
Korn, Evelyn; Edlund, Lena

Working Paper

Hermaphroditism: what's not to like?

Marburger Volkswirtschaftliche Beiträge, No. 2006,04

Provided in Cooperation with:
Faculty of Business Administration and Economics, University of Marburg

Suggested Citation: Korn, Evelyn; Edlund, Lena (2006) : Hermaphroditism: what's not to like?,
Marburger Volkswirtschaftliche Beiträge, No. 2006,04, Philipps-Universität Marburg, Fachbereich
Wirtschaftswissenschaften, Marburg

This Version is available at:
https://hdl.handle.net/10419/29880

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/29880
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Hermaphroditism: What’s not to Like?

Lena Edlund∗and Evelyn Korn†

May 10, 2006

Abstract

Male and female social roles are largely predicated on the fact that male
and female reproductive functions are separated in different individuals. This
paper asks why gonochorism rather than hermaphroditism, is the rule among
vertebrates. We argue that hermaphroditism may be unstable in the face of
heterogeneity. Building on the Bateman principle – access to eggs, not sperm,
limits reproductive success – and in line with Trivers-Willard, we show that
low quality individuals will prefer to be all female. Moreover, without sec-
ondary sexual differentiation (SSD), males cannot exist in equilibrium. With
sufficient SSD, however, males may outcompete hermaphrodites. As a result,
while hermaphrodites may coexist with males and females, they mate among
themselves only. The lack of interbreeding between hermaphrodites and gono-
chorists may form the basis for further speciation. Furthermore, while herma-
phrodites strive to mate their male function and preserve their female function,
equilibrium hermaphroditic mating is reciprocal. Reciprocal mating, in turn,
makes hermaphrodites vulnerable to male-to-male violence, a form of SSD
that may have contributed to the rarity of hermaphroditism.

1 Introduction

Sociobiology traces gender to the different roles of men andwomen in reproduc-
tion. While sexual reproduction clearly is an important reason for two sexes, our
conception of gender is to a large extent predicated on male and female functions
being separated in different individuals, that is, an organism is either male or fe-
male. However, separated sex functions is only one possibility.

Many plants and some animals (mainly invertebrate) are simultaneous herma-
phrodites, that is, they combine both male and female functions in one organism.
A hermaphrodite incurs the fixed costs of building both sex functions. On the other
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hand, if the organism itself is considered a fixed cost for thesex functions, herma-
phroditism may be viewed as a low cost alternative. Moreover, unlike gonochorists,
simultaneous hermaphrodites can reproduce with all matureconspecifics.1

Yet, hermaphroditism is rare among vertebrates and, phylogenically, it is in
decline. The evolutionary basis for its rarity among evolved animals is not well
understood. Ghiselin (1969) pointed to high search cost as afactor in hermaphrodi-
tism, e.g., from high dispersion or low (directed) mobility, an observation consistent
with the prevalence of hermaphroditism among plants and slow moving animals
(e.g., snails). Charnov (1979) pointed to limits on male reproductive success for
understanding stability of hermaphroditism. More recent research has pointed to
limited return to secondary sexual differentiation when the sex functions are bun-
dled in one individual, e.g., Greeff and Michiels (1999). Moreover, Charnov (1982)
suggested that giving up a sex function might be easier than assuming one, which
could be part of the explanation for the decline of hermaphroditism. Yet another
possibility is that intra-genomic conflict drives gonochorism, suggested by Hurst
and Hamilton (1992).

This paper focusses on self-incompatible simultaneous hermaphroditism (SH)
in animals. It proposes that such hermaphroditism is not stable in sufficiently het-
erogeneous populations, suggesting a possible reason for why hermaphroditism is
rare among evolved animal species. The argument turns on theBateman princi-
ple, namely that male reproductive success is limited by partner availability, while
female reproductive success is not. Thus, it is closely related to Charnov (1979)
who stressed the role of low mobility or population density in underpinning her-
maphroditism. This paper explores an alternative route by focussing on the role
of heterogeneity. Furthermore, this paper shows that reciprocal mating arises en-
dogenously among simultaneous self-incompatible hermaphrodites, suggesting that
hermaphroditism can only be sustained if reciprocal matingis stable.

This paper builds on Charnov, Maynard Smith, and Bull (1976), who formal-
ized the conditions for dioecy and hermaphroditism under random mating. How-
ever, random mating better describes plants than animals, who, perhaps helped by
their greater ability to search out and/or evade potential partners, have developed
sophisticated strategies for mate choice. Our focus on non-random mating links our
inquiry to the Trivers and Willard (1973) hypothesis that mammals should be able
to influence the sex ratio of offspring according to parentalcondition.

