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Abstract: Following (Almeida, Ardison, Kubudi, Simonsen, & Vi-
cente, 2018) we implement a segmented three factor Nelson-Siegel 
model for the yield curve using daily observable bond prices and 
short term interbank rates for Colombia. The flexible estimation for 
each segment (short, medium, and long) provides an improvement 
over the classical Nelson-Siegel approach in particular in terms of 
in-sample and out-of-sample forecasting performance. A segmented 
term structure model based on observable bond prices provides a 
tool closer to the needs of practitioners in terms of reproducing the 
market quotes and allowing for independent local shocks in the dif-
ferent segments of the curve.
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Introduction

The term structure of interest rates is the relationship 
between interest rates or bond yields and different terms 
or maturities. The term structure of interest rates is also 
known as the yield curve, and it plays a central role eco-
nomic and financial analysis. For example, the term struc-
ture reflects expectations of market participants about 
future changes in interest rates and their assessment of 
monetary policy conditions beyond the direct relationship 
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between the inflation target rate, the policy rate and economic activity (Bayat, 
Kayhan, & Tasar, 2018) .

A large part of finance literature and applications by practitioners, regarding the 
term structure of non-defaultable securities, is concerned with using available 
security prices to estimate the fair market prices of other non-observable secu-
rities: “this is important because fixed-income securities and their derivatives 
trade only occasionally, and so must be priced based on other securities that do 
trade” (Engle, Roussellet, & Siriwardane, 2017).

Most of the empirical literature on term structure modelling uses U.S. or Euro-
pean data and has traditionally focused on the characteristics of developed mar-
kets. There is however a recent trend that implements term structure modelling 
in other markets and in particular Emerging Markets (Dutta, Basu, & Vaidyana-
than, 2005); (Shu, J., & Lo, 2018); (Ahi, Akgiray, & Sener, 2018); (Nagy, 2019). The 
empirical applications on emerging market data has also brought new challenges 
in terms of modelling the yield curve, in particular in these markets there are 
either no bonds or very few bonds trading for some maturities. 

The Nelson-Siegel model (Nelson and Siegel, 1987) is a statistical approach that 
provides a parsimony specification to capture the differences in rates along the 
curve (for different maturities). Its implementation in one or two stages gives 
the temporal variation of the factors maintaining the factor loading's constant 
over time. The specification of the model and the estimation methods provide a 
simple implementation, which is why, it turns out to be a successful model out-
side academia. Although the Nelson-Siegel model is not arbitrage-free, (Chris-
tensen, Diebold, & Rudebusch, 2011) propose a representation of the model that 
is arbitrage-free. However, it remains unclear if no-arbitrage restrictions improve 
statistical validity and therefore, some empirical applications shown that differ-
ent variations of the Nelson-Siegel model provide a better in-sample and out-
of-samples fit of the yields than the class of arbitrage free affine term structure 
models. Most of the applications using emerging market monthly data consider 
different variations of the dynamic Nelson-Siegel model and evaluate the in-sam-
ple and out-of-sample performance of the models. In order to accommodate the 
limited bond data or illiquid bond markets they adjust the estimation to account 
for liquidity adjusted data (Dutta, Basu, & Vaidyanathan, 2005) or using different 
optimization algorithms (Ahi, Akgiray, & Sener, 2018).

One of the important drawbacks of the academic literature is that the estima-
tion of the term structure is performed on synthetic interpolated zero coupon 
yields. For example, one of the most important sources of US yields is based on 
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interpolated data from (Gurkaynak, Sack, & Wright, 2007). When working with 
interpolated data it is not clear exactly what is the forecasting error since there is 
no direct observable variable. Therefore, it is preferable to work with direct data 
from the market. In addition, creating a long time series of yields requires strong 
assumptions on matching bonds across time, without understanding the impli-
cations on the outcome of interest, a point forecast or a the level of uncertainty 
for risk management purpose. Only recently, have some authors proposed meth-
odologies to work directly on the bond price data. (Andreasen, Christensen, & 
Rudebush, 2019) with an arbitrage-free Nelson-Siegel model propose a one-step 
estimation approach that uses the directly observable bond prices in a non-linear 
state space model. They compare this approach to the traditional two-step proce-
dure that uses the synthetic interpolated yields. Using simulations and Canadian 
bonds they find that negligible errors in the synthetic interpolated yields can lead 
to parameter instability of the models. Additionally they find superior forecast-
ing accuracy from the one-step approach. (Nagy, 2019) provides an approach 
for term structure modelling that is based directly on the bonds and formulates 
a linearized state model for the dynamic Nelson-Siegel model. They apply the 
methodology to US and Hungarian data; in the latter the challenge is the lack of 
sufficient bonds along the curve.

