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Abstract
This paper does an empirical comparison of time-invariant and time-varying technical 
inefficiency measures obtained from an econometric estimation of different panel data stochastic 
production frontier models. It estimates four panel data specifications of frontier models widely 
used in empirical applications using a panel dataset from the Ethiopian cereal farming sector. The 
empirical results show that estimates of both the magnitude and the individual farms’ rankings 
of persistent and transient productive efficiencies differ considerably across models and based 
on their agro-ecological zones location. The results further show that the cereal growing farms 
experience much more transient inefficiency as compared to persistent inefficiency.

Current version:	 August 16, 2020 
Keywords:	� Stochastic frontier, heterogeneity, persistent and transient 

efficiency, cereal farming
JEL codes:	 C23, D24, O13, Q18
Corresponding author:	 Almas Heshmati
	 almas.heshmati@ju.se

	   Berisso and Heshmati. IZA Journal of Development and Migration (2020) 11:18

© The Author(s). 2020. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License  
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.  

 Cite as: Berisso and Heshmati. IZA Journal of Development and Migration (2020) 11:18.
https://doi.org/10.2478/izajodm-2020-0018

1	 Department of Economics, School of Humanities and Social Sciences, Adama Science and Technology University,  
P.O. Box 1888, Nazareth, Oromia, Ethiopia.

2	 Department of Economics, Jönköping International Business School (JIBS), Jönköping University, Room B5017,  
P.O. Box 1026, SE-551 11 Jönköping, Sweden. E-mail: almas.heshmati@ju.se. Tel: +46-36-101780

♣	 The authors are grateful to an anonymous referee and the Editor of the journal for comments and suggestions on an 
earlier version of this manuscript.



Page 2 of 23 �   Berisso and Heshmati. IZA Journal of Development and Migration (2020) 11:18

1  Introduction
Studying the sources of growth in agricultural production and analyzing farm performance is 
an important step in assessing the developmental role of agriculture in developing countries. 
Knowing the level of efficiency of smallholder farms has important implications for the choice 
of development strategy, particularly in sub-Saharan Africa (SSA) in which most countries 
derive over 60% of their livelihoods from agriculture and related economic activities (Maurice 
et al., 2014). Agriculture contributes 40% to Ethiopia’s GDP, provides employment and 
livelihood to more than 83% of the population, contributes 85% to the country’s total export 
earnings, and supplies 73% of the raw material to domestic industries (AfDB, 2011). However, 
the sector is rain-fed, has frequent droughts, has high population pressure, has severe land 
degradation, and vulnerable to climate change. Despite its importance, the sector is marked by 
one of the lowest productivity levels in the world and is dominated by subsistence smallholders, 
who usually cultivate small areas averaging <1.5 hectares (FAO, 2009).

Cereals are the most vital crop in the country’s crop production. Cereals as a major food 
crop comprise about two-third of the agricultural share of GDP and one-third of the national 
GDP. Cereals have a lion’s share in the country’s crop farming in terms of production volume, 
farmland, and farm households. According to ECSA (2015), cereals comprised of about 79% 
of the total cropped area, 85% of the grain crop production, and engaged 81% of private farms 
for the Meher season in the production year 2014–15. Cereal production was marked by 
remarkable growth in Ethiopian crop farming during the last decade. Several of ECSA’s yearly 
reports show that cereal production grew consistently from an average of 16 million metric 
tons (MMTs) in 2004–08 to 21.6 MMTs in 2009–14. Cereal production averaged 18.8 MMTs 
for a decade, showing a growth rate of 2.74% per annum. However, despite the widely believed 
view of the central role of agriculture in Ethiopia’s economic transformation, the sector did not 
perform as per its potential. Furthermore, as Kassahun (2011) shows, the sector is characterized 
by inefficiencies and poor productivity in which cereals had a steady low-growth rate in the last 
two decades. This underlines the importance of knowing the performance or efficiency levels of 
cereal producing farms in Ethiopia. Such information will help enhancing food security, which 
is an important issue, and also inform policymakers in agrarian countries such as Ethiopia.

In efficiency literature, since the pioneering work of Farrell (1957), various studies have 
been done to examine the issues of efficiency in crop farming in different countries using 
different methodologies. Economic efficiency is the product of technical and allocative 
efficiency. The focus of this paper is only on technical efficiency (TE), which is a measure of the 
effectiveness with which a given set of inputs such as labor, capital, land, seeds, and technology 
is used for producing an output such as crops. A farm is said to be technically efficient if it 
produces the maximum output using the minimum quantity of inputs. Over the years, various 
methods of estimating production frontiers have been developed for predicting reliable 
efficiency measures. These frontier methods vary from the parametric stochastic frontier 
analysis (SFA) to the non-parametric data envelopment analysis (DEA) method. SFA has an 
advantage in modeling input–output relations while controlling for producer heterogeneity 
with the production environment and management factors assuming a functional form. On 
the other hand, DEA is based on only input–output relations and inefficiency is marked by 
errors associated with the leftout variables. The DEA method is also sensitive to outliers, but is 
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immune to functional form assumptions and choice of the estimation method. The stochastic 
production frontier (SPF) model introduced by Aigner et al. (1977) has been extended over the 
years to accommodate different circumstances (Battese and Coelli, 1992, 1995; Jondrow et al., 
1982; Kumbhakar, 1991; Pitt and Lee, 1981; Schmidt and Sickles, 1984). The model has been 
extensively used for estimating TE of decision-making units at different levels of aggregation. 
Unlike the average production function, which is based on fitting an average function, the 
stochastic production frontier is consistent with the objective of output maximization and it 
estimates a frontier production function that is stochastic. In particular, SPF models are found 
to better fit agricultural efficiency analyses. Agriculture experiences higher noise in the data as 
a result of the stochastic nature of the production process and large yield variabilities.

However, efficiency results of such earlier models are sensitive to the way they are modeled 
and interpreted and to the assumptions underlying the models mainly when panel data is used 
(Kumbhakar et al., 2014, 2015). The main reason for the different assumptions is that when 
panel data is available, a farm’s productive efficiency is composed of time-invariant (persistent) 
and time-variant (transient) components of efficiency. These cannot be captured distinctively 
by the earlier SPF models. In addition, these models do not treat explicitly unobservable farm 
heterogeneity effects of inefficiency. Thus, the models generate a misspecification bias and 
the effects of these factors may be captured by the inefficiency term thereby producing biased 
efficiency results. However, when panel data became available recently, panel data models were 
developed (Colombi et al., 2014; Filippini and Greene, 2016; Kumbhakar et al., 2014; Tsionas 
and Kumbhakar, 2014), which allow separating inefficiency’s two components of time-invariant 
and time-variant inefficiency, along with disentangled heterogeneity and random error effects.

Several empirical studies have been done to investigate the efficiency of Ethiopia’s crop 
farming using different methodologies. However, there have only been limited attempts 
at studying farming efficiency by applying panel data SFP models. Most of the studies use 
simpler model specifications of Battese and Coelli’s (1992, 1995) efficiency models that have 
a number of problems of mixed farm heterogeneity and farm-specific TE. Moreover, to the 
best of our knowledge, no existing study provides separate estimates of the two components of 
inefficiency or the disentangled heterogeneity effects of inefficiency. Estimates of time-invariant 
or persistent inefficiency provide useful information about the farms because high persistent 
inefficiency scores are indicators of non-competitiveness and costly policies for inducing small 
changes. This part of inefficiency may be due to structural problems in the organization of the 
farms’ production processes or the presence of systematic shortfalls in managerial capabilities, 
farms’ lasting habit of wasting inputs, or the quality of land and climatic conditions. The 
time-variant or transient part of inefficiency, on the other hand, may stem from temporal 
behavioral aspects of the management, for example, from a nonoptimal use of some inputs due 
to the presence of non-systematic management problems that can be solved in the short-term. 
Further, as discussed by Kumbhakar et al. (2015), knowing the estimates of the two inefficient 
components, especially in long panels, and their separation from heterogeneity effects is 
important as this allows the farms to elicit their resource- or cost-saving potential in the short 
run as well as in the long run. Each component provides different information with different 
policy implications for promoting efficiency in the production of scarce resources.