2 Model

We consider a population of individuals who can be male, female or both. We index
individuals by their quality, and assume that qualityi is uniformly distributed on
[0, 1]. Each individuali chooses the type that maximizes reproductive success (RS).
RS depends on the number and quality of offspring. For tractability, we assume that

1While the fixed costs of sex functions are not well known, at least the male reproductive system
is potentially cheap, consisting chiefly of a duct to transport sex cells (Charnov (1979)).
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offspring’s quality is solely determined by the father’s quality.2

Following Charnov (1979), we assume that each individual is endowed with a
fixed amount of energy,1, that can be devoted to reproduction. To build a female
function the individual has to incur a fixed cost ofa; to build a male function a fixed
cost ofb; a, b > 0 anda + b < 1. Hence, a female can spend1− a on reproduction,
a male1−b, and a hermaphrodite1−a−b. We assume that sperm can be produced
at zero marginal cost whereas the production of eggs is energy consuming. In par-
ticular, we assume that a female can produceef ·r eggs out of an amount of energyr
and normalizeef = 1. Male reproductive success is constrained by partner ability.
Let em (eh in case of a hermaphrodite) be the energy devoted by a male to enhance
eligibility (e.g., improve attractiveness, partner search, competitiveness). Thus, for
a male, the budget constraint isem ≤ 1− b and for a hermaphroditeeh ≤ 1−a− b.

To calculate an individual’s RS we have to consider how quality differences
affect mating decisions. We abstract from sperm competition and assume that a
male (male function) fertilizes all eggs of a partner.3 Since the marginal cost of
sperm is zero, a male (male function) is willing to mate with any female (female
function). In contrast, an individual will be selective in terms of the sperm quality
it accepts.

We restrict our analysis to the case of positive search cost.If there were no
search cost, a male function would only be chosen by the highest quality individual
(since we assume that quality is known at the time of “sex choice” and that sperm
can be produced at zero marginal cost).

Definition 1 A sub-population is a set of individuals who only mate with individu-
als in the same set.

Definition 2 We say that hermaphroditic mating is reciprocal if both female func-
tions are mated.

While two hermaphrodites who have mated reciprocally have exhausted their
female functions, they can still use their male function in non-reciprocal matings
with other hermaphrodites or pure females.

Characterization of Equilibria Equilibria can be summarized by the following
partitioning of the unit interval:i ∈ [0, j) are female;i ∈ [j, j̄1) are hermaphrodites
who only mate with hermaphrodites;i ∈ [j̄1, j̄2) are hermaphrodites who mate with
hermaphrodites and females; andi ∈ [j̄2, 1] are male, where0 ≤ j ≤ j̄1 ≤ j̄2 ≤ 1.
Depending on the parameter values (capturing search costs,resource constraints,

2There are two ways to justify the assumption that only father’s quality matter. First, our qual-
itative results stand as long as paternal quality mattersat all for offspring quality. Second, this
formulation is consistent with female quality varying lessthan male quality. Lower variation in fe-
male than male quality may stem from the fact that eggs are scarce in reproduction. Thus, we would
expect sexual selection to exert more pressure towards malethan female differentiation.

3Sperm competition may be crucial for understanding the existence of male-hermaphroditic pop-
ulations: since hermaphrodites mate reciprocally, copulation alone cannot be the only determinant
of male RS.
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secondary sexual differentiation) some of the subintervals may be degenerate, such
that purely gonochoric or mixed populations may result. However, there is no equi-
librium with only hermaphrodites, except for the limit caseof no male fixed cost
(b = 0). Also, the lowest quality interval will always be female (unlessb = 0).
Moreover, no pure males can exist without secondary sexual differentiation. Lastly,
reciprocity characterizes hermaphroditic mating.

2.1 Basic Specification

Here, we abstract from the role of secondary sexual differentiation (i.e., from ana-
lyzing em andeh). Interestingly, this simplification precludes pure malesin equi-
librium. We relax this assumption in Section 2.2.

To preview results, equilibria will have the following structure: i ∈ [0, j) are
pure females, andi ∈ [j, 1] are hermaphrodites. All hermaphroditic mating is
reciprocal. In addition, hermaphrodites of qualityi ∈ [j̄1, 1], j̄1 ≥ j, will mate with
pure females as well. Whetherj̄1 = j or j̄1 > j will depend on parameter values.

Since there are search costs, females face a trade-off between mate quality and
finding a mate. For a pure female this trade-off implies that she chooses a threshold
quality j̄1 above which she accepts any male (or male function). Clearly,individuals
i < j̄1 cannot be pure males. However, they may be hermaphroditic. We now turn
to their mating behavior.

The hermaphroditic mating decision is complicated by the fact that the optimal
mating strategy may involve “bundling” of the male and female functions. In par-
ticular, since a hermaphrodite seeks to mate its male function promiscuously while
remaining selective with respect to its female function, hermaphroditic mating may
be reciprocal in equilibrium.

