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Abstract 

This paper introduces a new tool, OccCANINE, to automatically transform occupational 
descriptions into the HISCO classification system. The manual work involved in processing 
and classifying occupational descriptions is error-prone, tedious, and time-consuming. We 
finetune a preexisting language model (CANINE) to do this automatically, thereby performing 
in seconds and minutes what previously took days and weeks. The model is trained on 14 
million pairs of occupational descriptions and HISCO codes in 13 different languages 
contributed by 22 different sources. Our approach is shown to have accuracy, recall, and 
precision above 90 percent. Our tool breaks the metaphorical HISCO barrier and makes this 
data readily available for analysis of occupational structures with broad applicability in 
economics, economic history, and various related disciplines. 
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1 Introduction

The study of occupational outcomes requires systematic data on people’s occupations and the HISCO

(Historical International Standard Classification of Occupations) system has emerged as the stan-

dard for categorizing diverse occupational data. However, the manual classification of vast datasets

into HISCO codes has been an arduous and time-consuming process for researchers thus hampering

progress. A simple back-of-the-envelope exercise demonstrates the problem well: Even a highly ex-

perienced researcher might spend 10 seconds recognizing and typing the correct HISCO code for any

given occupational description and even for 10,000 unique occupational descriptions this would mean

that the researcher would spend in the order of 28 hours coding everything, or 280 hours (11 days -

no breaks) for 100,000 observations.

In this paper, we present a solution that transforms the task of coding occupations into something

which is done automatically in a few minutes or a couple of hours including verification of the quality.

We introduce OccCANINE - a transformer language model (J. H. Clark, Garrette, Turc, & Wieting,

2022) (CANINE) - which we fine-tune on 14 million observations of occupational descriptions with

associated HISCO codes in 14 different languages. This training data was generously contributed by

22 different research projects, each of which is cited in Table 1. The outcome is a model with an

impressive overall accuracy of 93.5 percent,1 capable of taking a straightforward textual description

of an occupation and accurately determining the most applicable HISCO codes associated with it.

The HISCO system was introduced in an effort to produce internationally comparable occupational

data (Leeuwen, Maas, & Miles, 2002). It, and its various modifications, has since then become the

most widely used classification scheme for historical occupation with the so-called PST system being

the most widely spread alternative (Wrigley, 2010). It should be noted, that the model presented

here, can be fine-tuned into other classification systems with relative ease.

By significantly reducing the time and effort required for HISCO coding, our tool democratizes access

to historical occupational data analysis, enabling researchers to conduct more extensive and diverse

studies and dedicate more time to data quality. This breakthrough has the potential to unlock new

insights into occupational trends and shifts over time, contributing valuable knowledge to the fields

of economics, sociology, political science, history, and many related fields. Furthermore, this paper

stands as a recipe on how to solve a wide range of similar problems, where many messy descriptions

need to be classified into some system. Similar problems are found in historical customs records,

educational descriptions, and much more. All of these can be addressed with a similar setup.

The remainder of this paper proceeds as follows. Section 2 motivates our solution. Section 3 outlines

the model architecture, training data and training procedure. Section 4 describes how well our method

performs. Section 5 concludes with recommendations on how to use OccCANINE.

195.5 percent precision, 98.7 percent recall and an F1-score of 96.0 percent.
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2 Motivation

2.1 The problem of occupational coding

To be able to generate insights into everything from women’s empowerment, social mobility, the effect

of railways, first nature geography and the origins of the Industrial Revolution to the interplay of

technology and development, we explicitly or implicitly need to know what people did for a living

historically.2 Given the value of addressing these inquiries (among numerous others), it becomes

worthwhile trying to acquire large amounts of historical occupational data. This data usually comes

in the form of large lists of textual descriptions. “Lives of fishing and farm work”, is a stereotypical

entry found in sources such as censuses, marriage certificates, etc. The task of the researcher is then

to take these descriptions and turn them into standardized occupational categories (61110: ’Farmer’

and 64100: ’Fisherman’ in the HISCO system). With the invention of HISCAM (Lambert, Zijdeman,

Leeuwen, Maas, & Prandy, 2013) and its derivations (G. Clark, Cummins, & Curtis, 2022), it has also

become common to convert these categories into a single measure of social status based on occupation.