Accordingly, this study applies a recently proposed four-component random error panel 
data SPF model (Kumbhakar et al., 2014), for estimating persistent and transient efficiency 
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and disentangling them from unobserved farm heterogeneity effects and random errors 
for smallholder cereal farms in Ethiopia using a partially balanced panel dataset. We also 
compare the results of this model with three other stochastic frontier (SF) production models 
in which one of the four components is not accounted for. The study contributes to existing 
literature as it provides one of the first empirical analyses to show the presence of persistent 
and transient inefficiency using a novel econometric approach—a four-component random 
error panel data SPF model for Ethiopia’s smallholder cereal farming. Second, to the best of 
our knowledge, this is the first panel data analysis that addresses the problem of individual 
and farm heterogeneities in measuring production efficiency in Ethiopia’s crop farming that 
disentangles farm heterogeneity from inefficiency effects. Thus, this study provides valuable 
information on persistence and transient inefficiency and farm heterogeneity effects.

Third, it does an analysis of agro-ecological zones (AEZs) considering cereal farming at 
the farm level making it replicable elsewhere in the country, between regions, and within AEZs.

The rest of this study is organized as follows. The method and data are presented in Section 
2 whereas Section 3 discusses the empirical results and their implications. Section 4 provides 
the summary and conclusions.

2  Method and data
2.1  Panel data stochastic production frontier models

Measuring and comparing producer performance (efficiency) is an important topic of research in 
the field of applied economics. Since the pioneering work of Farrell (1957) on productive efficiency, 
various modifications and improvements have been made to the measurement of production 
efficiency. Efficiency can be achieved by maximizing output for given inputs or minimizing inputs 
for a given output and technology. Aigner and Chu (1968) translated Farrell’s frontier concept 
into a production function and described it in the input-oriented approach—TE as the ability to 
produce a given level of output using a minimum quantity of inputs using a certain technology. 
Akin to we do in this paper, TE can be obtained following an output oriented approach. Here 
the objective is maximizing output for given inputs and technology. It is an engineering concept 
and refers to the physical input–output relationship. Numerically, TE takes values between zero 
and one (0 ≤ TE ≤ 1) in which a value of one shows that the firm is fully technically efficient 
whereas zero means that inputs are being used for producing zero output. A firm/farm is said 
to be efficient if it operates on the production frontier that provides the input/output ratios of 
the most efficient use of inputs for producing the output. Deviations in the observed ratios from 
this frontier are associated with technical inefficiency of the firm/farm. On the other hand, a 
firm/farm is said to be technically inefficient when it fails to achieve the maximum output using 
the given inputs, or fails to operate on the production frontier. In a production performance 
analysis, efficiency is determined by the frontier model and the selection of an appropriate model 
for estimating efficiency and the interpretation of the results may not be straightforward as the 
results depend on functional forms and the way the model is specified.

Most previous studies on efficiency analyses are based on Farrell type measures of 
efficiency, where the researchers focus on deciding which functional form to use and the model 
specifications. However, over the years, various other methods of specifying and estimating 
production frontiers have been developed to come up with more reliable efficiency measures. 
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Among these, the SF model originally proposed by Aigner et al. (1977) has been used for 
estimating and comparing TE of individual production units within a geographic location, 
an industry, or an agricultural sector. As a result, SF has been considered a standard approach 
for evaluating efficiency in the production of products and services at a variety of levels of 
aggregation and research areas.

Extensive research in this field resulted in the rapid development of econometric techniques 
concerning specifications, estimations, and testing issues of frontier models. Literature is 
broadly divided into parametric versus non-parametric, cross-section versus panel data, 
time-variant versus time-invariant inefficiencies, static versus dynamic models, and various 
distributional assumptions, estimation methods, heteroscedasticity, and autocorrelation 
explaining inefficiency by its possible determinants. These techniques were developed rapidly 
and implemented in many areas using mostly cross-sectional and panel data. The use of panel 
data models in estimating producers’ efficiency helps in avoiding some of the problems related 
to distributional assumptions encountered in the cross-section approach.

According to Schmidt and Sickles (1984), when inefficiency is time-invariant, panel data 
enables one to estimate inefficiency consistently without distributional assumptions. Panel 
data also has the advantage of separating individual- and time-specific effects from combined 
effects (Heshmati et al., 1995). Furthermore, panel data enables one to control individual 
heterogeneity effects; they have a greater variability, less collinearity between variables, more 
degree of freedom, and more estimation efficiency. Panel data enables one to identify and 
measure effects that are not detected in cross-sectional or time-series data.

Consider a sample of N farms operating in time period t that use various inputs to produce 
a non-negative output using a technology (production frontier). Then, the panel data versions 
of the standard 1980s SPF models can be written as:

	 Y f X f Xit it it it it it� � �� � � �� �; exp( ) ; exp( )� � � � � � (1)

where subscripts i = 1, ..., N denotes farms, and t = 1, ..., T denotes time periods. The variable 
Yit represents the output produced by farm i at time period t, the function f (.) is SPF whereas 
Xit is a vector of input variables of the ith farm at time period t (plus other exogenous/control 
variables), and β is a vector of unknown parameters to be estimated. φit is a composed error 
term with two components εit and τit, where the two-sided component εit is a symmetric random 
error that accounts for statistical noise assumed to be identically independently distributed 
(i.i.d) normal with zero mean and constant variance σε

2, that is, εit ~ iidN(0, σε
2) is independent 

of τit that captures random variations in output resulting from factors outside the control of the 
farm as well as measurement errors and left-out explanatory variables. Similarly, the one-sided 
component τ ≥ 0 reflects technical inefficiency relative to the SF of the ith farm in year t which 
is assumed to be i.i.d. as half normal with zero mean, that is, � �it it it iidN� �� � �, ( , )where ~ 0 2 .

Now by taking the logarithms of both sides in Equation (1) the panel data SPF model can 
be written as:

	 y x xit it it it it it� � � � � � � � �� � � � � � �0 0 � (2)

here yit is logarithm of the output variable and xit is vector logarithms of the input variables. The 
parameter α0 is a common intercept, whereas other variables retain their previous definitions. 
Based on the panel data SPF model’s specifications, a number of SPF models in panel data have 
been developed leading to alternative measures of technical inefficiency.
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Panel data SPF models introduced in the early 1990s assumed inefficiency to be individual-
specific and time-invariant, that is, inefficiency levels may be different for different producers, 
but they do not change over time, meaning that an inefficient producer never learns to improve 
his performance over time. This might be the case in some situations where, for example, the 
soil quality is poor and farms lack water sources for irrigation, or inefficiency is associated with 
managerial abilities and there is no change in the management and in production technology 
for any of the farms during the period of study (Kumbhakar et al., 2014, 2015). This seems 
unrealistic, particularly when production competition is considered and technology is 
continuously developing.

Another drawback of this approach is that farms’ unobserved heterogeneity cannot be 
distinguished from inefficiency. It is mixed with time-invariant inefficiency. This raises some 
related questions that need to be considered, such as whether inefficiency has been persistent 
over time or whether it is time-varying. An additional key question that needs to be considered 
with regard to time-invariant individual effects is whether an individual effect represents 
persistent inefficiency, or whether the effect is independent of inefficiency and it captures 
time-invariant unobserved heterogeneity. The question here is, should one view the time-
invariant effects as persistent inefficiency or as farm heterogeneity that captures the effects of 
(unobserved) time-invariant covariates and as such is unrelated to inefficiency.

Although several panel data SF models discussed earlier can separate farm heterogeneity 
from transient inefficiency, none or very few of these models consider persistent technical 
inefficiency. Related to these questions, as discussed in Colombi et al. (2014) and Kumbhakar 
et al. (2014, 2015), several panel data SPF models were developed to include both time-invariant 
and time-varying inefficiency effects. Some of these models have been developed based on the 
assumption that all the time-invariant (fixed or random) effects are persistent inefficiency 
(for example, Pitt and Lee, 1981; and Schmidt and Sickles, 1984). Other models have been 
developed based on the assumption that the time-variant effect is transient inefficiency 
without considering the heterogeneity effects (for example, Battese and Coelli, 1992; and Lee 
and Schmidt, 1993), or farm effects have been separated from transient inefficiency without 
considering the possibility of persistent inefficiency (for example, Greene, 2005a, 2005b). The 
models proposed by Kumbhakar (1991) and Kumbhakar and Heshmati (1995) lie in between. 
Their models treat farm effects as persistent inefficiency and include another component for 
capturing transient inefficiency.

