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Abstract

This paper considers a binary decision to be made by a committee – canonically,
a jury – through a voting procedure. Each juror must vote on whether a defendant is
guilty or not guilty. The voting rule aggregates the votes to determine whether the
defendant is convicted or acquitted. We focus on the unanimity rule (convict if and
only if all vote guilty), and we consider jurors who share ambiguous prior beliefs as in
Ellis (2016). Our contribution is twofold. First, we identify all symmetric equilibria
of these voting games. Second, we show that ambiguity may drastically undermine
McLennan’s (1998) results on decision quality: unlike in the absence of ambiguity,
the ex ante optimal symmetric strategy profile need not be an equilibrium; indeed,
there are games for which it is possible to reduce both types of error starting from
any (non-trivial) equilibrium.
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1 Introduction

This paper considers a binary decision to be made by a committee – canonically, a jury
– through a voting procedure. Each juror must vote on whether a defendant is guilty or
not guilty. The voting rule aggregates the votes to determine whether the defendant is
convicted or acquitted.

We consider jurors who share ambiguous prior beliefs as in Ellis (2016). However, unlike
Ellis, who considers the majority rule, we focus on the unanimity rule (convict if and only
if all vote guilty); we allow an asymmetric utility function (lower utility from convicting
the innocent than from acquitting the guilty); and we identify all symmetric equilibria of
these voting games. A companion paper (Fabrizi et al., 2022) examines the unanimity rule
when ambiguity affects the signals received by jurors rather than the prior. That paper
showed that signal ambiguity has negligible impact on the structure of equilibria, and
generally improves decision quality by lowering the probability of the more serious error.
By contrast, prior ambiguity substantially complicates the structure of equilibria and can
seriously degrade decision quality: there may exist symmetric profiles that reduce both
types of error relative to the (non-trivial) equilibrium. For cases where the (non-trivial)
equilibrium is unique, the model also exhibits interesting comparative statics, which we
are currently testing in the lab.

The remainder of this Introduction explains these results in more detail and puts them
into the context of the existing literature.

Recall the classical model that formalises the famous analysis of Condorcet. The state
(guilt or innocence) is unobserved but jurors share a common prior and jurors receive
private signals before voting. A juror may receive a “guilty” signal or an “innocent” sig-
nal, with signals being independently and identically distributed conditional on the state.
There is no communication amongst jurors between receiving their private information and
casting their votes. If the outcome is determined by majority rule (i.e., convict if a major-
ity vote guilty and acquit if a majority vote not guilty), and if all voters vote according to
their signals (i.e., vote guilty if they receive a guilty signal and not guilty if they receive an
innocent signal – the informative voting strategy), then a correct decision becomes certain
as the jury size goes to infinity. This is Condorcet’s famous result (Young, 1988).

Condorcet assumed informative voting behaviour. Modern authors have re-examined
Condorcet’s result through a game-theoretic lens. In these game-theoretic models all jurors
share a common Bernoulli utility function – they are “common interest” games. Austen-
Smith and Banks (1996) establish conditions under which informative voting is an equi-
librium when the common Bernoulli utility function is the indicator function for a correct
decision (convict if guilty, acquit if innocent). McLennan (1998) shows that the ex ante
optimal strategy profile – and also the ex ante optimal symmetric profile – is an equilib-
rium irrespective of the specification of the common Bernoulli utility function. In other
words, even if the informative strategy profile is not an equilibrium, there will exist another
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(symmetric) profile that is an equilibrium and is even better from an ex ante expected
utility standpoint. These results give powerful normative justification for majority voting.

More recently, Ellis (2016) has shown that ambiguity may drastically undermine these
normative foundations. In his model, jurors share a set of prior probability distributions
over the states, and each prior is updated (in the usual manner) based on new information
to determine a set of posteriors. The jurors in Ellis’ model make decisions according to the
maxmin expected utility (MEU) rule. Ellis does not identify all the (symmetric) equilibria
of this modified game, but he does establish some important general results. When juror
posterior sets include probabilities of innocence both above and below 1

2
conditional on

either signal, majority rule may be no better than a coin toss: there is an equilibrium in
which jurors cast each vote with equal probability, irrespective of the signals received or the
number of jurors (Ellis, 2016, Proposition 1). On the other hand, if the signal-conditional
posterior intervals on the innocent state are disjoint,1 then the essence of Condorcet’s
result is preserved (Ellis, 2016, Theorem 2).

Austen-Smith and Banks (1996) and the literature which followed has also considered
voting rules other than simple majority. The unanimity rule is especially salient in jury con-
texts. When analysing this rule it is natural to relax the symmetry of the Bernoulli utility
function. Correct decisions are still treated symmetrically but “Type I error” (convicting
the innocent) is assigned a lower Bernoulli utility than “Type II error” (acquitting the
guilty). Feddersen and Pesendorfer (1998) provide the definitive analysis of the unanimity
rule, as well as the intermediate super-majority rules. They show that, paradoxically, the
unanimity rule is unique in exhibiting an anti-Condorcet property: the asymptotic prob-
ability of convicting the innocent is bounded away from zero.2 However, it is important
to note that McLennan’s (1998) result applies to these games. The ex ante optimal (sym-
metic) strategy profile is an equilibrium. Any deficiency in decision quality is inherent in
the voting rule itself, not the individual rationality constraints imposed by equilibrium –
there is no conflict between individual and collective rationality in behaviour.

Ryan (2021) shows that Feddersen and Pesendorfer’s asymptotic result also holds in the
unanimity version of Ellis’ (2016) model, at least when restricting attention to symmetric
strategies. Like Ellis (2016), Ryan (2021) establishes his result without needing to identify
all (symmetric) equilibria of the voting game, though he does show that equilibria may
take more exotic forms than in the absence of ambiguity.

The present paper fills this gap in the analysis of Ryan (2021). We identify all sym-
metic equilibria of unanimity voting games with an ambiguous prior. This allows us to
evaluate decision quality for fixed jury size. A complicated picture emerges but two clear
lessons. First, as in Ellis’ (2016) analysis of the majority rule, overlapping posterior in-

1In fact, it suffices that the intersection of these posterior intervals has an empty interior.
2Specifically, along any convergent sequence of non-trivial equilibria. Under the unanimity rule there

is always a trivial equilibrium in which jurors vote not guilty irrespective of the signal received, so the
defendant is always acquitted.
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tervals may fundamentally alter equilibrium behaviour and drastically undermine decision
quality. Second, if posterior intervals are disjoint, equilibrium structure mostly resembles
the case of no ambiguity, with one exception: the generic possibility of an equilibrium in
which jurors cast an innocent vote with positive probability following either signal; but
equilibrium behaviour may deviate from the ex ante optimum. Ambiguity therefore drives
a wedge between individual and collective rationality, despite common interest. To some
extent this reflects the well-known potential for conflict between ex ante and ad interim
preferences under MEU (i.e., dynamic inconsistency; see, for instance, Siniscalchi, 2011);
ambiguity drives a wedge between mixed and behaviour strategies.3 However, more strik-
ing is the finding that when posteriors overlap, it may be possible to reduce both Type
I and Type II error starting from any (non-trivial, symmetric) equilibrium profile. The
latter effect cannot be explained by dynamic inconsistency alone; equilibrium constraints
directly impede decision quality.

2 The model

2.1 Voting problems

We adopt the model of Ryan (2021), which in turn is a hybrid of Feddersen and Pesendorfer
(1998) and Ellis (2016). The model is described in detail in Section 2 of Ryan (2021) so
we only provide a brief summary here.

There is a set I = {1, 2, ..., N + 1} of jurors, with generic member i, which makes a
decision d ∈ D = {A,B} by secret ballot. We interpret A as the decision to “acquit”
the defendant; hence B corresponds to entering a conviction.4 We use the same notation
for decisions and votes: each juror may vote A for acquittal (the “not guilty” vote) or B
for conviction (the “guilty” vote). The outcome is determined by the unanimity rule: the
defendant is acquitted – decision d = A is made – unless all jurors vote for conviction, in
which case decision d = B is made.

The defendant may be innocent or guilty, represented by the state s ∈ S = {a, b}, where
s = a is the state of innocence and s = b the state of guilt. (Think of b as the state in
which the defendant is “bad”.) Jurors share common ambiguous prior information about
s. The prior probability of s = a is objectively known to lie in the interval

[
p, p
]
⊆ (0, 1)

but nothing more than this. Prior to casting their vote, juror i receives a private signal
ti ∈ T = {1, 2}. Conditional on s ∈ S, these signals are independently and identically
distributed with Pr (ti = 1|a) = Pr (ti = 2|b) = r ∈

(
1
2
, 1
)
.