The challenge of transforming raw textual occupational descriptions into standardized categories is

not trivial, necessitating either a lot of manual work by error-prone research assistants or sophisticated

methods for interpreting and categorizing text data using the classical natural language processing

toolbox. In particular, the diversity of occupational descriptions is a problem.3 The classical ap-

proach to HISCO coding involves classical string matching and string cleaning using e.g. regular

expressions. Because of negations, changing spelling conventions, typos and transcription errors, this

quickly becomes complex and error-prone. Typically the following steps are involved:

1. Domain knowledge is applied in forming rules for cleaning strings: “Srvnt” becomes “servant”,

“sgt.” becomes “sergent”, and so on.

2. Stop words are removed: “He is the servant” becomes “servant”, “after a long career he retired”

becomes “retired”.

3. The unique remaining strings are manually matched to the HISCO catalogue

This pipeline needs to be repeated for every single source with little scope for generalisability. Occ-

CANINE replaces all of that.
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Figure 1: Conceptual model

Notes: This illustrates the conceptual model: A neural net-

work takes occupational descriptions and language as inputs

and outputs relevant HISCO codes.

2.2 A faster, better, scalable and replicable solution

The primary barrier to overcome is that previous methods are either slow, inaccurate, lack scalability

or do not generalize effectively across different data sources. Our solution addresses all of this. We

teach a language model to understand occupational descriptions as a person would. We finetune

a preexisting language model on 14 million pairs of descriptions and HISCO codes. As such, we

end up with a model, which inherently captures the occupational meaning of inputted strings. This

means, that we can input occupational descriptions with typos, spelling mistakes, etc. The model then

(similarly to ChatGPT but smaller) draws on a vast knowledge of language and similarity (within and

across the languages it is trained on) to output the appropriate HISCO code. In effect, all the steps

described in Section 2.1 are replaced by one step: The input consists of a raw occupational description

and a language as context. HISCO codes are provided as outputs (see Figure 1). This approach has

the following advantages:

1. It requires no string cleaning. The text as transcribed is fed directly into the model.

2. It is as accurate if not more accurate than a human labeller.

3. The model has a general understanding of historical occupations, which means it generalises well

to other settings with little or no fine-tuning.

4. It is fully replicable. Given the same inputs, OccCANINE will always deliver the same HISCO

codes. Replicability has innate scientific value but it also reduces the humanly introduced

variance and resultant attenuation bias in downstream analysis.

2Allen (2009); Berger (2019); G. Clark (2023); Goldin (2006); Lampe and Sharp (2018); Mokyr (2016); Vedel (2023);

Vries (2008).
3The Danish censuses 1787-1901 (Clausen, 2015; Robinson, Mathiesen, Thomsen, & Revuelta-Eugercios, 2022) contain

no fewer than 17,865 unique descriptions corresponding to the occupation ’farm servant’.
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2.3 Literature

The closest related literature is in two strands: Occupational medicine and administrative and survey

data. We will introduce the recent advances in this chronologically. The chronological improvement

in performances demonstrates the rapid underlying technological development, which now allows the

simple method we propose in this paper. A central term in this entire literature is production rate:

The number of occupational descriptions one chooses to automatically transcribe (where the rest are

left to a human labeller). This is typically done by only automatically transcribing some rate (e.g. 80

percent) of observations for which a label is assigned with the highest probability.

Early approaches only perform well at lower production rates. Patel, Rose, Owens, Bang, and Kaufman

(2012) demonstrate 89 percent agreement with a human labeller for 71 percent production rate. They

mainly rely on rule-based classical NLP-approaches. Gweon, Schonlau, Kaczmirek, Blohm, and Steiner

(2017) suggest combining classical rule-based approaches combined with bag-of-word cosine distance

and nearest neighbours matching. For ’fully automatic labelling’ (100 percent production rate),4

they achieve 65 percent accuracy on German survey data for the ISCO-88 system.5 They suggest

the method is used at lower production rates, where higher performance is demonstrated. As such,

a large chunk is still left for the human labeller.6 Schierholz and Schonlau (2020) review this and

other machine learning approaches to automatic occupational labelling. Using boosting trees, they

demonstrate around 78 percent agreement in 100 percent production rate.

