
Dominguez, Cristina; Orehounig, Kristina; Carmeliet, Jan

Article
Estimating hourly lighting load profiles of rural households in East
Africa applying a data-driven characterization of occupant behavior
and lighting devices ownership

Development Engineering

Provided in Cooperation with:
Elsevier

Suggested Citation: Dominguez, Cristina; Orehounig, Kristina; Carmeliet, Jan (2021) : Estimating
hourly lighting load profiles of rural households in East Africa applying a data-driven
characterization of occupant behavior and lighting devices ownership, Development Engineering,
ISSN 2352-7285, Elsevier, Amsterdam, Vol. 6, pp. 1-21,
https://doi.org/10.1016/j.deveng.2021.100073

This Version is available at:
https://hdl.handle.net/10419/299100

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.deveng.2021.100073%0A
https://hdl.handle.net/10419/299100
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Development Engineering 6 (2021) 100073

Available online 21 October 2021
2352-7285/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Estimating hourly lighting load profiles of rural households in East Africa 
applying a data-driven characterization of occupant behavior and lighting 
devices ownership 
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A B S T R A C T   

To design energy access solutions for rural households in developing countries it is important to have an accurate 
estimation of what their electricity consumption is. Studies reveal that they mainly use electricity to meet their 
lighting needs, as they cannot afford high power-consuming appliances. However, the scarce data availability 
and modeling complexity are a challenge to compute correctly the load profiles without collecting data on-site. 
This paper presents a methodology that computes the hourly lighting load profiles of rural households in East 
Africa requiring a small amount of publicly available input data. Combining data from household surveys, 
climate, and satellite imagery, the methodology applies machine learning for determining occupant behavior 
patterns, and lamps ownership for indoor and outdoor usage. For this, an average prediction accuracy of 80% is 
reached. After applying lighting requirement functions, load profiles are generated and then validated using 
measured data from 13 households in Kenya. Results show that the methodology is able to compute the load 
profiles with an average normalized root mean squared error of 0.7%, which is less compared to existing 
simulation approaches using on-site data. To demonstrate a broad application, the monthly lighting consumption 
is computed and projected geospatially for households in Kenya.   

1. Introduction 

Electricity access is an enabler for development, bringing a number 
of societal benefits such as decreasing the domestic work burden for 
women, increasing the study hours for children, reducing household air 
pollution, and supporting productive activities with the mechanization 
of work (Deshmukh et al., 2013; IEA, 2020). However, 11% of the global 
population still lacks access to electricity, and this is mostly located in 
rural areas of developing countries (IEA, 2020). To overcome this 
challenge and design the best energy access solutions, it is important to 
estimate accurately what their consumption would be. Studies have 
revealed that these households mainly use electricity to meet their 
lighting needs, this is because most of the times they cannot afford 
having other high power consuming appliances (Deshmukh et al., 2013; 
Dominguez et al., 2018; McNeil et al., 2010). In Kenya, for example, 
there is evidence that households spend an approximate of 60% of their 
energy bill only for lighting (Rom et al., 2020); while in Dominguez et al. 
(2018) it was found that in an average rural household from 

sub-Saharan Africa, lighting accounts for more than 50% of their total 
electricity consumption. 

Since the residential lighting consumption depends on human 
behavior and daylight use, modeling approaches are likely to give un
certain results when predicting it, due to the complexity and random
ness involved. To overcome these challenges, some authors proposed 
models applying stochastic bottom-up approaches instead of statistical 
top-down approaches. For example, Widén et al. (2009) applied Markov 
Chains for calculating transition probabilities of activity states using 
detailed data of households’ time use available for Sweden for modeling 
the lighting load profiles; a similar approach was used in Widén et al. 
(2010) for estimating the electricity load profiles. Other models make 
predictions of the residential lighting load profiles based on 
high-resolution measurements data taken from sampled households 
over a certain period, such as the one proposed by M. Stokes et al. 
(2004), in which measurements were taken from 100 houses in the UK. 
However, if these approaches are applied to estimate the lighting loads 
of rural households in developing countries, the lack of detailed and 
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reliable data required as input becomes a challenge; more importantly, 
the immense socioeconomic gap existing between the countries for 
which the models were created and other countries must be considered. 

The study of residential lighting consumption of rural households in 
developing countries is mostly limited only to specific on-site case 
studies in which data are collected. For example, in Rom et al. (2020), 
authors estimate the share of lighting in the total energy expenditure, as 
well as the hours of use of solar lighting in Kenya, based on a randomized 
experimental approach. In Adeoti et al. (2011), authors made a 
survey-based domestic load assessment determining the lighting re
quirements as well as the usage of other small appliances such as radios 
and televisions in a rural village in Nigeria. Other studies have collected 
measured electricity consumption data from mini-grids and found out 
with complementary survey data that most of the electricity was used for 
lighting. For example, in Ahlborg et al. (2015), information was 
collected from a small-scale hydropower system in Ludewa district in 
Tanzania, with 1206 customers from which 600 were households using 
the electricity mainly for lighting and charging their mobile phones. A 
similar finding was presented in Williams et al. (2018), in which 
measured load profiles revealed that 644 out of 832 mini-grid customers 
across Tanzania were using electricity for said purposes. These studies 
give insights of lighting usage in rural areas for those specific places; but 
for determining it for other places, the knowledge-transfer or ‘rule of 
thumb’ methods become a source of uncertainty leading to over or 
underestimated estimations. 

In Lombardi et al. (2019), a most recent simulation model was spe
cifically developed for simulating high-resolution multi-energy load 
profiles applied to remote areas using a bottom-up stochastic approach, 
continuing the work of bib_Mandelli_et_al_2016bMandelli et al. (2016a, 
b). The model considers specific data from the studied site, such as the 
households’ number of electrical appliances per type, indoor and out
door lights, their specific times of use and power rating, time frames 
during the day in which random switch-ons can occur, among other. 
This model demonstrated to have an outstanding performance when 
validated with real consumption data from a remote village in Bolivia. 
However, it entirely relies on on-site data collection to generate the load 
profiles, and in most of the cases, data collection in rural areas of 
developing countries is a complicated and resource-consuming task. 
More recent efforts focused on deliberating a more generalized charac
terization of residential electricity demand in rural Kenya to facilitate 
the calculation of the latent energy demand using publicly available data 
(Falchetta et al., 2020). Authors classified households into different 
categories based on their appliances ownership and usage patterns, 
which are pre-defined based on the literature and the authors’ field 
experiences, and these are used as input to simulate their load profiles 
using Lombardi et al. (2019)’s approach. A more general example of 
characterization of load profiles in rural areas is found in Moner-Girona 
et al. (2019), in which a typical load curve is assumed for domestic, 
social (including health centers and schools) and productive uses. The 
typical load curves for domestic use are adapted from the Multi-Tier 
Framework (MTF) proposed by the World Bank’s Energy Sector Man
agement Assistance Program (ESMAP) (ESMAP, 2018), and households 
are then classified into one of the tiers based on sub-locations’ poverty 
rates. 