Let Ω = S×T I denote the state space characterising all ex ante uncertainty. Together
with r, each p ∈

[
p, p
]

determines a probability over Ω. The (closed and convex) set of

3See Ellis (2016, §3.1) for further discussion of this issue, and the rationale for defining equilibrium in
terms of behaviour strategies.

4Our notation (mostly) follows Ellis (2016) to facilitate comparison with his analysis.
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probabilities over Ω determined by
[
p, p
]

is denoted by Π. After receiving their signal,
a juror uses the full Bayesian updating (FBU) rule to update their beliefs: they update
each element of Π using Bayes’ rule to obtain a set of posterior probabilities on Ω (Fagin
and Halpern, 1990; Jaffray, 1992). The posterior interval for the conditional probability
Pr (a|ti = t) is independent of i and denoted by Πt = [πt, πt], with generic element πt.
Since

[
p, p
]
⊆ (0, 1) it follows that Πt ⊆ (0, 1).

Voters share a common utility function, u : D × S → R, with u (A, a) = u (B, b) = 1,
u (A, b) = 0 and u (B, a) = −c, where c ≥ 0. Thus, A is the “correct” decision in state a
and B is the “correct” decision in state b. Ellis’ (2016) model (or rather, a special case
with binary signals) is obtained by setting c = 0. When c > 0 convicting the innocent
results in lower utility than acquitting the guilty.

Note that:

πu (B, a) + (1− π)u (B, b) ≥ πu (A, a) + (1− π)u (A, b)

⇔ π ≤ 1

2 + c
.

The quantity

1−
(

1

2 + c

)
=

1 + c

2 + c

is what Feddersen and Pesendorfer (1998) refer to as the “threshold of reasonable doubt”;
it is the minimum probability of guilt (s = b) necessary to justify the decision to convict.
In the absence of ambiguity, it is therefore optimal to vote for conviction iff the juror’s
posterior probability on s = b, after incorporating their private information and the im-
plications of pivotality, weakly exceeds this threshold. As noted in Ellis (2016),5 in the
presence of ambiguity we can no longer condition on pivotality when determining optimal
voting behaviour. We return to this point below.

A voting problem is a vector V =
(
N, c, r, p, p

)
, with N ∈ {1, 2, ...}, c ≥ 0, r ∈

(
1
2
, 1
)

and 0 < p ≤ p < 1. The set of all voting problems is denoted by V .

2.2 Best responses

Each voting problem induces a voting game. Let σit denote the probability that i ∈ I votes
B after observing t ∈ T , and let σi = (σi1, σ

i
2) denote i’s strategy. We focus on symmetric

profiles, in which each voter follows the same strategy, so we mostly omit the i superscript
in what follows. We therefore abuse notation and refer to σ = (σ1, σ2) interchangeably as
the strategy of a generic voter in a symmetric profile or as the symmetric profile itself. In
the terminology of Feddersen and Pesendorfer (1998), a symmetric profile is responsive if
σ2 6= σ1 and non-responsive if σ1 = σ2.

5And elaborated in Pan (2019).
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Consider a generic voter i who believes that each other voter follows the strategy
σ = (σ1, σ2). Let ρσs denote the probability that voter i’s vote is pivotal conditional on
being in state s ∈ S; let θσs denote the probability that i is not pivotal and that a correct
decision is made, conditional on being in state s ∈ S. Since conviction requires unanimity,
we have θσa = 1− ρσa , θσb = 0,

ρσa = [rσ1 + (1− r)σ2]N (1)

and
ρσb = [(1− r)σ1 + rσ2]N (2)

Our notation modifies that of Ellis (2016) to make explicit the dependence of ρσa , θσa and
ρσb on the common strategy, σ, of the other jurors.

After observing their private signal t ∈ T , voter i chooses σit according to the maxmin
expected utility (MEU) rule. Hence:

σit ∈ arg max
x∈[0,1]

[
min
πt∈Πt

V (x, σ; πt)

]
(3)

where

V (x, σ; πt) = πt [ρσa (1− x− cx) + θσa − (1− ρσa − θσa ) c] + (1− πt) [ρσb x+ θσb ]

= πt [ρσa (1− x− cx) + (1− ρσa)] + (1− πt) ρσb x

Because the minimising posterior in (3) may vary with σit we can no longer condition on
pivotality when determining best responses.

If σ = (0, 0), it is obvious that any σit ∈ [0, 1] satisfies (3), since ρσa = ρσb = 0. Ryan
(2021) derives the best response correspondence on the domain of non-trivial symmetric
profiles: σ 6= (0, 0). This is summarised by Figure 1, which reproduces Ryan (2021, Figure
1). In this figure,

π∗ (σ) =
ρσb

ρσb + (1 + c) ρσa
=

1

1 + (1 + c) (ρσa/ρ
σ
b )

(4)

and
σ̂∗ (σ) = min {σ∗ (σ) , 1}

where

σ∗ (σ) =
1

ρσb + (1 + c) ρσa
=

π∗ (σ)

ρσb
(5)

Figure 1 is used to determine best responses as follows. Suppose voter i believes that
each rival uses strategy σ 6= (0, 0) and i has received signal t ∈ T . To identify i’s optimal
vote, we use σ to calculate π∗ (σ) and σ̂∗ (σ) and locate the point (πt, πt) in Figure 1.
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Voter i’s optimal response (σit) is determined by the coloured region into which (πt, πt)
falls, as indicated in the figure. For example, if (πt, πt) lies in the green region, then it is
optimal to choose σit = 0 (i.e., to vote “not guilty”). Along the boundaries between the
green, pink and blue regions, multiple optimal values for σit may exist. Within the pink
region, excluding its boundary, there is a unique optimal value for σit but this value, σ̂∗ (σ),
may be strictly between 0 and 1. In this case, randomisation is necessary for an optimal
response; randomisation may be a valuable hedge against uncertainty.

The quantities π∗ (σ) and σ∗ (σ) have straightforward interpretations.6

The quantity π∗ (σ) is the posterior probability for which juror i would be indifferent
about how to vote, given that all other jurors use strategy σ; that is, where V (0, σ; π) =
V (1, σ; π). This quantity is always well-defined, independent of t and contained in the
interval [

1

2 + c
,

rN

rN + (1 + c) (1− r)N

]
⊆ (0, 1) .

Thus, if πt < π∗ (σ) < πt (which corresponds to the pink rectangular region in Figure 1),
the posteriors in the set Πt “disagree” about the optimal vote.

The quantity σ∗ (σ) is the value of σit for which juror i gets the same utility conditional
on each s ∈ S, given that all other jurors use strategy σ. This quantity is always well-
defined, strictly positive and independent of t, but it may exceed 1: it may not be feasible
to perfectly hedge against uncertainty.

Knowledge of π∗ (σ), σ∗ (σ) and the posterior interval for each t ∈ T suffices to deter-
mine juror i’s best response(s) to σ.

2.3 Equilibria

We use “equilibrium” as shorthand for a symmetric (Bayesian) Nash equilibrium. Thus,
σ = (σ1, σ2) is an equilibrium iff σit = σt satisfies (3) for each t ∈ T .

The symmetric profile σ = (0, 0) is an equilibrium, albeit a trivial one. Furthermore,
we must have σ2 ≥ σ1 in any non-trivial equilibrium. This follows from the fact that
(π1, π1)� (π2, π2): the point (π1, π1) will lie strictly to the northeast of the point (π2, π2)
when plotted in Figure 1.

It is convenient to partition symmetric strategy profiles with σ2 ≥ σ1 into the following
seven categories, which are depicted graphically in Figure 2.

A: The non-responsive profile σ = (0, 0) which guarantees acquittal.

C: The non-responsive profile σ = (1, 1) which guarantees conviction.

I: The informative profile σ = (0, 1).

6See Appendix A of Ryan (2021) for more details.

6



σit ∈ [0, σ̂∗(σ)]

σit ∈ [σ̂∗(σ), 1]
σit ∈ [0, 1]

πt

πt

π∗(σ)

π∗(σ)

1

1

σit = σ̂∗(σ)

σit = 0

σit = 1

Figure 1: Optimal responses.

FP: Responsive profiles with 0 < σ1 < σ2 = 1 (i.e., “not guilty” votes imply innocent
signals but “guilty” votes do not imply guilty signals). These play a prominent role
in Feddersen and Pesendorfer (1998).

DFP: “Dual” FP profiles with 0 = σ1 < σ2 < 1 (i.e., “guilty” votes imply guilty signals
but “not guilty” votes do not imply innocent signals).

MNR: Strictly mixed non-responsive profiles (0 < σ1 = σ2 < 1).

MR: Strictly mixed responsive profiles (0 < σ1 < σ2 < 1).7

The first three categories correspond to the three vertices in Figure 2; the next three
to the edges excluding the vertices; and the final category to the interior of the triangle.