More recent literature builds on the introduction of Transformers (Vaswani et al., 2017) and pre-

trained models like BERT (Devlin, Chang, Lee, & Toutanova, 2018). Garcia, Adisesh, and Baker

(2021) implement a method that combines traditional exact matching and data cleaning techniques

with advanced text analysis methods, including TF-IDF and Doc2Vec (utilizing BERT), for cases

that do not match exactly. This approach is then applied within a conventional machine learning

framework, resulting in a macro F1-Score of 0.65 and a top-5 per-digit macro F1-Score of 0.76, as

evaluated within the context of the Canadian National Occupational Classification Scheme. The

research most comparable to ours is conducted by Safikhani, Avetisyan, Föste-Eggers, and Broneske

(2023). They fine-tune German BERT and GPT-3 on 47,526 observations of German survey data to

classify these into the German KldB system. They end up with a maximum Cohen’s kappa of 64.22

percent for the full occupational code in their test data.7 This should be compared to Schierholz

and Schonlau (2020), which achieves only 48.5 percent Cohen’s kappa on the same test data. To the

extent that our data is comparable, we beat the performance by a large margin by achieving an overall

Cohen’s kappa of 88.9 percent, accuracy of 93.5 percent, and an F1-score of 96.0 percent on our test

data. We do not consider lower levels of ’production rate’ because it is barely relevant at this level

of performance. Moreover, our method requires no string cleaning, correction of spelling mistakes, or

stop word removal. The model implicitly handles all of this.

4Which still requires stop word removal, and other tweaks.
5Which is similar to the HISCO system.
6To achieve 90 percent accuracy, Gweon et al. (2017) requires around 40 percent manual labelling.
7Cohen’s kappa is roughly comparable to accuracy but takes into account the agreement that occurs by chance.
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3 Architecture, data and training procedure

Figure 2: Architecture of OccCANINE

Notes: Inputted text is converted to character-level tokens, which then serves as input into the CANINE architec-

ture. The 768×1 output of this is then passed through a sigmoid classification head. The output is a 1921×1 vector

which represents the probability of each available HISCO label. In the given example, the elements corresponding

to the code for farmer and fisherman have a high probability.

3.1 Architecture

We make use of the CANINE architecture (J. H. Clark et al., 2022), which is a modestly sized (127

million parameter) language model based on the common transformer architecture (Vaswani et al.,

2017). It was pre-trained on 104 languages of Wikipedia data. The choice of this particular architecture

has a threefold motivation: First, the Wikipedia pre-training ensures multilingual capabilities, and it

is reasonable to assume some similarity between historical occupational descriptions and Wikipedia.

Second, we want this to be a relatively broadly available tool, and the model is small enough that

it is possible to run (and even to do some small finetuning) on a common laptop. Third, and most

importantly in this case, the model is based on character-level tokenization. The most commonly used

tokenization approaches work at the word or wordpiece level. But for archival data, the risk is that

this will cause unnecessary model variance. When ’farmer’ is mistyped as ’frmter’, this would put

strain on traditional methods, due to tokenization weirdness, but the CANINE architecture is more

robust to this.

5



On top of the CANINE model, we add a classification head of size [1× 1921], one output for each of

the 1921 potential codes in the HISCO system.8 The entire model architecture is illustrated in Figure

2. We input both the language (as context) and an occupational description. This is passed through

the CANINE architecture and the classification head to get a vector of probabilities. These are then

turned into specific predictions based on an optimal threshold derived in Section 4. We chose a sigmoid

classification head over softmax, since we do not want the probabilities to be normalized. Thus the

model independently assigns a probability to each potential HISCO code. This has the advantage,

that there is no implicit penalty for the model to predict more than one occupation in cases where this

is appropriate. However, the model does not distinguish between cases where multiple HISCO codes

fit because of ambiguity and cases where multiple HISCO codes fit because that person had multiple

actual occupations. If it is desired in some applications it is trivial to normalize the output to sum to

one by dividing the output by its sum.