This paper introduces a data-driven methodology that is able to 
characterize households based on their occupant behavior considering 
attributes at different spatial scales and estimating their specific lighting 
devices ownership. This information is then used to compute stochastic 
lighting load profiles at an hourly resolution, requiring only a small 
amount of publicly available data as input. It is built on households’ 
survey data deployed by national and international entities, on-site data 
collection to bridge the data gaps, and other climate and satellite im
agery data. The methodology applies unsupervised and supervised ma
chine learning (ML) algorithms to identify the households’ typical 
occupant behavior and to estimate the type of lamps they use (incan
descent, fluorescent lamps, compact fluorescent lamps or CFL, and light- 

emitting diode or LED) and the number of indoor and outdoor lamps 
they own. After applying lighting requirement conditions based on their 
activity, occupancy, and daylight availability for each identified cluster, 
the hourly lighting load profiles are computed. The methodology is then 
validated using field measurements data from 13 households in Kenya. 
In addition, the model’s performance is compared with the model 
introduced in Lombardi et al. (2019) and with the daily lighting con
sumption computed directly from the on-site deployed surveys for 
further analysis. 

The paper is structured as follows; first, background information on 
East Africa is introduced, followed by a section dedicated to describing 
the datasets used for building up this methodology. Consequently, the 
applied methods are introduced in detail; while the results and discus
sion are presented in the next section, including the validation of the 
simulated lighting profiles against empirical data, along with the com
parison of its performance with existing approaches. A geospatial rep
resentation of the lighting consumption of rural households in Kenya is 
also presented in the latter section. Finally, the study boundaries and 
limitations are presented, followed by the general conclusions. 

2. The East African context 

African countries have the lowest electrification rates in the world 
(IEA, 2021). In the East African Community countries (Tanzania, Kenya, 
Uganda, Rwanda, and Burundi) however, electrification rates have 
significantly improved over the last decade, from an average of 12.2% in 
2010 to 39.6% in 2019 (IEA, IRENA, UNSD, World Bank, WHO, 2021). 
Kenya is the country in which this improvement has been mostly 
perceived, growing from 19% to 70% for said period (IEA, IRENA, 
UNSD, World Bank, WHO, 2021). Resulting from different electrifica
tion strategies such as the creation of the Rural Electrification Authority 
(REA) in 2006 (REREC, 2020) and the Last Mile Connectivity Project 
(LMCP) aiming to connect households within a radius of 600m of each 
already installed transformer was the final key to their success (LMCP, 
2020). 

In Tanzania, rural electrification rates have also improved from 2.5% 
to 18.8%; still, it remains far from its neighbors such as Kenya and 
Rwanda (World Bank, 2020). Tanzania is the regional leader in 
mini-grid development, having at least 109 mini-grids registered (Ahl
borg et al., 2015). This development resulted from the small power 
producers (SPP) framework introduced in 2008 (revised in 2015) 
encouraging investments from the private sector (WRI, 2020). Table 1 
presents a comparison of selected socioeconomic indicators and regional 
average values. By comparing the data availability needed to develop 
the methodology for each East African country - and especially for 
fieldwork data availability, Tanzania and Kenya were finally selected. 

3. Data 

For demonstrating the application and value of publicly available 
data for modeling high-resolution lighting profiles for rural households, 
the methodology is built on easy-accessible databases, complemented 
with one set of field-collected data to overcome data gaps. The datasets 
used in this study are summarized below and found in Table 2. Their 
detailed description is found in the supplementary material.  

• Dataset 1: The ‘Time Use’ section of the National Household Survey 
Panel (NHSP) from the Living Standard Measurement Studies 
(LSMS), performed from 2015 to 2016 in Tanzania (World Bank, 
2016) was used for creating the occupant behavior model.  

• Dataset 2: The Multi-Tier Framework (MTF) Survey deployed in 
Kenya from 2016 to 2018 by Energy Sector Management Assistance 
Program (ESMAP) (ESMAP, 2018) was used for identifying the type 
of lighting devices owned by households.  

• Dataset 3: Survey field data collected from 250 rural Kenyan 
households in Busia and Siaya counties (Dominguez et al., 2020) 
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were used for creating the models to estimate the number of lighting 
devices (for indoor and outdoor lights) that households own. 
Additionally, other datasets were incorporated to consider specific 
geospatial attributes related to the households’ geographic location:  

• Dataset 4: Hourly illuminance profile (availability of sunlight), 
measured in lux, for a typical day were retrieved from EnergyPlus 
(2020) with location in Makindu, Kenya, which is the closest station 
to Tanzania.  

• Dataset 5: Global nighttime lights satellite imagery data were 
retrieved from the Earth Observation Group, the monthly cloud-free 
average radiance composites for 2019 (C. D. Elvidge et al., 2017; C. 
D. Elvidge et al., 2021) were used. 

Table 2 summarizes the role of each dataset in the methodology, 
along with final sample sizes. Additionally, the dataset used for vali
dating the methodology comprises measured load profiles data collected 
from 13 rural households that belong to Dataset 3. These households do 
not own any electrical appliance other than lighting devices; therefore, 
they were of special interest for this study. The lighting consumption 
was recorded during 8 days with a time step of 30 s using electric current 
clamp meters.1 For the purpose of this study, a 24 h average lighting 

profile was computed for each measured household. 

4. Methods 

4.1. General description 

The proposed methodology computes the lighting hourly load pro
files of rural households requiring a reduced amount of publicly avail
able input data at household and sub-county/village scales. The 
methodology is based on an occupant behavior model that accounts for 
the household members’ daily schedule of activities to identify behav
ioral patterns that are classified in different groups (clusters); conse
quently, it applies lighting requirement conditions accounting for the 
occupancy and activity profiles for each group. In addition, a lighting 
devices model is created for determining the type of lamps that house
holds use to estimate their potential power rating; as well as for assessing 
the number of indoor and outdoor lamps they own. Finally, the hourly 
lighting profiles at a household scale are computed. 