Another characteristic in term structure modelling that is worth mentioning 
is the use of a similar functional form and constant parameters to describe the 
entire term structure. However, preferred habitat theory of the term structure 
(Modigliani & Sutch, 1966) advocates that local shocks may influence interest 
rates for each maturity. Empirical evidence related to this theory reveals that U.S. 
Treasury bonds’ supply and demand shocks have non negligible effects on yield 
spreads, term structure movements, and bond risk premium. In addition, there 
are specific policies that target and successfully affect some parts of the yield, for 
example quantitative easing (Jakl, 2017). In an attempt to formalize the preferred 
habitat theory, (Vayanos & Vila, 2009) propose an equilibrium model in which 
demand directly influences and determines all yields in the term structure. Ac-
cording to this theory, the equilibrium yield rate for each term is determined by 
the demand and supply forces for that market, in other words, the preferences of 
investors on securities at that point in the curve. Investors can substitute prefer-
ences over terms that are not available in the market for a near term but avail-
able in the market. (D Àmico & King, 2013) note that investors act as arbitrators, 
guaranteeing the relationship between the demand for the securities and the re-
turns along the curve; and on the other hand, they guarantee that the curve is 
smooth, meaning that the yields for close periods are similar. 
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Inspired by the preferred habitat theory (Almeida, Ardison, Kubudi, Simonsen, 
& Vicente, 2018) propose a class of models that separate the yield curve into seg-
ments preserving their own local shocks, but at the same time simultaneously 
interconnected to compose the whole yield curve. The main objective of the fam-
ily of segmented models is to first, partition the segments of the curve in such a 
way that the dynamics of each segment can be determined by maturities that are 
represented in that segment; and second, the implementation of the segments 
along the curve must be globally consistent and smooth. This is achieved by en-
suring that the rates of return are similar for the terms that connect the segments 
and therefore are close to each other. This is not equivalent to imposing non-
arbitration restrictions. A similar objective is pursued by (Filipovic & Willems, 
2018) using a non-parametric alternative to estimate the discount curve using 
market quotes that have maximal smoothness. Modelling separate segments of 
the term structure might also be useful in other context, for example to build ho-
mogeneous risk groups in order to estimate the term structure of the probability 
of default (Đurovic, 2019). 

In this paper we model and forecast the Colombian term structure of interest 
rates using approximate yields that are estimated directly from the bonds, but 
are not interpolated, and we use a segmented Nelson-Siegel three factor model 
as proposed by (Almeida, Ardison, Kubudi, Simonsen, & Vicente, 2018). We es-
timate the model using daily data for each year from January 2013 to September 
2018. We provide independent results for each year in the sample in order to 
avoid strong assumptions on the equivalent maturities across time. Although, we 
could think that this is a drawback in terms of forecasting, it is important to note 
that the cross sectional estimation in the Nelson-Siegel three factor model pro-
vides a dimension reduction approach from the number of observed maturities 
to the lower dimensional factors (for example three factors in the classical Nelson 
and Siegel model) and hence we can use these estimated factors to create out-of-
sample forecast from one year to the next for any desired maturity. Our results 
show that the segmented model with smoothing restrictions has an in-sample 
and out-of-sample performances that is superior to non-segmented Nelson-Siegel 
model.

In addition the out-of-sample performance of the segmented model, has a similar 
performance to the random walk model for short term horizons (one and five 
days)1. However, for monthly forecast the random walk model has a better per-
formance.