Some recently developed panel models provide information on whether a farm is 
characterized by the presence of both types of inefficiency and are concerned with the 
separation of inefficiency from heterogeneity effects (Colombi et al., 2014; Filippini and Greene, 
2016; Kumbhakar et al., 2014; Tsionas and Kumbhakar, 2014) that may overcome some of the 
limitations of earlier approaches. These recently developed models propose an error structure 
that is decomposed into four components thus making it possible to account separately for: 
the usual noise in the data, individual time-invariant heterogeneity, time-variant transient 
(short-term) inefficiency, and time-invariant persistent (long-term) inefficiency components. 
Thus, having distinct information or estimates of each component of inefficiency are separated 
from each other and both are also disentangled from unobserved heterogeneity effects, 
which is very important. Both components of productive efficiency are equally essential 
as they provide different information with different policy implications for promoting 
efficiency in the production of scarce resources. Herein, transient inefficiency is interpreted as 
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short-term productive inefficiency associated with changes in efficiency resulting from changes 
in managerial skills or adoption of new technologies. This part of inefficiency may stem from 
temporal behavioral aspects of the management or, for example, from a nonoptimal use of 
some inputs or due to the presence of non-systematic management problems that can be solved 
in the short-term without operational changes in a farm or any major policy changes. The 
assumption in time-varying models is that inefficiency in the current period is independent of 
the inefficiency in the previous period.

In contrast, persistent inefficiency is long-term productive inefficiency due to structural or 
institutional factors which evolve slowly over time. As persistent inefficiency is time-invariant, 
it can only be changed in the long-term through restructuring or changes in farm ownership. 
Information on persistent inefficiency is important especially in short panels because it reflects 
the effects of inputs such as management as well as other unobserved inputs that vary across firms 
but not over time. This part of productive inefficiency may be due to the presence of structural 
problems in an organization in the production process or the presence of systematic shortfalls 
in managerial capabilities, regulations, inefficient infrastructure, or the management’s lasting 
habit of wasting inputs. Thus, unless there is a change in something that effects management 
practices at the farm level (such as changes in ownership or new government-regulations), 
persistent inefficiency is unlikely to change. While persistent inefficiency and farm unobserved 
heterogeneity are both time-invariant effects, a major difference between them is that the 
latter is always beyond the control of the farms (for example, the geological/locational makeup 
of a farm or other physical features). Thus, such a distinction and measurement of the two 
components of productive efficiency is informative as it allows the farms to use their resources 
or cost-saving potential both in the short-term and in the long-term.

In view of these issues, this paper provides an alternative econometric approach for 
estimating inefficiency based on SPF models that allow a distinction between persistent and 
transient inefficiency by disentangling persistent inefficiency from unobserved heterogeneity 
and also time-varying inefficiency from the random noise. Accordingly, in line with Heshmati 
et al. (2018) and Rashidghalam et al. (2016) we use four alternative SPF panel data models 
categorized in terms of the assumptions made about the temporal behavior of inefficiency and 
separating inefficiency effects from unobservable individual heterogeneity effects. A common 
issue in all the models is that inefficiency is farm-specific. The first model (Model 1 or fixed-effects 
(FE) model) is the basic version of the panel models: the FE model by Schmidt and Sickles (1984), 
which assumes inefficiency effects to be farm-specific but time-invariant offering a persistent/
long-run inefficiency estimate. The second model (Model 2 or true fixed-effects (TFE) panel 
model) is proposed by Greene (2005a), which separates transient/short-run inefficiency from 
persistent individual effects. Model 2 allows inefficiency to be farm-specific and time-variant 
and it separates inefficiency from unobserved farm heterogeneity. Models 3 and 4 separate 
persistent inefficiency and transient inefficiency from unobservable heterogeneity effects. The 
third model (Model 3 or KH) is a three-error component panel data model introduced by 
Kumbhakar and Heshmati (1995) that offers estimates of persistent and transient inefficiencies, 
without accounting for farm heterogeneity. The fourth model (Model 4 or KLH) is a recently 
developed four-error component panel data model introduced by Kumbhakar et al. (2014) that 
provides estimates of persistent and transient inefficiency separating it from time-invariant 
farm effects and random noise.
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2.2  Model specifications and estimation procedures

2.2.1  Model specifications

In line with Heshmati et al. (2018) and Karagiannis and Tzouvelekas (2009), who provide 
a comparison of alternative specifications of inefficiency based on the same data, in this 
section, we present the specifications of the four SPF panel data models used in this study. 
The specifications of all the models are based on the formulation of the model given in 
Equation (2).

2.2.1.1  Model 1: Individual effects treated as long-run inefficiency
To specify a model with time-invariant inefficiency effects we treat the term, τit in Equation (2) 
as time-invariant inefficiency ui to represent long-run inefficiency:

	 y f x u uit it it i i� � � � �� � �0 0( ; ) ; � (3)

This model utilizes the panel feature of the data via ui and can be estimated if either the 
inefficiency component is treated as a fixed parameter in an FE model, or a random variable 
in the random-effects model, assuming εit and ui are homoscedastic. However, this model 
has been criticized for its assumption of inefficiency being time-invariant which seems to be 
unrealistic, especially for long panel datasets because this inefficiency term may capture some 
time-invariant farm attributes such as individual instinctive abilities and other persistent farm 
heterogeneities which are unrelated to the production process but which effect output. Thus, 
these factors may be mixed up with inefficiency leading to a miss-specified model and tending 
to overestimate inefficiency levels.

2.2.1.2  Model 2: Individual effects treated as heterogeneity
To overcome the drawbacks of the FE model, Greene (2005a) proposed an extension of this 
model, called the TFE model. The purpose of this model is treating time-invariant farm 
heterogeneity and transient inefficiency effects separately. Hence, treating the inefficiency term 
τit in Equation (2) as time-varying but splitting the error term as εit = μi + υit, the model is 
written as:

	 y f xit it i it it� � � � �� � � � �0 ( ; ) � (4)

where μi captures any time-invariant farm heterogeneity and not inefficiency, τit represents 
transient inefficiency, and νit is a random shock with the following distributions:

	 � � � � �� �it it v iN v N N~ ~ and ~� ( , ) , ( , ), ( , )0 0 02 2 2 � (5)

In this model, if we treat μi as fixed parameters that do not capture inefficiency, the model 
becomes a TFE model.

The TFE model allows inefficiency to be time-variant and controls for farm heterogeneity. 
However, the model views individual effects as being different from inefficiency and assumes 
that the inefficiency term is always transient. Thus, it fails to capture persistent inefficiency. 
Therefore, the individual effects cannot be distinguished from transient inefficiency and the 
persistent component of inefficiency is completely absorbed in a farm’s heterogeneity effects. 
Hence, all time-invariant effects that are not necessarily inefficient are included as inefficiency 
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and therefore τ̆ it  might pick up farm heterogeneity in addition to or even instead of inefficiency 
(Kumbhakar and Heshmati, 1995). Consequently, the model is miss-specified and tends to 
underestimate transient inefficiency levels and overestimates the efficiency scores.

2.2.1.3  Model 3: Individual effects treated as persistent inefficiency
To overcome the downward bias inefficiency estimation of the TFE model and its tendency to 
disregard the persistent inefficiency component, Kumbhakar and Heshmati (1995) proposed 
a model that treats individual effects as persistent inefficiency and decomposed the overall 
inefficiency into persistence and transient components.

To formalize the model, we split the inefficiency term, τit in Equation (2) as τit = ηi + uit to 
obtain the model:

	
y f x

u
y f

it it it

it it it it i it

it

� � �
� � � �
� �

� � �
� � � � �

�

0

0

( ; )

(
and so that

xx uit it i it; )� � �� � �

� (6)

This model labeled as the KH model splits the error term into three components –  
ϕit = εit – ηi – uit, where εit captures a random shock; ηi ≥ 0, which captures persistent inefficiency; 
and uit ≥ 0, which captures the transient inefficiency component. Unlike the TFE model, the KH 
model does not consider any time-invariant farm heterogeneity effects. Farm heterogeneity is 
mixed with individual persistent inefficiency. Consequently, the model is again miss-specified 
and is likely to produce upwardly biased persistent inefficiency estimates.

