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Abstract

The shipping industry has been quite successful in reducing the number of major
accidents in the past. In order to continue this development in the future, innovative
leading risk indicators can make a significant contribution. If designed properly, they
enable a forward-looking identification and assessment of existing risks for ship and
crew, which in turn allows the implementation of mitigating measures before
adverse events occur. Right now, the opportunity for developing such leading risk
indicators is positively influenced by the ongoing digital transformation in the
maritime industry. With an increasing amount of data from ship operation becoming
available, these can be exploited in innovative risk management solutions. By
combining the idea of leading risk indicators with data and algorithm-based risk
management methods, this paper firstly establishes a development framework for
designing maritime risk models based on safety-related data collected onboard.
Secondly, the development framework is applied in a proof of concept where an
innovative machine learning-based approach is used to calculate a leading maritime
risk indicator. Overall, findings confirm that a data- and algorithm-based approach
can be used to determine a leading risk indicator per ship, even though the
achieved model performance is not yet regarded as satisfactory and further research
is planned.

Keywords: Maritime safety, Accident prevention, Safety management, Risk
prediction, Leading indicators, Machine learning

Introduction
Shipping accidents can lead to significant losses for both shipping companies and soci-

ety at large (Jin et al. 2008). In recent years, weak economic growth, limited demand

on many commodity markets and an oversupply of tonnage in almost all maritime

transport segments have put shipping companies under considerable cost pressure. As

a result, (safety-related) maintenance and training measures compete for tight budgets,

and crew numbers are adjusted on many ships. In the “Allianz Safety and Shipping Re-

view 2017”, experts warn of increasing risks in the shipping industry due to inadequate

maintenance and repair (Dobie 2018). This raises concerns about the medium-term

implications for ship and crew safety.
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In order to address risks for ship and crew, it is necessary to develop and use effective

methods, which allow an objective assessment of given hazards. The Formal Safety As-

sessment (FSA) of the International Maritime Organization (IMO) plays a central role

in the identification and assessment of maritime risks (Montewka et al. 2014; IMO

2015). It defines risk as a combination of the probability that an adverse event will

occur and the associated negative consequences. Beyond this technical definition used

by the IMO, risk is a complex concept used in several ways. According to Cross (2012),

two distinct meanings stand out in technical publications:

� risk as “a description of something that is uncertain and may not be an event or an

outcome (it might be both, or it might be an exposure)”

� risk as “a measure to which a number or rank can be ascribed related to the extent

to which potential outcomes are of concern to us.”

In the context of this research, risk is first of all understood as an inverse of safety

and thus an instrument to identify opportunities to avoid accidents, which are harmful

to property, life, or the marine environment. In order to do so, a quantitative approach

common in the insurance industry will be adopted, which classifies risks of individual

objects - which are ships in this case - based on historical data (e.g. past loss frequen-

cies) by referring to characteristic features of these objects. This allows assessing risk

levels (e.g. expected number of losses per time period) for objects with comparable fea-

tures (Boodhun and Jayabalan 2018). Important indicators in this context are the loss,

claims or accident frequency (in terms of the average number of claims or accidents

per time) and the expected claims respectively accident expenditure (which also con-

siders the monetary value of individual events) (Goelden et al. 2016). For a first scien-

tific approach to the subject, it may also be sensible to consider only the most frequent

type of accident/incident in constructing a realistic and practical risk exposure metric.

Identifiying and using such metrics can be of substantial benefit for different maritime

stakeholders:

� Operators can use them for quantifying risks of individual vessels correctly to

identify an optimal level of investment (both in human element, e.g. training of

seafarers, and their asset, e.g. more comprehensive maintenance) which maximises

profit.

� Maritime insurers can use them for quantifying risks of individual vessels correctly

to price individual insurances appropriately.

� Maritime authorities (e.g. port sate control) can use them for quantifying risks of

individual vessels correctly to minimise accidents (e.g. through targeted

inspections).

By contrast, currently “lagging indicators” dominate in the maritime sector in coping

with risks once they are identified (Jalonen and Salmi 2009). In the course of maritime

accident investigations, an ex-post identification of causes and contributing factors is

carried out, which is of great importance in order to avoid comparable accidents in the

future. However, this approach, with its focus on the past is not suitable for proactive

risk management. This requires “leading indicators” which, in synergy with risk models,
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create ex-ante transparency regarding the risk exposure of a ship. Intelligent risk moni-

toring and control systems thus help to ensure that disruptions in onboard operations

are identified at an early stage, and actions can be taken once operational risks are no

longer acceptable. Within the framework of an asset management system, proactive risk

management with appropriate leading indicators can create significant benefit (ISO/PC

2012). An opportunity for taking up this approach lies in the adaptation of innovative

algorithms and methods from risk research. Based on quantitative and qualitative data

collected during onboard operation, which are becoming increasingly available, a pre-

dictive risk model can be used to determine leading maritime risk indicators.

Leading risk indicators adopt the idea of measuring conditions, attributes and states

that affect the risk level of a system or activity and which are collectively referred to as

risk-influencing factors. Accordingly, developing leading risk indicators requires an un-

derstanding of causal events and fault sequences leading to accidents in order to define

suitable metrics associated with risk influencing factors (Toellner 2001). Once a change

in such risk-influencing factors is detected, it can serve as an early warning of an in-

creased risk of adverse events occurring and thus allows the implementation of ad-

equate means to prevent accidents in advance (Oien and Sklet 1999). The idea of

leading risk indicators has found its application in several methodologies in the field of

risk management, with one example being “Tripod-DELTA”. This checklist-based ap-

proach was designed to identify conditions, attributes and states (risk-influencing fac-

tors) before “latent failures” can lead to an “active failure” (=adverse event). In practice,

such “latent failures” or shortcomings can often be identified long before the actual ac-

cident (Hudson et al. 1994). Examples of leading indicators being used can be found in

different sectors, including offshore oil and gas, energy and related process industries

as well as nuclear safety (Tomlinson et al. 2011).