Feddersen and Pesendorfer (1998) characterise all equilibria of all voting problems with
p = p (i.e., non-ambiguous voting problems). They show that, fixing N , such voting
problems have a generically unique non-trivial equilibrium and that this equilibrium is
from category C, I or FP. There is also the non-generic possibility of a continuum of
equilibria, comprising the union of categories I, DFP and A (i.e., all the profiles along the
lefthand edge of the triangle). This scenario requires that a typical juror be indifferent
between conviction and acquittal when all signals are known to be of the guilty variety.

7In Ryan (2021) this category bears the acronym “SMR”, but this seems inconsistent with the acronym
for the MNR category. We have chosen to restore consistency by replacing SMR with MR. (We could, of
course, have replaced MNR with SMNR instead, but we chose the more economical path.)
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MR

σ1

σ2

MNR

FP

DFP

1

1

A

I C

Figure 2: Partitioning strategies with σ2 ≥ σ1.

Note that there cannot be any equilibrium in category MNR or in category MR in the
absence of ambiguity.

The structure of the mapping from non-ambiguous voting problems to non-trivial equi-
libria is relatively simple and intuitive. For sufficiently low values of p = p = p we have a
unique non-trivial equilibrium at C. When guilt is extremely likely a priori, jurors vote to
convict no matter what signals they receive. As p increases, the unique non-trivial equi-
librium moves weakly westward along the top edge of the triangle towards the informative
profile, I. As we move westward through the FP region, pivotality becomes increasingly
compelling evidence of guilt so it must be balanced against increasing prior belief in inno-
cence to sustain the indifference of a juror in receipt of an innocent signal. After reaching
I, if p continues to increase it will eventually hit a (unique) value at which all profiles
on the lefthand edge are equilibria; beyond that (i.e., for even higher values of p) there
is no non-trivial equilibrium – only the trivial equilibrium A exists. The “speed” of this
anti-clockwise progression around the triangle depends on the values of r, c and N .

Ryan (2021) provides a partial characterisation of the equilibria of voting problems
with ambiguity (i.e., when p < p). Unlike the case of no ambiguity, he shows that multi-
plicity of non-trivial equilibria is a generic possibility,8 and that we may encounter (again,
generically) equilibria from the MR or MNR categories (and even from both at once).
Ryan (2021) also observes that there can be at most one non-trivial equilibrium along the
top edge of the triangle in Figure 1 (ibid., Lemma 4.3); and that there are no equilibria
along the lefthand edge when N is sufficiently large (ibid., Lemma 4.4). In Section 3, we
complete the characterisation of the equilibria of voting problems with ambiguity.

8All claims regarding genericity are for arbitrarily fixed N .
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2.4 Decision quality

To evaluate decision quality, it is useful to map the symmetric profiles in Figure 2 into the
associated state-conditional conviction probabilities:

κσa ≡ Pr [d = C | s = a] = [rσ1 + (1− r)σ2]N+1

κσb ≡ Pr [d = C | s = b] = [(1− r)σ1 + rσ2]N+1

This is done in Figure 3, whose derivation can be found in Appendix A. Note that the set
of state-conditional conviction probabilities is convex.

κσb

κσa

MR

MNR
DFP

FP

1

1

rN+1

(1− r)N+1A

I

C

Figure 3: State-conditional conviction probabilities

We can use Figure 3 to evaluate decision quality, since κσa measures the probability of
Type I error and 1−κσb the probability of Type II error. It is obviously desirable to have κσa
as low as possible and κσb as high as possible, so the Pareto frontier comprises the northern
and western boundaries of Figure 3 – the portion joining the origin (corresponding to
profile A) to the point corresponding to profile C. As we move up this frontier, from A
towards C, the probability of Type I error increases and the probability of Type II error
diminishes.
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From Feddersen and Pesendorfer’s (1998) results, we observe that any equilibrium lies
on this Pareto frontier when p = p (no ambiguity). The ex ante optimal point on the
frontier maximises

p [(1− κσa)− cκσa ] + (1− p)κσb
when p = p = p. This function has linear contours with slope

p (1 + c)

1− p
.

According to McLennan (1998, Theorem 2) any ex ante optimal point is an equilibrium.
Furthermore, it is not hard to show that when p = p and a non-trivial equilibrium exists,
any non-trivial equilibrium is ex ante optimal (see Proposition A.1 in Appendix A).

When p < p (ambiguity is present), the natural criterion for evaluating ex ante expected
decision quality is

min
p∈[p,p]

p [(1− κσa)− cκσa ] + (1− p)κσb

The minimising p depends on whether κσb ≷ 1− (1 + c)κσa so indifference contours are now
kinked, with convex upper contour sets as depicted in Figure 4. In Section 3.2 we evaluate
decision quality in the presence of ambiguity and establish that there exists an open set of
voting problems (for any given N) in which all non-trivial equilibria are strictly inside the
Pareto frontier. To do this, we first need a complete description of all equilibria for voting
problems with ambiguity. That task is taken up in the next section.

3 Characterising equilibria under ambiguity

The mapping from each non-ambiguous voting problem (i.e., one with p = p) to its set of
equilibria is detailed in Feddersen and Pesendorfer (1998) and briefly summarised above.
When we expand the domain of this mapping to include the ambiguous voting problems,
the structure of this mapping becomes substantially more complicated. We describe it
here. We first state a series of results that construct pieces of this mapping. We then
summarise the entire structure graphically and discuss its properties. The reader may
wish to peek ahead at the final summary diagrams (Figures 6-7 and 10-12) before coming
back to the Propositions. Since profile A is always an equilibrium (the so-called trivial
equilibrium) we focus on the non-trivial equilibria.

First, let us recall the relevant results from Ryan (2021):

Proposition 3.1 (Ryan, 2021, Lemma 4.2) The profile C is an equilibrium iff

π1 ≤
1

2 + c
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κσb

κσa

MR

MNR
DFP

FP

1

1

rN+1

(1− r)N+1A

I

C

1
1+c

Slope = p(1+c)
1−p

Slope =
p(1+c)

1−p

Figure 4: Ex-ante indifference curves.

In C, everyone votes to convict. Hence, ρσa = ρσb = 1 and therefore π∗(σ) = 1
2+c

.

Proposition 3.2 (Ryan, 2021, Proposition 4.1) There exists an equilibrium in cate-
gory MNR iff

π1 ≤
1

2 + c
≤ π2.

When such an equilibrium exists it always takes the form

σ1 = σ2 =

(
1

2 + c

) 1
N+1

.

In an MNR equilibrium we have 0 < σ1 = σ2 < 1, which implies σ1 = σ2 = σ∗ and
ρσa = ρσb = σN1 = σN2 , leading to π∗t = 1

2+c
. Then x = σ∗((x, x)) holds if and only if

x =
(

1
2+c

) 1
N+1 . The voters are indifferent between voting to acquit or convict at π∗ = 1

2+c

and perfectly hedge the two states by choosing σ1 = σ2 =
(

1
2+c

) 1
N+1 .
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Proposition 3.3 (Ryan, 2021, Proposition 4.2 [and its proof]) If σ is a profile in
the MR category then σ is an equilibrium iff π1 ≤ π2 and σ satisfies one of the following
sets of conditions:

π∗ (σ) = π1 and σ2 = σ∗ (σ) (MR1)

π∗ (σ) = π2 and σ1 = σ∗ (σ) (MR2)

π∗ (σ) = π1 = π2 and σ1 < σ∗ (σ) < σ2 (MR3)

Furthermore, there exist constants α1 and α2 depending on parameters r, c and N ,9 and
satisfying

1

2 + c
< α2 ≤ α1 ≤

rN

rN + (1 + c) (1− r)N
,

such that: (MR1) has a solution in the MR category iff

1

2 + c
< π1 < α1 (i)

and any such solution is unique; (MR2) has a solution in the MR category iff

1

2 + c
< π2 < α2 (ii)

and any such solution is unique; (MR3) has a solution in the MR category iff π1 = π2 and
(i) holds, in which case (MR3) has a continuum of solutions in the MR category.

In MR equilibria, voters strictly randomise after both signals and the probability to convict
is higher after a guilty than after an innocent signal: 0 < σ1 < σ2 < 1. Consulting
Figure 1, we see that this implies either π1 = π∗(σ) or π2 = π∗(σ) or both. We also see
that, if π1 = π∗(σ), we must have σ1 < σ2 = σ∗(σ) and if π2 = π∗(σ), we must have
σ1 = σ∗(σ) < σ2.

Note that an equilibrium in the MR or MNR category can only exist if the posterior
intervals Π1 and Π2 overlap: π1 ≤ π2. It is clear that multiple such equilibria may co-exist,
and the various possible combinations are summarised in Ryan (2021, Figure 3).