Consider a hermaphrodite of qualityi < j̄1. It is not accepted by a pure female.
Consequently, it can either do without using its male function – in which case it
might as well dispense with it altogether and spend the freed-up resources on eggs,
i.e., be a pure female – or mate with other hermaphrodites. The reason the latter
might be feasible is that hermaphrodites value access to eggs (unlike pure females).
Thus, a necessary condition for individualsi < j̄1 to be hermaphroditic is that
they mate reciprocally. Whether the mating is random or assortative will depend on
search costs. If search costs are low, hermaphrodites will only accept sperm quality
above a threshold value, resulting in assortative reciprocal mating. This is the case
we will focus on.4

Search costs mainly impact the mating behavior of hermaphrodites (as opposed
to gonochorists).5 Hermaphrodites whose quality is below females’ thresholdj̄1

have to mate reciprocally in order to find a mate for their malefunction. Since
search costs are low, the best type (close toj̄1) is only willing to mate its female

4If search costs are high, a hermaphrodite has to seize any mating opportunity that allows RS
through both male and female functions and random reciprocal mating results. However, the equi-
libria in this case are qualitatively similar to the low search cost case.

5This result is an artefact of our assumption that only paternal quality matters for offspring
quality.
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function to another hermaphrodite that is close to its own type. Therefore, it follows
that these hermaphrodites mate assortatively.

The same applies tohermaphroditic mating abovēj1. By insisting on reciprocal
mating, hermaphrodites ensure high quality sperm for theireggs. Thus, for high
quality hermaphrodites reciprocal and assortative matingis a best response.

It is straightforward to see that this argument applies ifi > (j̄1 + 1)/2 (if they
were to mate non-reciprocally they would receive the average sperm quality(j̄1 +
1)/2 as opposed to qualityi if mating were reciprocal).

Reciprocity is less obvious for individualsi ∈ (j̄1, (j̄1+1)/2). They face a trade-
off between sperm quality and mating opportunities for the following reason: the
top hermaphrodites use their female function to buy reciprocity but they can still use
their male function to fertilize other hermaphrodites (in addition to any females).
However, that option exists for any hermaphrodite abovej̄1 and is not important
for the reasoning within the group of hermaphrodites. Thus,if hermaphrodites
i ∈ (j̄1, (j̄1 + 1)/2) were to mate nonreciprocally, they could receive higher sperm
quality. But, as the top individuals’ eggs are no longer available, the lower-quality
hermaphrodites compete with all individuals abovej̄1 for a reduced number of eggs.
Thus, they can either mate reciprocally with a hermaphrodite of the same quality,
or they mate non-reciprocally. In the latter case, their eggs would be fertilized by
higher quality sperm, but they risk to mate their male function with pure females
only. In other words, by giving up reciprocity, they are no longer guaranteed access
to another hermaphrodite’s eggs. For individuals below(j̄1 + 1)/2 but close to it,
the gain in RS through female function (improved sperm quality) will not outweigh
the loss in RS from male function (fewer fertilized eggs). Thus, reciprocal and
assortative mating is optimal for individuals below but close (j̄1 + 1)/2. It then
follows that it is also optimal for all hermaphrodites of lower quality. A formal
proof is in the Appendix.

We now state our first results:

Lemma 1 Hermaphrodites mate reciprocally.

Lemma 2 If search costs are low, hermaphroditic mating is positive assortative.

Based on these intermediate results we can describe the population structure
that results if individuals choose whether to be male, female or both.

Proposition 1 If there is no secondary sexual differentiation and search costs are
low there are two kinds of Nash equilibria.

1. For any a ∈ (0, 1) and b := µ(1 − a), µ ∈ (0, 1) there is a Nash equilibrium
with the following structure:

0 < j = j̄1 < j̄2 = 1,

where j = 2
1−4µ

(1 − µ − 1
2

√

3 − 4µ + 4µ2). For µ ∈ [1/2, 1], it is unique.

In words, all individuals of quality i ∈ [0, j) choose to be female and accept
any individual i > j as a partner, and all individuals of quality i ∈ [j, 1]
choose to be hermaphrodites. Females accept all hermaphrodites as partners.
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2. In addition, for any a ∈ (0, 1) and b := µ(1 − a), µ ∈ [0, 1/2), and for any
j̄1 ≥ 1

3−4µ
there is a Nash equilibrium with the following structure:

0 < j < j̄1 < j̄2 = 1,

where j := 1+j̄1
4(1−µ)

. In words, females only accept partners of quality i ≥ j̄1,
individuals of quality i < j are female, and individuals of quality i ≥ j are
hermaphroditic.

In sum, Proposition 1 says that females at the bottom and hermaphrodites at the
top characterize equilibria. No equilibrium has only hermaphrodites and there are
no pure males. The intuition for the former is that low quality individuals can do
better as pure females. A proof is in the Appendix. Figure 1 depicts the equilibrium
structure.