To this day, several scholars have already taken up the concept of leading indicators

and applied it to the maritime industry. Examples include Balmat et al. (2009) who de-

fine a methodology to calculate a ship specific risk metric based on some risk factors

making use of a fuzzy logic approach. Hänninen et al. (2014) use Bayesian networks

(BN) as a modelling technique in combination with expert elicitation and historical

data in order to obtain a ship-specific quantitative risk level assessment. Statistical

methods form the basis of models used to predict future accident risk developed by

Heij and Knapp (2018) and calculate safety leading indicators by Wang (2008). More-

over, extensive work done by ABS including statistical analysis on correlations between

leading risk indicators and safety performance data has resulted in the publication of

“Guidance Notes on Safety Culture and Leading Indicators of Safety” (American Bureau

of Shipping 2014). As such, the idea to combine leading risk indicators with data and

algorithm-based management methods is not new in the maritime domain. However,

in contrast to existing work, this paper focusses on the application of machine learning

(ML) methods to calculate a leading risk indicator based on safety-related data col-

lected onboard. In doing so, concepts formulated for an ML-based approach that classi-

fies construction projects according to their safety risk (Poh et al. 2018) as well as

approaches for accident frequency modelling with ML algorithms in the context of

non-life insurance pricing (Mendes et al. 2017; Zöchbauer 2016) are adopted.

The first objective of this paper is to establish a framework for designing leading

maritime risk indicators, which can be used as a guide for systematic development of
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data-based risk models for ship operation. Secondly, the introduced framework is im-

plemented in a proof of concept, which makes use of ML algorithms applied to safety-

related data collected onboard in combination with data on maritime accidents. The

goal is to quantify the risk associated with a particular operating condition on board

using a risk model and further calculate a risk metric as a decision-making parameter.

Compared to current practices in the industry, which are predominantly based on the

results of ex-post maritime casualty investigations, the introduction of predictive data

and algorithm-based leading risk indicators promises transparency ex-ante. Assessing

the condition on board and analysing it with a risk model presents an opportunity to

prevent maritime accidents more effectively than today by providing an objective basis

for initiating suitable mitigation measures and keeping operational risks to an accept-

able level.

The remainder of the paper is structured as follows. Section 2 gives an overview of

the quantitative maritime risk picture by introducing and discussing key figures on sig-

nificant risks for ships and crew. This is followed in Section 3 by the establishment of a

conceptual framework for developing leading maritime risk indicators and operationa-

lising them in a risk model. Subsequently, a proof of concept in Section 4 applies the

framework to instantiate a data-based risk model and use this model to calculate a

leading maritime risk indicator. Lastly, Section 5 summarises the results and provides a

critical review of the outcome.

Quantitative maritime risk picture
This section will give an overview of the overall maritime risk picture by presenting key

figures and highlighting recent developments and characteristics of maritime accidents.

In the context of this paper, an accident shall be defined as “an undesirable event that

results in damage to humans, assets and / or the environment” (Kristiansen 2005). For-

tunately, there has been an overall decline in the number of maritime accidents in re-

cent years, first and foremost for particularly serious events (see Fig. 1). In

consequence, the frequency of total losses has fallen by order of magnitude since the

beginning of the last century, and the absolute number of total losses per year has

dropped by almost half over the last decade.

In order to assess the financial consequences of maritime accidents, the number of

total losses reveals only part of the picture. Besides sinking and total economic losses,

Fig. 1 Total losses as a percentage of the world fleet per year (left) and absolute number of total losses per
year (right). Based on data from Dobie (2016, 2018)
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other less catastrophic accidents need to be taken into account as well. Estimates of an

accident rate per year are in the range of 10% for medium and severe events and 5%

for accidents with damage greater than US$ 100,000 (Schröder 2004). These figures

correspond to publicly available statistics by the maritime insurance industry. Accord-

ing to the Nordic Marine Insurance Statistics (NoMIS), the number of insurance claims

per ship was in the range of 13–18% over the period from 2010 to 2016. The share of

total losses over the same period was between 0.6–0.4% (see Fig. 2). A recent decline in

the number of claims is attributed to several different factors: Over the past few years,

improved risk management by ship owners, the introduction of new regulatory measures,

a declining average age of the fleet, technological advances in navigation and better inci-

dent management have all contributed to reducing the frequency of maritime accidents.

(UK P&I Club 2018) As far as the annual average cost of accidents (claim value per ship)

is concerned, these amount to approx. US$ 40,000 in 2016 (Seltmann 2017).

Data from NoMIS also allow a distinction of accidents by category. In terms of fre-

quency, machine damage is most common, with 39% of all incidents (Fig. 3). Damage

attributable to navigational incidents (grounding, collision, contact) accounts for a fur-

ther 41% of all incidents. Regarding the number of claims, Fire/Explosion, Heavy Wea-

ther and Ice are rather rare events. The picture is somewhat different for the average

cost per incident. Here, fires or explosions on board take first place with an average

cost of more than 1.5 mUS$ per claim. Groundings are in second place with more than

0.5 mUS$ on average followed by collisions and heavy weather damage. Machinery

damage, on the other hand, is characterised by a comparatively low average cost per in-

cident. Besides, Fig. 3 also illustrates the total damage costs per category over the

period from 2011 to 2016. Here, comparatively inexpensive but frequent machinery

damage events come in first place with about 33% of all costs followed by grounding

with just under 22% and fire and explosions as well as collisions with about 15% of total

damage claims respectively.

Fig. 2 Frequency of insurance claims and total losses. Based on data from Cefor (2017)
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With regards to casual events and contributing factors of maritime accidents, human

error is a major aspect, directly linked to more than 50% of adverse events (EMSA

2018). Although human (erroneous) behaviour is not always decisive in causing the ac-

cident, it often plays an essential role in the developments leading to it. Against this

background, other studies suggest an even greater influence with 75–96% of marine in-

cidents and accidents caused by some form of human error (Hanzu-Pazara et al. 2008).

