be exogenous, i.e. the instrument must be uncorrelated with the other structural

shocks. According to Gertler and Karadi [2015], an advantage of proxy VARs is that it

does not impose a special organization (and thus restrictions) of the loading matrix F .

This is also the case in our D-SVAR, and it is therefore interesting to compare the two

approaches.

We first replicate Gertler and Karadi [2015] and estimate a VAR featuring the log

consumer price index, the log industrial production, the one year government bond rate,

and Gilchrist and Zakrajšek’s [2012] excess bond premium. The data are evaluated at the

monthly frequency for the period running from July 1979 to June 2012. Following Gertler

and Karadi [2015], the unrestricted VAR includes 12 lags. We then recover the impulse

response function of these variables to a monetary policy shock identified relying on the

proxy-VAR approach where, like Gertler and Karadi [2015], the external instrument is the

surprise in the three month ahead futures rate. The identified contractionary monetary

policy shock shifts the one-year rate upward, decreases economic activity after one year,

raises the excess bond premium persistently, which signals the presence of financial

frictions, and leads to a very small negative response of the CPI, without exhibiting any

price puzzle (see black lines in Figure 7).

Then we proceed to estimating our D-SVAR by an ALS approach, using the unrestricted

VAR as auxiliary model. As before, the autoregressive matrix R is assumed to be diagonal.

We recover four unlabelled structural shocks, ε1, . . . , ε4. Is one of these shocks the Gertler

and Karadi’s [2015] monetary policy shock? Since the identified shocks have no prior

label, we compare the response of the 1-year government bond rate to our four structural

shocks to the response to the Gertler and Karadi’s [2015] monetary policy shock. These
29See Beaudry and Saito [1998], Stock [2008], Stock and Watson [2012] and Mertens and Ravn [2013]

among others.
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responses are displayed on Figure 6. Each of the four first panel reports the response

Figure 6: Impulse Response Function of one-year government bond rate: proxy-VAR vs
D-SVAR with diagonal R Matrix
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Notes: On the four first panels, the black line is always the response of the one-year government bond
rate to a monetary policy shock, as identified using the proxy-VAR approach of Gertler and Karadi [2015].
The grey line is the response of the one-year government bond rate to each of the four structural shocks
identified by the D-SVAR with diagonal R matrix. Shaded area represent ± 1 standard deviation around
average D-SVAR response obtained from 1,000 Bootstrap replications. The last panel displays the mean
squared error between the proxy-VAR and D-SVAR responses of the one-year government bond rate.
Sample is 1979M7-2012M6.

of the one-year interest rate to the Gertler and Karadi’s [2015] shock in black, and to

each of the D-SVAR shock (in grey) along side with the ±1 standard deviation band

around this response. The lower right panel of Figure 6 reports the MSE for each shock.

The shocks ε1 gives a very similar response of the one-year government bond rate, and is

a good candidate for being the monetary policy shock. Although the response is more

persistent than for the Gertler and Karadi’s [2015] shock, ε3 is also a possible candidate,

ε2 less so as the rate barely responds in the short-run.

Inspection of the IRFs of the other variables (Figure 7) reveals that none of these two

shocks gives similar responses for the four variables. For the shock ε1, the rise in the

one-year interest rate is accompanied by a small decrease in prices, an increase in the

excess bond premium, but a persistent increase in industrial production. For the shock

ε2, there is indeed an increase in the one-year rate, a decrease in industrial production

but an increase in inflation and a decrease in the excess bond premium, which does not

square with the credit channel narrative of Gertler and Karadi [2015]. Furthermore, ε1

and ε3 are two shocks for which Gertler and Karadi’s [2015] instrument would be valid, as
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Figure 7: Responses to Gertler and Karadi’s [2015] monetary policy shock and D-SVAR’s
shocks ε1 and ε3 with diagonal R Matrix
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(b) Impulse Response Function to ε3
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Notes: The black line is the response to a monetary policy shock, as identified following Gertler and
Karadi [2015]. The grey line is the response to shock in the D-SVAR with diagonal R matrix. Shaded
area represent ± 1 standard deviation around average D-SVAR response obtained from 1,000 Bootstrap
replications. Sample is 1979M7-2012M6.

the p-values for non-zero correlation between these two shocks and the instrument are

less than 5%, whereas they are above 5% for ε2 and ε4. This shows that in Gertler and

Karadi [2015], the instrument identifies a shock that is a combination of ε1 and ε3, and

can hardly be considered as an exogenous monetary policy shocks.

5.2 Revisiting Christiano, Eichenbaum, and Evans’s [1999] Im-
pact Restrictions SVAR

This section revisits Christiano, Eichenbaum, and Evans [1999] who identifies a monetary

policy shock by means of impact zero restrictions.30 We ask whether the obtained

macroeconomic dynamics following a monetary policy shock can be uncovered with a D-

SVAR. The D-SVAR makes no assumptions on the impact responses, but only assumes that

underlying shocks follow mutually orthogonal AR(1) processes. If Christiano, Eichenbaum,

and Evans’s [1999] approach identifies a monetary shock, then we should recover it using

our D-SVAR approach —under the assumption that this shock is an independent AR(1)

shock.

We estimate a VAR featuring real GDP, the unemployment rate, CPI inflation,
30See also Christiano, Eichenbaum, and Evans [2005].
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commodity price inflation and the federal funds rate, in that order, for the period

1965Q1-2007Q4.31 The VAR includes four lags. We then recover the impulse response

function of these variables to a monetary policy shock identified by impact restrictions as

in Christiano, Eichenbaum, and Evans [1999]: the monetary policy shock corresponds to

the shock that shifts the federal funds rate while leaving the other variables unaffected on

impact. As well known, the identified contractionary monetary policy shock decreases

output with a lag, and increases unemployment after a few quarters. Prices increase for

about two years, which is known as the price puzzle, and fall below their initial level after

this initial phase.

Then we proceed to estimating our D-SVAR by an ALS approach, using the unrestricted

VAR as auxiliary model. The J-test indicates that the restrictions imposed by the D-SVAR

are not rejected by the data. We recover five unlabelled structural shocks, ε1, . . . , ε5. Is

the Christiano, Eichenbaum, and Evans’s [1999] monetary shock one of these shocks?

Since the identified shocks have no prior label, we look for the one(s) that moves the

Federal fund rate in a similar manner to the Christiano, Eichenbaum, and Evans’s [1999]

monetary shock does. In practice, we rely on two criteria: (i) the Mean Squared Error

(MSE) between the response of the federal fund rate to the Christiano, Eichenbaum, and

Evans [1999] and each D-SVAR shock and (ii) the correlation between the Christiano,

Eichenbaum, and Evans [1999] and each D-SVAR shock. For illustrative purposes, we

order the D-SVAR shock in ascending MSE order. Figure 8 compares the response of the

federal fund rate to each of these five shocks to its response to the Christiano, Eichenbaum,

and Evans’s [1999] monetary policy shock. Each of the five first panel reports the response

of the federal fund rate to the Christiano, Eichenbaum, and Evans’s [1999] monetary

policy shock in black, and to each of the D-SVAR shock along side with the ±1 standard

deviation band around this response. The lower right panel of Figure 8 reports the

MSE for each shock. The results reported in latter panel indicates that the MSE is the

lowest for ε1, suggesting that ε1 is the closest to Christiano, Eichenbaum, and Evans’s

[1999] monetary policy shock. This is confirmed by the second selection criterion —the

correlation between Christiano, Eichenbaum, and Evans’s [1999] monetary policy shock

and the shocks recovered by the D-SVAR (see Figure 9). The correlation between ε1 and
31We end the sample period in 2007Q4 to avoid dealing with the zero lower bound, which would require

an explicit non-linear modelling of the dynamics of the nominal interest rate to account for the presence
of an occasionally binding constraint (see e.g. Mavroeidis [2021]).
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Figure 8: Impulse Response Function of FFR: Christiano, Eichenbaum, and Evans’s [1999]
Shock vs D-SVAR
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Notes: On the five first panel, the black line is always the response of the Federal fund rate to a monetary
policy shock, as identified following Christiano, Eichenbaum, and Evans [1999]. The grey line is the
response of the Federal fund rate to each of the five structural shocks identified by the D-SVAR. Shaded
area represent ± 1 standard deviation around average D-SVAR response obtained from 1,000 Bootstrap
replications. The last panel displays the mean squared error between the D-SVAR responses of the nominal
interest rate and the Christiano, Eichenbaum, and Evans’s [1999] one. Sample is 1965Q1-2007Q4.