Notes: The dashed part of the figure depicts the distribution of types within the popu-
lation from part 1 of Proposition 1. The dashed line is given byj = 2

1−4µ(1 − µ −
1
2

√

3 − 4µ + 4µ2). Individuals whose quality is belowj choose to be female, individuals
abovej choose to be hermaphroditic. Females accept all hermaphrodites. This equilibrium
exists for allµ ∈ [0, 1].
The solid part of the figure depicts the distribution of types within the populationfrom part
2 of Proposition 1. The exact distribution depends on the value ofj̄1. The graph is based on

j̄1 =
1+ 1

3−4µ

2 , i.e., a value in the middle of the admissible range. Here, all individuals above

j = 1+j̄1
4(1−µ) choose to be hermaphrodites but females accept only those abovej̄1.

Figure 1: Distribution of types without secondary sexual differentiation
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The lack of pure males is driven by the absence of secondary sexual differenti-
ation which means that a pure male cannot access more femalesthan a hermaphro-
dite (e.g., from being more attractive or faster). Therefore, hermaphrodites always
have a higher RS than males of the same quality. Consequently, without secondary
sexual differentiation the equilibrium population consists of females and reciprocal
hermaphrodites (the latter mate reciprocally with each other and, obviously, non-
reciprocally with the females).

2.2 Secondary Sexual Differentiation

Males were absent from the equilibria above. Secondary sexual differentiation
(SSD) changes that.6 The assumption that male sex cells are produced at zero mar-
ginal cost implies that high sperm quality is not scarce, andthus female RS hinges
on the quantity of eggs produced. Male RS, on the other hand, increase with greater
partner access, and partner access may be improved by investments in SSD.

Since a male has no alternative uses for the energy endowment1, we know that
male investment in SSD,em, is:

em = 1 − µ(1 − a).

A hermaphrodite can invest in eggs, and we will assume that itspends a fractionλ
on eggs and the remaining energy on SSD, denotedeh:

eh = (1 − λ)(1 − a − b).

For a general analysis of the population structure, it wouldbe necessary to con-
siderλ as a choice variable of hermaphroditic individuals. However, we focus on
understanding the role of SSD for gonochorism and therefore, we treatλ as a fixed
parameter. Since hermaphrodites can spend less than males on SSD, they may give
it up altogether in favor of egg production. Therefore aλ close to 1 seems therefore
a reasonable assumption.

We parameterize the pure male’s (male) advantage over a hermaphrodite byx,
the ratio of the expected number of female partners of a male and a hermaphrodite
respectively. The empirically relevant range isx > 1.

While females could gain RS by diverting resources into SSD, they do not have
an incentive to do so in our set up. The reason is that there is no female competition
for high quality males.

Again, we focus on the case of low search cost, i.e., hermaphrodites mate assor-
tatively (and reciprocally).7

6The concept was introduced by Darwin who defined it as traits that helped in the competition
for mates, but are otherwise a burden, like the peacock’s tail. He observed that secondary sexual
differentiation is more pronounced among males, or in his words: “If masculine character [is] added
to the species, we can see why young & Female [are] alike[.]” quoted in the Penguin Classics 2004
introduction to The Descent of Man. Secondary sexual differentiation being greater among males is
consistent with the greater variable cost of female sex cells.

7Again, if search cost were high, hermaphrodites would mate randomly. This does not affect the
qualitative characterization of the equilibria, only the values of the cut-off points.
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Proposition 2 For a ∈ (0, 1), b = µ(1 − a), µ ∈ (0, 1), λ ∈ [0, 1] there are the
following Nash equilibria in pure strategies:

1. For x ≤ 4λ2(1−µ)2−4λ(1−µ)+(2λ(1−µ)−1)
√

4λ2(1−µ)2+3−4λ(1−µ)

2λ(1−µ)−
√

4λ2(1−µ)2+3−4λ(1−µ)
, there is an equi-

librium with the following properties (cf. Proposition 1, part 1):

0 < j = j̄1 < j̄2 = 1,

where

j =
2

4λ(1 − µ) − 3
(λ(1 − µ) − 1

2

√

4λ2(1 − µ)2 + 3 − 4λ(1 − µ)).

2. For µ ≤ 1 − 1
2λ

, x ≤ 1 + 8λ2(1−µ)2(1−j̄1)

1+j̄1
, there is an equilibrium with the

following properties (cf. Proposition 1, part 2):

0 < j < j̄1 < j̄2 = 1,

where

j =
1 + j̄1

4λ(1 − µ)
,

and

j̄1 >
1

4λ(1 − µ) − 1
.

3. For µ ≤ 1 − 1
2λ

, and x > max{1 + 8λ2(1−µ)2(1−j̄2)

1+j̄2
, 1+j̄2

1+j̄2−8λ2(1−µ)2
}, there is

an equilibrium with the following properties:

0 < j < j̄1 = j̄2 < 1,

where

j =
1 + j̄2

4λ(1 − µ)

and

j̄2 > max{ 1

4λ(1 − µ) − 1
,
−1 + 8λ2(1 − µ)2

1 + 8λ2(1 − µ)2
}.