Besides human error, another important contributing factor in many cases is the failure

of technical equipment and systems (EMSA 2018).

Development framework
This section introduces a conceptual framework for developing leading maritime risk

indicators and operationalising them in a risk model. After an introduction to relevant

basic ideas and concepts, three successive steps of the development framework are

described.

In practice, many problems are characterised by a high degree of complexity. One

way to manage this complexity in problem-solving is to use models as a representation

of reality limited to the most relevant aspects. In a more formal definition, a model is a

representation of an object in a particular language and form that meets a particular

need of the objects stakeholder (Pourret et al. 2008). In the context of this paper, the

need of the objects stakeholder is to “ensure vessel safety” by managing relevant risks.

This task is part of the safety management function of a shipping company with the ob-

jective of developing, planning and implementing measures aimed at accident preven-

tion to minimise risks for seafarers, the environment and property (Hänninen et al.

2014). It follows that the purpose of a risk model, as it is used in this paper, is to repre-

sent all relevant aspects of maritime safety management in a suitable language and us-

able form. In doing so, the risk model simulates the dynamics and developments of risk

prone, adverse events associated with the operation of the vessel in order to provide

the ship-owner with information about the risk level based on an assessment of the op-

erating conditions on board. For this purpose, a risk model can be both qualitative or

take the form of a quantitative mathematical model, which enables the calculation of a

Fig. 3 Number of claims and the average cost per claim for different accident types (left) and total cost of
claims per accident type over the period 2011 to 2016 (right). Based on data from Cefor (2017)
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risk metric such as a leading risk indicator. A quantitative risk model should comprise

all elements, which have a relevant influence on ship operation safety, and further re-

flect how individual elements interact with each other in defining the overall risk level.

Elements in this context are all risk-influencing factors that affect the risk level of the

ship in operation.

An objective and realistic assessment of an asset’s condition is an essential prerequis-

ite for implementing effective and efficient risk management (Beerboom 2016). Only

where risks for the ship and crew are measured accurately will it become possible to

carry out effective control and focused management of operational risks. Unfortunately,

risk-influencing factors that have a significant influence on maritime accidents are often

not directly measurable. In order to overcome this, it is necessary to identify suitable

variables (indicators) that reflect the abstract concept of a risk-influencing factor (Oien

2001). Where risk-influencing factors are system states or attributes that affect the risk

level of ship operation, indicators are observable and measurable variables that can be

used to monitor risk-influencing factors (Oien and Sklet 1999). Indicators should be

designed in a way to show where processes and conditions on board leave a defined

“normal range”. Hence, indicators provide signals of an undesirable, risk-increasing de-

velopment and monitoring these indicators can support the process of controlling risks

and ultimately preventing accidents (Wang 2008). Identifying appropriate indicators

and combining them in a risk model requires the definition of selection criteria, which

help to ensure that the monitored aspects (processes and conditions onboard) are rele-

vant and unnecessary information is filtered out (Toellner 2001). As a key feature, indi-

cators that monitor risk-influencing factors should be easy to quantify. Furthermore, it

is crucial to define a systematic and identical process for measuring individual aspects

on board.

In light of the above, the framework for developing leading maritime risk indicators

and operationalising them in a risk model consists of three steps. A first step defines in-

dividual inspection points for the assessment on board (processes and conditions moni-

tored onboard). The second step concerns the development of a classification scheme,

which guides the evaluation per inspection point. Thirdly an aggregation method is

specified, which defines how findings per inspection point are combined into one or

more leading risk indicators (Beerboom 2016). With this last step, a risk model is oper-

ationalised by defining how results of onboard observations are incorporated in a suit-

able (mathematical) model, which calculates a risk level based on the assessment

results.

Inspection points

The definition of appropriate inspection points for onboard condition assessment is of

crucial importance. When selecting inspection points, both operating personnel and

technical experts should be involved. Furthermore, domain-specific sources, such as

the ABS Maritime Root Cause Analysis (American Bureau of Shipping 2005), or assess-

ment guidelines, such as the “Guidelines on the marine assessment of F(P)SOs” pub-

lished by OCIMF (2016), can be useful. A starting point for compiling and structuring

a list of inspection points based on different industry sources is given in Table 1.
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A promising opportunity to collect representative data about the condition on board

is given in the context of mandatory ISM audits. Against the background of declining

safety standards and an increase in the number of severe maritime accidents through-

out the 1980s, the International Safety Management Code (ISM Code) was adopted by

the IMO in 1993. (IMO 2018) As a consequence, shipping companies are obliged to es-

tablish a safety management system based on the ISM Code. This includes conducting

ISM audits at regular intervals in order to identify and subsequently eliminate observa-

tions and non-compliances with the provisions of the ISM-Code. Thus, ISM audits pro-

vide a comprehensive picture of the condition of a ship. Although the audits primarily

serve a compliance function, they can also be a simple yet economical option for col-

lecting information about the condition on board for a data-based risk model. Beyond

ISM audits there is a large number of additional investigations and audits carried out

by the shipping company itself as well as other stakeholders (including maritime insur-

ance companies, ship owners, financing banks, port and flag states, and classification

societies), and several assessment guides and frameworks define which safety perform-

ance indicators can be measured how (Banda et al. 2014). In combination, all these re-

ports provide a broad basis of quantitative and qualitative data covering important

safety-related inspection points, which can be used in predictive risk modelling.