2.2.1.4  Model 4: Separation of individual heterogeneity from persistent inefficiency
To overcome the limitations of the first three models, Colombi et al. (2014), Kumbhakar et al. 
(2014), and Tsionas and Kumbhakar (2014) proposed a model that split the error term into 
four components—persistent and transient inefficiency, farm heterogeneity effect, and random 
noise. Hence, we specify a model that distinguishes between persistent and transient inefficiency 
and separate persistent inefficiency from farm heterogeneity effects. Following Kumbhakar 
et al.’s (2014) decomposition, assume � � � � �it i it it i itu� � � �and  as in Equation (1) to obtain:

	 y f x uit it i it i it� � � � � �� � � � �0 ( ; ) � (7)

This model labeled the KLH model decomposes the error term ϕit into four components as 
� � � �it i it i itu� � � � , where μi is the farm heterogeneity effect (for example, farm management 
and soil quality), υit is the idiosyncratic random component, the one-sided ηi ≥ 0 captures 
persistent inefficiency, and the one-sided uit ≥ 0 captures transient inefficiency effects. Without 
μi, Equation (7) is reduced to the KH model and without ηi  it is same as the TFE model.

2.2.2  Models’ estimation procedures

To estimate the FE model, we reformulate Equation (3) to obtain the following estimable model:

	 y f x u u f x
f x

it it it i i it it

i it i

� � � � � �� � � �

� � �

� � � � � �
� � �

0 0( ; ) ( ; )
( ; ) tt

� (8)

Equation 8 is like a standard FE panel data model (Schmidt and Sickles, 1984), where αi = α0– ui 
is a farm-specific intercept. Here, ui and αi are individual farm effects and assumed to be fixed 
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parameters to be estimated along with the vector of the slope parameters β. One can apply the 
standard FE panel data estimation method to obtain �i

� , and the following transformation to 
obtain an estimate for ui :

	 u i Ni i i i
� � �� � � �max ( ) , , .....,� � 0 1 � (9)

Farm-specific TE is estimated as TE Exp ui i� �� �˘ . This formulation implicitly assumes that the 
efficiency of the most efficient unit in the sample is 100%, so the inefficiency of other farms is 
relative to the best farm in the sample.

We estimate the TFE model by making distributional assumptions of the random error. 
Different estimation methods have been proposed for estimating KH and KLH models.  
Colombi et al. (2014) used a single stage maximum likelihood estimation (MLE) method based 
on the distributional assumptions of the four-error components. Kumbhakar and Heshmati 
(1995) and Kumbhakar et al. (2014) used a multi-step procedure, whereas Filippini and Greene 
(2016) used the simulated ML approach. In this paper we use the multi-step estimation 
procedure suggested by Kumbhakar et al. (2014) for its simplicity for the KH and KLH models. 
The multi-step procedure has the advantage of avoiding strong distributional assumptions for 
estimating the model. In what follows we present the multi-step approach for the two models.

The KH model can be estimated in four steps. The steps are described in Kumbhakar et al. 
(2015). For this we rewrite the model in Equation (6) as:

	 y f x
E u u E u

it i it it

i i it it it it it

� � �
� � � � � �
� � �

� � � � �
( ; ) ,

( ) ( ( ))0 and ..
� (10)

In this case the error component ωit has zero mean and constant variance. Thus, the model in 
Equation (10), which fits the standard panel data model with individual effects, can be estimated 
either by the least squares dummy variable (LSDV) or by the generalized least squares (GLS) 
method. Under the LSDV framework, the model can be estimated in four steps using a multi-
step procedure: In step 1 we estimate Equation (10) using the standard within FE panel data 
model to obtain consistent estimates of the β vector. In step 2 we estimate �� i, which can be 
used for estimating persistent TE, PTE i� �exp( )�� . Using the standard half-normal SF model, 
we estimate α0 and the parameters associated with εit = uit in step 3. Finally, in step 4 we use 
the Jondrow et al.’s (1982) technique using mean or mode of the conditional distribution of 
u given ε to estimate the transient inefficiency uit. This procedure helps predict the transient 
inefficiency component, uit

∧ , which can be used for estimating transient TE, RTE uit it� �exp( ˘ ) ,  
and finally the overall technical efficiency (OTE) is obtained from persistent and transient 
efficiencies, that is, OTEit = PTEi × RTEit.

To estimate the KLH model, we reformulate the model in Equation (7) as:

	 y f xit it i it� � � �� � � �0
* ( ; ) � (11)

where � � � � � � � � �0 0
* ( ) ( ), ( ), (� � � � � � � � �E E u E u E ui it i i i i it it it itand and )) . With this 

specification αi and ωit have zero mean and constant variance. As Equation (11) is a familiar 
panel data model, we use the three-step approach for estimating the KLH model much like the 
previous case. In the first step, the standard FE panel regression is used for estimating �

�
. This 

procedure also gives predicted values of αi and εit, denoted by � �� �
i itand *. In step 2, we estimate 

the time-varying TE using the predicted value of ε it
*  from the previous step using the standard 
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SF technique. This procedure predicts the time-varying transient technical inefficiency, which 
can be used for estimating RTE uit it it� �exp( )*� . In step 3, we estimate ηi following a similar 
procedure as in step 2. For this, we use the standard pooled half-normal SF model to obtain 
estimates of the persistent inefficiency component ηi. Then PTE can be estimated using the 
formula PTEi i� �exp( )�� , and OTEit = PTEi × RTEit.

2.3  The empirical model

The production function f (xit; β) in Models 1–4 is specified using a translog (TL) functional 
form because of its flexibility (Christensen et al., 1973). Hence, assuming a TL form with the 
time trend representation of technical change (TC), we estimate a SF panel data model using 
the specification:

	 Y X T X X T

X T

ln ln 1
2

ln ln

ln

it j

j

J

jit t t jk jit
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J

j

J

kit tt t
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t it it
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� (12)

where ln Yit is the natural logarithm of output produced by a farm i, i = 1,2,……, N in time 
period t, t = 1,2,……, T. ln Xit is a vector of natural logarithm of j, j = 1,2,……, J inputs. T is 
time trend, a proxy for the exogenous rate of technological change. All the other variables  
(α, β, ε and τ) retain their previous definitions as in Equations (1) and (2).

2.3.1  Input elasticities (E), technical change, and return to scale

As the coefficients of the TL production function do not have direct interpretations because of 
squares and interaction, we compute the elasticities of output with respect to each input. As all 
input variables are expressed in their logarithms, the elasticities can be simply obtained from a 
partial differentiation of the production function with respect to appropriate inputs as:

	 E y
X

X Tjit
it

jit
j jj jit jt t�

�
�

� � �
ln
ln

ln ,� � � � (13)

the rate of TC and return to scale (RTS) is obtained from:

	 TC y
T

T X RTS Eit
it

t
t tt t jt jit

j

J

it jit

j

J

�
�
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and .� (14)

The elasticity measures the responsiveness of output to a 1% change in the jth input used by 
farm i, at time t. TC is the percentage change in output due to an increase in time measured 
in years for unchanged input use. RTS measures the percentage change in output in response 
to a proportional 1% increase in all inputs simultaneously. Technology is said to be exhibiting 
increasing, constant, or decreasing RTS, respectively, if RTS is greater than, equal to, or less 
than one. Like farm level efficiency, all input elasticities, RTS, and TC are farm- and time-
variant and computed at every data point.