1	 The random walk model has always been a strong benchmark model in out-of-sample forecast-
ing of interest rates.
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Our application also contributes to the literature on term structure modelling for 
emerging markets. We deal with the challenge of scares bond data in an emerging 
market such as Colombia, by accommodating the definition of the segments in 
order to take advantage of the heterogeneity of available bonds across the curve. 
In addition, for the short part of the curve we consider the interbank money 
market as a proxy for the short term yields. On the other hand by allowing a local 
estimation of the segments of the curve we give more flexibility to the model to 
accommodate parts of the term structure that have less liquidity. The weighted 
estimation proposed by (Dutta, Basu, & Vaidyanathan, 2005) accommodates the 
heterogeneity in liquidity over the whole curve. Whereas in a segmented model 
any difference in the liquidity across the bonds in the curve should be reflected as 
shocks to the prices within each segment; therefore, there is no need to smoothly 
accommodate the heterogeneity changing the estimation approach.

The remainder of the paper is structured as follows. Section 2 gives a brief intro-
duction to the methodology as proposed by (Almeida, Ardison, Kubudi, Simons-
en, & Vicente, 2018) for the segmented term structure model. Section 3 provides a 
description of the Colombian bond data. Section 4 presents the estimation results 
and the forecasting exercise. Section 5 concludes.

Methodology

The segmented term structure model is proposed by (Almeida, Ardison, Kubudi, 
Simonsen, & Vicente, 2018). The authors propose a general framework that can 
be applied to any parametric model using exponential splines. In particular, we 
choose a three factor Nelson-Siegel type model. The segmented model provides 
estimates for the factor that are specific and independently estimated for each 
segment of the yield curve. In the traditional Nelson-Siegel model the factors are 
estimated using simultaneously all of the maturities. This is an important draw-
back because small changes in the short part of the curve could affect the long 
part of the curve. In addition, the methodology provides an approach to estimate 
latent yields at the knots in which the term structure is partitioned. 

For the exercise we require N maturities in order to derive the yield curve, 
τ ϵ[1,N], where τ's represents each of the observed elements in the vector of ma-
turities. Then, we need to define in an exogenous way the latent yields and set of 
k elements from the vector of τ’s where we define the external and the internal 
knots; we denote ϕ = {τ1,…, τk } is the subset of knots. Note that the internal knots 
are imposed by the researcher and denote the maturity in the curve that is in be-
tween two segments. On the other hand, the remaining elements of τ are treated 
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as observed yields τ ̃ = {τ2,…, τk-1 }, which are assumed to be measured with error 
in contrast with the latent yield that do not contain error.

The term structure representation of observed and latent yields that make up the 
yield curve are given by the following two equations, 

where the matrix of factors loading's  is time invari-
ant and only depends on maturity and segments. On the other hand, the vector 

 represents the factors, that vary over time and also depend on 
the segment i. These independent segments provide enough flexibility so that 
the model is consistent with preferred habitat theory. The Nelson-Siegel model 
provides the functional form for the factor loadings (see the appendix). As the 
methodology is based on splines, the process requires to have some constrains on 
the above equations that creates smoothness across the segments. These smooth-
ness conditions are consistent with the role of active arbitrageurs that ensure no-
arbitrage conditions along the yield curve.

The following equation contains the segmented model, and in addition intro-
duces the smoothness restriction at the knots ϕ. 

The smoothness restrictions create an equality constrained optimization prob-
lem. These constraint guarantees that the parametric functional forms of each 
segment and their first and second derivatives have the same value at each inter-
nal knot2. However, since we have equality constraints in the optimization prob-
lem we can transform the constrain problem into an unconstrained representa-
tion. The unconstrained problem has an additional advantage since we are able to 
reduce the number of parameters to estimate. The appendix provides the details 
and the steps to have an optimization problem without restrictions, 

The factor loading's from the unconstrained model, ( ), can be 
estimated with ordinary least squares.

2	 Details of how to build and introduce the matrix R are provided in the appendix.
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Bond price data

We obtain daily data on bond prices from January 2013 to September 2018, pro-
vided by Precia S.A. These are sovereign bonds denominated in local currency 
that are trading in the secondary market3. Although we have six years of daily 
data we use the bond prices data for each year, so we use specific observable ma-
turities that are trading over the course of a year. This means that for estimation 
we use only the data for that particular year. This is of course not a problem for 
in-sample estimation. However, it does create some challenges for out-of-sample 
forecasting from one year to the other. We will address these challenges in the 
next section. We want to avoid having to build historical yields and make any 
arbitrary pairing of bonds across time.