Another opportunity for obtaining information about the condition on board is by

directly using digital sensor data. Today individual systems on the latest generation of

vessels are increasingly equipped with extensive sensor technology. These various sen-

sors generate a large amount of data during operations, which contain information

about the condition of the ship and individual systems on board as well as the ship’s

environment. At a process control level (e.g. industrial control system (ICS) or super-

visory control and data acquisition (SCADA) system), the measured values come to-

gether and the entire ship system is monitored. It is therefore logical to access field and

sensor data at this level with the aid of appropriate data transmission protocols, e.g. as

thouse being developed for the Industrial Internet Of Things (IIoT) (Bauernhansl and

Table 1 Different elements, which can be considered when defining inspection points

Self Inspection Document for Ship Operator Self Checklist for Shipboard
Safety Management System

Guidelines on the marine
assessment of F(P) SOs

Certification and manning Shipboard tour Regulatory compliance

Management and personnel Company responsibilities Crew and contractor
management

Bridge Designated person Navigational equipment

Mooring Master’s responsibilities
and authority

Safety and security
management

Cargo operations Resources and personnel Electrical equipment

Engine department Key shipboard operations Pollution prevention
and environmental
management

Operational safety Emergency preparedness Structural condition

Health, safety and personnel protection Deficiency control Operations

Firefighting / Lifesaving Maintenance Mooring

Environmental protection Document control Communications

Security Internal audit and system review Navigation, propulsion
and active heading control

Source: CDI (2016), ClassNK (2018), OCIMF (2016)
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ten Hompel 2014). Thanks to the digitalisation of maritime systems and by combining

and evaluating the recorded sensor data, it is increasingly possible to monitor the tech-

nical condition of certain systems onboard (Condition Monitoring), to predict the fur-

ther development (Condition Prediction) and to make decisions regarding the optimal

timing of maintenance measures (Condition-based Maintenance) (Kretschmann et al.

2019). At the same time, this digital condition related information can and should be

utilised when designing and developing leading maritime risk indicators.

Classification scheme

In order to determine the ship’s condition by conduction an audit, the assessment at

each inspection point needs to be carried out by qualified personnel on board, which

can be either third party surveyors or own personnel of the shipping company. This as-

sessment task can either make use of a discrete rating scale or, less commonly, a con-

tinuous scale. Easy-to-use and cost-effective rating scales with at least two predefined

rating levels are usually specified in a uniform way for the whole assessment process. A

special case is a dichotomous scale with only two predefined response options (usually

approval or rejection). The advantage of a dichotomous design is good comprehensibil-

ity and comparatively short response time. On the other hand, acquiescence bias (ten-

dency to agree) is a disadvantage and implementing a dichotomous design can become

a challenge for complex situations (Moosbrugger and Kelava 2012). In case the assess-

ment per inspection point is based on a multi-item rating scale, a reference point needs

to be defined. Beerboom (2016), for example, proposes a scheme that uses the timeli-

ness of corrective actions. The evaluation is based on four levels: “no noticeable defect”,

“long-term removal of defect required”, “short-term removal of defect required”, and

“immediate removal of defect required”. A multitude of other reference points is pos-

sible, including (operational) safety or operability. As far as the number of levels on a

rating scale is concerned, seven is usually regarded as a sensible maximum (Moosbrugger

and Kelava 2012). Industry-specific process models and assessment guidelines (see, e.g.

CDI 2016; ClassNK 2018; OCIMF 2016) contain several pre-formulated questions, which

can be used as starting point when developing a classification scheme, whether dichotom-

ous or as a multi-item rating scale.

A standardised assessment procedure with a uniform checklist of inspection points

and a clearly defined classification scheme reduces the subjective influence of the per-

son conducting the assessment, but subjectivity cannot be eliminated. Personal experi-

ences and preferences will always affect the collected information to some extent. The

resulting bias must be taken into account when making decisions based on the col-

lected information (Beerboom 2016).

The results of different audit regimes (regardless of whether ISM, class or PSC audits)

are usually only available as written inspection protocols, which document individual

observations and nonconformities. Of course, such reports are not suitable as an input

for quantitative risk models and must first be quantified using a suitable methodology.

Alternatively, the auditing process can be modified ab initio so that quantitative condi-

tion data is collected (e.g. via an assessment checklist and classification scheme) in a

uniform and identical way for all audits. In order to ensure the highest possible effi-

ciency of condition assessment within the audit process and to avoid data transmission
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errors, it is furthermore recommended to record the data digitally on a mobile device

(e.g. tablet) directly on-site (Beerboom 2016).

Aggregation method

Besides the selection of relevant inspection points and the definition of a classification

scheme for measuring the condition per inspection point, the development framework

further includes the design of an aggregation method. It defines how individual obser-

vations per inspection point are combined and summarised in an overall risk metric or

leading maritime risk indicator. The critical aspect in selecting and designing the aggre-

gation method is to ensure that it reflects the chain of events leading towards accidents

as well as the (potentially non-linear) interaction between individual risk-influencing

factors. One option to define an aggregation method is to adopt methodologies devel-

oped for multiple-criteria decision-making such as Utility Analysis or Analytic Hier-

archy Process (Beerboom 2016). In the simplest case, the aggregation method is a

weighted summation of individual condition measurements for all inspection points on

board. The respective weighting factors can either be formulated directly by the

decision-maker or determined indirectly by estimating a preference function

(Geldermann and Lerche 2014). In contrast to the above, it is also possible to use dif-

ferent statistical or mathematical techniques to define a data-based aggregation

method. Several options are discussed subsequently.

Data-based methods derive system risk information directly from historical condition

data in combination with accident and incident figures. In order to accomplish this,

correlations between onboard conditions and subsequent failure events are identified

and analysed. These correlations are used for both defining a risk model structure and

for parameterising the relationships between individual input parameters. As such, a

prioritisation of different systems or operations on board in regards to their impact on

the risk level (e.g. accident frequency) is deducted automatically from historical data.

This ensures that historical data is the primary source for identifying the most common

damage and the most vulnerable subsystems. Data-based methods can be further di-

vided into statistical or stochastic techniques and ML methods (Sikorska et al. 2011).