Christiano, Eichenbaum, and Evans’s [1999] monetary policy shock is 0.93, while the same

correlation computed for the other ε-shocks is less than 0.1 or negative.

Does ε1 satisfy the zero impact restriction imposed by Christiano, Eichenbaum, and

Evans [1999]? Our D-SVAR allows to formulate a test of this restriction. Table 2 reports

the p-value associated to the zero impact effect of ε1 on, respectively, output, the CPI,

unemployment and the commodity price. The results are strikingly in favour of the

restriction imposed by Christiano, Eichenbaum, and Evans [1999] as none of the p-values

lies below 25%, well above the 5% standard level. This is illustrated in Figure 10 that

Table 2: Test of Zero Impact Restriction (p-values)

Output CPI Unemp. Com. Price
ε1 0.2470 0.6587 0.3890 0.8169

Notes: ε1 is the D-SVAR structural shock that is the closest to the Christiano, Eichenbaum, and Evans’s
[1999] monetary policy shock. Sample is 1965Q1-2007Q4.

plots the responses of the VAR variables to ε1 (grey lines), together with the responses

to the Christiano, Eichenbaum, and Evans’s [1999] monetary policy shock. The figure

also indicates that the dynamics following a Christiano, Eichenbaum, and Evans’s [1999]

39



Figure 9: Correlation between Christiano, Eichenbaum, and Evans’s [1999] Monetary
Shock and D-SVAR Shocks
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Notes: ε1 to ε5 are the structural shocks as obtained with the D-SVAR. Sample is 1965Q1-2007Q4.

monetary policy shock and those following ε1 are very similar. Just like for Christiano,

Eichenbaum, and Evans’s [1999] monetary policy shock, a tightening of monetary policy

leads to a prolonged recession with output (resp. unemployment) reaching it trough

after about seven (resp. nine) quarters, and eventually reverting back in the longer run.

Accordingly, both output and unemployment exhibit persistent hump shaped dynamics to

the shock, just like in the aftermaths of a Christiano, Eichenbaum, and Evans’s [1999]

monetary policy shock. Just like in Christiano, Eichenbaum, and Evans [1999], prices

exhibit a persistent price puzzle, although it is more severe, again in the line of Beaudry,

Hou, and Portier [2020].

All in all, the response of the economy is very much in line under the two identification

schemes, and hence so are the forecast error variance decomposition (see Table B.3 in

Appendix B.6).32

This exercise shows that the D-SVAR recovers a shock that is quite similar to the

Christiano, Eichenbaum, and Evans’s [1999] monetary policy one, although there is a

more pronounced “price puzzle”. It also shows that the Christiano, Eichenbaum, and

Evans’s [1999] zero restrictions, which have been criticised as often not compatible with a

DSGE model (e.g. Uhlig [2005]), are not rejected by our D-SVAR.
32Figures B.11–B.14 in Appendix B.6 report the IRF to ε2, ε3, ε4 and ε5. Inspection of the figure

indicate that none of these shocks is a good candidate to a Christiano, Eichenbaum, and Evans’s [1999]
monetary policy shock.
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Figure 10: Responses to Christiano, Eichenbaum, and Evans’s [1999] monetary policy
shock and D-SVAR’s shock ε1
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Notes: On the five panel, the black line is the response to a monetary policy shock, as identified following
Christiano, Eichenbaum, and Evans [1999]. The grey line is the response to shock ε1 in the D-SVAR.
Shaded area represent ± 1 standard deviation around average D-SVAR response obtained from 1,000
Bootstrap replications. Sample is 1965Q1-2007Q4.

6 Conclusion

In this paper, we have shown that one can identify structural shocks in a SVAR under

the identifying assumption that the economy shares the dynamic structure of the vast

majority of DSGE models. To put it loosely, if the economy is moved by exogenous

variables that follow mutually orthogonal AR(1) processes (or more general specification

of the autoregressive matrix), then a D-SVAR will allow for the identification of structural

shocks, without the need for zero-impact, long-run or sign restrictions. We have given a

formal proof for identification and have shown how to conduct estimation and inference

with D-SVAR. We have then applied our methodology to uncover the effects of monetary

policy shocks, and shown that D-SVAR give results in line with the most prominent

approaches in SVAR the literature, namely proxy-VAR as in Gertler and Karadi [2015]

and zero impact restrictions as in Christiano, Eichenbaum, and Evans [1999], although

the Gertler and Karadi’s [2015] monetary policy shock cannot be easily thought as a

structural shock in a DSGE model.
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— Appendix —

A Proofs

A.1 Preliminaries: Controllability, Observability and Minimal-
ity

Consider the ABCD system representation (12) and (13). The system (or the pair (A,B))

is controllable when any state St can be driven to the initial state in a finite number of

steps for a given input sequence εt. A formal definition is given by:

Definition A.3 Controllability : A system is controllable if and only if the controlla-

bility matrix

C =
[
B,AB,A2B, . . . , Ans−1B

]
∈ Rns×nzns

has full row rank i.e., rank(C) = ns.

If a system is state observable, its present state can be determined from the knowledge of

the present and future outputs Yt and inputs εt. A formal definition is given by:

Definition A.4 Observability: A system is observable if and only if the observability

matrix O defined by

O =


C
CA

...
CAns−1

 ∈ Rnyns×ns

has full column rank, i.e., rank(O) = ns.

Theorem A.1 A state-space representation is minimal if and only if it is controllable

and observable.
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Proof : See Antsaklis and Michel [1997], Theorem 3.9, p.395 or Gouriéroux and Monfort

[1995], Chap. 8, Property 8.43, p. 282.

We first need to show that the state-space representation is minimal, namely the dimension

of the latent state vector is the smallest than any other system with the same auto-

covariance function (or the transfer function H(z), z ∈ C, to properly defined). Minimality

is shown by establishing that the system is both controllable and observable.

A.2 Proof of Proposition 1

Consider a general form for the matrix T such that:

T =
[
T11 T12
T21 T22

]
.

We first show that the relation ÃT = TA implies that T21 = 0. Since Ã is necessarily

block upper triangular, R̃T21 = T21G which can be rewritten as:

[(Ink
⊗ R̃) − (G′ ⊗ Inz)]vec(T21) = 0. (A.1)

Matrix Ã is similar to matrix A which implies that the eigenvalues of Ã are the same

than the eigenvalues of A.33 Since A is block upper diagonal, for the set of eigenvalues

of A denoted λ(A), we have λ(A) = λ(G) ∪ λ(R). The same property holds for Ã, i.e.