In addition, we are only using bonds with maturity above or equal to one year. 
That is we disregard any bond that in the current year has a time to maturity 
smaller than 12 months. For example 
for the year 2014 we have bonds with 
a time to maturity (in years) equal to 
1.8, 1.9, 2.5, 4.8, 4.9, 5.7, 6.6, 8.3, 10.6, 
12.7, 14.3 at the beginning of the year 
(Graph 1).

Since we want to avoid any complex 
pre-processing of the bond price data 
in order to obtain the yields we es-
timate a quick approximation of the 
yield to maturity that most important-
ly does not involve any type of inter-
polation, 

Because the issuance of short term bond by the government is not stable over 
time, in order to model the short part of the curve we use the inter-bank rate 
index. The inter-bank rate in Colombia (IBR) is the reference short term rates 

3	 The Ministry of Finance of Colombia currently issued two types of bonds in the local market: 
local currency denominates or inflation indexed bonds.

Graph 1: Observed yields 2014, from Precia 
S.A. and IBR provided by the central bank



Journal of Central Banking Theory and Practice186

in the wholesale money market4. The index currently provides daily rates for the 
overnight, one month, three months and six months. Although, it is important 
to note that the risk factors associated to the sovereign bonds and the inter-bank 
rate differs, that is the latter are not risk free and contain a credit risk premium5.

Empirical Application

For the empirical application we consider three segments representing the short, 
medium and long term part of the yield curve and we estimate the model using 
the sample (2013-2018) but using the observed yields during each year (Graph 2). 
On average we have 14 observable yields, the minimum number is 12 in 2016 and 
the maximum is 17 in 2013. The first knot in the curve is the overnight rate and 
the interior knots are 1.6 and 8 years. These knots were chosen in order to have a 
sufficient amount of observed maturities in each of the three segments.

Graph 2: Representation of the non-segmented and segmented yield curve. The three 
segments represent the short (ST), medium (MT) and long term (LT) segments of the yield 
curve. NS denotes the classical Nelson-Siegel yield curve

4	 We obtain information on the inter-bank reference rates from the Banco de la República de 
Colombia (the central bank).

5	 We do not make any adjustment or assumptions to compensate for this risk premium in the 
inter-bank rates.
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With the three segments and three factors in the Nelson-Siegel model we have 
a total of 9 factors to estimate  
In addition we estimate the classical three factor Nelson-Siegel model (NS3), and 
following (Almeida, Ardison, Kubudi, Simonsen, & Vicente, 2018) we estimate 
three versions of the segmented models. The first we denote as a segmented mod-
el but without imposing the smoothness constraints (NS3_S), the second is the 
weekly segmented model with the smoothness constraints (NS3_W_S) and final-
ly the strongly segmented model with the smoothness constraints (NS3_S_S)6. 
The only difference in our application is that we do not fine-tune the parameters 
that control the degree of loading segmentation; we set that parameter to 0.5. 

Table 1: In-sample root-mean-square error (RMSE) in basis points between modelled and 
observed yields, for 2014

years NS3 NS3S NS3WS NS3SS

0.004 12.8 78.8 6.3 5.7

0.1 9.6 75.1 3.5 2.3

0.3 10.5 70.6 8.4 6.6

1.8 14.6 59.1 8.4 8.3

1.9 19.9 58.7 12.7 3.6

2.5 14.7 50.0 5.2 3.6

4.8 17.3 39.1 13.6 21.8

4.9 20.1 29.5 23.6 15.4

5.7 10.7 25.9 10.3 5.5

6.6 6.9 23.9 10.9 9.9

8.3 18.1 2.3 6.4 17.3

10.6 17.6 8.5 21.0 8.7

12.7 12.4 11.0 7.5 17.2

14.3 8.7 4.8 8.2 2.7

13.9 38.4 10.4 9.2

Table 1 presents the in-sample fit using the root mean square error for the 
three models in 20147. The results indicate that segmented models (weakly and 

6	 The strongly segmented model is an extension that provides a more flexible specification of 
the factor loading's in each segment, this approach is explained in (Almeida, Ardison, Kubudi, 
Simonsen, & Vicente, 2018).