In words, females accept males above j̄2, individuals in [0, j) are females,
individuals in [j, j̄2), are hermaphrodites, and individuals in [j̄2, 1] are males.
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4. If µ > 1− 1
2λ(

√
3−1)

, then there is for any x ≥ 1
(1−2λ(

√
3−1)(1−µ)

an equilibrium
with females and males only:

0 < j = j̄1 = j̄2 < 1,

where

j =
1√
3
.

In words, all individuals in [0, j) are female and all individuals in [j, 1] are
male. Females accept all males as partners.

Proposition 2 describes a possible path towards gonochorism. Part 4 gives con-
ditions for an immediate shift. In Part 3, using definition 1,the population splits
into a sub-population of hermaphrodites and a sub-population of males and females.
Within the sub-population of of hermaphrodites, the process may start anew, with
the extremes turning gonochoric (females at the bottom and males at the top). Fig-
ure 2 illustrates parts 3 and 4 of the proposition.

Proposition 2 highlights the role of SSD for males, and that males and her-
maphrodites are unlikely to co-exist in equilibrium. This suggests that for (simul-
taneous, self-incompatible) hermaphroditism to exist in “the long run,” a species
either lack “visible” heterogeneity (for instance from living in a habitat that is rich
enough) or the scope for SSD is low (e.g., from low mobility).

3 Discussion

The paper has argued that hermaphroditism is not stable in the face of population
heterogeneity. The reasons are three fold. First, low quality individuals would do
better as pure females if there are fixed costs associated with a sex function. Sec-
ond, females prefer high quality individuals as mating partners. Thus, low and high
quality individuals interbreed, whereas intermediate individuals only mate among
themselves. Third, if there is sufficient scope for secondary sexual differentiation,
it pays for the high quality individuals to be pure males. In that case two sub-
populations form: a gonochoric sub-population consistingof (low-quality) females
and (high-quality) males and a sub-population of hermaphrodites. The remaining
hermaphrodites are less heterogeneous, but within this group the selection process
may start anew. By this logic, a hermaphroditic species may turn gonochoric – un-
less heterogeneity is absent or there is no scope for secondary sexual differentiation
(from anything that caps male reproductive capacity, low mobility being a case in
point).

Phylogenically, hermaphroditism has given way to gonochorism, and irreversibil-
ity of the latter may be one reason. Charnov (1982):241 wrote “At least one con-
straint hypothesis suggests itself. It may be easier to change from hermaphroditic to

9



Notes: The figure is based on the assumption that only males invest into secondary sexual
differentiation, i.e.,λ = 1.
The dashed part of the figure depicts the distribution of types within the population from
part 4 of Proposition 2. The dashed line is given byj = 1√

3
. Individuals whose quality is

belowj choose to be female, individuals abovej choose to be males. This equilibrium only
exists forµ ∈ [.317, 1].
The solid part of the figure depicts the distribution of types within the populationfrom part
3 of Proposition 2. The exact distribution depends onj̄2. The graph assumes thatj̄2 is in
the middle of the admissible range. Here, individuals betweenj = 1+j̄2

4(1−µ) andj̄2 choose to
be hermaphrodites but females accept only males.

Figure 2: Distribution of types with secondary sexual differentiation

dioecious than the reverse. A hermaphrodite need only suppress the development or
use of one sex function; suppression early in development may automatically free
resources for the other sex function. Under dioecy, an individual becoming a her-
maphrodite must build and operate the other sex function. Until the other function
works, selection must operate against diverting resourcesthere.” The development
of SSD, facilitated by gonochorism (dioecy) may be another reason the process
might not easily reverse. Once in place, the existence of SSDmay make the male
function of a hermaphrodite uncompetitive and thus redundant.

Male violence is a particularly interesting form of SSD. Ourresults suggest that
hermaphrodites are particularly vulnerable to male-to-male violence. Since herma-
phrodites mate reciprocally, a hermaphrodite’s female function is not available to
pure males, and thus a hermaphrodite is, in the eyes of a pure male, for practical
purposes a male rival only. Note that male-to-male violenceis more debilitating
to the hermaphroditic population than the gonochoric even at similar fatality rates.

10



This follows because the death of a pure male does not affect the number of eggs
produced, whereas the death of a hermaphrodite does. Although “male” violence
among hermaphrodites does occur (e.g., marine flatworms, see Michiels and New-
man (1998)), we would expect such violence to be non-lethal.

It has been noted that reciprocal mating results in weaker sexual selection (cf.
strict monogamy among gonochorists). Our paper points to the possibility that
hermaphroditism is only stable if the scope for sexual selection is low (i.e., low
heterogeneity). This is consistent with the Charnov’s observation that reciprocal
mating does not preclude effective polygyny (for an exampleof sperm competition
and counter strategies, see Haase and Karlsson (2004)).
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Appendix

Proof of Lemmas 1 and 2:

Consider a group of hermaphrodites that mate with each other as males and
females and are, in addition, willing to use their male function when mating with
individuals from another group (females or other hermaphrodites). Reproductive
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success from outside the group is a fixed revenue for all individuals. It is therefore
unmentioned in what follows.