2.4  Data and variables

The data source for this paper is the Ethiopian Rural Household Survey dataset collected from 
randomly selected stratified farm households in rural Ethiopia during 1994–2015. It includes 
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Table 1  Summary statistics of the data (NT=1,648 observations) 

Variable 1999 2004 2009 2015 All-waves
Mean SD Mean SD Mean SD Mean SD Mean SD CV

Cereal output 1,260 1,320 1,253 1,300 2,065 2,390 3,020 4,000 1,952 2,682 1.37
Fertilizers 107.8 115.1 88.0 140.9 81.0 104.3 179.0 166.2 116.1 139.0 1.19
Agrochemicals 26.9 71.5 23.7 77.0 114.7 461.5 336.7 675.5 133.9 447.0 3.34
Labor 316.3 423.9 266.2 290.7 170.8 241.4 593.9 1,222.2 342.6 714.0 2.08
Machinery 0.6 4.6 41.3 301.4 836.8 3,216.4 376.4 915.5 336.3 1,776.0 5.28
Livestock 5.7 4.3 4.5 4.0 7.2 6.3 7.9 7.4 6.5 5.9 0.91
Land area 1.5 1.1 4.9 22.6 2.8 14.2 1.8 1.4 2.6 12.4 4.77
Oxen 1.8 1.2 1.4 1.3 1.9 1.5 1.9 1.4 1.8 1.4 0.78

farm production and economic data collected at 5 year intervals from local farms associations 
(FAs) that were selected to represent the country’s diverse farming systems. Originally, the first 
four waves of the survey were conducted in collaboration with the Department of Economics, 
Addis Ababa University (AAU) and the International Food Policy Research Institute (IFPRI). 
The last round was extended forming a subsample from the original respondents covering eight 
FAs following a similar strategy comprising 503 farm households in 2015. The data extension 
was in collaboration with AAU and the Department of Environment for Development (EfD) 
at the University of Gothenburg, Sweden. Consequently, this study uses the last four rounds 
(1999, 2004, 2009, and 2015) of data covering eight FAs forming partially balanced 446 panel 
households or 1,648 observations. The four rounds were selected to allow for even time spacing 
and covering approximately similar time frames. The 1994 survey was excluded as it misses 
most of the important variables for the analysis.

We employed aggregated cereal output measured in Ethiopian birr (ETB) as a dependent 
variable. The explanatory variables include labor employed measured in man-day units 
(MDUs), cereal sown farmland measured in hectares, amount of fertilizers used in kilogram, 
agricultural machinery implements in ETB, and livestock ownership measured in tropical 
livestock units (TLUs) as a proxy for wealth and livestock asset endowments. Agrochemicals 
measured in ETB include pesticides, herbicides, and insecticides and oxen as animal traction 
power is measured in the number of oxen owned. Oxen is mainly used in traditional farming in 
the land preparation and harvesting periods. Time trend and its square are used for capturing 
the shift in production over time representing technological changes, whereas the squared trend 
captures the non-linear shift in the production function over time. All monetarily measured 
variables are transformed to fixed ETB prices obtained by deflating to 1999 prices.

The summary statistics of the data is provided in Table 1. Based on the information on 
output and land size, the calculated cereal production varied between a minimum of 34 kg to a 
maximum of 51,100 kg per hectare with overall mean cereal production being about 1,952 kg per 
hectare during the study period. The periods’ mean value of production per hectare increased 
from 1,260 kg in 1999 to 3,020 kg in 2015. This shows that cereal production increased over 
the study period. On average, farms cultivated cereals on 2.6 hectares and used 342.7 MDUs 
of labor. Fertilizer application was minimal with an average of 116.1 kg per farm household, 
whereas average expenses were 133.9 ETB for agrochemicals per farm household. Average 
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livestock ownership was 6.5 TLUs and average oxen ownership was around 1.8 or almost two 
oxen per farm household, ranging from 0 to 9 oxen. The standard deviation (SD) shows large 
dispersions in the data. The coefficient of variations (CV=SD/Mean) for most of the variables 
in Table 1 is larger than one.

3  Empirical results and analysis
3.1  Analysis of the results

Table 2 gives the estimates of the parameters based on the specified TL frontier production 
function, input elasticities, and rate of TC and RTS across the four models. As shown in Table 2,  
almost all the parameter estimates in all the four models are significantly different from zero 
at the 5% level or lower. Most of the first order estimates have positive signs in all the models. 
Agrochemicals and livestock estimates are statistically significant in all the models. Hence, an 
increase in agrochemicals and owning more livestock units, which may include plowing oxen, 
enhanced cereal production. An estimate of labor and machinery use are unexpectedly negative 
and statistically significant, showing that cereal production decreased with such inputs. This 
result may be because farms may use more draft/hand tool inputs as compared to machinery to 
control for weeds (Battese and Coelli, 1992) during years of poor output. Family size increased 
and fixed and scarce land was allocated to smaller plots reducing labor productivity. Estimates 
of the time trend and its squared term are significantly positive at the 1% level, suggesting 
evidence of technical progress at an increasing rate. An estimate of time interacted with 
farmland area is positive showing that there were TCs which were land using. The coefficients 
of time’s interactions with other inputs are negative and significant implying factor saving 
technological changes in these inputs. An estimate of time’s interaction with agrochemicals is 
not significant, implying technical neutrality with respect to this input. However, the overall 
rate of TC is not neutral because some production factors changed significantly over time.

Elasticities with respect to all inputs, evaluated as the mean of the data, are significantly 
different from zero. With a few exceptions, elasticities across models are positive, indicating 
positive marginal products of inputs. The positive sign of elasticities further indicates that 
lack of these inputs will hamper agricultural activities and hence output levels. Elasticities for 
fertilizers, agrochemicals, oxen (animal traction power), farmland area, and livestock indicate 
that an increase in these inputs enhanced cereal output levels. However, the magnitude of the 
elasticities differs across models. For instance, if a farm increased the number of the oxen input 
by 1%, keeping other inputs constant, it increased production by 0.495% (FE, KH, and KLH 
models) and 0.471% (TFE model). Similarly, an increase in livestock rearing by 1%, increased 
production by 0.275% in the TFE model and 0.247% in the other models. On the other hand, 
elasticities with respect to labor and machinery use were negative, conforming to the inverse 
production relationships with these inputs found in other studies. The negative elasticity of 
labor and machinery can be attributed to high fertility under constant land size and increased 
use of family labor. This result shows that if a farm increases labor input by 1%, then average 
production will decrease by 0.115% for the TFE model and 0.116% for the other models. 
Similarly, an increase in machinery implements by 1% will decrease production by 0.324% for 
the TFE model and 0.304% for the other models.
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Table 2  Estimates of the Parameters, Elasticities, TC, and RTS across Models (NT=1,648)

Variables TFE model FE, KH, and KLH models
Estimate SE Elasticity Estimate SE Elasticity

Constant 4.144*** 0.457 4.678*** 0.396
Fertilizer 0.089 0.067 0.012 0.064 0.080 0.004
Agrochemicals 0.096** 0.050 0.066 0.108* 0.059 0.071
Labor 0.344*** 0.095 −0.115 0.351*** 0.114 −0.116
Machinery −0.295*** 0.064 −0.324 −0.290*** 0.076 −0.304
Livestock 0.225** 0.106 0.275 0.197 0.126 0.247
Oxen 0.386 0.244 0.471 0.380 0.292 0.495
Area 0.013 0.113 0.276 0.067 0.132 0.322
Fertilizer*Fertilizer −0.003 0.015 −0.002 0.018
Agrochemicals*Agrochemicals −0.001 0.012 −0.005 0.014
Labor*Labor −0.031 0.019 −0.035 0.023
Machinery*Machinery 0.062*** 0.013 0.059*** 0.016
Livestock*Livestock 0.125*** 0.024 0.122*** 0.028
Oxen*Oxen −0.217 0.185 −0.218 0.222
Area*Area −0.124*** 0.022 −0.118*** 0.026
Fertilizer*Agrochemicals −0.008 0.011 −0.004 0.013
Fertilizer*Labor 0.013 0.021 0.019 0.025
Fertilizer*Machinery −0.003 0.012 −0.002 0.014
Fertilizer*Livestock −0.099*** 0.025 −0.093*** 0.029
Fertilizer*Oxen 0.112** 0.056 0.103 0.066
Fertilizer*Area 0.126*** 0.030 0.111*** 0.035
Agrochemicals*Labor −0.007 0.016 −0.012 0.020
Agrochemicals*Machinery 0.001 0.011 0.001 0.013
Agrochemicals*Livestock 0.070*** 0.024 0.067*** 0.028
Agrochemicals*Oxen −0.107** 0.044 −0.104** 0.053
Agrochemicals*Area −0.002 0.023 −0.007 0.028
Labor*Machinery 0.071*** 0.016 0.069*** 0.019
Labor*Livestock 0.045 0.038 0.051 0.046
Labor*Oxen −0.098 0.080 −0.104 0.096
Labor*Area −0.036 0.036 −0.043 0.043
Machinery*Livestock 0.006 0.021 0.002 0.025
Machinery*Oxen 0.018 0.450 0.021 0.054
Machinery*Area −0.042* 0.230 −0.042 0.027
Livestock*Oxen −0.208** 0.107 −0.195 0.128
Livestock*Area −0.195*** 0.058 −0.193** 0.070
Oxen*Area 0.326*** 0.120 0.332** 0.143
Time (1=1999,...,4=2015) 0.666*** 0.139 0.686*** 0.162
Time*Time 0.392*** 0.048 0.356*** 0.052
Time*Fertilizer −0.026** 0.012 −0.024* 0.014
Time*Agrochemicals −0.011 0.009 −0.010 0.011