7	 The results for the other years are available in an online complementary material (https://
github.com/ccastroiragorri/ccastroiragorri.github.io/blob/master/ComplementaryTablesAseg-
mentedandobservableYieldCurve(2019).pdf)
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strongly) that impose smoothness conditions that guarantee continuity across 
the yield curve have a better fit than the traditional Nelson-Siegel model. On 
average segmented models have errors 3 basis points below the non-segmented 
counterparts. The reason behind the better fit is the possibility to accommodate 
the specific dynamics of each segment in the yield curve. We also perform an 
out-of-sample forecasting exercise for one, five (week), and 21 days (month). We 
use a rolling window of 126 days (approximately 6 months) and we obtain fore-
cast for the years 2014 to 2018. Our forecasting setup is different, because we 
use the information of the previous year up to the last observed data to generate 
forecast of the year of interest and then update the information using a rolling 
window. As mentioned previously it is common practice in term structure mod-
elling to match bonds across year in order to obtain a historical time series of 
yields (Graph 3). In the best of cases, matching bond requires an arbitrary choice 
of which bond to choose from one year to the next. In the worst of cases, in mar-
kets where there are not many available maturities sometimes it is necessary to 
interpolate to match the maturities across years. We propose an alternative that 
is transparent for any replication study of the out-of-sample forecast. Each year 
we can estimate the number of factors in the segmented or the non-segmented 

Graph 3: Matching bonds vs factors
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model. Although we do not observe the same maturities between the years the 
number of factors is fixed across for the entire length of the sample. In other 
words, we take advantage of dimension reduction mechanism behind these para-
metric term structure models. Suppose that in the year 2013 we had 17 observed 
maturities and we obtain the estimated factors. Then we can use an autoregres-
sive of order one model to estimate and forecast these factors and recover the 
yields for 2014. Since we consider a rolling window, as soon as we start introduc-
ing new information from the 2014 observed yields we estimate using the cross-
section of maturities the factors and feed-in the information on to the time series 
of factors and re-estimate the autoregressive models and forecast up until the end 
of the evaluation window (see Graph 3). Therefore, our approach is not affected 
by the change in the number of observed maturities from one year to the next. 
The biggest advantage from this method is that it avoids any arbitrary decisions 
(that are rarely documented in the published articles) that are required to build 
synthetic historical yields.

For every year we have around 240 out-of-sample forecasts for the different ho-
rizons that represent on average the number of trading days in the year. For 
the out-of-sample forecast we compare the performance of three models base 
on the RMSE: the classical Nelson-Siegel (NS), the random walk (RW) and the 
strongly segmented Nelson-Siegel (SM). In Table 2 and Table 3 we present the 
RMSE in basis points at one day, one week and monthly forecast horizons for the 
year 2014 and 2017, respectively8. The results indicate that the segmented model 
provides on average smaller errors for most observed maturities. However, for 
the monthly forecast horizon it is not clear whether the segmented model per-
forms better than a random walk. As mentioned previously, both the in-sample 
and out-of-sample results shows a better performance of segmentation in the 
family of parametric term structure models based on Nelson-Siegel. Our results 
confirm the advantages in forecasting performance of the segmented models 
reported in (Almeida, Ardison, Kubudi, Simonsen, & Vicente, 2018), however, 
our results are based on real market quotes rather than using synthetically in-
terpolated yields.

8	 The results for the other years are available in an online complementary material or they can be 
requested to the corresponding author.
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Table 2: Out-of-sample root-mean-square error (RMSE) in basis points for 2014