Both models are composed by sub-models in which machine learning 
(ML) algorithms are applied to build predictive models that are able to 
identify and classify behavioral patterns (as part of the occupant 
behavior model) and estimate the number and type of lamps owned by 
households (as part of the lighting devices model). Since the predictive 
models are evaluated in a standard manner, the predictive models sec
tion in supplementary material describes their application in the study, 
selection, training, and validation procedures. Fig. 1 presents a diagram 
of the general description of the methodology including the inputs, 
models, sub-models, and outputs. 

4.2. Occupant behavior model 

To determine the potential hours in which occupants will require 
lighting, it is important to know their hourly activities inside the house. 
For this, the model implements a data-driven bottom-up analysis that 
determines the hourly probabilities of activity inside the house that 
require lighting (activity profiles) and hourly estimations of the number 
of people being at home (occupancy profiles). A cluster analysis (un
supervised ML) is first implemented for identifying clusters of behav
ioral patterns; then, RF is applied creating a predictive supervised ML 
model for classifying the input data into one of the identified clusters. 
Finally, lighting requirement functions are formulated based on the 
activity and occupancy profiles, as well as on the daylight availability. 

4.2.1. Cluster analysis 
Schedule patterns and their drivers are identified using the diaries 

from Dataset 1. For this, the Ward’s agglomerative hierarchical clus
tering algorithm (Ward, 1963) was applied, considering a bottom-up 
approach based on a variance sum-of-squares criterion minimizing the 
dispersion within groups at each iteration (Murtagh and Legendre, 
2014). It initially considers each observation as an independent cluster, 
and at every iteration, it combines the more similar clusters generating a 
new one. The process continues until all the observations are assigned to 

Table 1 
Selected socioeconomic indicators used for comparison among the East African Community.   

Tanzania Kenya Uganda Rwanda Burundi Average 

Total population (millions) 58 52.6 42.3 12.6 11.5 35.4 
Rural population (%) 65.5 72.5 75.6 82.7 86.6 76.6 
GDP per capita, PPP (current international $) 2770.7 4509.32 2271.6 2318.5 782.8 2358.1 
Population in multidimensional poverty (%)1 55.4 38.7 55.1 54.4 74.3 55.6 
Agriculture, forestry, and fishing (% of GDP) 28.7* 34.1 21.9 24.1 28.9 24.7 
Access to electricity (% of rural population)2 19 62 32 26 3 28.4 

Note: All values are retrieved from World Bank (2020) and are presented for 2019, except where indicated. 1The Multidimensional Poverty Index was created by the 
UNDP to complement the traditional income-based poverty indices by including multiple deprivations that households face at the same time. The values included in 
this table are retrieved from the 2020 report by UNDP (2020) with a range of years from 2014 to 2017. 2The rural electrification rates are taken from the SDG7 Tracking 
Progress 2021 report (IEA, IRENA, UNSD, World Bank, WHO, 2021) and are for 2019. *This value for Tanzania is presented for 2018. 

Table 2 
Summary of the final datasets and their function in the methodology.  

Source Description Dataset Country Samples Models 

World Bank 
(2016) 

National 
Household 
Survey Panel 
(NHSP), 
2015–2016 

1 Tanzania 461 Occupant 
behavior 

ESMAP 
(2018) 

MTF Global 
Survey on 
Energy Access, 
2016–2018 

2 Kenya 1043 Lighting 
devices 

Dominguez 
et al. 
(2020) 

Field-collected: 
Energy 
consumption 
patterns of rural 
households in 
Kenya (2019 

3 Kenya 183 Lighting 
devices 

EnergyPlus 
(2020) 

Hourly weather 
files, 2019 

4 Kenya – Occupant 
behavior 

(C. D.  
Elvidge 
et al., 
2017; C. D. 
Elvidge 
et al., 
2021). 

Nighttime 
lights VIIRS 
composites, 
2019 

5 Kenya – Lighting 
devices  

1 The clamp meters used measure the alternating current (AC) True Mean 
Root Square (TMRS) at a single-phase. The electric current measurements were 
transformed to power accounting for on-site measurements of the voltage. 
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a single cluster. The variances are measured through a distance matrix. 
Considering that the dataset used in this study contains sequential cat
egorical data (activity states) distributed in time steps, the sequence 
analysis algorithm TraMineR (Gabadinho et al., 2011) was applied for 
mining the sequences and determining the most suitable dissimilarity 
measure to obtain the distance matrix. This dissimilarity depends on the 
data structure and the study goals; in addition, the methods can be 
sensitive to specific aspects of a sequence such as the duration of the 
different successive states, the counts of common attributes, or the order 
of the different successive states as they appear (Studer et al., 2016). 
Since the aim of the study is to identify patterns to classify households 
based on their activity states distributed in a 24 h period, the main in
terest is to select a method that accounts for dissimilarities in transition 
rates from one state to the other while considering the states distribution 
over time and the common attributes among sequences. In the literature, 
a commonly used method for selecting the optimal dissimilarity mea
sure, while finding at the same time the optimal number of clusters is the 
silhouette width coefficient (Rousseeuw, 1987; Caliński and Harabasz, 
1974). The optimal dissimilarity measure and number of clusters is the 
one that presents the largest silhouette width coefficient. Table 3 pre
sents a description of the dissimilarity measures tested for comparison. 

Linear discriminant analysis (LDA) was applied to study the 

relationship between the found patterns and the set of variables 
included as attributes for each observation in the diaries, in other words, 
to identify the most significant variables that are able to define and 
characterize the clusters. The Pseudo F, Pseudo R,2 and Levene tests 
were applied to measure the statistical significance of each covariate and 
its importance for defining the clusters, using the t-value and p-value as 
significance indicators. These tests give information on the ratio of the 
variance between clusters to the variance within the clusters (Caliński 
and Harabasz, 1974), the proportion of variance explained by the 
analyzed covariate (Smith and McKenna, 2013), and the equality of 
variances for the covariate calculated for two or more groups (Gast
wirdth et al., 2009), respectively. 