λ(A) = λ(G̃) ∪ λ(R̃). This implies that the eigenvalues of the matrix R̃ are the same

then the eigenvalues of the matrix R. Under Assumption 1′′, R and G share no common

eigenvalues, this also holds for R̃ and G. The expression [(Ink
⊗ R̃) − (G′ ⊗ Inz)] is then

of full rank, Equation (A.1) holds only for T21 = 0.34

Now, for the block upper triangular matrix:

T =
[
T11 T12

0nz×nk
T22

]
,

the equation B̃ = TBU gives for the left lower block:

Inz = T22U.

33If X is a square matrix and nonsingular, then A and B = X−1AX are similar and X is called a
similarity transformation. If two matrices A and B are similar, they have the same eigenvalues, i.e.
λ(A) = λ(B), and the same number of independent eigenvectors but probably not the same eigenvectors
(see Golub and Van Loan [2013] p. 349). Moreover, if X is an orthonormal matrix, i.e. XX ′ = I, A and
B real matrices and A = XBX ′, A is said to be real orthogonally similar to B (see Horn and Johnson
[2013], p. 94).

34If λ is an eigenvalue of A and µ an eigenvalue of B, λ− µ is an eigenvalue of (I ⊗A) − (B ⊗ I) and
all eigenvalues of (I ⊗A) − (B ⊗ I) is on this form. Thus (I ⊗A) − (B ⊗ I) has zero as an eigenvalue if
and only if A has an eigenvalue λ and B has an eigenvalue µ such that λ− µ = 0.
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Since U is orthonormal, this implies T22 ≡ U−1 = U ′ = V an orthonormal matrix. The

matrix T has the following form

T =
[
T11 T12
0 V

]
.

The result for the case where the state variables Kt are observed follows directly.

A.3 Proof of Proposition 2

The only admissible orthonormal matrix V such that all elements (i, i) of the diagonal

matrix R are identified is V = I when the diagonal element ri,i ̸= rj,j for ∀i ̸= j. For any

other orthonormal matrix V , it is easy to verify that the resulting R̃ = V RV ′ matrix is

not diagonal. Since V is a square matrix and is non singular, V corresponds to a similarity

transformation, the eigenvalues of matrix R̃ are the same as the eigenvalues of matrix R

which implies that the diagonal elements of R̃ are the same as the diagonal elements of R.

Moreover, for diagonal matrices R̃ and R, the system of equations R̃V − V R = 0 leads to

(r̃i,i − ri,i)Vi,i = 0 ( for i = 1, . . . , nz), (A.2)

(r̃i,i − rj,j)Vi,j = 0 (for i ̸= j and i, j = 1, . . . , nz), (A.3)

where ri,j and r̃i,j are respectively the element (i, j) of R and R̃.35 The first set of equation

implies that r̃i,i = ri,i for diagonal elements of V which are different from zero. Since the

diagonal elements of R (and then R̃) are different, the second set of equations implies

necessarily that Vi,j = 0 for all i ̸= j. Matrix V is necessarily diagonal and the only

orthonormal matrix which is diagonal is the identity. The result also holds up to changes

of sign and/or permutation of the identity matrix.

Assume now that some elements on the diagonal are the same. Denote the multiplicity

of similar diagonal elements ri,i by m(ri,i). One can first check that all diagonal elements

are the same, in which case any orthonormal matrix V is admissible by equations (A.2)

and (A.3). Now consider that a subgroup of elements has the same value. The elements in

the V matrix corresponding to multiple values are not uniquely defined but only up to the

post multiplication by an m(ri,i) ×m(ri,i) orthogonal matrix. Without lost of generality,

suppose that the diagonal elements with the same value are ordered as the first m(r1,1)
35The system of equations R̃V − V R = 0 is of the well known form AX −BX = C in control theory

called the Sylvester equation. For C = 0, this corresponds to the homogeneous Sylvester equation (see
Gantmacher [1959], chap VIII).
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elements on the diagonal and the other elements on the diagonal rj,j are different from

r1,1, then define the matrix V such that

V =
[
Vm(r1,1)×m(r1,1) 0

0 I(nz−m(r1,1))

]
,

where Vm(r1,1)×m(r1,1) is an orthonormal matrix. Consequently, there exists an infinity of

admissible V matrices such that Vm(r1,1)×m(r1,1) is orthonormal. This argument can be

generalised to more than one diagonal element with multiplicity. A sufficient condition for

local identification is therefore that matrix R be diagonal with distinct diagonal elements

(ri,i ̸= rj,j, ∀i ̸= j).

A.4 Proof of Proposition 3.

By R̃ = V RV ′, one show that the only admissible matrix V which satisfies R̃V = V R for

lower triangular matrices R̃ and R is V = Inz . Since V is of full rank and orthonormal

and R̃ = V RV ′, R̃ and R have the same eigenvalues. Moreover, the eigenvalues of a lower

triangular matrix are the elements on the diagonal. By R̃V = V R, we have

[(Inz ⊗ R̃) − (R′ ⊗ Inz)]vec(V ) = 0. (A.4)

This implies that vec(V ) belong to the null space of A = [(Inz ⊗ R̃) − (R′ ⊗ Inz)]. Since

R̃ and R have nz common roots, the null space of A has a dimension equal to nz. The

system of equations (A.4) can be written more explicitly as:

(R̃ − µ1I) −r2,1I −r3,1I · · · −rnz ,1I
0 (R̃ − µ2I) −r3,2I · · · −rnz ,2I
... . . . ...
0 0 · · · (R̃ − µnz−1I) −rnz ,nz−1I
0 0 · · · 0 (R̃ − µnzI)





V[.,1]
V[.,2]

...
V[.,nz−1]
V[.,nz]

 =



0
0
...
0
0

 ,

with V[.,i] a vector containing the i-th column of matrix V , µj for j = 1, . . . , nz are the

eigenvalues of R and the eigenvalues of R̃ and R are the same which are given by the

elements on the diagonal. Under Proposition 3, the eigenvalues µj for j = 1, . . . , nz are

the same as the matrix Λ. Moreover, all sub-matrices (R̃− µjI) are lower triangular since

R̃ is lower triangular and the entire matrix is a block upper triangular matrix.

This system of equations can be solved by forward substitution for the lower triangular

block (R̃ − µnzI) to obtain the vector V[.,nz ] and by backward substitution for the upper

block diagonal matrices. Thus, the lower triangular form of the system of equations

(R̃ − µnzI)V[.,nz ] = 0 (A.5)
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implies that the elements of V[.,nz ] are equal to zero except the last one Vnz ,nz . Indeed the

recursive form of the equations allows to rewrite the system of equations as:
i∑

j=1
r̂nz
i,jVj,nz = 0 for i = 1, . . . , nz,

which imply that Vj,nz = 0 except for Vnz ,nz where r̂nz
i,j is the element (i, j) of the sub-

matrix (R̃ − µnzI) and r̂nz
nz ,nz

= 0 since R and R̃ share the same eigenvalues. According

to Proposition 3, this holds under the weaker restriction that only the first sub-diagonal

elements are different from zero which implies that

r̂nz
1,1V1,nz = 0 and

i∑
j=i−1

r̂nz
i,jVj,nz = 0 for i = 2, . . . , nz.

Now, for the next upper block,

[
(R̃ − µnz−1I) −rnz,nz−1I

] [V[.,nz−1]
V[.,nz ]

]
=
[
0
0

]
,

using the preceding result above for V[.,nz ] yields Vj,nz−1 = 0 for all j < nz − 1. We can

continue to solve the following upper blocks by backward substitution to obtain that all

elements of the matrix V above the diagonal are equal to zero:

(R̃ − µjI)V[.,j] = 0 for j = nz,

(R̃ − µjI)V[.,j] =
nz∑

i=j+1
(ri,jI)V[.,i] for j = 1, . . . nz − 1.