(Continued)
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Our results are consistent with Wan and Cheng (2001), who found that excessive labor 
use had a negative effect on Chinese agriculture, and Rashidghalam et al. (2016), who reported 
that machinery had a negative effect on Iranian cotton production. The negative elasticity 
with respect to labor may be explained by the fact that farms with surplus family labor are 
likely to use excessive family labor; with respect to machinery, it could be because small and 
fragmented landholdings make it difficult to attain economies of scale by using machinery 
implements. This indicates a mismatch between machinery implements and low technical skill 
realities of smallholder cereal farmers. Thus, excessive use of family labor, labor hoarding, and 
inefficient use of machinery can explain the unexpected negative productivity effects of labor 
and machinery. This implies that given the current landholdings and smallholders’ resource 
base, investments in highly mechanized agriculture might not necessarily translate into high 
productivity and production.

The RTS and TC estimates are positive across models. However, their magnitude is 
model-specific. Specifically, RTS is 0.660 for the TFE model and 0.710 for the other models. 
RTS’ estimates also suggest that cereal growing farms in the sample exhibited decreasing RTS 
in all the models. This can be explained by increased population and excessive use of family 
labor and demand for higher food security that led to the use of inferior and less productive 
land. TC estimates clearly show technical progress with an increasing rate of 0.901 for the TFE 
model and 0.880 for the other models. This is a result of increase in farming skills, improved 
seed quality, and skills in the use of modern inputs such as fertilizers.

3.2  Technical efficiency

Table 3 provides the summary statistics and frequency distribution of efficiency scores obtained 
from the four models. The FE model produces values of TE that are time-invariant and therefore 
should reflect persistent efficiency. The results of the KH and KLH models provide persistent as 
well as transient TE components. The TFE model, which does not include persistent efficiency 
but produces values that are time-variant, reflects the overall (transient) efficiency. In general, 
the results show significant variations in efficiency estimations across the models. Efficiency 

Variables TFE model FE, KH, and KLH models
Estimate SE Elasticity Estimate SE Elasticity

Time*Labor −0.119*** 0.018 −0.114*** 0.022
Time*Machinery −0.036** 0.015 −0.029* 0.017
Time*Livestock −0.052** 0.022 −0.050** 0.026
Time*Oxen 0.078* 0.043 0.090* 0.052
Time*Area 0.118*** 0.026 0.114*** 0.031
RTS 0.660 0.710
Rate of TC 0.901 0.880

Notes: *p < 0.05, **p < 0.01, and ***p < 0.001 levels of significance.
FE (fixed effects), KH (Kumbhakar and Heshmati, 1995), KLH (Kumbhakar et al., 2014), TFE (Greene, 2005a), and  
TCs (technical changes).

Table 2  Continued
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scores are found to be sensitive to the models’ specifications. In the next section, we provide a 
detailed analysis of the results obtained from the four models.

3.2.1  Persistent technical efficiency

The persistent efficiency component captured by KLH and KH models resulting from time-
invariant policy or management (structural or institutional factors) are on average 0.79 and 
0.30, respectively, which differ sharply with their level of transient efficiency.

As shown in Table 3, mean persistent efficiency of the FE and KH models is low (0.30) with 
larger dispersions. Contrarily, mean persistent efficiency captured by the KLH model is 0.79, 
which is significantly higher than the mean of FE and KH models, and there are much lower 
dispersions. Hence, comparing the efficiency estimates obtained by the FE and KH models does 
not provide precise information on the level of persistent efficiency. The reason for this is that 
these models do not separate unobserved farm heterogeneity from persistent inefficiency. Parts 
of time-invariant farm heterogeneity effects could be mixed up with persistent inefficiency. 
Thus, the models tend to overestimate inefficiency scores, thus generating lower estimates of 
persistent efficiency.

Distribution of persistent efficiency further shows that almost 58% of the farms were 
operating below the mean score in the KH model and 44% farms were operating below the 
mean score in the KLH model. In the KLH model, 94% of the farms had persistent efficiency 
scores between 0.71 and 0.90. However, FE and KH models estimate more farms as having 

Table 3  Frequency distribution of persistent and transient TEs

TE-Interval (%) Persistent TE Transient TE 
FE and KH models KLH model TFE model KH model KLH model

0−10 2.91 0 0 13.41 0
11−20 25.34 0 0 42.72 0.36
21−30 29.15 0 0 25.55 0.91
31−40 19.28 0 0 12.50 4.13
41−50 10.76 0 0.12 3.58 19.54
51−60 6.50 0.22 0.00 1.40 50.24
61−70 3.36 5.38 0.18 0.67 23.97
71−80 1.12 47.09 7.40 0.12 0.85
81−90 1.35 47.31 2.61 0.06 0
91−100 0.22 0 89.68 0 0
Mean 0.304 0.791 0.944 0.210 0.545
Std. Dev. 0.155 0.053 0.065 0.111 0.082
Minimum 0.054 0.567 0.427 0.020 0.105
Maximum 1.000 0.889 1.000 0.840 0.783
Yearly mean of the transient efficiency
1999 0.964 0.213 0.550
2004 0.958 0.195 0.523
2009 0.941 0.215 0.559
2015 0.918 0.210 0.541
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efficiency scores between 0.21 and 0.30. This implies that most cereal farms faced severe 
persistent productive inefficiency problems in the study area.

3.3  Transient technical efficiency

When we consider time-varying efficiency, the mean OTE obtained from the KH, KLH, and 
TFE models is 0.21, 0.55, and 0.94, respectively. As can be seen in Table 3, mean TE in TRE is 
significantly higher than that in the KH model and moderately higher than that in the KLH 
model. The results show that there were fewer farms with transient efficiency scores below 90% 
in the TFE model as compared to the other two models. Variations in transient efficiency’s 
estimates by these models are due to their underlying assumptions. The TFE model, which 
assumes that inefficiency is always time-varying, controls for unobserved farm heterogeneity 
without considering persistent inefficiency. If a farm household is characterized by persistent 
individual effects, it becomes part of farm heterogeneity. The farm heterogeneity effect captures 
some of the persistent inefficiency. Consequently, the model underestimates the transient 
inefficiency level, which results in transient efficiency scores being inflated upwards. This 
inflated transient efficiency is induced by the assumption that persistent efficiency is 100% in 
the model’s specification, thus leading the overall efficiency to be biased upward.

Unlike the TFE model, the KH model does not consider any farm heterogeneity effect 
and treats all time-invariant farm effects as inefficient. Hence, it mixes the heterogeneity 
effects with persistent inefficiency. Thus, persistence inefficiency estimated in the KH model is 
overestimated. Consequently, the model is likely to produce overestimated persistent efficiency 
scores. As OTE (which is time-variant) is a product of persistent and transient efficiency 
components, transient efficiency in the KH model is lower due to low persistent-efficiency 
estimates. Hence, we conclude that OTE is biased downward in the KH model whereas it 
is biased upward in the TRE model. These characteristics of the KH model, together with 
those of the TFE model, suggest that latent farm and individual effects such as unobserved 
heterogeneity are significant in the sample and we need to reconsider our modeling for 
obtaining more accurate efficiency estimates. This also demonstrates that if there is moderate 
persistence inefficiency and unobserved heterogeneity among the farms, both the KH and TFE 
models will produce biased results.