3.2 Data

This project utilizes training data that was obtained from public sources or provided by fellow re-

searchers, for which we express our sincere gratitude. We developed a semi-standardized framework

to process all of this data and make the best use of it.9 This involves four steps. First, we replaced

all non-English characters from the occupational descriptions with a standard English equivalent.10

Second, we manually checked the data for thoroughly for peculiarities.11 Third, we made sure that

only standardized HISCO codes were used and removed any observations with non-standard HISCO

codes.12 Fourth, a common practice is for manual labellers to only include one occupation, even when

a description corresponds to two different occupations or more (such as fisherman and farmer). To

enhance our model’s chance of picking this up, descriptions were linked by the conjunction that serves

the same function as ’and’ in each particular language. E.g. ’he is a farmer’ + ’he fishes’ becomes

’he is a farmer and he fishes’.13 In total, our data consists of 18 million observations. Of this, we use

14 million observations in training (of which 50,000 observations are used in cross-validation during

training). The rest is divided among post-training validation data (10 percent) - which is what we

draw on for Section 4 for now - and final model testing to be performed when we are entirely sure that

no more model specification decisions are to be made (5 percent). Moreover, we do out-of-distribution

(OOD) evaluation with entirely different data sources in English, Danish, Swedish and Dutch.14

8As defined by https://github.com/cedarfoundation/hisco.
9Details of which can be seen in ’Data cleaning scripts/’ in the GitHub repository of this project.

10E.g. ’æ’ became ’ae’, ’ø’ became ’oe’, etc.
11An example of this, is that often there would be a ’raw’ occupational description and a ’clean’ occupational descrip-

tion. In this cases both would become training data.
12IPUMS (MPS, 2020) have their own adaptation of HISCO, for which reason we took an extra step and only used

data for which the HISCO codes are unaltered from the original standard. For this we used the cross-walk provided by

Mourits (2017).
13Such combinations were randomly drawn within each data source marked with ∗ in Table 1. For each unique

occupational description, 10 random combinations were drawn.
14Schneider and Gao (2019), Copenhagen Burial Records from Robinson et al. (2022), Enflo, Molinder, and Karlsson

(2022), Soetermeer (1674).
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Table 1: Training data

Shorthand name Observations Percent Language Source

DK census 5,391,656 29.794% da Clausen (2015); The Danish National Archives

EN marr cert 4,046,203 22.359% en G. Clark et al. (2022)

EN uk ipums 3,026,859 16.726% en MPS (2020); Office of National Statistics

SE swedpop 1,793,557 9.911% se SwedPop Team (2022)

JIW database∗ 966,793 5.343% nl Moor and van Weeren (“2021”)

EN ca ipums 818,657 4.524% unk MPS (2020); Statistics Canada

CA bcn∗ 644,484 3.561% ca Pujades Mora and Valls (2017)

HISCO website∗ 392,248 2.168% mult HISCO database (2023)

HSN database 184,937 1.022% nl Mandemakers et al (2020)

NO ipums 147,255 0.814% no MPS (2020)

FR desc∗ 142,778 0.789% fr HISCO database (2023)

EN us ipums 139,595 0.771% en MPS (2020); Bureau of the Census

EN parish 73,806 0.408% en de Pleijt, Nuvolari, and Weisdorf (2019)

DK cedar 46,563 0.257% da Ford (2023)

SE cedar∗ 45,581 0.252% se Edvinsson and Westberg (2016)

DK orsted 36,608 0.202% da Ford (2023)

EN oclack∗ 24,530 0.136% en Mourits (2017)

EN loc∗ 23,179 0.128% en Mooney (2016)

IS ipums 20,459 0.113% is MPS (2020)

SE chalmers 14,426 0.08% se Ford (2023)

DE ipums 8,482 0.047% ge MPS (2020); German Federal Statistical Office

IT fm∗ 4,525 0.025% it Fornasin and Marzona (2016)

Notes: This is a comprehensive overview of the data used for training our model. The shorthand name is

the name we use in the remainder of this paper. Observations are the effective number of observations we

have after cleaning procedures. The different languages found in the training data are also listed. Data

marked with a ∗ is data where combined occupations were created as described in Section 3.2.
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3.3 Training

The model was trained for 26 days, 21 hours, 3 minutes, and 7 seconds on an NVIDIA A100 80GB

GPU using the AdamW optimizer implemented in PyTorch (Loshchilov & Hutter, 2019; Paszke et

al., 2019). It was trained on batches of 256 observations for a total of 42 epochs. Every time the

model improved in validation accuracy over earlier instances, it was saved. CANINE has 10 percent

dropout between all layers by default. We further regularized the training procedure with simple

string augmentation in the form of random character changes and random word insertions.15 This

approach (although here in a much simpler implementation) is inspired by TextAttack by Morris et

al. (2020). In the training procedure, the language is provided first, followed by a separator and then

the occupational description. To improve cross-lingual performance, we randomly set the language for

an observation to ’unk’ (for unknown) with a 25 percent probability. As a result, we have a finetuned

version of CANINE that not only has an intrinsic understanding of historical occupations but is also

multilingual and capable of leveraging language context. Moreover, it is resilient to spelling errors and

exhibits strong performance overall, as will be showcased in the following section.