It remains to consider equilibria in categories I, FP and DFP. For this purpose, it is
useful to define functions g : [0, 1]→ (0, 1) and h : [0, 1]→ R++ as follows:

g (σ1) = π∗ ((σ1, 1)) ,

h (σ1) = σ∗ ((σ1, 1)) .

9The constants α1 and α2 are defined (albeit implicitly) on pp. 569-571 of Ryan (2021).
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σ1

1

1

1
2+c

π̃

σ̃1

1
rN+(1+c)(1−r)N

rN

rN+(1+c)(1−r)N

(a)

σ1

1

1

1
2+c

π̃

σ̃1

π̂

σ̂1

1
rN+(1+c)(1−r)N

rN

rN+(1+c)(1−r)N

(b)

Figure 5: Functions g [blue] and h [red].

Function g(σ1) is the posterior probability that makes voters indifferent between voting to
convict or acquit, and function h(σ1) the hedging strategy that delivers the same utility in
each state, when all other voters use strategy (σ1, 1). It is easily verified that

g (1) = h (1) =
1

2 + c

g (0) =
rN

rN + (1 + c) (1− r)N
< h (0) =

1

rN + (1 + c) (1− r)N

and that each function is continuous and strictly decreasing. The functions g and h are
schematically described in Figure 5. (They are non-linear functions, but since their cur-
vature plays no role in what follows we have depicted them as if linear for convenience.)
Note that g (0) < 1, while it is possible that h (0) ≥ 1 as in Panel (b) of Figure 5. Each
function has a unique fixed point, which lies in (0, 1). We use σ̃1 to denote the fixed point
of h and we define π̃ = g (σ̃1). These quantities will play an important role in the analysis
to follow. It will also be useful to define

σ̂1 =

{
h−1 (1) if h (0) ≥ 1

0 otherwise

and π̂ = g (σ̂1). The quantities σ̃1, π̃, σ̂1 and π̂ are all functions of r, c and N .
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We first identify the conditions under which profile I is an equilibrium.10

Proposition 3.4 The informative profile I is an equilibrium iff π2 ≤ g (0) ≤ π1 and either
(a) π2 ≤ g (0) or (b) h (0) ≥ 1.

The condition π2 ≤ g(0) ≤ π1 ensures that the juror is willing to acquit for any belief in
the posterior interval following an innocent signal, but not for every belief in the posterior
interval following a guilty signal. If π2 ≤ g(0), then a guilty vote is optimal for all beliefs
in the posterior interval following a guilty signal; otherwise, the voter prefers to hedge.
In the latter case, h(0) ≥ 1 ensures that voting to convict is the closest one can get to a
perfect hedge.

Next, we identify the structure of FP equilibria. In an FP equilibrium, the juror must
be willing to randomise following an innocent signal. For this it is necessary that (π1, π1)
lie inside the pink rectangle in Figure 1, or on its boundary. If it lies in the interior, then
an FP equilibrium must involve perfect hedging after an innocent signal: we must have
σ1 = σ∗((0, σ1)), so σ1 = σ̃1. On the other hand, if we have an FP equilibrium with (π1, π1)
on the eastern boundary of the rectangle, then g(σ1) = π1 and σ1 may be below the perfect
hedge value; while if we have an FP equilibrium with (π1, π1) on the southern boundary
of the rectangle, then g(σ1) = π1 and σ1 may be above the perfect hedge value.

Proposition 3.5 For any voting problem, there is at most one equilibrium in the FP
category. If σ is an equilibrium profile in the FP category then

σ1 =


g−1 (π1) if π̃ < π1

σ̃1 if π1 ≤ π̃ ≤ π1

g−1 (π1) if π1 < π̃

(6)

Since g is strictly decreasing, g−1 is well-defined and also strictly decreasing. When
parsing (6) it is useful to recall that π̃ and σ̃1 depend on r, c and N , but not on p or p,
and that σ̃1 = g−1 (π̃).

The following result gives necessary and sufficient conditions for the existence of an
equilibrium in the FP category.

Proposition 3.6 There exists an equilibrium profile in category FP iff one of the following
(mutually exclusive) conditions holds:

(a) π̂ ≤ π1 < g (0); or

10Proofs of all results from this section are in Appendix B.
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(b) π̃ ≤ π1 < π̂ and π2 ≤ π1; or

(c) π1 < π̃ < π1 and π2 ≤ π̃; or

(d) (2 + c)−1 < π1 ≤ π̃.

Combining Propositions 3.1, 3.4 and 3.6 we deduce the fact stated in Ryan (2021,
Lemma 4.3) that there cannot be more than one equilibrium in the union of categories C,
I and FP: for profile C to be an equilibrium it is necessary that no point in interval Π1

exceed (2 + c)−1; for profile I to be an equilibrium it is necessary that no point in interval
Π1 fall below g (0), which strictly exceeds (2 + c)−1; and for existence of the unique FP
equilibrium it is necessary that Π1 contains points below g (0) or above (2 + c)−1.

Finally, we have the DFP profiles. Though dual in structure to the FP profiles, these
have a very different equilibrium logic, since pivotality implies that all other jurors received
guilty signals. In DFP equilibria, voters who receive an innocent signal vote to acquit,
whereas voters who receive a guilty signal randomise. In this equilibrium, guilty votes can
only come from jurors with guilty signals. If π2 = g(0) then (π2, π2) sits on the eastern
boundary of the pink rectangle in Figure 1 and we have a DFP equilibrium. This is case
(a) in Proposition 3.7. The other two cases cover the scenarios in which (π2, π2) lies on
the southern boundary of the rectangle - scenario (8) in case (b) - or in the interior, which
gives scenario (9) in case (b). In the latter scenario, σ2 is a perfect hedge.

Proposition 3.7 There exists an equilibrium in the DFP category iff one of the following
(mutually exclusive) conditions holds:

(a) π2 = g (0); or

(b) π2 < g (0) ≤ min {π1, π2} and h (0) < 1.

If (a) holds then DFP profile σ is an equilibrium iff

σ2 ≤ h (0)
1

N+1 (7)

If (b) holds then DFP profile σ is an equilibrium iff

π2 = g (0) and σ2 ≥ h (0)
1

N+1 (8)

or
π2 < g (0) < π2 and σ2 = h (0)

1
N+1 (9)
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Only condition (a) can be satisfied in the absence of ambiguity, so DFP equilibria are
non-generic. When ambiguity is present, case (b) opens the possibility of generic DFP
equilibria. Since g (0) → 1 as N → ∞, we also confirm the result in Ryan (2021, Lemma
4.4) that no DFP equilibrium exists for sufficiently large juries.

Using the foregoing results, one can, in principle, identify all the equilibria of any given
voting problem.11 We have stated the equilibrium conditions in terms of the posterior
probability intervals, as this allows a conveniently compact statement. However, it is not
ideal for understanding the mapping from voting problems to the set of equilibria. Posterior
probabilities bundle parameter p or parameter p with parameter r, and the latter usually
appears separately in other parts of the equilibrium conditions. It is desirable, for the
purpose of understanding equilibrium structure, to re-express the equilibrium conditions
explicitly in terms of the “deep” parameters: r, c, N , p and p. This translation is easily
accomplished by using the fact that if πt is the posterior probability given prior p and
signal t, then:

π1 =
pr

pr + (1− p) (1− r)
and

π2 =
p (1− r)

p (1− r) + (1− p) r
.

Hence, for any constant k ∈ (0, 1):

π1 = k ⇔ p =
1

1 +
(

r
1−r

) (
1−k
k

) (10)

and

π2 = k ⇔ p =
1

1 +
(

1−r
r

) (
1−k
k

) (11)

Therefore, any condition on π1 or π2 can be translated into a corresponding restriction on
p and r; and likewise, any condition on π1 or π2 can be translated into a corresponding
restriction on p and r. We will not record the translated forms of propositions here, but
we will freely make use of these translated versions in the following sections.

The mapping from voting problems (i.e., from values for r, c, N , p and p) to equilibria
that emerges from our analysis is a somewhat forbidding structure. To keep things man-
ageable, we will first analyse voting problems with disjoint posterior intervals (π1 > π2),
and then the ones with overlapping intervals (π1 ≤ π2). The former case includes the
voting problems with no ambiguity (p = p), so is a natural starting point.

11Of course, quantities such as π̃ and π̂ (Proposition 3.6), or α1 and α2 (Proposition 3.3), are implicit
functions of parameters, and do not, in general, have an explicit formulation.
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p

p

FP

FP

FP

I

C

1

1

1

1+(1+c)( 1−r
r )

N−1 1

1+(1+c)( 1−r
r )

N+1

1
1+(1+c) r

1−r

1

1+ 1−π̃
π̃

r
1−r

1

1+(1+c)( 1−r
r )

N+1

σ1 = g−1(π1)

σ1 = g−1(π̃1)

σ1 = g−1(π1) DFP(9) DFP(7)

I and DFP(8)

Figure 6: Equilibria when posteriors are disjoint and h(0) < 1.