years
day week month

NS NS3SS RW NS NS3SS RW NS NS3SS RW

0.004 15.7 7.5 15.5 15.6 8.8 14.6 14.9 12.8 12.7

0.1 11.4 3.7 11.5 10.7 6.0 10.5 12.6 14.6 10.0

0.3 14.3 8.5 14.5 13.7 10.1 14.1 17.1 17.5 15.6

1.8 19.5 9.5 19.3 22.3 12.1 21.1 31.1 18.4 26.6

1.9 24.8 5.4 24.6 26.4 8.6 25.8 33.5 15.3 29.7

2.5 18.9 5.7 18.8 21.4 9.6 20.4 30.4 18.4 26.0

4.8 18.5 22.8 18.7 19.5 23.7 20.2 30.3 31.6 29.3

4.9 21.6 17.1 21.3 24.8 20.1 23.2 38.3 34.0 34.2

5.7 12.3 7.4 11.9 16.1 11.5 14.2 31.1 28.0 27.0

6.6 9.2 12.3 9.2 12.9 15.7 12.8 27.8 29.5 26.4

8.3 21.1 19.5 21.2 24.7 23.6 24.8 38.0 37.0 37.7

10.6 21.0 11.4 20.9 24.3 16.4 24.1 37.7 30.9 36.9

12.7 15.7 20.0 15.8 17.8 21.7 18.2 28.3 28.9 27.7

14.3 10.7 6.0 10.6 14.3 12.6 14.1 27.9 26.8 25.7

16.8 11.2 16.7 18.9 14.3 18.4 28.5 24.6 26.1

Table 3: Out-of-sample root-mean-square error (RMSE) in basis points for 2017

years
day week month

NS NS3SS RW NS NS3SS RW NS NS3SS RW

0.004 31.9 13.1 33.5 25.5 11.6 30.8 22.8 26.5 21.0

0.1 19.6 6.1 21.1 15.3 10.1 18.9 27.6 33.0 13.7

0.3 7.7 9.6 7.1 15.9 17.2 9.2 40.8 41.9 20.7

0.5 20.0 18.2 18.3 29.3 25.3 21.7 53.7 48.9 35.1

1.8 27.8 15.5 26.8 34.0 16.0 28.7 52.8 31.4 37.8

1.9 39.3 12.0 37.9 45.9 17.2 39.8 65.0 37.5 48.7

2.7 18.9 7.6 17.8 25.4 13.5 20.5 41.8 30.5 29.8

3.6 9.4 11.9 9.5 13.5 14.4 12.0 26.3 26.1 18.9

5.3 9.0 8.2 9.5 12.9 14.5 13.2 23.2 28.8 21.4

7.6 16.6 8.5 17.1 17.6 12.4 18.8 22.7 23.5 23.7

9.7 15.1 14.0 15.6 16.7 18.5 18.0 22.7 30.3 25.0

11.3 8.6 11.2 9.2 11.0 15.1 12.2 18.2 26.1 20.3

13.7 7.9 4.6 7.3 13.0 11.1 11.4 22.4 23.1 20.1

15.5 13.3 15.7 12.3 17.4 18.2 14.7 26.3 25.5 21.0

17.5 11.2 17.3 20.9 15.4 19.3 33.3 31.0 25.5
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We performed additional robustness test to confirm the findings. First we use the 
Diebold and Mariano test to determine if the out-of-sample performance of the 
segmented model is statistically different than the competing models, the non-
segmented Nelson-Siegel and the random walk. In Table 4 we report the p-values 
of the test. The null hypothesis is that the segmented model has the same accu-
racy as the non-segmented Nelson-Siegel and the random walk, respectively. The 
results indicate that for most maturities we can reject the null hypothesis at 5% 
significance level and therefore, confirms the gain in out-of-sample forecasting 
performance identified in Table 29.

Table 4: p-values for the Diebold and Mariano test of forecast accuracy.

years
day week month

NS RW NS RW NS RW

0.004 0.00 0.00 0.00 0.00 0.65 0.90

0.1 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.00 0.00 0.00 0.00 0.00 0.01

1.8 0.00 0.00 0.00 0.00 0.00 0.00

1.9 0.00 0.00 0.00 0.00 0.00 0.00

2.5 0.00 0.00 0.00 0.00 0.00 0.00

4.8 0.00 0.00 0.00 0.00 0.00 0.00

4.9 0.00 0.00 0.00 0.00 0.00 0.61

5.7 0.00 0.00 0.00 0.00 0.01 0.07

6.6 0.00 0.00 0.00 0.00 0.00 0.00

8.3 0.00 0.00 0.05 0.06 0.49 0.45

10.6 0.00 0.00 0.00 0.00 0.00 0.00

12.7 0.00 0.00 0.00 0.00 0.02 0.08

14.3 0.00 0.00 0.01 0.01 0.74 0.08

9	 The results for the other years are available in an online complementary material (https://
github.com/ccastroiragorri/ccastroiragorri.github.io/blob/master/ComplementaryTablesAseg-
mentedandobservableYieldCurve(2019).pdf).
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Table 5: Out-of-sample root-mean-square error (RMSE) in basis points for 2014, with 
alternative specifications for the factor forecast