Traditionally, statistical analysis is the backbone of quantitative risk assessment. The

outcome of using statistical methods for modelling relevant risks can be rather simple

risk assessment checklists, which are used today in aviation but also shipping. These

are comparatively uncomplicated to use, but at the same time limited in terms of their

explanatory power. A reason is that underlying linear accident models are only capable

of limited extent in reproducing the highly complex structures of causal events and

fault sequences leading towards maritime accidents (Hadjimichael 2009). Examples,

where more complex statistical methods are used, can be found, inter alia, in Heij and

Knapp (2018) and Wang (2008). Both studies develop a model that combines principal

component analysis with regression. Heij and Knapp (2018) use Port State Control

(PSC) observations to predict the risk of future accidents by calculating a ship-specific

risk metric. Wang (2008) develops an approach to measure safety factors in shipping

and use these to predict the future safety performance of shipping operations in terms

of a leading risk indicator. Statistical approaches are also used outside the maritime do-

main in order to predict risks and the probability of accident events (Poh et al. 2018).
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Concerning stochastic methods, BN is a frequently used method for modelling risks. BN

allows the modelling of complex causal relationships by reproducing the conditional de-

pendencies between considered variables in form of a directed acyclic graph (Jensen and

Nielsen 2007). The BN structure and conditional probabilities can be based on human ex-

pertise or determined directly from fault event data. The use of algorithms for data-based

learning of BN structure and conditional probabilities usually requires a large amount of

representative data. Qualitative learning, which focusses on network structure, can be distin-

guished from quantitative learning, which determines the conditional probabilities between

considered variables (Wagner 2000; Daly et al. 2011). Hybrid approaches allow combining

data-based learning with (possibly fuzzy) expert estimates and are robust against partially in-

complete data sets (Hänninen 2014). An advantage of BN is its capability to model complex

systems with a large number of interacting factors. Overall, the use of BN for addressing

maritime research questions has increased significantly in recent years (Banda et al. 2014).

Hänninen et al. (2014) have used an approach that shows certain parallels with the risk

model introduced in this paper. They use BN as a modelling technique in combination with

expert elicitation and historical data in order to make a quantitative assessment of a ship-

specific risk level. BN-based approaches are also used beyond the maritime industry to de-

velop risks models (see, e.g. Pourret et al. 2008; Ayello et al. 2018).

Artificial intelligence and in particular ML have seen a significant increase in

their application over the past few years. ML comprises various algorithms that

learn dependencies through pattern recognition in data sets and use these relation-

ships to make predictions (Nelli 2018). The basis for solving a task is a data set

(e.g. labelled examples) in which ML methods automatically identify relevant statis-

tical relationships and convert these into generalising rules used for completing a

given task (Chollet 2018). ML methods thus determine correlations and patterns

directly in the data without the need to specify a model, as is the case with statis-

tical and stochastic methods. In order to accomplish this, ML requires a suffi-

ciently large training data set. The most successful applications of ML algorithms

today are in the field of “supervised learning” to automate decision processes.

Based on a training data set comprising input (features) and the desired output

(target), an ML algorithm independently learns existing correlations, which can

subsequently be applied as decision rules on previously unknown input data

(Müller and Guido 2017). In comparison to statistical methods, an advantage of

ML is that it can represent both linear and non-linear relationships without being

bound by restrictive premises and assumptions of some statistical tests. (Poh et al.

2018) ML methods are both suitable and promising for modelling and predicting

risks. Poh et al. (2018), for example, have developed an ML-based risk model,

which they use to predict the safety risk of construction projects, which shows sev-

eral parallels to the approach developed and implemented for maritime risks in this

paper. In order to predict the probability of accident events, Poh et al. (2018) use

the results of safety audits as well as variables characterising the respective con-

struction project (e.g. contractor type, project volume, project type) and compare

the performance of different ML algorithms. Other interesting and relevant exam-

ples include the use of ML methods in the context of non-life insurance pricing

(see, e.g. Mendes et al. 2017; Zöchbauer 2016).
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Proof of concept
This section describes a proof of concept, which builds an ML-based approach to cal-

culate a leading maritime risk indicator by implementing the conceptual guidelines set

by the development framework introduced in the previous Section 3.

The objective of the proof of concept is to design and test a model, which simulates

the cause-effect relationships of maritime accidents and thus enables the calculation of

a data- and algorithm-based leading risk indicator. Against the background that (real-

time) data from ship operation are expected to become increasingly available in the fu-

ture (Kretschmann 2018; Kretschmann et al. 2019), data-based methods for operationa-

lisation of the risk model are the focus of the study. These are based on the premises

that the probability of certain error events occurring in the future is evident in specific

conditions, attributes and states (risk-influencing factors), which can be measured on-

board. Accordingly, the first step of building a data-based risk model is to identify cor-

relations between data reflecting on onboard conditions and temporally subsequent

accidents. The subsequent step is to build a maritime risk model that reflects the iden-

tified correlations.

Principles of CRISP-DM (Shearer 2000), a process model for data mining projects,

are adopted for the proof of concept. The CRISP-DM process model has six phases:

business understanding, data understanding, data preparation, modelling, evaluation,

and deployment. Phase 1 comprises a specification of objectives and a problem defin-

ition, which in this case consists of subjecting the idea of a leading maritime risk indi-

cator to a proof of concept. Phase 2 to phase 5 are discussed subsequently. Phase 6

(model deployment) is out of scope for a proof of concept.

Data understanding

According to the CRISP-DM process, the Data Understanding phase comprises collect-

ing, describing and exploring data as well as verifying data quality (Shearer 2000).

Two data sets for several objects (ships) are used in the proof of concept. The first

data set comprises maritime accident information, which represents the response vari-

able or target for the analysis. Besides damage type, date of the event, the extent of

damage (in US$) and the involved object are given. The second data set represents the

covariates, predictors or features used in the analysis. It contains observations made

during past PSC on ships for which accident information is available. Furthermore,

additional data is taken into consideration, which characterises the respective objects

and which can be expected to have an impact on the accident risk according to previ-

ous studies (Knapp 2006, 2013). Data includes the size of the vessel in gross tonnage

(GT) and tons deadweight (TDW), age of the vessel, country of the shipyard and length

of the vessel.