Based on this discussion, the true measure of efficiency may be somewhere between the 
two extremes. To overcome the risk of a bias, we considered a recently developed more flexible 
efficiency model called the KLH model, which separates the two time-invariant inefficiency 
components and farm heterogeneity and comes closer to capturing true efficiency. This new 
model overcomes some of the limitations of the earlier models by decomposing the overall 
inefficiency into its persistent and transient components and distinguishes time-invariant farm 
effects from persistent inefficiency. In the process of estimating efficiency using the KH and 
KLH models, the OTE is decomposed into persistent and transient efficiency components. 
However, separation of persistent inefficiency from farm heterogeneity results in a higher 
estimate of persistent inefficiency in the KH model with quite low variations. Thus, mean 
transient efficiency results of the KLH model are quite high compared to the KH model’s and 
less compared to the TFE model’s. Frequency distribution of transient efficiency shows that 
46% of the farms were operating below the mean in the KLH model, as opposed to 60% in the 
KH model.
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In general, the variability of efficiency scores across different models considered clearly 
demonstrates the existence of significant unobserved farm heterogeneity in the sample and 
should be considered in frontier model’s specifications in line with the findings of Heshmati 
et al. (2018) and Kumbhakar et al. (2014). The variability in the results of these models clearly 
demonstrates the difficulty in “correctly” measuring efficiency. This makes us conclude that the 
selection of an appropriate model for estimating efficiency and interpreting the results may not 
be a straightforward process. No model can be said to be “correct” and efficiency will always 
be model-specific and likely biased. However, as noted by Badunenko and Kumbhakar (2016), 
the KLH model can produce more reliable results as it disentangles persistent inefficiency from 
farm heterogeneity and also transient inefficiency from random noise and generates low levels 
of noise. Thus, the results of the KLH model show the reliability of transient and persistent 
inefficiency estimates as it provides low levels of noise. Besides, the results also show that 
efficiency estimates varied over time. As shown in Table 3, transient efficiency varied over time 
and decreased during the study period, with 2009 being the most efficient year and 2015 the least 
efficient year. Concerning the pattern of efficiency ratings through time, the results show that 
the level of transient efficiency was quite low and mostly concentrated between 0.11 and 0.20 in 
the KH model and it was concentrated between 0.51 and 0.60 in the KLH model in all the years.

To get a better picture of the efficiency components in the different models, we report their 
density plots in Figure 1. The density plots show that the distribution of persistent efficiency in 
the FE and KH models is almost identical, and except for some values in the upper tail, most 
of the farms had low levels of efficiency in so far as their persistent efficiency is concerned. This 
is, however, not the case with the KLH model as it provides highest persistent efficiency scores. 
The mean is higher compared to that in the FE and KH models and it has least dispersion.

Regarding distribution of transient efficiency, as in the TFE model the heterogeneity 
effects are not considered to be inefficient, it leads to high efficiency scores (Figure 2) with low 
dispersion (Figure 3) compared to the other two models.

Distribution of transient efficiency in the KH model looks like the distribution of its 
persistent component but its mean is pushed back by about 10%. In the KLH model, most of 
the farms were found to have moderate transient efficiency scores between those obtained from 
the TFE and KH models (Figure 2). The efficiency score spreads were between the TFE model 
(low spread) and KH model (high spread) (lower part of Figure 3). Similar results and patterns 
were found by Heshmati et al. (2018) and Kumbhakar et al. (2014).

Figure 1 � Distribution of persistent TE across different models, FE (left), KH (center), and 
KLH (right). 
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The dispersion in efficiency components in the KH and KLH models, as the main element 
of overall efficiency, is significantly higher for the persistent component as compared to the 
transient component in both the models (Figure 2). Thus, the results suggest that persistent 
inefficiency was a bigger problem than transient inefficiency in the sampled cereal farms.

Finally, for comparing the models and exploring the effects of the estimated models on 
the ranking order of farms’ TE, we estimated Kendall’s rank correlation coefficient between 
the efficiency scores (see Table 4). The correlation coefficients of persistent efficiency in the 
FE, KH, and KLH models were positive and high, implying that the models were consistent 
in generating similar results. Further, correlation coefficients between the transient efficiency 
estimates obtained for all the models were positive, except for the KH and TFE models.  
KH and TFE models had high ranking disagreements. This result is not surprising given their 
assumptions with respect to farm heterogeneity effects. The transient efficiency estimates of the 

Figure 2 � Distribution of transient TE across different models, TFE (overall, left), KH (overall, 
center left), KLH (center right), and KH and KLH (transient, right).
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Figure 3 � The median, first, and third quartiles (middle, bottom, and top lines) of persistent and 
OTE in the TFE, KH, and KLH models.
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KLH and TFE models, however, have low positive correlations, whereas the results of the KH 
and KLH models are independent having a positive correlation.

3.3.1  Technical efficiency estimates across agro-ecological zones

For the purpose of investigation, the farms’ performance across AEZs is compared in Table 5. 
The efficiency results of the models show that there are systematic differences between farms 
by their AEZ location. It also shows the effect of geographical or climatic conditions on farm 
efficiency.

Table 5 shows that as one moves from a highland to lowland AEZ, the mean of TE 
decreases. This suggests more productive efficiency at higher altitudes. Highland’s rainfall and 
temperature are favorable for cereal production. The low mean scores noted in the lowland area 
can be attributed to several factors constraining them in cereal production. These differences in 
performance can be attributed to and explained by time-invariant heterogeneity effects (such 
as the geological/locational makeup of a farm and other physical features), which are beyond 
the control of the farms. This demonstrates that allowing time-invariant and unobserved 
heterogeneity effects in the error terms in some models or/and controlling them in other model 
specifications can lead to appreciably different TE estimates. The differences can also change 
the ranking of farms in different AEZs when comparing their efficiency performance.

4  Summary and conclusion
This paper investigated persistent and transient productive efficiency of Ethiopian cereal 
farms during the period 1999 and 2015. It used four-error components panel data SF model 
to distinguish between time-invariant farm heterogeneity, persistent and transient inefficiency 
components, and random noise. A flexible TL production frontier was also specified and 

Table 4  Kendall’s rank order correlation between different models

Components Persistent Transient
Model FE KH KLH TFE KH KLH
PTE_FE 0.998      
PTE _KH 0.998 0.998     
PTE _KLH 0.998 0.998 0.998    
TTE_TFE −0.024 −0.024 −0.024 1.000   
TTE_KH 0.845 0.845 0.845 −0.013 1.000  
TTE_KLH 0.322 0.322 0.322 0.043 0.477 1.000

Notes: P indicates persistent and T transient efficiency components.

Table 5  Mean efficiency measures by AEZs 

Components Persistent Transient
AEZs\Model FE and KH KLH TFE KH KLH 
Lowland 0.220 0.763 0.897 0.151 0.525
Midland 0.311 0.794 0.794 0.215 0.548
Highland 0.387 0.813 0.960 0.267 0.560
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estimated. Four different models that make up recent advanced models developed in the field 
were estimated empirically using the same data. The models differed in the way they treated 
the three first-error components. The results of the most general four-error components (KLH) 
model were compared to the other three (FE, TFE, and KH) models in which one of the four 
components is missing. The models differed in their underlying assumptions of time-variant/
invariant efficiency and separation of persistent technical inefficiency and farm heterogeneity 
effects. The TFE model disentangled time-varying inefficiency from time-invariant farm 
heterogeneity. The KLH and KH models distinguished between persistent and transient 
inefficiency and the FE model was used for estimating time-invariant efficiency for comparison 
purposes.

Estimates of the parameters showed that agrochemicals, livestock, and land significantly 
enhanced farm productivity whereas productivity was negatively affected by labor and 
machinery. These negative effects are attributed to increased rural population for a given 
land size that made the plots smaller as family size grew. The coefficient of time interacted 
with farmland area was positive and significant showing that TC was land using. Estimates of 
time’s interaction with other inputs was significantly negative, implying factor saving TC for 
these inputs. However, overall, the rate of TC was not neutral because some production factors 
significantly changed over time. Elasticities of fertilizers, agrochemicals, oxen, farmland area, 
and livestock showed that these inputs enhanced cereal production’s efficiency levels. The 
results further showed that cereal farming progressed technically at an increasing rate and 
exhibited decreasing returns to scale. The estimated efficiency results across the models, in 
general, illustrated significant variations in efficiency estimates across the models showing that 
the efficiency estimation was highly sensitive to the models’ specifications.

Our results suggest that models structured for capturing inefficiency that is time-invariant 
are mixed with farm heterogeneity effect that is not inefficient. The mixed effect may lead to 
very low efficiency estimates, whereas models in which farm heterogeneity effects are not 
considered to be part of inefficiency may give high efficiency scores.