years

day day

ARMA(1,1) AUTO ARIMA

NS NS3SS RW NS NS3SS RW

0.004 15.7 7.5 15.5 17.6 10.0 15.5

0.1 11.4 3.7 11.5 14.2 6.4 11.5

0.3 14.3 8.5 14.5 16.8 9.2 14.5

1.8 19.5 9.5 19.3 21.0 10.0 19.3

1.9 24.8 5.4 24.6 26.2 7.4 24.6

2.5 18.9 5.7 18.8 20.5 6.9 18.8

4.8 18.5 22.8 18.7 21.0 23.6 18.7

4.9 21.6 17.1 21.3 22.4 17.2 21.3

5.7 12.3 7.4 11.9 13.7 8.0 11.9

6.6 9.2 12.3 9.2 12.6 13.5 9.2

8.3 21.1 19.5 21.2 22.6 19.3 21.2

10.6 21.0 11.4 20.9 22.3 11.4 20.9

12.7 15.7 20.0 15.8 18.7 21.0 15.8

14.3 10.7 6.0 10.6 13.8 6.6 10.6

16.8 11.2 16.7 18.8 12.2 16.7

Second, we test whether the assumption of an autoregressive model of order one, 
for the factors, is adequate for prediction; (Hamilton & Wu, 2014) suggest that 
higher order autoregressive models provide a significant performance improve-
ment. We do not choose a particular specification but rather use an Autoarima 
algorithm so that for each sample and model type an optimal model is chosen. 
Table 5 presents the comparison of the performance for one day ahead forecast 
for 2014. The results indicate that there is no improvement for both the un-seg-
mented and the segmented Nelson and Siegel model; in fact what we see is an 
average error that is 2 basis points higher when we use the Autoarima algorithm. 
Finally, we explore whether the segmented models systematically outperform the 
random walk method. We do this by estimating the cumulative square predic-
tion error (CSPE),

Graph 4, shows the evolution of the one day out-of-sample forecasting exercise 
for the observed maturities during 2014. For the segmented model to systemati-
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cally outperform the random walk model the curves should have a non-negative 
slope. The results indicate that this is not the case, since the slope from the begin-
ning is negative. This is expected since the first part of the forecast is using the es-
timated factors from 2013. However, since we use a rolling window we do observe 
that when we include in the forecast more information from 2014 the slopes are 
close to zero for many of the maturities; this means that at that point there is no 
significant difference between the two forecasting models.

Graph 4: Cumulative square prediction error for one day ahead forecast of the segmented 
Nelson and Siegel model for 2014

How do these results compare to what is observed in the literature? Although, 
it is difficult to make a precise comparison given that most of the literature is 
based on synthetic yield data from the U.S., our result indicate an improvement 
over affine Nelson an Siegel models; For example (Andreasen, Christensen, & 
Rudebush, 2019) with observed bond data, report a RMSE between 40 to 55 basis 
points. With Colombian data and a similar sample (Velasquez-Giraldo & Restre-
po-Tobon, 2016) report a RMSE between 6 to 17.5 basis points with an affine term 
structure model. Our results indicate a RMSE between 2.1 and 19 basis points for 
a similar forecast horizon. Therefore the performance is similar to the former and 
outperforms the U.S. model with observed bond data but using a non-segmented 
model.
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Conclusions

Term structure models are important for the pricing of instruments that are part 
of trading and reporting activities in financial markets. The financial literature 
has benefited from the research on term structure models performed from a 
monetary policy perspective. However, central banks are mainly focused on the 
changes in the general shape of the yield curve because this is informative as to 
the expectations regarding monetary policy. For this use case, using synthetic 
interpolated yields as a starting point in the model seems to be the norm and also 
performing simultaneous estimation of the parameters or functional forms of 
interest using all of the maturities. On the other hand, practitioner and investors 
are more interested in the performance of the model in terms of the observed 
market quotes. In addition, they are not comfortable when small changes in the 
short part of the yield curve have an important impact on the long part and they 
are certain that these changes are in part driven by the model. From a statisti-
cal point, one would prefer models that are locally robust to changes other parts 
of the curve and that are able to accommodate idiosyncratic shocks locally. The 
parametric terms structure model proposed by (Almeida, Ardison, Kubudi, Si-
monsen, & Vicente, 2018) provides a simple approach that splits the yield curve 
into segments and at the same time guarantee the smoothness and consistency 
across the curve.