A descriptive and explorative analysis was carried out for all available data. In order

to protect the commercial interests of the companies that provided data for the proof

of concept, only selected results can be presented here. The study is based on data of

544 container ships, which corresponds to about 10% of the world fleet in 2017

(Equasis 2018). Figure 4 illustrates the age and length of vessels in the data set. It shows

a broad distribution, with smaller middle-aged ships making up the majority. For the

mentioned 544 vessels, all accidents over a total period of 819 years of operation are
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included in the data, which corresponds to 185 accidents. With about 22% fault events

per ship per operating year, the frequency of accidents is slightly higher than the rate

of 13–18% given by the Nordic Marine Insurance Statistics (Cefor 2017).

Observations made during PSC represent safety-related data used in the proof of

concept. Several other authors have previously used PSC data in comparable stud-

ies (see, e.g. Heij and Knapp 2018; Hänninen et al. 2014; Wang 2008; Tsou 2018).

PSC has been established as a “second line of defence” due to negligence in the

control of international standards regarding ship safety, pollution prevention and

the working and living conditions of seafarers by some Flag States (Directive 2009/

16/EG). PSC inspections are carried out by the Port States according to a predeter-

mined procedure with observations being documented uniformly. In total, PSC re-

sults of 5468 inspections were collected for the proof of concept covering the

mentioned 819 years of operation plus the previous 2 years for each object (vessel)

in the data set.

As part of a comprehensive check of data quality and integrity, the number of entries

in the database was reduced from 5468 inspections to 4502. In particular, cases of

“double reporting” were removed, as well as follow-up inspections whose results equal

results of a prior initial inspection. At the same time, missing data was added, and false

entries corrected as far as possible. Figure 5 shows the breakdown of PSC inspections

data by Memorandum of Understanding (MoU) on PSC and further reveals how often

different cases of “number of identified deficiencies per PSC” occur in the data. Overall,

one or more deficiencies are reported in 50% of port State control inspections in the

data set. This is in line with observations made by the BG Verkehr in German ports, in-

dicating that every other ship inspected has deficiencies (BG Verkehr n.d.).

The documentation of deficiencies identified during a PSC is based on a cata-

logue of 555 Deficiency Codes, which in turn are assigned to 30 categories (Paris

MoU 2017). Figure 6 shows how often deficiencies from different deficiency cat-

egories are included in the data set used in the proof of concept. Most frequent

deficiencies come from the categories “Fire safety”, “Safety of Navigation” and “Life

saving appliances”.

Fig. 4 Age distribution (left) and length distribution (right) of vessels in data. Source: Own calculations
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Data preparation

According to the CRISP-DM process, the Data Preparation phase comprises selection

and cleansing of data and the preparation of the data set used for the model building

including construction, integration and formatting of labelled examples (Shearer 2000).

First of all the preparation of raw data before the actual development of the model

concerns defining time periods, during which PSC data (looking backwards) and acci-

dent events (looking forward) are combined in a labelled example. A long period of

time during which PSC results are integrated into each labelled example is associated

with the limited predictive value of information representing events far in the past. This

is based on the assumption that PSC deficiencies documented long ago are less indica-

tive regarding the current condition on board (and thus the probability of accidents)

compared to recent PSC findings. Accordingly, it would make sense to include only ra-

ther recent PSC results in each labelled example. However, this also reduces the

amount of data the algorithm can use for training since PSC inspections take place in-

frequently. Within the proof of concept, both a period reaching 1 year and 2 years into

the past was considered. In the first case, results of 1.9 PSC are available per object on

average to construct a labelled example. At the same time, no PSC data is available for

about 10% of objects (since no PSC inspection had taken place in the previous 12

months). If data from the past 2 years is considered for each labelled example, results

of 3.6 PSC are available per object on average, and less than 5% of objects remain with-

out PSC data.

Accident frequency per object per year is chosen as the response variable or target in

this analysis. Similar to PSC data, it is necessary to define a period during which acci-

dent events are considered when calculating the response variable and constructing

each labelled example. The longer this period reaches into the future, the more acci-

dents fall into it but, the smaller becomes the correlation between accidents relatively

far in the future and onboard conditions observed during past PSC. Additionally, acci-

dent events are recorded only during a certain time span for each object in the database

(average 400 days, minimum of 5 days, maximum 669 days). Accordingly, the number

of labelled examples in the data set available for training of the ML-model gets smaller,

if accidents over a longer period of time are taken into account. The reason is as fol-

lows: objects can only be used if they are represented in the data set with a time span

Fig. 5 Distribution of PSC data by MoU (left) and the frequency of the number of findings per PSC (right).
Source: Own calculations
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larger or equal to the chosen period of time, during which accidents are taken into ac-

count. At the same time, the accident frequency per labelled example increases, if acci-

dents over a longer period of time are taken into account. On the other hand, a shorter

period of time increases the number of examples available for training the ML-model,

but the accident frequency is reduced. To demonstrate the effect: if the period of time

is defined as 12 months, the accident frequency is 21%, and there are 608 labelled ex-

amples available for training. In case the period of time is set to 6 months, the accident

frequency falls to 11%, but 1503 labelled examples can be used for training the ML-

model.

The second part of data preparation concerns feature generation, by which data is

transformed in a way to obtain input variables for the ML model. Depending on the

specific ML methods used, the used attributes (data) must be subjected to a pre-

processing. For example, artificial neural networks are very sensitive to particularly

large or small input values and therefore require scaling and normalisation of input

data (Frochte 2018). Another step of data preparation is the transformation of categor-

ical attributes. In the proof of concept, this concerns the attribute “country of ship-

yard”. By far, the most common approach to handle categorical data is one-hot

encoding, where the categorical attribute is replaced by several binary dummy variables,

each representing one category. This, of course, increases the number of features,

which in turn can have some negative effects.