4 Performance

The performance of our model was evaluated on 1 million observations, which were not used for

training. Using this data, we test performance at classification thresholds ranging from 0.01 to 0.9916

in terms of Accuracy (exact match), Precision, Recall, and F1 score. The best overall performance

for each of these metrics is presented in Table 2 and Figure 3. The result is 93.6 percent overall

accuracy, 95.5 percent precision, 98.2 percent recall and an F1-score of 0.960 when optimal classification

thresholds are used.

15Each input had a 10 percent chance of random word insertion and a separate 10 percent chance of random character

alterations, where each character then had a 10 percent chance of being replaced by a random character.
16The threshold controls when we decide that a certain probability of a HISCO code should be turned into a prediction

of that HISCO code. We find the optimal threshold with a grid search with a precision of 0.01.
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Figure 3: Optimal Threshold

Precision Recall
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Notes: Model performance at various classification thresholds, depicting Accuracy, F1 score, Preci-

sion, and Recall. The red line represents performance with language information and the green line

without language information. The dashed vertical lines indicate the optimal thresholds for each

metric.

9



Table 2: Best overall performance

Metric Lang. info. Value Optimal thr.

No 0.930 0.46

Accuracy
Yes 0.935 0.45

No 0.956 0.20

F1 score
Yes 0.960 0.22

No 0.951 0.37

Precision
Yes 0.955 0.40

No 0.986 0.01

Recall
Yes 0.987 0.01

Notes: This table illustrates the peak performance of

our model across 1 million validation observations. Met-

rics include Accuracy, F1 score, Precision, and Recall,

with and without language context. Optimal thresholds

(thr.) indicate the point where each metric is maxi-

mized. A similar table for each language is available in

Appendix A.

Moreover, we manually check four datasets which are entirely out of distribution and not seen during

training: The Copenhagen Burial Records (1861-1911) (Robinson et al., 2022) the Indefatigable Train-

ing Ship data (1865-1995) (Schneider & Gao, 2019), a dataset of Swedish strikes 1859 to 1902 (Enflo

et al., 2022) and a dataset of a Dutch Wealth Tax in 1674 (Soetermeer, 1674). For these tests, we

use language-wise accuracy-optimal classification thresholds found in Table A1 in the appendix. We

manually reviewed 200 random predictions from each dataset to evaluate the accuracy. The results are

shown in Table 3. OccCANINE achieves higher than 90 percent accuracy and substantial agreement

in all cases. The Training Ship data and the Swedish strike data already contain HISCO codes and

we had the Dutch Wealth Tax data checked by an expert.17 Among these, there is a rate of exact

agreement (same occupation being assigned the exact same HISCO code) of 82, 80.5 and 67 percent,

respectively. However, most cases of disagreement have very similar HISCO codes. For each obser-

vation, we checked whether the disagreement was substantial. Here, we define substantial agreement

as two labels which are similar enough that the difference would not matter in most applications.18

From this we know that there is substantial agreement between OccCANINE and the original labels

in 96.5, 93.5 and 92.5 percent of cases respectively. Moreover, OccCANINE can be finetuned easily.

In the case of the Swedish Strikes data, the model can be finetuned for this purpose in fewer than

10 minutes,19 after which OccCANINE achieves 95.5 percent agreement with the original source on

observations, which are not seen during finetuning.

17We are grateful to Bram Hilkens for this.
18An example of an unsubstantial difference is whether “foreman aircraft repairs” should be labelled as “22690 Other

Production Supervisors and General Foremen” or “22610 Production Supervisor or Foreman, General”.
19On a 1080 Ti 11GB GPU. Alternatively, fewer than two hours on a laptop without a GPU.
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Table 3: Out of Distribution Testing Accuracy

Dataset N checked Accuracy Exact agreement Subst. agreement

Copenhagen Burial Records 200 0.950 - -

Training Ship Data 200 0.985 0.820 0.965

Swedish Strikes 200 0.945 0.805 0.935

Dutch Familiegeld 200 0.925 0.670 0.925

Notes: This table reports accuracy metrics for out-of-distribution tests, emphasizing the model’s adapt-

ability. The Copenhagen Burial Records, Training Ship Data, Swedish Strikes data and Dutch Familiegeld

each with 200 randomly selected observations, were used to benchmark performance. The language-wise

accuracy-optimal classification thresholds found in Table A1 in the appendix were used.