Our paper provides an example on how to accomplish the segmentation of the 
curve and a proposal for using the observable yield during the year for in-sample 
and out-of-sample predictions. The out-of-sample predictions are not affected by 
using different maturities of the same bonds avoiding the need to make assump-
tions on the matching of the bonds for a historical reconstruction. Our point of 
view is that this is not necessary because of the dimension reductions that are 
performed on this type of factor model. Since the factors are the time-varying 
element of interest we can use them to connect the data generating process when 
the sample is estimated year-by-year rather than forcefully building a long his-
torical sample. 

The segmented model accommodates different behaviour of the bonds in each 
segments, this includes any difference due to liquidity. This is important in 
emerging markets where there are not enough bonds observed for all of the ideal 
maturities. However, it is still challenging because it is required to have sufficient 
observable bonds to estimate the time-varying loading's in each segment, un-
like the traditional unsegmented Nelson-Siegel model where you only need to 
estimate three to four factors at every point in time. Therefore, the segmented 
model is an interesting approach to account for heterogeneous behaviour along 
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the curve, but it will require more data than what might be available in some 
emerging markets.

There is room for improvement on the performance of the in- and out-of-sample 
forecasting exercise that can be explored using fine tuning. For example, the re-
searcher could identify which is the optimal split for the segments (re-define the 
internal knots) and also change the values of the parameters that controls how 
strong is the segmentation across the yield curve. In other words, how important 
are idiosyncratic local shocks versus shocks that affect the entire curve.
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Appendix base on (Almeida, Ardison, Kubudi, Simonsen, & Vicente, 2018)

I. Nelson-Siegel factor loadings: the level, slope and curvature of the yield curve. 
The loading's below are used in order to build the matrix W used to represent the 
segmented curve. 

II. R Matrix components: In order to create the matrix R of restrictions we re-
quire smoothness conditions based on the first and second derivatives of the fac-
tor loadings.

First Derivatives Second Derivatives

III. R Matrix Construction:	

Note that all the  yields within the same segment need to be governed by the 
same function . Let ST, MT and LT denote the segments related 
to short, middle and long term. The first three restrictions imply continuity of the 
segments at the knots.

•	
•	
•	
•	

The last condition will be important to measure the latent yields (Yields at knots) 
and transforming a constrain problem to a unconstrained with a lower dimen-
sional parameter space. Note that the form of matrix R allows us to decompose 
the matrix into a square invertible matrix R1 and a complementary R2 in order to 
reduce the dimensionality of parameters to be estimated.
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By construction all rows of R1 are linearly independent, then, the matrix is invert-
ible with rank equal to M. As we have split the matrix R into two sub-matrices, 
we also require the same process for the vector B of factors. Hence, the original 
constrain is re-expressed from (R (  ) = 0 to

 , (1)

where the vectors {θ1, θ2 } are adjusted to match the dimensionality of sub-matrix 
{R1, R2 }.	

Both {θ1, θ2 } are the vectors of the time-varying factors to be estimated. First we 
need to state that θ1 is the vector that accompanies the square invertible matrix 
R1. We can use expression ( , (1) to define a functional 
relationship between the vector of parameters,

 , (2)
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IV.	 Now we explain how to transform the constrained problem into an uncon-
strained one with lower dimensionality of parameters,

We also split the factor loading matrix  to match the set of factors {θ1, θ2 }. 
Then we use the expression  , (2) and obtain a lower dimensional 
factor model that is only a function of the unknown set of parameter θ2 ,

If we choose a knot equal to maturity of an observed yield, we assume that the 
yield at that knot is observed without error. 

The equation above allows us to introduce the remaining constrains (missing in 
R) in order to have a complete identification procedure. In all knots of the term 
structure we will require an exact fit compare to the observed curve. 