When the number of features used to train an ML classifier is increased, model per-

formance usually increases initially as well, but begins to drop beyond an optimum

(also known as “Hughes Phenomenon”). This “curse of dimensionality” describes the

phenomenon by which the feature space becomes more sparsely occupied if the num-

ber of dimensions (more features) increases but the size of the training data set remains

Fig. 6 Frequency of findings per Deficiency Category in considered PSC data. Source: Own calculations
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constant. The distance between two neighbours in the high dimensional feature space

increases, and therefore it becomes more difficult for an ML-algorithm to calculate a

meaningful model (Shetty 2015). For this reason, an optimal training data set contains

several examples for each feature combination. Where this cannot be ensured, e.g. by

collecting additional data, several options can help reduce the feature space, with Prin-

cipal Component Analysis (PCA) being a commonly used approach. Especially for

high-dimensional data with a small number of cases, PCA can positively influence the

learning capabilities of ML algorithms (Frochte 2018).

In this proof of concept, the need for a dimensionality reduction concerns PSC data

in particular. As previously described, PSC results are available subdivided into 30 indi-

vidual deficiency categories. Since there are 7 observations per PSC inspection on aver-

age, only 15% of all possible entries in all 30 deficiency categories contain a value on

average, while the remaining 85% are zeros. Accordingly, the PSC inspection results

data set can be described as sparsely populated. Taking further into account that the

overall number of labelled examples for training the ML model is rather small in the

proof of concept, it appears appropriate to reduce the dimensionality of PSC data. This

dimensionality reduction is accomplished by implementing a PCA, and only the first

principal component is used as a feature when constructing labelled examples and cal-

culating the risk model.

Modelling

According to the CRISP-DM process, the Modelling phase comprises the modelling

technique selection, test design generation, as well as the design and implementation of

one or more models (Shearer 2000).

Finding a suitable model that can accurately represent the level of safety on a ship is

not a trivial problem. Reasons include a multitude of involved design, operation and

maintenance factors, the difficulty of correctly modelling chains of events leading to-

wards accidents and the need to build on subjective assumptions when quantifying

risks, especially where insufficient data is available (Sii et al. 2004). This paper focuses

on ML-methods for developing a data-based risk model. The advantage of this ap-

proach is that ML-algorithms can identify relevant correlations directly in the data

without potentially constraining assumptions that characterise statistical predictive

modelling techniques (Mendes et al. 2017). Several ML-algorithms would generally be

applicable for the problem at hand, of which the ensemble method Random Forest (RF)

was selected for the proof of concept. Ensemble methods combine multiple ML algo-

rithms to form more powerful models. Two types of ensemble methods - RF and Gra-

dient Boosted Decision Trees - have proven to be very effective for a variety of data

sets and problems (Müller and Guido 2017). Since RF models are robust against over-

fitting and do not require extensive data transformation and scaling, the method is ideal

during a proof of concept phase. Other models, such as artificial neural networks, may

prove to be slightly more accurate but require significantly more data preparation and

transformation (Müller and Guido 2017). Accordingly, it makes sense to start with a

RF model and test other options to maximise performance, once a proof of concept has

been established.

Kretschmann Journal of Shipping and Trade            (2020) 5:19 Page 16 of 22



Based on the available data, the task “assign an appropriate risk level per ship”, which

the RF algorithm is supposed to solve, can be formulated as a supervised learning clas-

sification or a supervised learning regression problem. The latter was chosen for the

proof of concept. The RF model was implemented in python using scikit-learn library.

Labelled examples used to train the RF model contained several features plus the target

“accident frequency per object per year of operation”. Considered features were:

� PSC-indicator (first component of PCA)

� Number of PSC

� Number of deficiencies detected

� GT

� TDW

� Year of construction

� Country of shipyard (one-hot-encoded)

� Vessel length

Accidents over a period of 12 months into the future and PSC data for 24 months

into the past were considered for constructing each labelled example. A cross-

validation design (n = 5) was implemented. This approach divides the data set (labelled

examples) into n equal subsets. Each subset is used as a test data set once to determine

the performance of the model after the algorithm has been trained on the remaining

data. Subsequently, the overall performance of the model is calculated by averaging the

performance for each of the n splits (Cleve and Lämmel 2016).

Evaluation

According to the CRISP-DM process, the Evaluation phase comprises the evaluation

and review of results achieved with the created models (Shearer 2000).

Mean squared error (MSE) is used as the primary performance indicator for model

evaluation. A dummy regressor model that predicts the mean value of the target calcu-

lated in the training data set for all instances in the test data set serves as a perform-

ance benchmark. In case of a successful proof of concept, the MSE of the trained RF

model turns out to be lower than the MSE of the dummy regressor. Additionally, a lin-

ear regression model serves as a second benchmark. Besides MSE, a coefficient of de-

termination (r2) and explained variance are calculated as additional performance

indicators of the different RF models. In order to demonstrate the impact of the PSC

indicator on performance, RF models were trained on two data sets. One contains the

PSC indicator as a feature, and the other one does not. Results for the latter case are la-

belled “RF Model without PSC data”. Initially, two hyperparameters of the RF models

(number of trees and the maximum number of levels per tree) were set manually. In

order to improve RF model performance without overfitting on the data, a grid search

was carried out to optimise these two hyperparameters. The results of the RF models

with optimised hyperparameters are labelled “Optimised hyperparameters”. For all

other model parameters, the default values were used. Performance indicators were cal-

culated for ten RF models under each set up respectively, and the mean performance
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value for these ten models is given as the overall performance. Table 2 summarises the

achieved performance values of all models.

The dummy regressor model with an MSE of 0.3133 represents the benchmark for

the RF models. A model based on linear regression does not perform better than the

dummy regressor model on the tested data set. In comparison, both RF models (includ-

ing and without PSC indicator) outperform the dummy regressor model, with an MSE

of 96% and 97% respectively compared to the benchmark MSE. This is not considered

to be a particularly large reduction in MSE. Thus, based on the available data, the RF

models can only make a small contribution to predicting the likelihood of accidents

correctly, which is also evident in the low r2 and explained variance values.