The empirical results of our findings confirmed the assumption of significant farm 
heterogeneity in the sample, which was demonstrated by significant overestimates of efficiency 
in the TFE model and underestimates of efficiency in the KH model. The KLH model overcame 
these problems by splitting the time-invariant effects into farm-specific heterogeneity and a 
persistent inefficiency effect. In addition, TE was decomposed into persistent and transient 
components. Consequently, it provided a very dissimilar estimate of overall efficiency levels 
between the TFE and KH models, which reduced the downward and upward biases of the TFE 
and KH models.

Kendall’s rank correlation coefficients showed that FE, KH, and KLH models generated 
similar and consistent persistent efficiency measures. Further, the correlation between transient 
efficiency’s estimates obtained in all the models were positive, except for the partial correlation 
between the KH and TFE models. The transient TE estimates obtained in the KLH and TFE 
models had a low positive rank, whereas the results based on KH and KLH models had large 
positive ranks. The results also showed differences in efficiency levels by AEZs, which shows 
the impact of geographical/climatic conditions on efficiency. As per the results as one moved 
from highland to lowland AEZs, TE decreased. The empirical results also show differences 
in TE estimates between AEZs, which, in turn, show the impact of unobserved heterogeneity 
conditions on farms’ TE.



Page 22 of 23 �   Berisso and Heshmati. IZA Journal of Development and Migration (2020) 11:18

Our results confirm wide variations in TE estimates across farms and over time. This 
is an indication that most of the farms were still using their resources inefficiently in their 
production processes and there still existed wide room for improving cereal production through 
improved efficiency levels. In particular, the TE results for cereal farms included in this study 
show the existence of significant persistent inefficiency, implying that policy measures that can 
reduce persistent inefficiency should be prioritized. Long-run policy needs to be supplemented 
with short-run policies aimed at transitory inefficiency. Such policy measures will enable 
farms to improve their efficiency in the long-run. These findings are important and can be 
used for initiating government policy options when planning agricultural policies tailored for 
supporting AEZs across the country. The study, therefore, recommends that location-specific 
policies that reduce persistent inefficiency should be put in place. A location-specific public 
policy could improve the supply of agricultural inputs and help in meeting the needs of farms 
and also suit AEZ’s peculiarities.

References
African Development Bank (AfDB) (2011): Federal Democratic Republic of Ethiopia: Country Strategy Paper: 

2011-2015.
Aigner, D. J.; S. F. Chu (1968). On Estimating the Industry Production Function. American Economic Review 

58(4), 826-839.
Aigner, D.; C. A. K. Lovell; P. Schmidt (1977): Formulation and Estimation of Stochastic Frontier Production 

Model. Journal of Econometrics 6(1), 21-37.
Badunenko, O.; S. C. Kumbhakar (2016): When, Where and How to Estimate Persistent and Transient  

Efficiency in Stochastic Frontier Panel Data Models. European Journal of Operational Research 255, 
272-287.

Battese, G. E.; T. J. Coelli (1992): Frontier Production Functions, Technical Efficiency and Panel Data: With 
Application to Paddy Farmers in India. Journal of Productivity Analysis 3,153-169.

Battese, G. E.; T. J. Coelli (1995): Models for Technical Inefficiency in a Stochastic Frontier Production  
Function for Panel Data. Empirical Economics 20, 325-332.

Christensen, L.; D., Jorgenson; L. Lau (1973): Transcendental Logarithmic Production Frontiers. Review of 
Economics and Statistics 55(1), 28-45.

Colombi, R.; S. C. Kumbhakar; G. Martini; G. Vittadini (2014): Closed-Skew Normality in Stochastic Frontiers 
with Individual Effects and Long/Short-Run Efficiency. Journal of Productivity Analysis 42(1), 123-136.

Ethiopian Central Statistical Agency (ECSA). (2015): Agricultural Sample Survey: Report on Area and 
Production of Major Crops, Private Peasant Holdings, Meher Season, 1, Addis Ababa.

Farrell, M. J. (1957): Measurement of Productive Efficiency. Journal of the Royal Statistical Society, Series A 
120(3), 253-281.

Filippini, M.; W. H. Greene (2016): Persistent and Transient Productive Inefficiency: A Maximum Simulated 
Likelihood Approach. Journal of Productivity Analysis 45(2), 187-196.

Food and Agriculture Organization (FAO). (2009). Food Security and Agricultural Mitigation in Developing 
Countries: Options for Capturing Synergies. Rome: FAO.

Greene, W. (2005a): Reconsidering Heterogeneity in Panel Data Estimators of the Stochastic Frontier Models. 
Journal of Econometrics 126(2), 269-303.

Greene, W. (2005b): Fixed and Random Effects in Stochastic Frontier Models. Journal of Productivity Analysis 
23(1), 7-32.

Heshmati, A.; S. C. Kumbhakar; L. Hjalmarsson (1995): Efficiency of Swedish Pork Industry: A Farm Level 
Study Using Rotating Panel Data 1976-1988. European Journal of Operational Research 80(3), 519-533.

Heshmati, A.; S. C. Kumbhakar; J. Kim (2018): Persistent and Transient Efficiency of International Airlines. 
European Journal of Transport and Infrastructure Research 18(2), 213-238.

Jondrow, J.; C. A. K. Lovell; I. S. Materov; P. Schmidt (1982). On the Estimation of Technical Inefficiency in 
Stochastic Frontier Production Model. Journal of Econometrics 19(2-3), 233-238.

Karagiannis, G.; V. Tzouvelekas (2009): Parametric Measurement of Time-Varying Technical Inefficiency: 
Results from Competing Models. Agricultural Economics Review 10(1), 50-79.



Page 23 of 23 �   Berisso and Heshmati. IZA Journal of Development and Migration (2020) 11:18

Kassahun, A. (2011): Impact of Climate Variability on Crop Production in Ethiopia: Which Crop is More  
Vulnerable to Rainfall Variability? Paper presented at the 9th International Conference of EEA, Addis 
Ababa, Ethiopia.

Kumbhakar, S. C. (1991): Estimation of Technical Inefficiency in Panel Data Models with Firm- and Time-
Specific Effects. Economics Letters 36(1), 43-48.

Kumbhakar, S. C.; A. Heshmati (1995): Efficiency Measurement in Swedish Dairy Farms: An Application of 
Rotating Panel Data. American Journal of Agricultural Economics 77(3), 660-674.

Kumbhakar, S. C.; G. Lien; J. B. Hardaker (2014): Technical Efficiency in Competing Panel Data Models:  
A Study of Norwegian Grain Farming. Journal of Productivity Analysis 41(2), 321-337.

Kumbhakar, S. C.; H. J. Wang; A. P. Horncastle (2015): A Practitioner’s Guide to Stochastic Frontier Analysis 
Using Stata. Cambridge, UK: Cambridge University Press.

Lee, Y.; P. Schmidt (1993): ‘A Production Frontier Model with Flexible Temporal Variation in Technical  
Inefficiency’, in: Fried, H.; C. A. K. Lovell (eds.), The Measurement of Productive Efficiency: Techniques and 
Applications. New York: Oxford University Press, Chapter 8, pp. 237-255.

Maurice, J. O.; D. Muchai; G. Mwabu; M. Mathenge (2014). Technical Efficiency of Kenya’s Smallholder Food 
Crop Farmers: Do Environmental Factors Matter? Environment, Development and Sustainability 16(5), 
1065-1076.

Pitt, M.; L. F. Lee (1981). The measurement and sources of technical inefficiency in the Indonesian weaving 
industry. Journal of Development Economics 9(1), 43-64.

Rashidghalam, M.; A. Heshmati; G. Dashti, E. Pishbahar (2016): Comparison of Panel Data Models in  
Estimating Technical Efficiency. IZA DP, 2016:9807.

Schmidt, P., R. C. Sickles (1984): Production Frontier and Panel Data. Journal of Business and Economic  
Statistics 2(4), 367-374.

Tsionas, E. G.; S. C. Kumbhakar (2014). Firm Heterogeneity, Persistent and transient Technical Inefficiency:  
A Generalized True Random Effects Model. Journal of Applied Econometrics 29(1), 110-132.

Wan, G. H.; E. J. Cheng (2001): Effects of Land Fragmentation and Returns to Scale in the Chinese Farming 
Sector. Applied Economics 332, 183-194.