Let the worst quality within this group bej1, the best qualityj2. Individuals can
use three different mating strategies within the group of hermaphrodites:
(1) Random, non-reciprocal mating
(2) Random, reciprocal mating
(3) Assortative, reciprocal mating

Assortative, non-reciprocal mating is not a meaningful strategy as the female
function does not contribute to offspring quality. To show that under low search
costs individuals will choose assortative, reciprocal mating, we show first that ran-
dom, non-reciprocal mating is dominated by random, reciprocal mating and then
that assortative, reciprocal mating constitutes a Nash equilibrium.

Thus, we compare RS from the first two alternatives. If (all) individuals mate
randomly, they receive sperm of qualityj1+j2

2
in expectation. This quality is inde-

pendent of reciprocity. Thus, without search costs there isno difference between
both strategies. If we account for search costs, mating reciprocally reduces search
costs as well as the risk of not finding a partner. Random, non-reciprocal mating is
therefore dominated by random, reciprocal mating. Random, non-reciprocal mating
is thus canceled from the strategy space under consideration.

To show that assortative mating constitutes a Nash equilibrium needs more con-
siderations. First, it is clear that individuals whose quality is abovej1+j2

2
prefer to

mate assortatively – if search costs are sufficiently low – asthey have an RS of

2j(1 − a − b)

if mating assortatively and of

j(1 − a − b) +
j1 + j2

2
(1 − a − b)

if mating randomly. The former value is higher than the latter as long asj > j1+j2
2

.
Individuals of qualityj ∈ [j1,

j1+j2
2

] would receive sperm of – in expectation –
higher quality under random mating than under assortative mating. But, as those in-
dividuals of quality abovej1+j2

2
will mate assortatively and reciprocally, the number

of male and female functions that are to be randomly matched is off balance. For,
individuals abovej1+j2

2
have used their female function for reciprocal mating but

are still willing to use their male function again. Therefore, if individuals of lower
quality (below j1+j2

2
) accept sperm from those individuals who have already used

their female function for reciprocal mating, they will forego mating opportunities
for their own male function.

Therefore, individuals of qualityj ∈ [j1,
j1+j2

2
] face three alternatives:

(a) Mate randomly and reciprocally (and, thus, forego high quality sperm) which
leads to RS of

j(1 − a − b) +
j1 + j1+j2

2

2
(1 − a − b),
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(b) mate randomly and non-reciprocally (and accept sperm from all individuals
abovej1) which leads to RS of

j1 + j2

2
(1 − a − b) + j(1 − a − b)

j1+j2
2

− j1

j2 − j1
︸ ︷︷ ︸

=1/2

as there are excess male functions and therefore the probability of finding a mate for
ones own male function is smaller than 1 for an individual of quality j ∈ [j1,

j1+j2
2

],
(c) mate assortatively which leads to RS of

2j(1 − a − b).

Comparing alternatives (a) and (b) we find that for individuals of lower quality
(below j1+j2

2
) random, reciprocal mating dominates random, non-reciprocal mating

– that includes all male functions – as long asj1 > 1/3j2. This condition holds in
all scenarios considered throughout the paper as individuals of qualityj ≤ 1/3 will
always choose to be purely female andj2 cannot exceed 1. Therefore, alternative
(b) can be ignored.

Comparing alternatives (a) and (c) we find that – ignoring search costs – assor-
tative mating is the better strategy for all individuals of quality above3j1+j2

4
. If we

account for search costs this threshold would be even smaller.
Thus, we have shown that individuals in[3j1+j2

4
, j2] will mate assortatively. In-

dividuals in[j1,
3j1+j2

4
] again face the behavioral alternatives (a), (b), and (c) with

the corresponding – mutatis mutandis – RS. Alternative (b) can again be excluded
if j1 > 1/3j2. From comparison of (a) and (b) we get that individuals of quality
above7j1+j2

8
prefer to mate assortatively.

Taking that argument ad infinitum we can show that all individuals abovej1

prefer to mate assortatively if the best individuals withinthe group do so. This
behavior is a best response for high quality individuals if search costs are low –
which we assumed. q.e.d.

Proof of Proposition 1:
Part 1: We assume that individuals of qualityi < j choose to be female and to
accept males of qualityi > j. Then there arej females and1 − j males and
hermaphrodites. Accordingly, the RS of a hermaphrodite of quality i is given by

2(1 − a − b)i

from reciprocal mating and

(1 − a)i
j

1 − j

from its male function. The RS of a female is

(1 − a)
1 + j

2
.