4.2.2. Cluster classification 
After applying the LDA and reducing the dataset to the most signif

icant variables that define the clusters, a predictive model that will 
classify any new input into one of the identified clusters is created. For 
this purpose, the RF algorithm is applied, for which the SHAP values for 
each variable and f1score as respective performance indicator are esti
mated (see supplementary material for information on SHAP values and 
f1score). 

4.2.3. Lighting requirement 
Once clusters of behavioral patterns are identified, it is important to 

define when people require the use of lighting in their houses. The 
hourly lighting usage depends on the type of activities performed inside 
of the house, the daylight availability, and the number of people at 
home, as more people might require the use of different spaces simul
taneously. Hence, lighting requirement functions are proposed ac
counting for these factors. 

4.2.3.1. Activity-based. Based on the list of activities included in the 
diaries from Dataset 1, the activities that are performed inside of the 
house and that may require the use of lighting were classified and 
selected for further analysis. The selected activities are specified in the 
first column of Table 4, while the excluded activities are in the second 
column. Consequently, the probability of occurrence at every time step P 
(t) of the selected activities was estimated for each of the identified 
clusters. 

The condition in Eq. (1) was applied for identifying the lighting 
requirement based on P(t) of the selected activities, hereafter probability 
of activity, at every time step. 

Lightact(t)= {
1, P(t) > Pmin
0, P(t) ≤ Pmin

(1) 

Fig. 1. Flow diagram with general description of the methodology. Predictive 
models are included in the sub-models section and represented by the colored 
polygons. The blue polygon represents the application of unsupervised ML, 
while the green ones, the application of supervised ML. 

Table 3 
Dissimilarity measures tested and descriptions (Studer et al., 2016).  

Dissimilarity measure Description 

Dynamic Hamming distance 
(DHD) 

Sum of mismatches with position wise state- 
dependent weights. 

The length of the longest common 
subsequence (LCS) 

Number of elements in one sequence that can be 
matched with elements occurring in the same 
order in the other sequence. 

Optimal matching based on 
transition costs (OMtrans) 

OM between sequences of transitions. 

Optimal matching based on spells 
length costs (OMspells) 

OM between sequences of spells. 

Note: The optimal matching methods measure the dissimilarity of two sequences 
as the minimum total cost of transforming one into the other (Studer et al., 
2016). 

Table 4 
Classification of activities included in the analysis based on the diaries.  

Activities performed inside/requiring 
lighting 

Activities performed outside/not requiring 
lighting 

Taking care of children Farming 
Cooking School 
Domestic work Shopping 
Eating Sleeping 
Entertainment Social activities 
Exercising Travelling 
Own business work Work as employed (having a salaried job) 
Personal care Other 
Religion (praying)  
Weaving   

2 Remote-Areas Multi-energy systems load Profiles, open-source code and 
documentation available in https://github.com/RAMP-project/RAMP. 
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where Pmin represents a threshold of minimum probability of activity. If 
P(t) is larger than Pmin, then lighting is required, Lightact(t) = 1. To 
determine the value of Pmin, a range of potential values is set accounting 
from half of the maximum value to the maximum value of probability of 
activity during the day from each cluster, Pmin = [Pmax/2, Pmax]. Then, a 
random selection is applied to the defined range for each cluster to select 
the final value of Pmin. 

4.2.3.2. Daylight availability. Lighting requirement depends on the 
daylight availability, as it is less likely that lighting will be required 
during daytime. Therefore, the direct normal illuminance (measured in 
lux) was extracted from the weather files of a typical day retrieved from 
Dataset 4. A typical day is considered because in Tanzania and Kenya the 
illuminance does not have significant variations over the year, since they 
are close to the equator. A minimum illuminance Lmin is defined as the 
minimal requirement of lighting considering the daylight availability at 
time t. As suggested in (Widén et al., 2009), Lmin is estimated as half of 
the maximum illuminance value of the typical day. If the illuminance at 
each time step L(t) is less than Lmin, then lighting is required, LightL(t) =
1. The condition for lighting requirement considering the daylight 
availability is presented in Eq. (2). 

LightL(t)= {
1, L(t) < Lmin
0, L(t) ≥ Lmin

(2)  

4.2.3.3. Occupancy-based. In Eqs. (1) and (2), it is defined that the 
lighting devices are used if the conditions Lightact(t) = 1 and LightL(t) =
1 are fulfilled. However, since there is also probability that household 
members perform activities that do require the use of lighting even 
during the daylight hours, then the occupancy of people in the house Occ 
(t) is also considered in Eq. (3). As for Pmin and Lmin, a minimum oc
cupancy threshold, Occmin, has to be defined dependent on the house
hold size (HHS). Therefore, if there is at least the minimum occupancy in 
the house and Lightact(t) = 1, even if LightL(t) = 0, lighting might be 
required. For this, the occupancy profiles need to be estimated ac
counting for the number of people present in the house at each time step. 
As performed in (Dominguez et al., 2018), to estimate the occupancy at 
time t, Occ(t), the probability of activity P(t), and the average household 
size HHS of the analyzed cluster are considered, hence, the occupancy at 
time t equals: 

Occ(t)=P(t)⋅HHS (3) 

As for Pmin, to determine the value of Occmin, a range of potential 
values is set accounting from half of the maximum value to the 
maximum value of occupancy during the day from each cluster, Occmin 
= [Occmax/2, Occmax]. Then, a random selection is applied to the defined 
range for each cluster to select the final value of Occmin. As a final 
condition, to determine how many of the total number of lampsa 
household owns will be turned on at what time, a factor of the number of 
lamps per person is calculated, that will then be multiplied by Occ(t) at 
every time step. 

4.3. Lighting devices 

Besides having lamps in the rooms, installing lamps outside of the 
living space is revealed to be important for rural households, as it pro
vides a sense of security during the nighttime (Dominguez et al., 2021; 
Mandelli et al., 2016a,b; Van Ruijven et al., 2011), these are often called 
security lights or outdoor lights in the literature. Knowledge on the 
amount of indoor and outdoor lamps and their power rating is needed 
for determining the lighting load profiles. Hence, prediction models 
were created first for estimating the type of lighting device that house
holds own for identifying ranges of potential power ratings; and then for 
estimating the amount of both indoor and outdoor lamps. It is important 
to note that the amount of outdoor lights is calculated separately 

because they do not have the same hours of use as the indoor lights. 
While the hours of use of indoor lights depend on the lighting require
ment conditions mentioned in the previous section, the ones for the 
outdoor lights are defined considering that these will be working during 
the lowest values of illuminance L(t) →0, adding up to approximately 12 
h s of use in this case. This amount of hours coincides with the one 
mentioned in Mandelli et al. (2016) specifying the window of potential 
use of outdoor lights in a typical rural household. 