However, it needs to be borne in mind that the available data set is relatively small

for using ML methods. A broader data set might make it easier for the ML algorithm

to identify the most critical correlations between the available features and the target

“accident frequency per object per year” and use them for prediction. Accordingly, the

logical next step to substantiate the findings presented here should be to expand the

data set and see if the model performance improves. Another related challenge is the

imbalanced data set available in this proof of concept, where labelled examples with

one or more accidents (21% of all examples) can be considered as comparatively rare

events. By definition, rare events are incidents that occur at a significantly lower fre-

quency than other more frequent events in the data set. Accurately predicting the rare

class is known to be challenging with data mining techniques and classification algo-

rithms (Maalouf and Trafalis 2011). Several problems associated herewith are

highlighted in the machine learning literature (Weiss 2004), which are of concern in

the proof of concept as well. This includes a small number of examples associated with

the rare case in absolute and relative terms, uncertainty about differing distributions of

the rare class in training and test sets or noisy data, which can make it difficult of to

distinguish between exceptional (rare) cases and noise. Subsequent research will, there-

fore, also put a focus on appropriate methods to address problems related to rarity in

this particular case.

Table 2 Performance of the tested models

Modell Score

MSE r2 Expl. Var.

DummyRegressor I 0.3133

LinearRegression II 0.3115 0.0005

RF Model including PSC data n_estimators = 1000,
max_depth = 4

III 0.3016 0.0247 0.0355

Comp. to I 96%

Opti. hyperparam. 0.3014 0.0311

Comp. to III 100% 126%

RF Model without PSC data n_estimators = 1000,
max_depth = 4

IV 0.3040 0.0202 0.0290

Comp. to I 97%

Comp. to III 101% 82% 82%

Opti. hyperparam. 0.3018 0.0287

Comp. to IV 99% 143%

Source: Own calculations
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At the same time, it must be taken into account as well that PSC observations repre-

sent principally suitable but by no means optimal data for developing a leading mari-

time risk indicator and operationalising it in a risk model. If input values were

explicitly collected for a data-based risk model by implementing the development

framework introduced in Section 3, it can be assumed that a larger contribution to cor-

rectly predicting the likelihood of accidents would be achievable. None the less, even

with an optimal database a significant part of the probability of accidents can never be

predicted using a data-based model due to the considerable influence of random events

and external factors on the occurrence of many maritime accidents.

Based on the results of the proof of concept, it can further be concluded that PSC ob-

servations, represented by the calculated PSC indicator, contribute to a data-based pre-

diction of the selected target “accident frequency per object per year”. This is evident in

the results for the “RF model without PSC data” compared to the “RF model including

PSC data”: The latter achieves both a higher r2 and explained variance. In order to em-

phasise this further, the accident frequency of ships with an above-average PSC indica-

tor can be compared to ships with a below-average value. It turns out that the accident

frequency is higher by a factor of 1.3 for vessels with an above-average PSC indicator.

If the overall risk indicator, calculated by the RF model for each object in the database,

is used to subdivide two groups, the accident frequency per year of ships with an

above-average risk indicator is higher by a factor of 3 compared to ships that have a

below-average risk indicator value.

Conclusions
This paper represents a first step towards the development of an innovative data- and

algorithm-based leading maritime risk indicator. Its contributions lie in two areas.

First, a conceptual development framework was introduced and described, which can

guide the development of leading maritime risk indicators and their operationalisation

in a data-based risk model. One challenge in this context is that relevant risk-

influencing factors, which have a value in predicting the probability of maritime acci-

dents and are thus crucial for establishing leading maritime risk indicators, are often

not directly measurable. In order to overcome this, it is necessary to identify suitable

variables (indicators) that point towards conditions, events, and sequences that precede

accidents in ship operation and accordingly reflect the abstract concept of risk-

influencing factors. As such, measuring these variables or indicators on board can be

used as an alternative by providing signals for undesirable, risk-increasing develop-

ments and conditions. A second challenge lies in the high complexity of the system

ship and its operation. A multitude of subsystems and elements work together to en-

sure efficient and safe ship operation, while at the same carrying the capacity to cause

an accident or incident. Taking into account the above, the proposed development

framework is divided into three consecutive steps: (1) the identification of appropriate

inspection points for onboard condition assessment, (2) the development of a classifica-

tion scheme which specifies the evaluation per inspection point, and (3) an aggregation

method which operationalises a risk model by defining how findings per inspection

point are combined into a leading risk indicator.

Maritime operations are extremely complex, involving several interacting human,

mechanical, technological and environmental components and external influences.
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Consequently, the risks associated with operating a vessel are equally complex and di-

verse. Overall human factors are thought to outweigh technical failures in their contri-

bution to severe maritime accidents. Aspects associated with human errors like crew

qualifications, working and living conditions, and compliance with working hours regu-

lations and safety management are distinctly different from technical and management

aspects related to maritime accidents. This should be considered in the development of

leading risk indicators. When collecting new data, both the inspection points and the

classification schemes should take into account differences between human factors and

technical conditions. Moreover, regardless of whether existing data or newly collected

data are used, the aggregation method should reflect the different importance of human

factors and technical failures in the series of events leading to maritime accidents.

The second contribution of this paper was to show how the development framework

can be applied to an actual case by calculating a data- and algorithm-based leading

maritime risk indicator. In particular, the focus was on the operationalisation of a risk

model by using ML algorithms. Based on a data set containing maritime accident infor-

mation, which represents the response variable or target, plus a data set containing dif-

ferent covariates or features (in particular observations made during past PSC

inspections as well as different characterising values for all considered objects), a proof

of concept was attempted. The results obtained from the proof of concept indicate that

a leading risk indicator can indeed be calculated with the chosen ML approach. How-

ever, the RF model only made a relatively small contribution to predicting the chosen

risk metric “accident frequency per object” correctly. Accordingly, a next step will be to

consider different strategies to improve ML model performance. First of all, it is a mat-

ter of increasing the number of labelled examples used to train the ML model, which is

usually the first choice in order to improve performance. Further possibilities include

testing of different data transformations and feature engineering strategies as well as

using other ML algorithms. All the mentioned strategies will be considered in subse-

quent research.
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