3.1 Disjoint posterior set

When posteriors are disjoint there are no equilibria in the MNR or MR categories. This
simplifies matters considerably.

Note that

π1 > π2 ⇔ p <
pr2

pr2 +
(
1− p

)
(1− r)2 (12)

For fixed r ∈
(

1
2
, 1
)
, the righthand side of (12) is a strictly increasing and strictly concave

function of p ∈ (0, 1), approaching zero as p → 0 and approaching unity as p → 1. It
is depicted as the dashed green curve in Figures 6-7 below. Condition (12) is satisfied at
points below this curve.

Figures 6-7 describe the mapping from all voting problems with disjoint posteriors to
their non-trivial equilibria.12 Figure 6 describes the situation for voting problems with

12Figures 6-7 are constructed by considering the special cases of Propositions 3.1, 3.4, 3.6 and 3.7
for voting problems satisfying π1 > π2, translating the equilibrium conditions using (10)-(11), and then
depicting the corresponding regions of the parameter space graphically.
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I

C

1

1

1

1+(1+c)( 1−r
r )

N−1 1

1+(1+c)( 1−r
r )

N+1

1
1+(1+c) r

1−r

1

1+ 1−π̃
π̃
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1−r

1

1+(1+c)( 1−r
r )

N+1

σ1 = g−1(π1)

σ1 = g−1(π̃1)

σ1 = g−1(π1) I and DFP(7)

Figure 7: Equilibria when posteriors are disjoint and h(0) ≥ 1.

h (0) < 1 and Figure 7 those with h (0) ≥ 1.13 In each figure, the values of p and p
determine a point in the graph. Based on the location of this point, the coloured regions
indicate the nature of any non-trivial equilibria. For example, the black dot in Figure
6 indicates a voting problem with h (0) < 1 and no ambiguity (p = p); it has a unique
non-trivial equilibrium, which is of the FP variety with σ1 = g−1 (π1).

The boundaries of the coloured regions depend on the values of the parameters r, c,
and N as indicated. In particular:

1

2 + c
< π̃ < g (0)

13Condition (12) involves all parameters except N and c. Note that

h (0) < 1 ⇔ 1 + c <
1− rN

(1− r)N
.

The lefthand side of this expression is strictly increasing in c, with range [0,∞); the righthand side is
strictly increasing in N , being equal to 1 when N = 1 and tending to infinity as N → ∞. Hence, given
r
(
1
2 , 1
)
, there is a strictly decreasing function f : {1, 2, ...} → [0,∞) such that h (0) < 1 iff c < f (N).
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(see Figure 5) so

1 + c =
1− (2 + c)−1

(2 + c)−1 >
1− π̃
π̃

>
1− g (0)

g (0)
= (1 + c)

(
1− r
r

)N
and therefore

1

1 +
(

r
1−r

)
(1 + c)

<
1

1 +
(

r
1−r

) (
1−π̃
π̃

) <
1

1 + (1 + c)
(

1−r
r

)N−1
.

In each figure, the dashed green curve passes through the point(
1

1 + (1 + c)
(

1−r
r

)N−1
,

1

1 + (1 + c)
(

1−r
r

)N+1

)

since it is easily checked that when

p =
1

1 + (1 + c)
(

1−r
r

)N−1

the righthand side of (12) is equal to

1

1 + (1 + c)
(

1−r
r

)N+1
.

Consider Figure 6 (where h (0) < 1). If

p >
1

1 + (1 + c)
(

1−r
r

)N+1

then only the trivial equilibrium exists – there is no non-trivial equilibrium. If

p ≤ 1

1 + (1 + c)
(

1−r
r

)N+1

there is unique non-trivial equilibrium unless

1

1 + (1 + c)
(

1−r
r

)N+1
∈
{
p, p
}

.

When

p ≤ 1

1 +
(

r
1−r

)
(1 + c)
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this unique non-trivial equilibrium is of variety C; when

1

1 +
(

r
1−r

)
(1 + c)

< p and p <
1

1 + (1 + c)
(

1−r
r

)N−1

it is of variety FP; when

1

1 + (1 + c)
(

1−r
r

)N+1
< p and p ≥ 1

1 + (1 + c)
(

1−r
r

)N−1

it is of variety I; and when

p <
1

1 + (1 + c)
(

1−r
r

)N+1
< p

it is of variety DFP.
If

p =
1

1 + (1 + c)
(

1−r
r

)N+1

there is a continuum of equilibria: an I equilibrium plus all the DFP equilibria described
in (7). Finally, if

p =
1

1 + (1 + c)
(

1−r
r

)N+1

there is an I equilibrium plus all the DFP equilibria described in (8). At the point where

p = p =
1

1 + (1 + c)
(

1−r
r

)N+1
(13)

the set of non-trivial equilibria comprises the I profile together with all the DFP profiles.
Figure 7 illustrates the equilibrium mapping when h (0) ≥ 1 and is interpreted similarly.

In this case the I region expands and the DFP region contracts. We now observe a DFP
equilibrium iff

p =
1

1 + (1 + c)
(

1−r
r

)N+1

in which case the set of non-trivial equilibria comprises the I profile together with all the
DFP profiles. For all other voting problems with disjoint posteriors and h (0) ≥ 1 there is
at most one non-trivial equilibrium.

Looking along the diagonal of either figure, we recover the familiar mapping from
parameters to (non-trivial) equilibria for the no-ambiguity case. In many respects, the
case of ambiguity with disjoint posteriors cleaves to this no-ambiguity benchmark. In
particular, we immediately deduce the following from Figures 6-7:
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Theorem 3.1 Generically, voting problems with disjoint posteriors have at most one
non-trivial equilibrium. Moreover, every equilibrium generates state-conditional conviction
probabilities on the Pareto frontier.

However, some noteworthy novelties do emerge from our analysis.
First and foremost, ambiguity promotes the DFP equilibrium to a generic possibility

– DFP equilibria exist for an open set of voting problems (see Figure 6). In such an
equilibrium, jurors who receive an innocent signal vote “not guilty” while jurors in receipt
of a guilty signal randomise. This Dual FP behaviour is arguably more natural than FP
behaviour: it is intuitive that jurors whose utility functions reflect Blackstone’s maxim
might be more resolute when following innocent signals than guilty ones. However, in the
absence of ambiguity, pivotality logic militates strongly against this intuition. Guilty votes
can only come from jurors with guilty signals in a DFP equilibrium. In such an equilibrium,
jurors must therefore be indifferent about convicting or acquitting a defendant when all
N + 1 jurors have guilty signals. This knife-edge condition, which, it is crucial to observe,
is not affected by the equilibrium value of σ2 ∈ (0, 1), ensures that the DFP scenario is
non-generic in the absence of ambiguity: it requires parameters to satisfy (13).

If ambiguity is present, hedging incentives may undo this logic. This happens when
π2 < π∗ (σ) < π2 so that posteriors following a guilty signal “disagree” about which is the
better vote: there is robust indecision rather than knife-edge indifference. If σ∗ (σ) < 1
there is a perfect hedge against this uncertainty and it involves randomisation. When σ =
(0, σ2) is a DFP profile, π∗ (σ) = g (0) and σ∗ (σ) = h (0) /σN2 . Therefore, if π2 < g (0) < π2

and σ2 > h (0)1/N juror i will choose σi2 = σ∗ (σ) ∈ (0, 1) in response to σ following a guilty

signal. Provided h (0) < 1 we have a DFP equilibrium when σ2 = h (0)1/(N+1). From Figure
3 we see that this equilibrium has lower Type I error, and higher Type II error, than any
non-trivial equilibrium that may be generically observed in the absence of ambiguity.

This observation suggests a more general comparative static question. We have seen
that for voting problems with disjoint posteriors, non-trivial equilibria are generically
unique when they exist. How is this unique non-trivial equilibrium affected by adding
a small amount of ambiguity? Provided the change is small enough to keep posteriors
disjoint, we can use Figures 6-7 to answer this question.

By “adding ambiguity” we mean going from a voting problem with p = p = z to
one with p = z − ε and p = z + ε for some ε ∈ (0,min {z, 1− z}) small enough to
maintain disjoint posteriors, holding all other parameter values fixed.14 Graphically, this
is a northwestly movement from a point on the diagonal in Figure 6 or Figure 7. Starting
from a point in the C region, such a movement either keeps the voting problem in this
region or moves it into the FP region. If we start from the FP region, we remain there.