We test the method with and without language context. The model is trained such that 25 percent

of training observations will randomly have no language context. As such, we test performance in

two different settings: One where the model is not explicitly told anything about the language of the

occupational description, and one where it is. There is a small but notable improvement when language

information is provided, but in the absence of language information, the model still performs robustly,

indicating a multilingual conceptual understanding of occupations (see Table 2). The performance

for each separate language is also tested and demonstrated in Figure 4. The method works well for

all languages it has been trained on. Appendix A presents a detailed table of these metrics for each

separate language (Table A1).

We also test how well the model performs on rare versus frequent occupational categories. As expected

the model works best for the most frequent occupational categories.20 We estimate this relationship

non-parametrically and demonstrate high performance is maintained for at least the most frequent 99

percent of occupational data, which accounts for the 524 most common HISCO codes (see Appendix

B for more details). A natural concern is whether there is a correlation between outcomes of interest

and this accuracy. The rarity of certain occupations could correlate with their socio-economic status

(SES), and in turn, the rarity could drive low accuracy of our method. This could potentially introduce

systematic bias when using our method in applied settings. Appendix C tests whether such correlation

exists. Our analysis reveals neither a statistically significant nor a practically meaningful correlation

that would cause concern.

20Which is typically also the case for a skilled human labeller.
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Figure 4: Performance by Language
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Notes: Performance metrics by language, showing Accuracy, F1 score, Precision, and Recall. Each

bar represents a language, with the dashed line indicating the highest value achieved across all

languages. Optimal performance per language is annotated on the respective bars. The optimal

threshold is shown in the parentheses.

To investigate the underlying semantic knowledge that the model has obtained in training we passed

10,000 validation observations through the model to get embeddings.21 This 768 dimensional output is

ought to represent the meaning of each occupational description. If similar descriptions cluster closely,

particularly across different languages, it suggests that the model has acquired a structural compre-

hension of occupations. Figure 5 shows a low-dimensional representation of these embeddings (using

t-SNE to reduce the dimensionality). Panel A shows results from the original CANINE (J. H. Clark

et al., 2022) finetuned on Wikipedia. Panel B shows results from OccCANINE, which is further fine-

tuned on the historical occupational training data presented. The colours represent the first digit

of the HISCO code according to the source. As such, these roughly represent different sectors of

the economy. It should be noted that occupations which are closer together tend to have the same

colour, and this is in contrast to the results of Panel A. This suggests that the OccCANNINE picks

up similar occupations as being semantically similar. This result shows the potential for generalised

high performance across different domains, and in turn, it suggests that OccCANINE is a valuable

starting point for other applications related to occupational descriptions in a historical setting.22

21The output from the final layer before the Sigmoid classification head.
22The model is openly available via https://huggingface.co/Christianvedel/OccCANINE.
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Figure 5: t-SNE Visualizations of Occupational Embeddings

(a) CANINE (b) OccCANINE
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Notes: Panel (a) illustrates the t-SNE visualization for embeddings derived from the original CA-

NINE model, trained on Wikipedia data. Panel (b) shows embeddings from our version of CANINE

further finetuned on historical occupational data. The colours correspond with the first digit of the

HISCO code, roughly indicative of economic sectors. The data depicted was not seen during model

training.

5 Conclusion and Recommendations

Our comprehensive evaluation demonstrates that the OccCANINE model is a powerful tool for au-

tomatically transforming occupational descriptions into standardized HISCO codes. We generally

recommend a classification threshold of 0.22 to optimize the F1 score and a threshold of 0.45 to

maximize accuracy, which we base on the model’s performance on 1 million validation observations.

Appendix A contains language-specific optimal thresholds. These thresholds should serve as a starting

point for researchers, providing optimal accuracy, and a balance between precision and recall that is

suitable for most analytical purposes. The public repository contains a step-by-step guide on how to

use OccCANINE.23

23See https://github.com/christianvedels/OccCANINE.
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We hope that the freed resources can be used to do more research, but also increase the quality of

research involving standardized data on historical occupations. It is easy to get a measure of accuracy

every time this is applied; it takes in the order of an hour to manually verify 100 random observations.