The resulting matrix V has all elements above the diagonal equal to zero which implies

that the only admissible orthonormal matrix is V = I (up to changes of sign and/or

permutation of the identity matrix).

A.5 Proof of Proposition 4.

Consider the following general 2 × 2 symmetric matrix:

R =
[
ρ1 τ
τ ρ2

]

where ρ1, ρ2 and τ are real numbers and τ ̸= 0. The eigenvalues are the roots of the

following characteristic equation:∣∣∣∣∣ρ1 − λ τ
τ ρ2 − λ

∣∣∣∣∣ = (ρ1 − λ)(ρ2 − λ) − τ 2 = λ2 − λ(ρ1 + ρ2) + ρ1ρ2 − τ 2.
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The two roots can be written as:

λ1 = 1
2

[
ρ1 + ρ2 +

√
(ρ1 − ρ2)2 + 4τ 2

]
λ2 = 1

2

[
ρ1 + ρ2 −

√
(ρ1 − ρ2)2 + 4τ 2

]
.

Since (ρ1 − ρ2)2 + 4τ 2 > 0, the two eigenvalues are necessarily real. By the expressions of

λ1 and λ2, there exists an infinity of values for ρ1, ρ2 and τ that gives the same eigenvalues.

In other words, for any orthonormal matrix V and R̃ = V RV ′, the matrices R̃ and R are

similar and therefore have the same eigenvalues. The matrix R is then not identifiable.

Now consider the case where the elements on the diagonal have the same value, i.e.

ρ1 = ρ2 = ρ. The two eigenvalues are now given by:

λ1 = ρ+ τ

λ2 = ρ− τ.

and λ1 + λ2 = 2ρ and λ1 − λ2 = 2τ . This implies that there does not exist another 2 × 2

symmetric matrix R̃ with ρ̃ ̸= ρ and/or τ̃ ̸= τ with τ̃ ̸= 0 having the same eigenvalues as

matrix R. In this particular case, matrix R is then locally identifiable.

A.6 Proof of Proposition 5.

We can consider cases with a block diagonal matrix R with blocks corresponding to the

two preceding cases. For example

R =
[
R̃ 0
0 R2

]
,

where R̃ is a (nz1 × nz1) diagonal matrix with different elements on the diagonal and R2

is any (nz2 × nz2) matrix with z1 + z2 = z. In this case, matrix V has the form

V =
[
I 0
0 Vnz2×nz2

]
,

where Vnz2×nz2 is an orthonormal matrix. The first z1 exogenous processes are then locally

identified. Matrix R̃ could be also lower triangular.

A.7 Details on Example 2.3.2.

The state-space for price and dividends rewrites:

dot = f11z1,t + f12z2,t, (A.6)

pt = f21z1,t + f22z2,t, (A.7)

52



where z1,t = ε1,t and z2,t = αε1,t−1 + ε2,t.

We now compute seven (non-zero) auto-covariances associated to (A.6)-(A.7):

V (dot ) = f 2
11 + (1 + α2)f 2

12, (A.8)

V (pt) = f 2
21 + (1 + α2)f 2

22, (A.9)

Cov(dot , pt) = f11f21 + (1 + α2)f12f22 (A.10)

Cov(dot , dt−1) = αf11f12, (A.11)

Cov(pt, pt−1) = αf21f22, (A.12)

Cov(dot , pt−1) = αf12f21, (A.13)

Cov(pt, dot−1) = αf11f22. (A.14)

Now divide (A.11) by (A.13) and (A.11) by (A.14) (this is equivalent to divide (A.14) by

(A.12) and (A.13) by (A.12), respectively):

Cov(dot , dt−1)
Cov(dot , pt−1)

= f11

f21
(≡ k1),

Cov(dot , dot−1)
Cov(pt, dot−1)

= f12

f22
(≡ k2).

So, we can express f11 and f12 as a function of f21 and f22, respectively:

f11 = k1f21,

f12 = k2f22.

Now, insert f11 and f12 into the three moments (A.8)-(A.10). More precisely, (A.8)

rewrites:

V (dot ) = k2
1f

2
21 + k2

2(1 + α2)f 2
22.

Now, from (A.9), we deduce

(1 + α2)f 2
22 = V (pt) − f 2

21

Inserting this equation into V (dot ) above, we obtain

f 2
21 = V (dot ) − k2

2V (pt)
k2

1 − k2
2

,

so that f21 is identified (up to a sign term). Therefore f11 is also identified from f11 = k1f21.

Now use (A.12) (we can also use (A.14)) to construct

αf22 = Cov(pt, pt−1)
f21

,
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and take the square

α2f 2
22 = Cov(pt, pt−1)2

f 2
21

.

This term is then identified. Now replace this term into (A.9):

V (pt) = f 2
21 + f 2

22 + Cov(pt, pt−1)2

f 2
21

.

Therefore f22 is identified. Now use f12 = k2f22, so that f12 is identified. Finally, use one

of the three moments (A.8)-(A.10) to identify α.
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B Additional Online Material

B.1 Presence of Unobserved State Variables

We investigate hre the case of a vector Xt consisting of both observed, Yt, and unobserved

state variables, Kt (i.e. Xt = (Kt, Yt)′). This implies, in particular, that Πyk is not

necessarily equal to the identity matrix, and, more importantly, that Πyz ̸= 0. The

standard RBC model studied in McGrattan [2010] is a typical example of such a situation

as the capital stock may not be directly observed (or at least not without measurement

errors) by the econometrician. In that case, the model takes the form of System (2).

As for the previous case, we impose that Yt has the same dimension as Zt (ny = nz).

We consider the case where Zt consists of at least two elements and where there are not

more state variables than elements in Zt. Without loss of generality we take Kt to be of

the same order as Zt by allowing G to be possibly less than full rank.36 Moreover, we

assume that F , Πyk and R are full rank. Note that this does not preclude Πyz from being

less than full rank and even possibly zero.

Making use of these assumptions, the dynamics of Yt can be expressed as

Yt = C1Yt−1 + C2Zt + C3Zt−1 (B.1)

where C1 = ΠykGΠ−1
yk , C2 = ΠykF + Πyz and C3 = −ΠykGΠ−1

yk Πyz. The issue is then

whether, when R is diagonal (or lower triangular), C1, C2, C3 and R can be identified.37

Making use of the Zt process in (B.1), it is easy to show that the vector of observed

variables Yt follows a VARMA(2,1) process of the form

Yt =
(
DRD−1 + C1

)
Yt−1 −DRD−1C1Yt−2 + C2εt + (D −DRD−1C2)εt−1.

where D ≡ C3 + C2R. Key for this result is the fact that D be invertible, which is

guaranteed by the full rank assumption we placed on G, Πyk and R.

As in the previous case, counting the number of coefficients to uncover and the number

of moments the VARMA(2,1) structure offers, we recover that imposing a lower triangular

structure on R provides us with the right number of restrictions. Note that this does
36This is without loss of generality if, when the number of state variables is less than the dimension of

Zt, we add non state variables in the first equation allowing G to potentially have columns of zeroes.
37Note that while G, F and Πyk cannot (in general) be identified separately. This is however not an

issue as far as the identification of the structural impulse responses is concerned as all that is needed is
the identification of R and Cs. Indeed, we will identify ΠykGΠ−1

yk , ΠykF , Πyz and R.
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not generically guarantees identification, as the system that needs to be solved features a

quadratic term implying that a pair of solutions generally arise. However, as long as R is

sparser than a triangular matrix, the system features more equations than unknowns. The

order condition is then clearly satisfied (in fact, it is over-identified). As before, checking

the rank condition is non trivial, and we follow another strategy in the paper to formally

prove identification.