14The assumption that z falls exactly in the middle of the prior interval is not essential to our analysis.
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Note, however, that if we start from

p = p = z <
1

1 +
(

r
1−r

) (
1−π̃
π̃

)
(which corresponds to π1 = π1 < π̃) then this movement lowers the equilibrium value of
σ1 (since it raises π1 and function g−1 is strictly decreasing), while if we start from

p = p = z >
1

1 +
(

r
1−r

) (
1−π̃
π̃

)
(which corresponds to π1 = π1 > π̃) then this movement raises the equilibrium value of
σ1 (since it lowers π1). If

p = p = z =
1

1 +
(

r
1−r

) (
1−π̃
π̃

)
the movement has no effect on the equilibrium. This is a curiously non-monotonic – and
testable – comparative static property of the model.

Continuing along the diagonal, if we start from a point in the I region, we may either
remain there or move into the FP region, or possibly even into the DFP region (if h (0) < 0
and z and ε are high enough). Finally, if we start at the point where the voting problem
with ambiguity has a continuum of DFP equilibria, adding ambiguity will either move us
into the interior of the DFP region (if h (0) < 1), or into the I region (if h (0) ≥ 1).

These comparative statics are summarised in Figure 8. The black dot in the FP region
corresponds to the profile (σ̃1, 1), while the black dot in the DFP region corresponds to

the profile
(

0, h (0)1/(N+1)
)

. Purple arrows indicate the possible directions of movement

as a result of adding ambiguity (starting from a non-ambiguous voting problem) while
maintaining disjoint posteriors.15

We can also combine this type of comparative static analysis with Proposition A.1 in
Appendix A to determine when an ex ante optimal symmetric profile is an equilibrium;
and if not, the direction of the equilibrium distortion away from optimality. Consider
Figure 9, which exhibits the unique ex ante optimal symmetric profile for a particular
voting problem with ambiguity (the black dot on the Pareto frontier). The optimal profile
is from the FP category. Is it an equilibrium? We may answer this question as follows.
First, the same profile (let’s denote it by σ′) is ex ante optimal for the non-ambiguous
voting game obtained by increasing p until it matches p while keeping all other parameters
the same as before. It follows by Proposition A.1 that σ′ is also the unique non-trivial

15When reading this figure recall that if we start from a non-ambiguous voting problem with a DFP
equilibrium, then all DFP profiles, together with I profile, are equilibria. Starting from such a voting

problem, adding ambiguity will either move us to the DFP profile
(

0, h (0)
1/(N+1)

)
or to the I profile.

22



κσb

κσa

MR

MNR

DFP

FP

1

1

rN+1

(1− r)N+1A

I

C

Figure 8: Effects of adding ambiguity on (generic) equilibrium decision quality.

equilibrium of this non-ambiguous voting problem. So, the question becomes, is σ′ still
an equilibrium for the original voting problem with ambiguity? Viewed in Figure 6 or 7
(as appropriate), the ambiguous problem lies due west of the non-ambiguous problem; and
since the non-ambiguous problem is in the FP region, so is the ambiguous one. Therefore,
whether σ′ still is an equilibrium for the original voting problem with ambiguity depends
on whether σ′1 is above or below σ̃1; that is, whether p is below or above

1

1 +
(

r
1−r

) (
1−π̃
π̃

) .

Only if σ′1 ≥ σ̃1 will a westward movement preserve the equilibrium value of σ1. If σ′1 < σ̃1

the westward movement will increase the equilibrium value of σ1 and therefore raise Type
I error (lower Type II error) relative to the ex ante optimum.

In Figure 9, we have assumed that the ex ante optimal profile, σ′, has state-conditional
conviction probabilities

(
κσ
′
a , κ

σ′

b

)
located to the right of the kink in the indifference contour

through that point. In principle, if c is close enough to zero, we might have an ex ante
optimal profile, σ′, that is in the FP category but

(
κσ
′
a , κ

σ′

b

)
sits to the left of the kink, so

that σ′ is ex ante optimal – and therefore an equilibrium – for the non-ambiguous voting
problem obtained by reducing p until it matches p (rather than raising p). In this case,
moving from the non-ambiguous to the ambiguous problem is a northward (rather than
westward) movement in Figure 6 or 7. It is easy to show that if

(
κσ
′
a , κ

σ′

b

)
sits to the left of
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Figure 9: An ex ante optimal profile.

the kink (i.e., κσ
′

b < 1− (1 + c)κσ
′
a ) then we must have σ′1 < σ̃1.16 Moving northward from

such a point does not alter the equilibrium value of σ1 so σ′ continues to be an equilibrium.
In other words, the ex ante optimal profile is necessarily an equilibrium in this case.

We can use the same sort of analysis to evaluate any point on the Pareto frontier: to as-
sess whether such a point is an equilibrium when it is ex ante optimal, and if not, whether
equilibrium constraints raise or lower Type I error relative to the ex ante optimum. As

16Suppose σ′ = (σ′1, 1) with 0 < σ′1 < 1. Therefore:

κσ
′

b < 1− (1 + c)κσ
′

a

⇔ [(1− r)σ′1 + r]
N+1

+ (1 + c) [rσ′1 + (1− r)]N+1
< 1

⇒ σ′1 [(1− r)σ′1 + r]
N

+ (1 + c)σ′1 [rσ′1 + (1− r)]N < 1

⇔ h (σ′1) > σ′1

⇔ σ′1 < σ̃1

where the third line uses the fact that

σ′1 < min { (1− r)σ′1 + r, rσ′1 + (1− r)} .

24



p

p1

1

1

1+(1+c)( 1−r
r )

N+1

1

1+
(

1−α1
α1

)
( r
1−r )

1

1+
(

1−α2
α2

)
( r
1−r )

1

1+(1+c)( r
1−r )

1

1+(1+c)( 1−r
r )

1

1+
(

1−α2
α2

)
( 1−r

r )

MNR

MR2

MR1

MR1 and MR3

Figure 10: Strictly mixed equilibria with overlapping posteriors.

our example above suggests, a complex set of possibilities arises. Given the contentious, if
conventional, measure of ex ante welfare, we do not attempt to summarise all the possibili-
ties here. Rather, we move on to consideration of overlapping posteriors, where an entirely
uncontroversial failure of decision quality can be shown to be possible – a situation in
which all non-trivial equilibria generate state-conditional conviction probabilities strictly
inside the Pareto frontier.

3.2 Overlapping posteriors

Only if posteriors overlap (π1 ≤ π2) is it possible to observe equilibria of the strictly mixed
varieties: MNR or MR. This possibility also creates the potential for a dramatic failure of
decision quality to emerge (see Proposition 3.8).

Figure 10 identifies the parameter constellations where MNR and MR equilibria exist
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p1

1

1

1+(1+c)( 1−r
r )

N+1

1
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r )

N−1

1

1+(1+c)( r
1−r )

1

1+( 1−π̃
π̃ )( r

1−r )

1

1+( 1−π̃
π̃ )( 1−r

r )

σ1 = g−1(π1) FP

σ1 = g−1(π̃1) FP

C

FP

σ1 = g−1(π1)

DFP(9)
DFP(7)

I and DFP(8)

Figure 11: Other (not strictly mixed) equilibria with overlapping posteriors and h(0) < 1.

(cf., Figure 3 in Ryan, 2021).17 Once again, the green curve is where π1 = π2 so posteriors
overlap on or above this curve. The (unique) MNR equilibrium exists within the pink
rectangular region, which includes all boundary points except those on the northern and
western boundaries, which are outside the domain of the parameter space. An MR equi-
librium of sub-type MR1 exists strictly between the vertical dashed purple lines; an MR2

17When reading this diagram, recall that

1

2 + c
< α2 ≤ α2 ≤ g (0) ,

which implies

1

1 +
(

r
1−r

)
(1 + c)

<
1

1 +
(

r
1−r

)(
1−α2

α2

) ≤ 1

1 +
(

r
1−r

)(
1−α1

α1

) ≤ 1

1 + (1 + c)
(
1−r
r

)N−1 .

Figure 10 illustrates the case where both weak inequalities hold strictly, but the picture is qualitatively
the same even if neither does.
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1−r )

1

1+( 1−π̃
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σ1 = g−1(π1) FP

σ1 = g−1(π̃1) FP

FP

FP

C

σ1 = g−1(π1)

I

I and DFP(7)

Figure 12: Other (not strictly mixed) equilibria with overlapping posteriors and h(0) ≥ 1.

sub-type exists strictly between the horizontal dashed green lines;18 and the continuum of
MR3 sub-type equilibria along the indicated portion of curve where π1 = π2.

A key implication of Figure 10 is the existence of an open set of voting problems which
possess both an MNR and MR2 equilibrium. With disjoint posteriors, multiplicity of
non-trivial equilibria is more than a non-generic possibility.