We strongly encourage researchers who want to use our method to check at least 100 observations and

report the accuracy obtained from this in publications where our method is applied. This practice not

only provides an additional layer of validation but also equips researchers with a concrete measure of

the model’s performance. This contributes to the transparency of the inherent uncertainties in data

work.

For projects with unique requirements or when applying the model to underrepresented languages,

we provide an interface for task-specific finetuning. This customization is especially recommended if

existing domain-specific training data is available, if the application domain diverges significantly from

the training data, or if HISCO codes are of prime interest to the research question at hand. If it is

necessary to generate training data, users can also leverage the existing model to generate preliminary

predictions, which can then quickly be refined manually, significantly reducing the time and effort

compared to manual labelling from scratch.

In conclusion, OccCANINE represents a significant stride in historical occupational data processing,

effectively breaking the HISCO barrier which has long stood. By automating the translation of

occupational descriptions into HISCO codes with high accuracy, our model streamlines research in

historical social science and paves the way for answering important research questions.
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Appendix:

Breaking the HISCO Barrier:

Automatic Occupational Standardization with OccCANINE

Christian Møller Dahl, Torben Johansen, Christian Vedel,

University of Southern Denmark

https://github.com/christianvedels/OccCANINE

A Optimal threshold

Table A1 shows the optimal threshold value for Accuracy, F1, Precision and Recall for each separate

language. We recommend using these thresholds when using the model without further finetuning.

Table A1: Optimal thresholds for all languages

Language N. test obs. Statistic Value Optimal thr.

Accuracy 0.9372938 0.38

F1 score 0.9829256 0.21

Precision 0.9969465 0.60ca 36679

Recall 0.9715096 0.01

Accuracy 0.9687058 0.34

F1 score 0.9881936 0.11

Precision 0.9879555 0.44da 287338

Recall 0.9952420 0.01

Accuracy 0.8385044 0.39

F1 score 0.9336095 0.17

Precision 0.9452400 0.59de 1257

Recall 0.9769292 0.01

Accuracy 0.9028022 0.47

F1 score 0.9276790 0.22

Precision 0.9160129 0.36en 421676

Recall 0.9809083 0.01
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Table A1: Optimal thresholds for all languages (continued):

Language N. test obs. Statistic Value Optimal thr.

Accuracy 0.8464646 0.28

F1 score 0.9494947 0.20

Precision 0.9585859 0.70es 495

Recall 0.9949495 0.01

Accuracy 0.8185323 0.40

F1 score 0.9352232 0.21

Precision 0.9439684 0.60fr 16339

Recall 0.9920742 0.01

Accuracy 0.8333333 0.45

F1 score 0.9427083 0.45

Precision 0.9461806 0.56gr 96

Recall 0.9843750 0.01

Accuracy 0.9651657 0.44

F1 score 0.9738623 0.11

Precision 0.9694138 0.40is 1177

Recall 0.9906542 0.01

Accuracy 0.9621212 0.40

F1 score 0.9848339 0.34

Precision 0.9943182 0.59it 264

Recall 0.9943182 0.01

Accuracy 0.9457149 0.37

F1 score 0.9696100 0.19

Precision 0.9685221 0.34nl 66335

Recall 0.9867114 0.01

Accuracy 0.9757308 0.43

F1 score 0.9869104 0.14

Precision 0.9847582 0.43no 9065

Recall 0.9961390 0.01

Accuracy 0.9150508 0.26
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Table A1: Optimal thresholds for all languages (continued):

Language N. test obs. Statistic Value Optimal thr.

F1 score 0.9734292 0.25

Precision 0.9796861 0.36pt 1083

Recall 0.9916898 0.01

Accuracy 0.9675184 0.45

F1 score 0.9837151 0.32

Precision 0.9859629 0.67se 111817

Recall 0.9868833 0.01

Accuracy 0.9798831 0.44

F1 score 0.9872493 0.17

Precision 0.9840768 0.41unk 46379

Recall 0.9982104 0.01

Notes: This is a complete table of the optimal threshold according

to Accuracy, F1, Precision and Recall. We recommend using these

thresholds when using the method without any fine-tuning for any

specific language.