B.2 Data Appendix
B.2.1 Data from Section 1.3

• Real GDP is measured as the ratio of Gross Domestic Product in value (Table 1.1.5

from BEA) divided by the GDP price index (Table 1.1.4 from BEA), and is expressed

in per capita term by dividing by the Civilian non-institutional population from 16

years of age and older residing in the 50 states and the District of Columbia (CNP16OV

in the Federal Reserve DataBase (FRED, http://fred.stlouisfed.org)).

• The unemployment gap is measured as the difference between the average un-

employment rate over a quarter (UNRATE from FRED) and the natural rate of

unemployment — i.e. the rate of unemployment arising from all sources except

fluctuations in aggregate demand (NROU from FRED).

B.2.2 Data from Section 4.1

• The output gap is measured by the negative of the unemployment gap (see previous

section) .

• The inflation rate corresponds to the annualised quarterly log difference in the

GDP implicit price deflator (GDPDEF from FRED).

• the nominal interest rate corresponds to the quarterly average of the Federal

Funds Effective Rate (FEDFUNDS from FRED).

All series are demeaned prior to estimating the model.

B.2.3 Data from Section 5.2

• The nominal interest rate is measured by the Effective Federal Funds Rate (DFF

from FRED).
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• Output is measured as the Real Gross Domestic Product expressed in Billions of

Chained 2012 Dollars (GDPC1 from FRED, Quarterly, Seasonally Adjusted Annual

Rate).

• The price level is measured by the Consumer Price Index for all items for the United

States (CPALTT01USM661S from FRED, Index 2015=100, Quarterly, Seasonally

Adjusted).

• The unemployment rate corresponds to the quarterly average of the monthly

unemployment rate in the US (UNRATE from FRED, Percent, Quarterly, Seasonally

Adjusted)

• The commodity price is the Producer Price Index of all commodities (PPIACO

from FRED, Index 1982=100, Quarterly).

Output, the Price level and the commodity price are all transformed by applying the log

function prior to estimation.

B.2.4 Data from Section 5.1

The data from Section 5.1 are borrowed from Gertler and Karadi [2015] and are down-

loadable from http://doi.org/10.3886/E114082V1

• The price level is measured by the Consumer Price Index for all urban consumers

(CPIAUCSL from FRED, All Items in U.S. City Average)

• Economic activity is measured by the industrial production index (INDPRO from

FRED)

• The nominal interest rate is measured by the Market Yield on U.S. Treasury

Securities at 1-Year Constant Maturity (GS1 fom FRED)

• The credit spread is measured by the Gilchrist and Zakrajšek’s [2012] excess bond

premium.

• The external instrument corresponds to the three month ahead monthly fed funds

futures (FF4 from Gertler and Karadi [2015])

The price level and the economic activity index are both expressed in logs prior to

estimation.
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B.3 The Bivariate D-SVAR of Section 1.3

As is well-know (see, e.g. Fernald [2007]), Blanchard and Quah’s [1989] identification is

sensitive to the long-run properties of the variables since it requires the estimation of the

spectral density of, at least, one variable at frequency 0 —an object which is usually hard

to estimate and at best very imprecise. This makes this approach quite non robust in case

of trend breaks. The Great Financial Crisis (GFC) of 2008 presents the econometrician

with such a challenge, as illustrated in Figure B.1.

Figure B.1: Output per Capita (in logs)
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Table B.1: Forecast Error Variance Decomposition, Extended sample 1960Q1–2019Q4

Output Unemployment gap
Horizon ε1 ε2 εP εT ε1 ε2 εP εT

1 27.7 72.3 79.7 20.3 16.8 83.2 1.6 98.4
4 20.6 79.4 72.6 27.4 4.7 95.3 17.0 83.0
8 21.9 78.1 73.7 26.3 2.6 97.4 25.0 75.0
20 32.6 67.4 81.5 18.5 2.0 98.0 28.5 71.5
∞ 65.8 34.2 100.0 0.0 2.0 98.0 28.6 71.4

Notes: Sample is 1960Q1-2019Q4. Estimation is done with (∆y,u) using two lags, where y is the real
GDP and u is the unemployment rate gap. ε1 and ε2 correspond to the D-SVAR, εP and εT to Blanchard
and Quah [1989].

As illustrated in Figure B.2 and Table B.1, when the sample period is extended up

to 2019Q4, the dynamic implications of the two shocks ε1 and ε2 essentially remain

unaffected both for output and the unemployment gap. ε1 can still be interpreted as

the “permanent” shock, ε2 as the “transitory” shock, and the shape of the response of

both output and the unemployment gap to both shocks and the associated forecast error
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Figure B.2: Impulse Response Functions: 1960Q1-2019Q4
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Notes: Sample is 1960Q1-20197Q4. y is the real GDP, u is the unemployment rate gap. Estimation is
done with (∆y,u) using two lags. The grey area represents 68% confidence bands obtained from 1,000
Bootstrap replications.

variance decomposition are essentially unaffected by the shift to the extended sample.

Things are different in so far as the BQ decomposition is concerned. The black dash

line in Figure B.2 reports the dynamics of output and the unemployment gap to both

the permanent and transitory shocks, as recovered by BQ’s identification. As evident by

comparing Figures 1 and B.2 the response of both variables to the permanent shock are

largely affected by the extension of the sample. More strikingly, this extension leads to a

reversal in the respective contribution of the shocks to output dynamics: the permanent

shock now becomes the main driver of output dynamics (see Panel (b) of Table 1). As

soon as output dynamics is corrected for the trend break, the responses to a permanent

shock resembles those to ε1 in our VAR. Figure B.3 shows that, correcting for trend breaks

leads to an increase in the correlation between BQ shocks and the shocks as identified

by the D-SVAR (from 0.85 to 0.95). The gains from the dynamic identification are then

clear: by not directly relying on long-run restrictions, the D-SVAR is much less sensitive

to breaks in variables featuring a trend.
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Figure B.3: Correlation between D-SVAR and BQ shocks: 1960Q1-2019Q4
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(b) Correcting for Trend Break
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Notes: Sample is 1960Q1-2019Q4. Estimation is done with (∆y,u) using two lags, where y is the real
GDP and u is the unemployment rate gap.
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B.4 The New Keynesian Model of Section 4.1
B.4.1 Description of the Model

The set up is standard. The economy is populated by a large number of identical infinitely–

lived households and economy consists of two sectors: one producing intermediate goods

and the other final goods. The intermediate good is produced with labor and the final

good with intermediate goods.

The Household: Household preferences are characterised by the lifetime utility func-

tion:38

Et
∞∑
τ=0

βτωt

(
(ct+τ − hct+τ−1)1−γ

1 − γ
− ϑ

n1+φ
t+τ

1 + φ

)
(B.2)

where 0 < β < 1 is a constant discount factor, c denotes consumption and n labor.

In each and every period, the representative household faces a budget constraint of

the form

Bt + Ptct ≤ Rt−1Bt−1 + Πt + Ptwtnt (B.3)

where Bt are nominal bonds acquired during period t, Pt is the nominal price of the

final good, Rt−1 is the nominal interest rate, wt denotes the real wage. The household

consumes ct and supplies nt units of labor and claims the profits, Πt, earned by the firms.

ωt will act as a demand shock and can be interpreted as a premium shock.

The first order conditions lead to

ϑnφt = (ct − hct−1)−γwt (B.4)

ωt(ct − hct−1)−γ = βRtEt
[
ωt+1(ct+1 − hct)−γ

πt+1

]
(B.5)

where πt = Pt/Pt−1 denotes the gross inflation rate.