4.3.1. Type of lamps 
Dataset 2 was used for estimating the type of lamps households own, 

as it indicates their access to different types in a binary form. A pre
dictive model that classifies households into different types of lamps is 
proposed, for which RF was applied, including demographic and so
cioeconomic characteristics at household and village level. In addition, 
Dataset 5 containing the nighttime lights average radiance was used for 
extracting the values for each georeferenced data sample included in 
Dataset 2. Based on the literature and technical specifications of com
mercial lamps, the most common ranges of power rating for each type of 
lamps were defined; consequently, the model selects randomly a power 
rating value based on the type of lamp and its range of possibilities. 
Table 5 presents the types of lamps included in this study, the power 
rating ranges, and the common ranges of luminous efficacy. Due to data 
limitations in terms of separating the type of lamps owned for indoor 
and outdoor purposes in a household, the assumption that households 
use only one type of lamp to meet both purposes is made. However, field 
studies such as Lombardi et al. (2019) and Mandelli et al. (2016) have 
shown that households tend to use outdoor lights with more power 
rating than the ones they use indoors. While in Dominguez et al. (2021) 
the same trend was observed in households that own solar home systems 
(SHS); however, for households that have grid-connection the power 
rating for indoor lights is slightly larger than the outdoor ones. 

4.3.2. Indoor and outdoor lamps ownership 
Since the number of lamps per household is not included neither in 

Dataset 1 nor in Dataset 2 and cannot be found in national household 
surveys for both countries, a method to estimate the number of lamps 
has to be proposed. Hence, the amount of lamps for indoor and outdoor 
purposes was extracted from Dataset 3 from the field data collection 
from 183 households in rural Kenya, creating predictive models 
applying RF, including household and village level variables. The fre
quency distribution of both number of indoor and outdoor lamps found 
in the dataset are presented in Fig. 2 predictive models that estimate the 
lamps ownership were created as classification problems, as the 
outcome variable is not continuous. 

4.4. Lighting profiles validation 

The modeled hourly lighting load profiles for the measured house
holds are validated against real consumption data; therefore, indicators 
are computed to measure their prediction accuracy. These are the 
normalized root mean squared error (NRMSE), which is a normalization 
of Eq. (4), divided by the average load value of the measured daily load 

Table 5 
Type of lamps and power rating and luminous efficacy ranges.  

Type of Lighting Device/ 
Lamp 

Power Rating Range1 

(W) 
Luminous efficacy2 (lm/ 
W) 

Incandescent (45, 60] [10.4, 15] 
Fluorescent (15, 45] [60, 100] 
Compact Fluorescent Light 

(CFL) 
(10, 15] [46, 75] 

Light Emitting Diode (LED) [3, 10] [30, 120] 

Sources: 1 Philips (2021), U.S. Department of Energy (2021), Mandelli et al. 
(2016a,b), Adeoti (2011), Mahapatra et al. (2009), Sebitosi & Pillay (2007), 
Nieuwenhout et al. (1998). 2 Philips (2021), Kumar and Choudhury (2014). 
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profile, presented in percentage form. Another indicator is the load 
factor (LF), given by Eq. (4), representing the average load value of the 
measured daily load profile (Pavg) divided by the maximum load (Ppeak) 
over the same period. The daily aggregate consumption (Wh/day) is also 
considered, which is the sum of the hourly loads in one day. Since the 
latter indicator can be computed from the survey-collected data for each 
measured household, this was also used for validation. 

LF =Pavg
/

Ppeak (4) 

For further evaluation, the simulation model introduced in Lombardi 
et al. (2019) for generating bottom-up stochastic load profiles for remote 
areas, RAMP,2 is also implemented for generating each household’s 
lighting profile. In Lombardi et al. (2019), RAMP demonstrated to have 
an outstanding performance on estimating the electricity profiles for a 
remote area in Bolivia. This model relies on site-interview-based data as 
input to simulate the profiles; therefore, the survey-collected data from 
the measured households, contained in Dataset 3 are used (Table 6). It is 
important to note that RAMP requires the number of indoor and outdoor 
lights, and their specific times of use and power rating as inputs for 
simulating the load profiles; while in the model presented in this paper, 
these are estimated based on a small number of variables. Therefore, for 
comparing the performance of both on predicting the measured load 
profiles, their different modeling approaches need to be considered. 

5. Results and discussion 

5.1. Cluster analysis 

For selecting the optimal dissimilarity measure to use in the cluster 
analysis, the silhouette width coefficient was calculated for a range of 
two to six clusters, as shown in Fig. 3. A maximum silhouette width 

coefficient is obtained for four clusters (k = 4) for all the evaluated 
measures. 

For having the largest silhouette width coefficient, the optimal 
dissimilarity measure selected was OMtrans, which classifies all the 
observations in the dataset into four clusters. Fig. 4 presents the states 
distribution in each cluster. The results of the linear discriminant anal
ysis (LDA) used for measuring the significance of each covariate for 
defining the clusters are presented in Table A.1. The final selected 
covariates are presented in Table 7; for each of them, the percentage of 
population within each cluster is given. 

Cluster 1 (n = 165) characterizes households with at least 50% fe
male population that perform farming activities as income and livestock 
raising, and their ownership of large and small livestock, and poultry is 
larger than in the rest of the clusters. They own less large appliances 
than the rest. Cluster 2 (n = 177) characterizes households with more 
than 60% of female population. As in cluster 1, they also perform cash 
farming and livestock raising activities, but almost 20% less. These 
households mostly perform activities inside of the house, such as taking 
care of children, cooking, and doing domestic work (Fig. 3). They own 
more large appliances, and less mobile phones than the ones in cluster 1. 
This suggests that these households might have other income sources 
besides farming, which allows them to afford larger appliances. As 
mobile phones are low power-consuming and affordable devices, this 
could explain why cluster 1 has a larger share of them compared to 
cluster 2. 