B Label frequency and performance

The reliability of our model across different HISCO codes was evaluated to understand its predictive

consistency. A plot illustrating this performance, stratified by each HISCO code, is presented in Figure

A1. It reveals that while the model performs well across the board, there is a tendency for the error

rate to increase for rarer occupations, as is common in any multiclass classification problem. For

illustrative purposes, we divide these classes into the 99th percentile and the 1st percentile according

to their relative share in the training data. 524 HISCO codes (of a total of 1452 ever observed in a

million observations) account for 99 percent of the observations.
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Figure A1: Peformance for each HISCO code
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Notes: The model’s performance stratified by HISCO codes in terms of Accuracy, Precision, Recall,

and F1 score. Each point represents a HISCO code, with the position along the x-axis indicating its

frequency in the training data. The red line indicates a smoothed trend across the data points.
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The GAM-estimated24 trend line in Figure A1 indicates that HISCO codes that are underrepresented

in the training data (shown by the vertical lines indicating the 1% and 99% cumulative frequency of

observations) tend to have lower performance metrics. To account for this variation in performance,

users may consider adjusting the classification threshold. A lower threshold might increase the recall

of rare occupations at the cost of more false positives. In some cases, the false positives might be

less problematic. When visually inspecting them, they tend to be related to the true occupation.

Furthermore, the finetune-method provided with OccCANINE can be utilized to improve the model’s

performance in identifying specific occupations of interest. This can be achieved by finetuning the

model with an oversampling of rare occupations.

24Generalized Additive Model
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C Performance by SES

Figure A2: Model performance and SES
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Notes: The scatter plot depicts the relationship between model performance (Accuracy, Precision,

Recall, and F1 score) and HISCAM socio-economic scores. Each point corresponds to a HISCO code,

with the red line indicating a smooth trend across the data points. No discernible pattern suggests

a non-biased performance of the model across different socio-economic strata.

In historical occupational data, the rarity of certain occupations could correlate with the socio-

economic status (SES) associated with the occupation, and in turn, the performance of our model

might systematically vary with the socioeconomic status of occupations.25 This potentially introduces

systematic bias when using our method in applied settings. To investigate this, we first visualize the

relationship between the SES, derived from HISCO codes using the HISCAM score, and the model’s

performance metrics. This plot, shown in Figure A2, allows us to examine if there is any correlation

between SES values and accuracy, precision, recall, or F1 score.

25Note that this problem might also affect squishy wet neural networks; also known as human labellers
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Table A2: Performance metrics and socio-economic status

Accuracy F1 score Precision Recall

(1) (2) (3) (4)

Panel A

HISCAM score -0.0010 -0.0003 -0.0003 −3.69× 10−5

[-0.0025; 0.0005] [-0.0012; 0.0005] [-0.0012; 0.0005] [-0.0007; 0.0007]

Panel B

HISCAM score 0.0008 0.0005 0.0003 0.0005

[-0.0005; 0.0021] [-0.0004; 0.0013] [-0.0006; 0.0011] [-0.0001; 0.0012]

log(n) 0.0752 0.0328 0.0244 0.0230

[0.0678; 0.0826] [0.0282; 0.0374] [0.0195; 0.0294] [0.0187; 0.0272]

Observations 1,005 1,005 1,005 1,005

Notes: This table presents the correlation between the socioeconomic score of an HISCO code

(HISCAM) and the model performance for that HISCO code. The coefficients of the HISCAM

score are small across all specifications and the confidence intervals always include zero. This

is also the case when controlling for the logarithm of the number of observations in Panel B.

95 percent confidence intervals in brackets based on heteroskedasticity-robust standard errors.

The trend line in Figure A2 is estimated using GAM, which imposes no linearity, but we end with

a remarkably linear relationship for which reason we also find it reasonable to run simple linear

regressions to test the relationship. The results from these regressions reveal no significant effect, with

small standard errors, suggesting that the model’s performance is not systematically correlated with

the socio-economic status implied by the occupational codes. We show this in Table A2: Panel A shows

the simple regression. It is contestable whether the number of training observations is a confounder or

a mediator. In either case, it is included in Panel B. Both panels show qualitatively the same result:

There is practically no correlation between HISCAM and the performance of OccCANINE.
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