13



To determine the thresholdj, an individual of qualityj has to be indifferent between
being female and being hermaphroditic. Usingb = µ(1 − a) we obtain

(1 − a)
1 + j

2
= 2(1 − a − b)j + (1 − a)j

j

1 − j
, j ∈ [0, 1]

⇔ j =
2

1 − 4µ
(1 − µ − 1

2

√

3 − 4µ + 4µ2)

which exists and is in[0, 1] for all µ ∈ [0, 1] except forµ = 1/4, where the function
has a removable pole. Thus, being female and accepting all male functions above
j is a best response to all individuals abovej being hermaphrodites and vice versa.
Therefore,j = j̄1. As there is no SSD, being pure male does not provide an ad-
vantage in fertilizing eggs but goes at the cost of not havingRS from own eggs;
thereforēj2 = 1.
Part 2: However, all hermaphrodites being assortatively reciprocal does not imply
that females accept all hermaphrodites as partners. We now describe the condi-
tions for an equilibrium where individuals belowj are female and females choose
a different threshold qualitȳj1. If there are hermaphrodites below̄j1 their RS only
comes from reciprocal matings and is given by

2(1 − a − b)i.

Female RS is now given by

(1 − a)
1 + j̄1

2

and RS of a hermaphrodite abovej̄1 by

2(1 − a − b)i + (1 − a)
j

1 − j̄1

.

The lower threshold is again given by indifference between female and hermaphro-
ditic (without additional matings) RS. Usingb = µ(1 − a) we get:

(1 − a)
1 + j̄1

2
= 2(1 − a − b)j

⇔ j =
1 + j̄1

4(1 − µ)
. (1)

To provide a basis for an equilibrium,j andj̄1 have to meet two conditions:
(1) j ≤ j̄1 which implies that

1

3 − 4µ
≤ j̄1, and µ <

3

4

the condition on̄j1 given in the proposition.
(2) j̄1 ≤ 1 which – following from the first condition – implies 1

3−4µ
≤ 1. This

condition holds ifµ ≤ 1/2. Again, there is no room for males:j̄2 = 1. q.e.d.
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Proof of Proposition 2:
A hermaphrodite spendsλ · e on eggs and(1 − λ) · e on matings.
The RS of a male of qualityi is given by

i(1 − a)dm,

wheredm denotes the expected number of a male’s female partner, and the RS of a
hermaphrodite of qualityi under assortative mating is given by

2λ(1 − a − b)i + i(1 − a)dh = 2λ(1 − µ)(1 − a)i + i(1 − a)dh,

wheredh denotes the expected number of a hermaphrodite’s female partner. Com-
paring these expressions we obtain

i(1 − a)dm ≷ 2λ(1 − µ)(1 − a)i + i(1 − a)dh

⇔ dm ≷ 2λ(1 − µ) + dh. (2)

That is, the difference in male and hermaphroditic success is independent of
individual quality. Therefore, a pure strategy equilibrium will either result in fe-
males and hermaphrodites or in females and males. Thus, to prove the proposition’s
claims it suffices to show under which conditions a population with hermaphrodites
who mate with females is stable against male invasion and under which conditions
a female-male population is stable against hermaphroditicinvasion. Thus, indepen-
dent of equilibrium structure we havēj1 = j̄2.

For the female-hermaphrodite equilibria, the population structures are similar
to those of Proposition 1:

(1) Females accept all hermaphrodites as partners and all individuals belowj are
female and all individuals abovej are hermaphrodites. The individual of quality
j is indifferent between being female or hermaphroditic, which defines threshold
quality j as

j =
2

4λ(1 − µ) − 3
(λ(1 − µ) − 1

2

√

4λ2(1 − µ)2 + 3 − 4λ(1 − µ)).

Forλ = 1 this expression is equal to that in proposition 1.
(2) Females accept only hermaphrodites abovej̄, which leads to a three-layer

population structure: All individuals belowj are female, individuals in[j, j̄1) are
hermaphrodites that do not mate with females, and in[j̄1, 1] there are hermaphro-
dites that do mate with females.

Since individualj needs to be indifferent between being female, earning a RS
of (1 − a)(j̄1 + 1)/2, and being a hermaphrodite who mate reciprocally and assor-
tatively only, earning a RS of2λ(1 − µ)(1 − a)j, we obtain

j =
1 + j̄1

4λ(1 − µ)
.
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For males to be able to invade, they need to do better than the hermaphrodites
who mate with females. The expected number of matings with females for a her-
maphrodite isdh = f

h∗
whereh∗ varies according to the equilibrium. A male that

invades the population mates withdm = xdh females (cf. page 7). Therefore, from
(2) we know that a male can invade the population if

x
f

h∗
> 2λ(1 − µ) +

f

h∗
. (3)

If females accept all hermaphrodites as partners, condition (3) takes the form

x
j

1 − j
> 2λ(1 − µ) +

j

1 − j
. (4)

If females only accept the top hermaphrodites as partners, then condition (3) takes
the form

x
j

1 − j̄1

> 2λ(1 − µ) +
j

1 − j̄1

, (5)

wherej, j̄1 have to be substituted according to the threshold values from proposi-
tion 1. Inequalities (4) and (5) lead to the equilibria in parts 1 through 3 of Propo-
sition 2.