Cluster 3 and 4 represent the lowest shares in the total sampled 
population (n = 62 and n = 57 respectively) showing different patterns 
of behavior compared to the other two. These clusters characterize 
households in which the main economic activity is having a business at 
home (cluster 3) and a salaried job (cluster 4). They both have males 
representing more than 60% of their population. Households in cluster 3 
perform more cash farming activities than those in cluster 4, but less 
livestock raising activities, owning almost 10% less large livestock and 
poultry, and 1% less small livestock. It is interesting to note that cluster 1 
and 2 have more in common on their demographics and economic ac
tivities, dedicating their time mostly to farming activities and livestock 
raising. As for clusters 3 and 4, they have diverse sources of income, 
which explains their high ownership of mobile phones and large 
appliances. 

For cluster 1, activities performed inside the house such as taking 
care of children, domestic work and entertainment have three peaks 
during the day, at 09:00, 16:00 and at 21:00, respectively. The latter 
alone have their highest peak at 23:00. Conversely, these are performed 
throughout the day for cluster 2. Instead of having three peaks as cluster 
1, it has a predominant one at 10:00 and another at 22:00, having the 
activity peak in morning hours, while social activities are performed 
between the morning and night peaks. Households from cluster 3 allo
cate their time to their own business from 10:00 to 21:00, having similar 
peaks of activities inside the house, as cluster 1, with the difference that 
in cluster 3, the morning peak is larger and the afternoon peak is more 
distributed over time. Cluster 4 presents two well defined peaks of 

Fig. 2. Frequency distribution for number of indoor and outdoor lamps in 
Dataset 3. 

Table 6 
Inputs used for RAMP simulation model extracted for the measured households 
from Dataset 3.   

Indoor lamps Outdoor lamps 

Number Power 
rating 

Hours of 
use 

Number Power 
rating 

Hours of 
use 

HH1 5 25 7 1 25 7 
HH2 5 8 4 2 20 11 
HH3 1 15 2 1 12 2 
HH4 4 23 4 3 75 8 
HH5 5 18 5 5 24 5 
HH6 2 12 4 0 0 0 
HH7 3 20 3.5 2 30 6 
HH8 5 18 4 4 18 8 
HH9 1 30 3 1 20 12 
HH10 3 18 4 2 75 5 
HH11 2 15 4 2 75 4 
HH12 2 9 4 1 9 1 
HH13 4 20 3 4 20 12 

Note: For all other input parameters required by RAMP and not found in Dataset 
3, the standard values based on the case study in Lombardi et al. (2019) were 
used. 

Fig. 3. Silhouette width coefficient calculated for a range from two to 
six clusters. 
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activities inside the house, one at 09:00 as they leave for work and one at 
23:00. 

5.1.1. Cluster classification 
RF was applied to create the predictive model for classifying the 

identified clusters. Due to the existence of class imbalance among the 
clusters found in the training dataset (Fig. 5, left), weighting was applied 
to give all classes an equal weight. The training parameters used, and 
f1score as performance indicator are found in Table 8, and the confusion 
matrix is presented in Fig. A2. Mean absolute SHAP values for each 
variable considered in the model are included in Fig. 5 at the right, while 

the SHAP values (with the positive and negative contributions) are 
found in Fig. A1 in the Appendix. 

Based on this figure, the most influential variable to define the 
clusters is the small livestock ownership, having a negative contribution 
for clusters 1 and 4, and positive contribution for clusters 2 and 3 if the 
household does not own small livestock. The variable with the least 
contribution is the ownership of poultry, which affects positively clus
ters 1 and 3, and negatively clusters 2 and 4 especially if the household 
owns poultry (refer toFig. A1 Figure A.1 for further explanation).Fig. A2 
Figure A.2 presents the confusion matrix as a visualization of the 
model’s performance. The matrix columns represent the true class 
households belonging to each cluster, while the rows show the house
holds that were predicted to belong to each cluster. Meaning that the 
sum of the diagonal values are the households that were predicted 
correctly for each cluster. 

5.2. Lighting requirement 

After the application of the lighting requirement conditions given by 
Eqs. (1)–(3), the probability of activity at home requiring lighting was 
computed for all four clusters. For illustrative purposes, in Fig. 6, the 
direct normal illuminance for a typical day (a), together with number of 
people in the house (b) and their activity profiles (c), are presented for 
cluster 1. The activity profiles for the remaining clusters are included in 
Fig. A3. 

Similarities were found in the activity profiles between clusters 1 and 
4, since they are mostly performing activities outside the house (farming 
and having a salaried job, respectively). In addition, similarities were 
found for clusters 2 and 3, since they are mostly performing activities 
inside the house (cooking and domestic work, and having a business at 
home, respectively). 

Fig. 4. Cluster’s grouped schedule patterns of activity.  

Table 7 
Variables selected from discriminant analysis and their characteristics by 
cluster.  

Variable Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Respondent gender * (% of 
females) 

50.3 66.7 37.1 31.6 

Relationship to HH head * (% of 
household heads) 

55.8 46.3 71.0 78.9 

Cash farming activitiesa(%) 60.0 43.5 37.1 24.6 
Livestock raising (%) 84.2 64.4 45.2 54.4 
Large livestock ownershipb (%) 41.2 27.1 9.7 19.3 
Small livestock ownershipc (%) 43.6 29.9 16.1 17.5 
Poultry ownership (%) 75.2 63.3 41.9 52.6 
Large appliances ownershipd (%) 18.8 25.4 29.0 40.4 
Mobile phone ownership (%) 77.0 73.4 82.3 82.5 

Note: *Information from respondent, the rest of information corresponds to the 
household as a whole. 

a They sell what they harvest. 
b Oxen, cattle. 
c Goats, pigs, sheep. 
d Televisions, refrigerators. 
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5.3. Type of lamps 

For estimating the type of lamps that households own, RF was 
applied as a classification problem, which hyperparameters are defined 

as in Table 4, and the confusion matrix is presented in Fig. A2.Fig. 7 
introduces the variables that were included in the final model, showing 
the contribution on the predictions in mean absolute SHAP values. Both 
household and village level variables were included in the analysis; 
however, only household attributes showed to be relevant for defining 
the type of lamps. These attributes range from household size, housing 
materials (especially the walls), and assets such as mobile phones, mo
torbikes, and poultry. In Fig. A4 the positive and negative contributions 
of each variable are observed. Interestingly, the nighttime lights are 
relevant for predicting the type of lamps used by households; strong 
nighttime lights captured by satellite images (having a high average 
radiance) indicate the use of fluorescent and CFL lamps. Having a 
negative contribution on the use of incandescent and LED lamps. When 
comparing the ownership distribution for each type of lamp against the 
households’ NL values from both Datasets 2 and 3 (Fig. 7), it is noted 
that with higher NL values, the distribution of samples owning fluo
rescent and CFL lamps is slightly more concentrated. It is important to 
consider that households in these databases are located in areas with 
very low NL values (especially the ones in Dataset 2), which makes it 
difficult to identify a clear trend. The VIIRS DNB satellite (providing the 

Fig. 5. Left, class imbalance towards Cluster 1 and Cluster 2. Right, impact of each variable on the model’s prediction, expressed in mean absolute SHAP values.  