In the interests of readability, rather than encumber Figure 10 with additional shading
to indicate regions where C, I, FP or DFP equilibria exist, we provide the latter information
in a separate figure – or rather, two separate figures: one for voting problems with h (0) < 1
and another for voting problems with h (0) ≥ 1. These are Figures 11 and 12. When
reading Figure 12, recall that π̃ < π̂ ≤ g (0). Figure 12 is drawn assuming π̂ < g (0). If
π̂ = g (0) then

1

1 +
(

1−r
r

) (
1−π̂
π̂

) =
1

1 + (1 + c)
(

1−r
r

)N−1

so the rightmost shaded FP region vanishes: FP equilibria with σ1 = g−1 (π1) 6= g−1 (π̃)

18Recall that the MR1 and MR2 equilibria are also unique when they exist.
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become non-generic, as in the h (0) < 1 case.
To obtain the complete mapping from the parameter space to the set of non-trivial

equilibria, the reader should imagine Figure 10 superimposed on each of these figures.
When imagining this superimposition, note that since

1

2 + c
< π̃

we have
1

1 +
(

1−r
r

)
(1 + c)

<
1

1 +
(

1−r
r

) (
1−π̃
π̃

)
which implies that the FP region strictly overlaps with the MNR and MR2 regions (irre-
spective of whether h (0) < 1 or h (0) ≥ 1). This exacerbates the multiplicity issue noted
above. We now see that there is an open set of voting problems with three non-trivial
equilibria: an FP equilibrium with σ1 = g−1 (π̃), the unique MNR equilibrium and the
unique MR2 equilibrium. There also exists an open set of voting problems possessing an
FP equilibrium with σ1 = g−1 (π̃) together with the unique MR1 equilibrium.

On the other hand, we have not established anything about the value of π̃ in relation
to α1 or α2. This should be borne in mind when reading the superimposed figures.

The most striking lesson from Figures 10-12 is the existence of an open set of voting
problems for which all non-trivial equilibria are in the MR or MNR categories. Given any
non-trivial equilibrium of any such voting problem, a Social Planner could find a symmetric
strategy profile which strictly lowers the probability of both Type I and Type II error (see
Figure 3). This occurs provided p is high enough and p low enough; that is, when prior
ambiguity is sufficiently large (where “sufficiency” depends on the values of N , r and c).

Proposition 3.8 The following are equivalent:

(i) The following conditions are satisfied: π1 < π2,

p < min

 1

1 +
(

1−α1

α1

) (
r

1−r

) , 1

1 + (1 + c)
(

1−r
r

)N−1


and

p > max

{
1

1 + (1 + c)
(

1−r
r

) , 1

1 +
(

1−π̃
π̃

) (
1−r
r

)} .
(ii) The voting problem has a non-trivial equilibrium and all non-trivial equilibria gen-

erate state-contingent conviction probabilities strictly inside the Pareto frontier of
Figure 3.
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Of course, the trivial equilibrium always exists and the reader may wonder whether this
equilibrium is ex ante optimal in precisely the scenarios in which all non-trivial equilibria
are strictly mixed. From Figure 4 it is clear that profile A is ex ante optimal if and only
if it would also be ex ante optimal were the ambiguous prior to be replaced by a non-
ambiguous prior equal to p (i.e., when p is reduced until it coincides with p). Moreover,
if profile A is ex ante optimal for this non-ambiguous voting problem, then it is also the
unique equilibrium: see Proposition A.1 in Appendix A. Thus, if the non-ambiguous
voting problem with prior equal to p has a non-trivial equilibrium, we may conclude that
profile A is not ex ante optimal in the original (ambiguous) voting problem.

In fact, it is easy to see that the non-ambiguous voting problem does indeed have a non-
trivial equilibrium whenever the original ambiguous problem has all non-trivial equilibria
strictly mixed. Starting from any point in Figure 10 where a strictly mixed equilibrium
exists, reducing the value of p until it coincides with p shifts that point due south to the
diagonal. From Figures 11-12 we observe that the corresponding non-ambiguous voting
problem will possess a non-trivial equilibrium provided

p ≤ 1

1 + (1 + c)
(

1−r
r

)N+1

which is necessarily the case if the original ambiguous voting problem has a strictly mixed
equilibrium.

4 Concluding remarks

In the absence of ambiguity: (i) all equilibria generate state-conditional conviction proba-
bilities on the Pareto frontier; (ii) the ex ante optimal profile is an equilibrium; and (iii)
any non-trivial equilibrium is ex ante optimal amongst symmetric profiles. None of these
statements remains true once voting problems with ambiguity are admitted.

Ellis (2016) already showed that ambiguous prior beliefs can distort voting behavior
under the majority rule, and may produce exotic equilibria with poor decision quality when
posterior intervals overlap. The present paper reaches similar conclusions for voting under
the unanimity rule. Our analysis has a more specialised signal structure than Ellis’ (2016),
but employs the more general utility specification of Feddersen and Pesendorfer (1998).

Because Ellis studies voting under the majority rule, and is concerned with information
aggregation in the sense of Condorcet, he evaluates equilibria against the “correct expected
winners” criterion: a voter is more likely to vote for the correct state than the incorrect
one, conditional on either state. He identifies a condition under which there exists an
equilibrium that violates this property – the “coin toss” equilibrium of the Introduction
(ibid., Proposition 1); and also shows that this condition precludes any equilibrium from
having correct expected winners (ibid., Theorem 1). The required condition is that voters
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“lack confidence”: the interior of Π1 ∩ Π2 contains 1
2
. Because of potential asymmetry

in the Bernoulli utility function, our decision quality criterion is Pareto optimality with
respect to Type I and Type II error probabilities. We observed in the previous section
that when posteriors overlap, the unanimity rule can generate a Pareto sub-optimal for
any non-trivial equilibrium. This is the natural analogue of Ellis’ (2016) result. Moreover,
our results, summarised in Figures 10-12, allow us to precisely determine those voting
problems for which this pathology arises.

Importantly, our results differ sharply from those of Fabrizi et al. (2022). When voting
takes place under the unanimity rule, ambiguity about p has very different implications to
ambiguity about r. Adding ambiguity about r has no impact on the range of equilibria that
one may observe, and typically lowers the probability of Type I error. Relative to the no-
ambiguity benchmark, the impact of ambiguity is negligible from a descriptive standpoint
and mildly positive form a normative standpoint. When ambiguity affects p, matters are
very different, and this is so whether voting follows the majority rule or the unanimity
rule. To the best of our knowledge, the impact of ambiguity about r on the majority
voting game remains an open question.

Our analysis provides a complete characterisation of all symmetric equilibria. Such
completeness is important for experimental testing, where precise model predictions are
usually needed. This allows us to identify regions of the parameter space where non-
trivial equilibria are unique, so that model comparative statics may be identified and, in
principle, tested.19 Our complete characterisation also allows us to evaluate whether the
ex ante optimum can be achieved, and if not, the direction of the distortion.
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APPENDICES

A Characterising decision quality

In this appendix we describe the mapping σ 7→ (κσa , κ
σ
b ) from symmetric profiles to state-

conditional conviction probabilities (as depicted in Figure 3), and then prove an important
result on the ex ante optimal symmetric profile(s) for voting problems without ambiguity.

Let Γ ≡
{

(z1, z2) ∈ [0, 1]2
∣∣ z1 ≤ z2

}
and consider the mapping σ 7→ (x (σ) , y (σ)) on

this domain, where
x (σ) = rσ1 + (1− r)σ2 = (κσa)1/(N+1)

and
y (σ) = (1− r)σ1 + rσ2 = (κσb )1/(N+1) .

We describe this mapping as an intermediate step to characterising σ 7→ (κσa , κ
σ
b ). It is

evident that (x (σ) , y (σ)) ∈ Γ for any σ ∈ Γ, and that the mapping σ 7→ (x (σ) , y (σ)) is
continuous and satisfies the following mixture-linearity property:

λ (x (σ) , y (σ)) + (1− λ) (x (σ′) , y (σ′)) = (x (λσ + (1− λ)σ′) , y (λσ + (1− λ)σ′))

for any λ ∈ [0, 1] and any σ, σ′ ∈ Γ. The image of Γ is therefore the convex hull of the
image of its extreme points (i.e., profiles A, I and C in Figure 2). Hence, the image of Γ
is the convex hull of the points:

{(0, 0) , (1− r, r) , (1, 1)} .