We now turn to proving the specific parts of the proposition.
Part 1.

Here (4) is the relevant inequality with
j = 2

4λ(1−µ)−3
(λ(1 − µ) − 1

2

√

4λ2(1 − µ)2 + 3 − 4λ(1 − µ)). Therefore a fe-
male/hermaphroditic population is stable (i.e., males cannot invade) if

x
j

1 − j
≤ 2(1 − µ) +

j

1 − j

⇔ x ≤ 1 + (1 − µ)2
1 − j

j

⇔ x ≤ 4λ2(1 − µ)2 − 4λ(1 − µ) + (2λ(1 − µ) − 1)
√

4λ2(1 − µ)2 + 3 − 4λ(1 − µ)

2λ(1 − µ) −
√

4λ2(1 − µ)2 + 3 − 4λ(1 − µ)

which proves the claim. Ifλ = 1 the relevant threshold is given byx ≤
√

3−4µ+4µ2+4µ2−2µ
√

3−4µ+4µ2−4µ

2−2µ−
√

3−4µ+4µ2
.

Part 2.
Here (5) is the relevant inequality, wherej = 1+j̄1

4λ(1−µ)
; the proposed three-layer

population only exists ifµ ≤ 1 − 1
2λ

, (λ > 1
2
) and j̄1 ≥ 1

4λ(1−µ)−1
. The condition

for a purely female/hermaphroditic population to be stableis

x
j

1 − j̄1

≤ 2(1 − µ) +
j

1 − j̄1

⇔ x ≤ 1 + (1 − µ)2
1 − j̄1

j

⇔ x ≤ 1 +
8λ2(1 − µ)2(1 − j̄1)

1 + j̄1
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which proves the claim.
Part 3.

The three-layer equilibrium with females and hermaphrodites can be invaded if (5)
holds which implies that

x > 1 +
8λ2(1 − µ)2(1 − j̄1)

1 + j̄1

.

In that case males had an incentive to replace those hermaphrodites whose quality
is abovēj1; females’ and intermediate hermaphrodites’ incentives are not modified
by that change as their RS only depends on the fact that there are male functions
abovēj1 and is independent of the provider’s sex choice.

Thus, ifx > 1 + 8λ2(1−µ)2(1−j̄1)
1+j̄1

there can be an equilibrium with females below
j, purely reciprocal hermaphrodites in[j, j̄1), and males abovēj1. As j̄1 = j̄2

and j̄2 denotes the threshold between hermaphrodites and males, wereplacēj1 by
j̄2 for the remainder of the proof. This equilibrium however could be invaded by
hermaphrodites. Now, the considerations leading to (5) have to be undertaken from
male perspective.

If there are males only abovēj2, their average number of matings isdm = f
m

.
A hermaphrodite invading this population would havedh = 1

x
dm matings with

females according to (2). Thus, a hermaphrodite can invade the population if

dm < 2λ(1 − µ) + dh

⇔ f

m
< 2λ(1 − µ) +

1

x

f

m

⇔ (1 − 1

x
)

j

1 − j̄2

> 2λ(1 − µ)

If we substitutej we get

x

(
1 + j̄2

4λ(1 − µ)(1 − j̄2)
− 2λ(1 − µ)

)

<
1 + j̄2

(1 − j̄2)4λ(1 − µ)

where the bracket is positive as long asj̄2 > −1+8λ2(1−µ)2

1+8λ2(1−µ)2
. Thus, if j̄2 sufficiently

high, hermaphrodites can invade the population if

x <
1 + j̄2

1 + j̄2 − 8λ2(1 − µ)2(1 − j̄2)

which proves the claim.
Part 4. As we have already shown that males will invade a two-layer popu-

lation if x >
4λ2(1−µ)2−4λ(1−µ)+(2λ(1−µ)−1)

√
4λ2(1−µ)2+3−4λ(1−µ)

2λ(1−µ)−
√

4λ2(1−µ)2+3−4λ(1−µ)
, it remains to show

when a female/male population would be stable. Hermaphrodites cannot invade a
female/male population if
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f

m
≥ 2λ(1 − µ) +

1

x

f

m

⇔
j

1 − j
≥ 2λ(1 − µ) +

1

x

j

1 − j
(6)

wherej needs to be determined. Female RS is given by

(1 − a)
1 + j

2

and RS of an individual of qualityi is given by

(1 − a)i
j

1 − j
.

Therefore the threshold qualityj can be determined by the indifference condition

(1 − a)
1 + j

2
= (1 − a)j

j

1 − j

⇔ j =
1√
3
.

If we substitutej into inequality (6), we see that it can only hold (even ifx → ∞)
if µ > 1− 1

2λ(
√

3−1)
. If we solve (6) forx, we get that hermaphrodites cannot invade

the population ifx ≥ 1
(1−2λ(

√
3−1)(1−µ)

. q.e.d.
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