Final sector: The final good is produced by combining intermediate goods. This process

is described by the following CES function

yt =
(∫ 1

0
yt(i)ηtdi

) 1
ηt (B.6)

where ηt ∈ (−∞, 1). ηt determines the elasticity of substitution between the various

inputs, which will be modelled as a stochastic process and will appear as a cost push
38Et(.) denotes mathematical conditional expectations. Expectations are conditional on information

available at the beginning of period t.
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shock in the New Keynesian Phillips curve. The producers in this sector are assumed to

behave competitively and to determine their demand for each good, yt(i), i ∈ (0, 1) by

maximising the static profit equation

max
{Xt(i)}i∈(0,1)

Ptyt −
∫ 1

0
Pt(i)yt(i)di (B.7)

subject to (B.6), where Pt(i) denotes the price of intermediate good i. This yields demand

functions of the form:

yt(i) =
(
Pt(i)
Pt

) 1
ηt−1

yt (B.8)

and the following general price index

Pt =
(∫ 1

0
Pt(i)

ηt
ηt−1 di

) ηt−1
ηt (B.9)

The final good may be used for consumption — private or public — and investment

purposes.

Intermediate Good Producers: Each firm i, i ∈ (0, 1), produces an intermediate

good by means of capital and labor according to a constant returns–to–scale technology,

represented by the production function

yt(i) = nt(i) (B.10)

where nt(i) denotes the labor input used by firm i in the production process. at is an

exogenous stationary stochastic technology shock. Assuming that each firm i operates

under perfect competition in the input markets, the firm determines its production plan

so as to minimise its total cost

min
{ht(i)}

Ptwtnt(i)

subject to (B.10). This yields to the following expression for total costs:

Ptstyt(i)

where the real marginal cost, st, is simply given by wt.

Intermediate goods producers are monopolistically competitive, and therefore set prices

for the good they produce. We follow Calvo [1983] in assuming that firms set their prices

for a stochastic number of periods. In each and every period, a firm either gets the chance
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to adjust its price (an event occurring with probability 1 − α) or it does not. When the

firm does not reset its price, it just applies steady state inflation to the price it charged in

the last period such that Pt(i) = πζt−1π
1−ζPt−1(i). When it gets a chance to do it, firm i

resets its price, P̃t(i), in period t in order to maximise its expected discounted profit flow

this new price will generate. In period t, the profit is given by Π(P̃t(i)). In period t+ 1,

either the firm resets its price, such that it will get Π(P̃t+1(i)) with probability α, or it

does not and its t+ 1 profit will be Π(Xt,t+1P̃t(i)) with probability (1 − α). Likewise in

t+ 2. Expected profit flow generated by setting P̃t(i) in period t writes

max
P̃t(i)

Et
∞∑
τ=0

Φt,t+τα
τ−1Π(Xt,t+τ P̃t(i))

subject to the total demand it faces:

yt(i) =
(
P̃t(i)
Pt

) 1
η−1

yt

where Xt,t+1 = πζt π
1−ζXt−1,t and Π(Xt,t+τ P̃t(i)) =

(
Xt,t+τ P̃t(i) − Pt+τst+τ

)
yt+τ (i). Φt+τ

is an appropriate discount factor related to the way the household values future as opposed

to current consumption, such that

Φt,t+τ ∝ βτ
Λt+τ

Λt

where Λt+τ ≡ ωt+τ (ct+τ − hct+τ−1)−γ

This leads to the price setting equation

Et
[ ∞∑
τ=0

(βα)τ Λt,t+τ

ηt+τ − 1
(
ηt+τXt,t+τ P̃t(i) − Pt+τst+τ

)
yt+τ (i)

]
= 0 (B.11)

From the definition of the aggregate price (B.9) and the Calvo fairy assumption, the

aggregate price level may be expressed as

Pt =
 ∞∑
j=0

(1 − α)αj(Xt−j,tP̃t−j)
ηt

ηt−1


ηt−1

ηt

(B.12)

Monetary Authorities: Monetary authorities are assumed to follow a Taylor rule of

the form (in log-linear deviations from deterministic steady state)

it = ρrit−1 + (1 − ρr)(ϕππt + ϕyyt) + ϵi,t

where |ρr| < 1 and ϕy, ϕπ > 0.
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Equilibrium: An equilibrium of this economy is a sequence of prices {Pt}∞
t=0 =

{wt, , Pt, Rt, P̃t}∞
t=0 and a sequence of quantities {Qt}∞

t=0 = {{QH
t }∞

t=0, {QF
t }∞

t=0} with

{QH
t }∞

t=0 = {ct, Bt, nt}∞
t=0

{QF
t }∞

t=0 = {yt, yt(i), nt(i); i ∈ (0, 1)}∞
t=0

such that:

(i) given a sequence of prices {Pt}∞
t=0 and a sequence of shocks, {QH

t }∞
t=0 is a solution

to the representative household’s problem;

(ii) given a sequence of prices {Pt}∞
t=0 and a sequence of shocks, {QF

t }∞
t=0 is a solution

to the representative firms’ problem;

(iii) given a sequence of quantities {Qt}∞
t=0 and a sequence of shocks, {Pt}∞

t=0 clears the

markets. In particular, we have
∫ 1

0 yt(i)di = ct and
∫ 1

0 nt(i)di = nt.

(iv) Prices satisfy (B.11) and (B.12).

Log-linearisation of the equilibrium around the deterministic steady state gives rise to

the 3-equation New-Keynesian model reported in the main text.
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B.4.2 Estimation Results

Table B.2: New Keynesian Model, Priors and Posteriors

Priors Posteriors
distribution Mean std. dev. Mode Mean 90% HPDI

h Beta 0.50 0.10 0.9082 0.8974 [0.8552;0.9437]
σ Gamma 1.00 0.50 2.2951 2.5200 [1.4757;3.5418]
ϕ Gamma 1.00 0.50 0.5217 0.7183 [0.1540;1.2722]
α Beta 0.50 0.10 0.9074 0.9077 [0.8749;0.9414]
ζ Beta 0.50 0.15 0.0872 0.1073 [0.0375;0.1729]
ρi Beta 0.50 0.20 0.8133 0.8072 [0.7615;0.8562]
ϕπ Normal 1.50 0.25 1.4542 1.4719 [1.1928;1.7406]
ϕy Normal 0.10 0.05 0.1391 0.1382 [0.0666;0.2112]
ρd Beta 0.50 0.20 0.5869 0.5867 [0.4980;0.6728]
ρs Beta 0.50 0.20 0.8981 0.8909 [0.8364;0.9471]
ρr Beta 0.50 0.20 0.2310 0.2454 [0.1305;0.3630]
σd Inv. Gamma 0.10 2.00 0.0598 0.0609 [0.0480;0.0738]
σs Inv. Gamma 0.10 2.00 0.0388 0.0421 [0.0308;0.0533]
σr Inv. Gamma 0.10 2.00 0.2268 0.2301 [0.2099;0.2499]

Notes: The estimated model is the New Keynesian (24)–(26). Sample is 1960Q1-2007Q4. Estimation is
done with minus the unemployment gap, GDP deflator inflation and the Federal fund rate. Posterior
distribution obtained from MCMC using 2 chains of 200,000 draws each.
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B.4.3 Simulated D-SVAR: Densities

Figure B.4: Density of G-elements
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Notes: The estimated model is a D-SVAR with two lags. Data are generated by the estimated New
Keynesian model. We report the density over 1,000 estimations.
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Figure B.5: Density of F-elements
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Notes: The estimated model is a D-SVAR with two lags. Data are generated by the estimated New
Keynesian model. We report the density over 1,000 estimations.