Table 8 
Training parameters and performance of the predictive model for cluster 
classification.   

Cluster Identification 

Samples 459 
Training 346 
Testing 113 

CV Folds 10 
CV Repeats 3 
Variables Sampled (mtry) 5 
Trees Number (ntrees) 500 
Node Size (sizenode) 0.1 

f1score (training) 0.88 

f1score (testing) 0.78  

Fig. 6. (a) Direct normal illuminance (in lux) used for representing a typical day of the year with Lmin used for this study. (b) Occupancy profile (number of people at 
home at time t) for cluster 1. (c) Activity profile of cluster 1 representing the probability of activity at home that requires lighting. 
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NL images used in this study) has a spectral response between 400 and 
900 nm, which can be able to capture many human-made light sources 
(C.D. Elvidge et al., 2017). The relationship between different types of 
lamps with satellite images has been studied in the literature. For 
example, Sanchez de Miguel et al. (2019) and N. Levin et al. (2020), 
reported that these images are capable to provide information on the 
color of artificial lighting during the nighttime. However, without 
knowing the technology that is producing the lights it is not possible to 
identify their luminous efficacy due to the broadband spectra that can be 
produced by a single technology (especially LED). The VIIRS DNB sat
ellite, for example, is unable to capture the incoming band in the blue 
band (N. Levin et al., 2020). Furthermore, there are studies focused on 
identifying the type of lighting technology from remote sensing images. 
For example, by taking ground-measurements using visible and near 
infrared hyperspectral imaging, Dobler, et al., 2016 showed that the 
images captured mostly fluorescent and LED technologies, while in
candescent lamps were largely undetected, attributing this to their low 
signal amplitude and primary usage for indoor lighting, which is barely 
detected. 

5.4. Indoor and outdoor lamps ownership 

Predictive models applying RF were created for estimating the in
door and outdoor lamps ownership considering all household and 
village level attributes included in the Dataset 3. For determining the 
number of indoor lights, a classification problem was formulated. This 
was also the first approach for determining the number of outdoor 
lamps. However, after testing different problem formulations, the cor
relation between this variable with the rest of covariates – with different 
combinations and sampling methods, was not evident; moreover, the 
models had no statistical significance (p-value over 5%), reaching un
satisfactory accuracy levels (f1score below 50%). Consequently, a 
different approach was used formulating a regression problem in which 
the dependent variable is continuous, representing a fraction of the 
number of outdoor per indoor lamps. The final hyperparameters used in 
the models and their performance are presented in Table 9.Fig. A2 
Figure A.2 presents the confusion matrix for the indoor lamps model, 
and the correlation plot of modeled and predicted values for the outdoor 
lamps model. 

In Fig. 8, the variables with the greatest impact on the final pre
dictions (in mean absolute SHAP values) for both indoor and outdoor 
lamps are presented. Their ownership depends not only on household 
level, but also on village and sub-county level variables, such as the 
electrification rate, streetlights access rate, and population density. 

Interesting trends are found when analyzing the positive and negative 
contributions of each variable, presented in Fig. A5 and A6. For 
example, having large appliances has a positive contribution on owning 
more indoor and outdoor lamps, while having access to a solar home 
system (SHS) increases the number of indoor lamps, but decreases the 
ownership of outdoor lamps. Generally, having good quality walls and 
floor materials increases the ownership of both and having a male as 
household head increases the ownership only of indoor lamps. The type 
of lamp also has a role on defining the number of outdoor lamps, as the 
ownership of incandescent and fluorescent lamps increases their 
ownership. Furthermore, high access to streetlights and low population 
density has a negative contribution on their ownership. 

In Fig. 9, the jitter3 representation of the distribution of indoor and 
outdoor lamps in the dataset, classified by type of lamp is shown. LED 
lamps are used in wide-ranging quantities for indoor purposes, while 
their use is quite restricted for outdoor purposes. For the latter, fluo
rescent are preferred. This might be triggered by the price per lamp. 
According to different local markets consulted during the field study in 
Kenya, the most common prices are 1US$, 2US$, 2-3US$ and 5-8US$, 
for incandescent, fluorescent, CFL, and LED lamps, respectively. 
Therefore, for having cheap (considering only the purchase price) and 
strong outdoor lights for bringing security to households, fluorescent 
lamps are their most reasonable choice. 

5.5. Application: generating lighting profiles for measured households 

The lighting load profiles are generated for the 13 households with 
measured profiles. For this, the variable inputs needed are extracted 
from Dataset 3, first for determining to which of the identified clusters 
they belong, second for defining the type of lamps that they use, and 
third for estimating how many indoor and outdoor lights they own. To 
account for the nighttime lights, the average monthly radiance values 
were extracted from the satellite image with approximate geographic 
coordinates for each household, while the streetlights access was taken 
from Dataset 2 for each village. The overall required input variables for 
the proposed methodology are described in Table 10, the detailed inputs 
for the sampled households are found in Table 1 and the simulated re
sults for each sub-model are presented in Table 2, both presented in 
supplementary material. In Fig. 10, the simulated lighting load profiles 
for each household are grouped by cluster. Different trends can be 
observed by cluster, for which the most evident is the daytime lighting 
usage between clusters 1 and 4, and clusters 2 and 3. The simulations 
show that households from cluster 1 and 4 do not present any lighting 

Fig. 7. Distribution of ownership for each type of lamp against the households’ 
NL values from both datasets 2 and 3. 

Table 9 
Training parameters and performance of the predictive models for the number of 
indoor and outdoor lights.   