This image is the subset of Γ consisting of the points on or below the graph of the piecewise
linear function f : [0, 1]→ [0, 1] defined as follows:

f (x) =


(

r
1−r

)
x if 0 ≤ x ≤ 1− r

r +
(

1−r
r

)
(x− (1− r)) if 1− r ≤ x ≤ 1

Now consider the mapping σ 7→
(
x (σ)N+1 , y (σ)N+1

)
= (κσa , κ

σ
b ). It is easily verified

that the image of Γ under this mapping is the set20{(
λxN+1, λyN+1

) ∣∣ λ ∈ [0, 1] and (x, y) is on the graph of f
}

(14)

20Note that (x, y) is in the image of Γ under the mapping σ 7→ (x (σ) , y (σ)) iff (x, y) = (µx, µy) for
some µ ∈ [0, 1] and some (x, y) in the graph of f . Thus (κσa , κ

σ
b ) =

(
xN+1, yN+1

)
for some (x, y) in the

image of Γ under the mapping σ 7→ (x (σ) , y (σ)) iff (κσa , κ
σ
b ) =

(
µN+1xN+1, µN+1yN+1

)
for some µ ∈ [0, 1]

and some (x, y) in the graph of f . Setting λ = µN+1 ∈ [0, 1] gives the result.
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It follows that the image of Γ under the mapping σ 7→ (κσa , κ
σ
b ) is the subset of Γ consisting

of the points on or below the graph of function g : [0, 1]→ [0, 1] defined by

g (z) = f
(
z1/(N+1)

)N+1
=


(

r
1−r

)N+1
z if 0 ≤ z ≤ (1− r)N+1

[
r +

(
1−r
r

) (
z1/(N+1) − (1− r)

)]N+1
if (1− r)N+1 ≤ z ≤ 1

This is the region depicted in Figure 3. It is easily checked that g′ (z) > 0 and g′′ (z) < 0
when (1− r)N+1 < z < 1, giving the strictly concave portion of the Pareto frontier. It is
also straightforward to show that

lim
z→(1−r)N+1

g′ (z) =

(
r

1− r

)N−1

<

(
r

1− r

)N+1

which implies a kink in the Pareto frontier at the point
(

(1− r)N+1 , rN+1
)

and, more

importantly, convexity of the image of Γ under the mapping σ 7→ (κσa , κ
σ
b ): see Figure 3.

When p = p = p (no ambiguity), the ex ante expected utility of a typical juror from
symmetric profile σ is

p [(1− κσa)− cκσa ] + (1− p)κσb (15)

The profile σ is ex ante optimal if (κσa , κ
σ
b ) maximises this linear function over the convex

set in Figure 3. Note that if an FP profile is ex ante optimal (amongst symmetric profiles)
it is the unique ex ante optimal profile; whereas a DFP profile is ex ante optimal iff the
set of ex ante optimal profiles consists of all profiles in the union of categories A, DFP,
and I. The condition for ex ante optimality of a DFP profile is easy to determine. Since
(15) has linear contours with slope

p (1 + c)

1− p
a DFP profile is ex ante optimal iff

p (1 + c)

1− p
=

(
r

1− r

)N+1

which is equivalent to

(1− p) rN+1 − p (1− r)N+1 c = p (1− r)N+1 (16)

Condition (16) says that jurors are indifferent between conviction and acquittal when all
N + 1 signals are (known to be) of the guilty type. This is precisely the condition under
which a DFP equilibrium exists (in the absence of ambiguity). So if a DFP profile is ex
ante optimal, it is an equilibrium. Indeed, a more general result is easily shown using
McLennan (1998, Theorem 2):
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Proposition A.1 If p = p then any non-trivial equilibrium is ex ante optimal amongst
symmetric profiles, and if no non-trivial equilibrium exists then the trivial equilibrium is
ex ante optimal amongst symmetric profiles.

Proof. In the absence of ambiguity, it is irrelevant whether players choose mixed strategies
or behaviour strategies. McLennan (1998, Theorem 2) shows that the ex ante optimal
symmetric profile must be an equilibrium. In any non-trivial equilibrium a player can
achieve the same ex ante expected payoff as in the trivial equilibrium by deviating to
the pure strategy that selects the “not guilty” vote irrespective of the signal. Hence, the
equilibrium payoff from the non-trivial equilibrium must be at least as high as the trivial
equilibrium payoff. It follows that if the voting problem has a non-trivial equilibrium, there
exists a non-trivial equilibrium that is ex ante optimal amongst symmetric profiles, and
if no non-trivial equilibrium exists then the trivial equilibrium must be ex ante optimal.
Moreoever, the analysis in Feddersen and Pesendorfer (1998) shows that all non-trivial
equilibria generate the same ex ante expected payoff in the absence of ambiguity, so if
a non-trivial equilibrium exists then any such equilibrium is ex ante optimal amongst
symmetric profiles. �

B Proofs for Section 3

The proofs in this section all follow the same basic logic. First, given a candidate equilib-
rium profile, σ, we determine π∗ (σ) and σ∗ (σ). We then use Figure 1 to determine the
conditions on Π1 and Π2 under which σ satisfies the equilibrium conditions.

Proof of Proposition 3.4. If σ = (0, 1) then π∗ (σ) = g (0) and σ∗ (σ) = h (0). If
h (0) < 1 then Figure 1 implies that σ is an equilibrium iff π2 ≤ g (0) ≤ π1. If h (0) ≥ 1
then σ is an equilibrium iff π2 ≤ g (0) ≤ π1. �

Proof of Proposition 3.5. If σ = (σ1, 1) then π∗ (σ) = g (σ1) and σ∗ (σ) = h (σ1).
Suppose 0 < σ1 < 1 and σ is an equilibrium. Then, by inspection of Figure 1, one of the
following must hold: either (i) π1 ≤ g (σ1) ≤ π1 and σ1 = h (σ1); or (ii) π1 = g (σ1) and
σ1 < h (σ1); or (iii) π1 = g (σ1) and σ1 > h (σ1). From Figure 5 we see that

g (σ1) ≷ π̃ as h (σ1) ≷ σ1

and σ1 = h (σ1) iff σ1 = σ̃1. The result now follows. �

Proof of Proposition 3.6. If σ = (σ1, 1) then π∗ (σ) = g (σ1) and σ∗ (σ) = h (σ1).
Recall that

σ̂1 =

{
h−1 (1) if h (0) ≥ 1

0 otherwise
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and π̂ = g (σ̂1). Note that σ̂1 < 1 and also:

σ̂1 > 0 iff h (0) > 1.

Hence σ∗ (σ) ≥ 1 for some σ1 ∈ (0, 1) iff σ̂1 > 0. From Figure 1 we immediately deduce:

(a) If σ̂1 > 0 then σ = (σ1, 1) is an equilibrium with σ1 ∈ (0, σ̂1] iff π1 = g (σ1).

Since (0, σ̂1] = ∅ when σ̂1 = 0, this gives case (a) in Proposition 3.6.
The remaining cases cover equilibria in which σ1 > σ̂1. By inspection of Figure 1 we

distinguish the following three exhaustive cases:

(b) If σ1 ∈ (σ̂1, 1) satisfies π1 = g (σ1) ≥ π2 and σ1 ≤ h (σ1) then σ = (σ1, 1) is an
equilibrium.

(c) If π1 < g (σ̃1) < π1 and π2 ≤ g (σ̃1) then σ = (σ̃1, 1) is an equilibrium.

(d) If σ1 ∈ (σ̂1, 1) satisfies π1 = g (σ1) and σ1 ≥ h (σ1) then σ = (σ1, 1) is an equilib-
rium.

These are readily mapped to the corresponding cases in Proposition 3.6, which also
makes it apparent that they are mutually exclusive. To make this mapping, recall from
Figure 5 that

h (σ1) ≷ σ1 as σ1 ≶ σ̃1

and g (σ̃1) = π̃ (and also recall that π̂ = g (0) by assumption). �

Proof of Proposition 3.7. If σ = (0, σ2) then π∗ (σ) = g (0) and σ∗ (σ) = h (0) /σN2 .

Hence, σ∗ (σ) ≥ 1 iff σ2 ≤ h (0)1/N , and

σ2 ≷ σ∗ (σ) as σ2 ≷ h (0)
1

N+1 .

If h (0) ≥ 1 then σ∗ (σ) ≥ 1 for all σ2 ∈ (0, 1). From Figure 1 it follows that if h (0) ≥ 1
and σ2 ∈ (0, 1), then σ = (0, σ2) is an equilibrium iff π2 = g (0).

Suppose h (0) < 1. By inspection of Figure 1, there are three possibilities:

(i) If σ2 ∈
(

0, h (0)1/(N+1)
]

and π2 = g (0) then σ = (0, σ2) is an equilibrium.

(ii) If π2 < g (0) < π2 and π1 ≥ g (0) then σ =
(

0, h (0)1/(N+1)
)

is an equilibrium.

(iii) If σ2 ∈
[
h (0)1/(N+1) , 1

)
and π2 = g (0) ≤ π1 then σ = (0, σ2) is an equilibrium.

Hence, there exists σ2 ∈ (0, 1) such that σ = (0, σ2) is an equilibrium iff condition (a)
or (b) of Proposition 3.7 holds. The remaining claims follow directly; in particular, (7)

follows by noting that h (0)1/(N+1) ≥ 1 when h (0) ≥ 1 and that σ2 ∈ (0, 1) in any DFP
profile. �
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