Figure B.6: Density of R-elements
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Notes: The estimated model is a D-SVAR with two lags. Data are generated by the estimated New
Keynesian model. We report the density over 1,000 estimations.
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B.4.4 Actual data D-SVAR: Densities

Figure B.7: Density of G-elements
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Notes: The estimated model is a D-SVAR with two lags, using actual data over the sample 1960Q1-2007Q4.
Estimation is done with minus the unemployment gap (“output”), GDP deflator inflation and the Federal
fund rate. We report the density from bootstrap (1,000 draws).
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Figure B.8: Density of F-elements
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Notes: The estimated model is a D-SVAR with two lags, using actual data over the sample 1960Q1-2007Q4.
Estimation is done with minus the unemployment gap (“output”), GDP deflator inflation and the Federal
fund rate. We report the density from bootstrap (1,000 draws).

Figure B.9: Density of R-elements
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Notes: The estimated model is a D-SVAR with two lags, using actual data over the sample 1960Q1-2007Q4.
Estimation is done with minus the unemployment gap (“output”), GDP deflator inflation and the Federal
fund rate. We report the density from bootstrap (1,000 draws).
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B.5 Additional Material for Section 5.1

Figure B.10: Responses to Gertler and Karadi’s [2015] monetary policy shock and D-
SVAR’s shocks with Lower Triangular R Matrix (ε2–ε4)
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(b) Impulse Response Function to ε3
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(c) Impulse Response Function to ε4
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Gertler and Karadi [2015] D-SVAR

Notes: On the four panels, the black line is the response to a monetary policy shock, as identified following
Gertler and Karadi [2015]. The grey line is the response to shock in the D-SVAR. Shaded area represent
± 1 standard deviation around average D-SVAR response obtained from 1,000 Bootstrap replications.
Sample is 1979M7-2012M6.
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B.6 Additional Material for Section 5.2

Figure B.11: Responses to Christiano, Eichenbaum, and Evans’s [1999] monetary policy
shock and D-SVAR’s shock ε2
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Black line: response to a monetary policy shock, as identified following Christiano, Eichenbaum, and
Evans [1999]. Grey line: response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation
around average D-SVAR response obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.

Figure B.12: Responses to Christiano, Eichenbaum, and Evans’s [1999] monetary policy
shock and D-SVAR’s shock ε3
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Black line: response to a monetary policy shock, as identified following Christiano, Eichenbaum, and
Evans [1999]. Grey line: response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation
around average D-SVAR response obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.
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Figure B.13: Responses to Christiano, Eichenbaum, and Evans’s [1999] monetary policy
shock and D-SVAR’s shock ε4
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Black line: response to a monetary policy shock, as identified following Christiano, Eichenbaum, and
Evans [1999]. Grey line: response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation
around average D-SVAR response obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.

Figure B.14: Responses to Christiano, Eichenbaum, and Evans’s [1999] monetary policy
shock and D-SVAR’s shock ε5
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Black line: response to a monetary policy shock, as identified following Christiano, Eichenbaum, and
Evans [1999]. Grey line: response to shock ε4 in the D-SVAR. Shaded area: ± 1 standard deviation
around average D-SVAR response obtained from 1,000 Bootstrap replications. Sample is 1965Q1-2007Q4.
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Table B.3: Forecast Error Variance Decomposition of (in %)

Christiano, Eichenbaum, and Evans [1999] D-SVAR
Horizon εR ε1 ε2 ε3 ε4 ε5

Nominal Interest Rate
1 66.79 74.37 20.16 0.09 1.50 3.89
4 26.03 42.62 37.11 19.00 0.32 0.94
8 17.74 34.46 29.15 19.75 5.36 11.28
20 13.39 31.30 27.11 21.18 7.42 12.99
Output
1 0.00 6.08 11.72 14.39 4.77 63.04
4 2.47 3.01 9.65 15.92 7.38 64.04
8 5.47 3.22 5.47 8.92 7.38 75.01
20 5.95 3.48 4.12 6.23 4.81 81.36
Price Index (CPI)
1 0.00 2.16 0.30 40.50 55.86 1.17
4 1.80 9.12 4.80 40.62 44.78 0.68
8 1.04 8.83 4.36 46.40 39.72 0.70
20 0.23 5.44 1.66 46.05 45.27 1.58
Unemployment
1 0.00 5.61 50.38 29.17 14.64 0.20
4 0.46 6.51 37.46 29.12 21.81 5.11
8 5.70 5.93 25.66 21.69 29.76 16.97
20 6.47 13.22 20.87 22.49 28.28 15.14
Commodity Price
1 0.00 0.37 37.40 0.42 61.19 0.62
4 0.37 0.89 29.19 8.12 61.34 0.47
8 0.13 0.56 21.06 12.05 65.98 0.35
20 0.49 0.14 9.86 12.86 76.95 0.19

In this table we compare the variance decomposition as obtained by Christiano, Eichenbaum, and Evans
[1999] for their monetary policy shocks and for the five shokcs of the D-SVAR. Sample is 1965Q1-2007Q4.
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B.7 A Two-Country VAR

In this section, we consider the modelling of a 2-country VAR featuring the log-difference

of US GDP and residual of the cointegration relationship (1,-0.63) between the Euro

Area and US real GDP for the 1995Q1-2019Q4 period as reported by OECD (https:

//stats.oecd.org/, VPVOBARSA, US Dollars, volume estimates at fixed PPP, seasonally

adjusted). In this example, we illustrate how the D-SVAR allows to recover a shock

structure à’ la Backus, Kehoe, and Kydland [1992] involving dynamic symmetric spillovers.

More precisely the shock process is assumed to take the form

Zt ≡
(
zust
zcant

)
=
[
ρ ν
ν ρ

]
Zt−1 + εt with εt ; N(02, I2),

where ν captures the dynamic spillovers. Both the AIC, BIC and Hannan-Quinn infor-

mation criteria led us to select a VAR(2) specification. The D-SVAR identification then

leads to a value of ρ = 0.43 and ν = 0.20. The loading matrix B then takes the form

B =
[

0.498 0.053
−0.229 0.360

]

The forecast error variance decomposition of levels is reported in Table B.4.. While the

US shock explain essentially all of US GDP, it accounts for less than 5%the Euro volatility

in the very short-run and 56% at the 20 quarters horizon. In other words, in the very

short-run, the US and Euro Area economies are essentially insulated from each other, while

the shocks are transmitted in the medium run. Figure B.15 reports the IRFs of US and

Euro GDP to both shocks. These IRFs confirm and illustrate the broad picture conveyed

by forecast error volatility decomposition: US and Euro GDP only responds to their

respective shocks on impact, and are essentially insulated from exogenous developments

in the other economy in the very short-run. This is actually slightly contrasts with an

identification of the US shock as the only shock that affects US GDP on impact. In that

latter case, the US shock is transmitted faster to the Euro Area: the US shock accounts

for about 10% of the Euro output volatility on impact and about 40% after 1 year (30%

in our case). In the longer run, the Cholesky decomposition indicates that while the US

economy is essentially not affected by Euro shocks, US shocks account for 60% of GDP

volatility in the Euro Area.
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Table B.4: Forecast Error Decomposition

US GDP Euro Area GDP
Horizon εust εeurot εust εeurot

D-SVAR
1 98.9 1.1 4.6 95.4
4 96.4 3.6 29.3 70.7
8 97.8 2.2 40.9 59.1
20 93.6 6.4 60.8 39.2
Short-Run Restriction
1 100.0 0.0 10.0 90.0
4 99.6 0.4 38.3 61.7
8 96.7 3.3 56.5 43.5
20 68.7 31.3 67.0 33.0

Notes: The variance decomposition is obtained from a bivariate D-SVAR or a SVAR with a short-run
restriction. Variables are the log-difference of US GDP and the residual of the cointegration relationship
(1,-0.63) between the Euro Area and US real GDP. Sample is 1995Q1-2019Q4.

Figure B.15: Impulse Response Functions: US vs Euro Area
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are the log-difference of US GDP and the residual of the cointegration relationship (1,-0.63) between the
Euro Area and US real GDP. Sample is 1995Q1-2019Q4.
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B.8 A Real Business Cycle Model

We consider a real business cycle model featuring a catching up with the Joneses mechanism

and real frictions on the capital accumulation process that take the form of investment

adjustment costs. The problem of the Central planner takes the form

maxEt
[+∞∑
τ=0

βτ
(

log(Ct+τ − bCt+τ−1) − ϑ−1
t+τ

h1+ν
t+τ

1 + ν

)]
Ct + It = AtK

α
t (Γtht)1−α

Kt+1 = ζtIt

(
1 − Φ

(
It
It−1

))
+ (1 − δ)Kt

where β ∈ (0, 1) denotes the discount factor, b ∈ (0, 1) governs habit persistence, ν > 0

is the inverse of the Frish elasticity, α ∈ (0, 1) is capital elasticity and the function

Φ(·) is strictly increasing and convex and satisfies Φ(γ) = Φ′(γ) = 0. Et[·] denotes the

conditional expectation operator. Furthermore, φ ≡ Φ′′(γ)γ > 0 governs the importance

of investment adjustment costs. Γt denotes exogenous technological progress that evolves

deterministically as Γt = γΓt−1, γ > 1. Finally ϑt, At and ζt denote respectively a labor

wedge, a technology and an investment specific shock, which are all assumed to follow a

stationary AR(1) process of the form

log(Xt) = ρX log(Xt−1) + εXt for x ∈ {ϑ,A, ζ}

where |ρX | < 1 and εX ; N(0, σ2
X). The (deflated for growth, xt = Xt/Γt) optimal

allocation of this economy is then characterised by the set of equations

hνt = (1 − α)yt
ht

γϑt
γct − bct−1

1 = β

γ
Et
[
γct − bct−1

γct+1 − bct

(
α
yt+1

kt+1
+ (1 − δ)qt+1

)]

1 = ζtqt

(
1 − Φ

(
γ
it
it−1

)
− Φ′

(
γ
it
it−1

)
γ
it
it−1

)
+ β

γ
Et
[
γct − bct−1

γct+1 − bct
ζt+1Φ′

(
γ
it+1

it

)
γ
it+1

it

]
yt = Atk

α
t h

1−α
t

yt = ct + it

γkt+1 = ζtit

(
1 − Φ

(
γ
it
it−1

))
+ (1 − δ)kt

where lowercase variable x denotes the deflated for growth variable X (xt = Xt/Γt) for

any X ∈ {Y,C, I,K}. The solution of a log-linearised version of the optimal allocation
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admits the state space representation:

Yt = ΠXXt + ΠZZt

Xt+1 = MXXt +MZZt

Zt+1 = RZt + εt

where Xt = (k̂t, ĉt−1, ît−1)′, Yt = (ĉt, ŷt, ît, ĥt, q̂t) and Zt = (ât, ζ̂t, ϑ̂t)′ and εt = (εAt , ε
ζ
t , ε

ϑ
t )′.

As usual in the literature x̂t denotes the log-deviation of variable x from its deterministic

steady state. We then assess the ability of the dynamic identification technique developed

in the main text to recover the dynamics of the “true” structural model. The main

difference from the New-Keynesian model investigated in the text is that the structural

model features a latent variable unobserved by the econometrician —e.g. the capital

stock.

Table B.5: Parametrisation

Preferences
β Discount Factor 0.990
b Habit Persistence 0.650
ν Inv. Frish Elasticity 1.000
Technology
α Capital Elasticity 0.330
φ Investment Adjustment Costs 2.500
δ Depreciation Rate 0.025
γ Gross Rate of Growth 1.004
Shock Persistence
ρA Technology Shock 0.950
ρζ Investment Specific Shock 0.810
ρϑ Labor Wedge Shock 0.940
Shock Volatility (in %)
ρA Technology Shock 0.700
ρζ Investment Specific Shock 2.000
ρϑ Labor Wedge Shock 0.800

In order to perform this assessment we parametrise the model by borrowing values

for the structural parameters from the RBC literature (see Table B.5). The parameters

pertaining to the investment specific shock are directly borrowed from Justiniano, Primiceri,

and Tambalotti [2011]. Those pertaining to the labor wedge shock are taken from Kascha

and Mertens [2009].39 We then run the following Monte-Carlo experiment. We use the
39Note that the model does not pretend to be an accurate representation of a specific economy, but is
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RBC model as the DGP for output, investment and hours worked and simulate the

estimated model 10,000 times over 250 periods. For each simulation, we estimate the

following VARMAytit
ht

 = Φ1

yt−1
it−1
ht−1

+ Φ2

yt−2
it−2
ht−2

+

u1,t
u2,t
u3,t

+ Θ1

u1,t−1
u2,t−1
u3,t−1


and use it as auxiliary model to recover the D-SVARMA representation by ALS asytπt

it

 = G

yt−1
πt−1
it−1

+ F0

z1,t
z2,t
z3,t

+ F1

z1,t−1
z2,t−1
z3,t−1

 where

z1,t
z2,t
z3,t

 = R

z1,t−1
z2,t−1
z3,t−1

+

ε1,t
ε2,t
ε3,t


We then compute the response of each variable to each shock. Figure B.16 reports for

each shock the theoretical IRFs of output, investment and hours worked (plain dark line)

alongside the average IRF as recovered from the simulated D-SVAR (dashed line). The

shaded area corresponds to the 68% confidence band of each IRF in the simulated model.

Note that the three shocks are unlabelled in the D-SVARMA, so we order them by

minimising the distance between the model structural shock and each D-SVARMA shock.

Inspection of the figure suggests that the D-SVARMA allows to recover the three structural

shocks: the impulse response functions share the same shape and the same properties

in the model and in the D-SVARMA. In particular, the D-SVARMA is able to properly

recover the short-run response to the various shocks. Closer inspection however reveals

that the match is not perfect. The D-SVARMA tends to underestimate the response of

output, and slightly overestimate that of hours worked. Two sources of bias are usually

taken as the main culprit for this type of imperfect match: truncation bias and small

sample bias. The truncation bias occurs when the state space representation of the solution

is approximated by a finite VAR. This is not the case in our experiment. As explained

above, the state space representation actually admits a VARMA(2,1) representation,

which is precisely the unrestricted model we estimate. The truncation bias is therefore

inoperative in our case. The main culprit is the small sample bias. As we increase the

sample size of our simulations, the bias recedes and eventually vanishes. The grey line

with bullet markers in Figure B.16 corresponds to IRFs obtained from the D-SVARMA

estimated on a sample of 1,000,000 periods. The match is then perfect. Therefore, our

dynamic identification method asymptotically correctly recovers the theoretical shocks,

even in the presence of a latent variable.
used as a reasonable DGP to conduct our assessment exercise.
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Figure B.16: Impulse responses, RBC model vs Simulated D-SVARMA

(a) Technology Shock
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(b) Investment Specific Shock
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(c) Labor Wedge Shock
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Notes: The estimated model is a D-SVARMA(2,1). Data are generated by the calibrated RBC model.
Observables are y, i and h, but k is not observable. Short sample corresponds to the average of 10,000
estimations of length 250 periods. The shaded area represents 68% confidence bands, as computed from
the 10,000 simulations. Long sample corresponds to one simulation of length 1,000,000 periods.
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