Type of lamp Indoor lamps Outdoor lamps 

Samples 1043 183 148 
Training 785 138 103 
Testing 258 45 45 

CV Folds 10 10 10 
CV Repeats 3 3 3 
Variables Sampled (mtry) 9 11 5 
Trees Number (ntrees) 500 500 103 
Node Size (sizenode) 0.1 0.1 0.1 

f1 Score (training) 0.96 0.75 – 
RMSE (training) – – 0.35 
R2 (training) – – 0.77 

f1 Score (testing) 0.80 0.75 – 
RMSE (testing) – – 0.26 
R2 (testing) – – 0.76  

3 Data visualization technique of adding random noise to prevent plotting 
data on top of each other when they have the same coordinates range. 

C. Dominguez et al.                                                                                                                                                                                                                             



Development Engineering 6 (2021) 100073

10

use during daytime; oppositely, households from cluster 2 present the 
most lighting activity variation during these hours, especially from 
07:00 to 11:00. However, the peak power for all clusters is mostly 
happening between 19:00 to 22:00. 

5.6. Validation with empirical data 

To validate and test the accuracy of the methodology presented in 
this paper for predicting hourly lighting load profiles for rural house
holds, the simulated profiles from the previous section were compared 
to the on-site measured profiles from 13 households in rural Kenya. In 
addition, RAMP model was used for generating these profiles on an 
hourly basis for a typical day using as inputs the survey-collected data 
(Dataset 3), presented previously in Table 6. The values in this table 
were also used for estimating the aggregate consumption (Wh/day) for 
the survey comparison method. To facilitate the comparison, the simu
lated load profiles were averaged by cluster. This procedure was also 
applied to the ones generated by RAMP and to the measured profiles. 
The cluster means comparison is presented in Fig. 11, while the results 
for each indicator used for comparison are presented for each cluster in 
Table 11. 

The first observation from Fig. 11 is that the mean lighting load 
profile from cluster 1 is overestimated by RAMP, this is due to the 
inconsistency between the information provided by the household 
through the survey and the real measured data. Especifically, because 
HH4 (belonging to cluster 1) reported in to consume 4.13 times more 
electricity than it actually consumes; which affects the cluster’s mean 
value. The errors caused by the discrepancy between survey and 
measured load profiles data have been previously explored in studies 
such as Hartvigsson et al. (2018) and Blodgett et al. (2017). 

Fig. 8. Impact of each variable on each model’s prediction, expressed in mean absolute SHAP values. Left, for type of lamps; center, for indoor lamps; right, for 
outdoor lamps. 

Fig. 9. Distribution of number of indoor lights versus number of outdoor lights, 
per type of lamp. 

Table 10 
Required overall input variables for the proposed methodology, their descrip
tion, and the sub-models in which they are applied.  

Input variable Description Sub- 
models1 

Household head 
gender 

Male or female 3 

Respondent gender If survey respondent is male or female 1 
Relationship to HH 

head 
If survey respondent is the household (HH) 
head, spouse or other 

1 

Access to secondary 
education 

If survey respondent had access or not to 
secondary education 

3, 4 

Main occupation Occupation in which the main income relies, it 
can be farming, own business, or other 

1, 4 

Livestock raising If the household raises livestock (small or 
large) 

1 

Household size Number of people in the household 2 
Number of rooms Number of rooms in the household 3 
Type of cooking 

stove 
It can be open fire or other 4 

Walls material Predominant walls material, it can be bricks, 
mud, corrugated iron sheets, or other 

2, 3, 4 

Floor material Predominant floor material, it can be ceramic 
tiles or other 

2, 4 

Access to SHS If the household has access or not to a solar 
home system (SHS) 

3, 4 

Large livestock 
ownership 

If the household owns oxen or cattle 1 

Small livestock 
ownership 

If the household owns goats, pigs or sheep*, 
and how many pigs** and sheep*** 

1*, 3**, 
4*** 

Poultry ownership If the household owns poultry*, and how 
many** 

1*, 2** 

Large appliances 
ownership 

If the household owns television, DVD, 
refrigerator, sound equipment, sewing 
machine, portable computer*, and how 
many** 

1*, 3**, 
4** 

Mobile phones 
ownership 

If the household owns mobile phones*, and 
how many** 

1*, 2**, 
3** 

Motorbikes 
ownership 

Number of motorbikes owned by the 
household 

2 

Bicycle ownership Number of bicycles owned by the household 3 
Nighttime lights 

extract 
Average monthly radiance (nW/cm2/sr) 2 

Village electricity 
grid access 

Percentage (%) of households with access to 
grid-electricity 

3, 4 

Sub-county 
streetlight access 

Percentage (%) of households reporting that 
their street has access to streetlights (sub- 
county/division values from Dataset 2) 

4 

Sub-county 
population density 

Number of people per km2 4 

Note 1: The sub-models are presented as follows: 1 = Cluster classification, 2 =
Type of lamp, 3 = Indoor lamps ownership, 4 = Outdoor lamps ownership. 
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In Hartvigsson et al. (2018), the inability of interview-based load 
profiles for identifying the daytime hours of electricity use due to bias in 
the respondents’ gender is discussed. During the data-collection in 
Kenya, this was considered on varying the interview hours and days 
(including weekends) to achieve a 50:50 proportion of male and female 
respondents. In the measured lighting load profiles, a slight usage of 
lighting during the daytime is registered, especially for households from 
clusters 2 and 3. These loads are not identified by RAMP, while they are 
identified by the simulated profiles. It is important to highlight that 
RAMP is based on user-entered time frame information such as the time 

of use per day of each appliance (in this case, lamps), minimum time in 
which these are kept on once they are switched-on, and time frames in 
which random switch-ons can occur. While the first parameter was 
included in the survey-collected data, the other two were not; therefore, 
the standard parameters set in the open-source model – that were also 
applied in the case study in Lombardi et al. (2019) for Bolivia were used. 

From Table 11 it is observed that for predicting the real LF, generally 
the simulations outperform the results from RAMP in all clusters with 
errors ranging from − 1.54 to − 7.83%, except for cluster 3 with 33.21%. 
However, both models underestimate the peak load for all clusters 

Fig. 10. Results from the simulated lighting load profiles for households in each cluster.  

Fig. 11. Results from the comparison of mean lighting load profiles from the measurements of 13 HH, the simulations, and from RAMP model, by cluster.  
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(except for RAMP on cluster 1), generally, the simulations show a better 
performance, except again for cluster 3, in which RAMP has an error of 
− 14.29%. For the aggregate consumption, the survey method was also 
included for comparison, and it is interesting to note that the simulations 
outperform the surveys and RAMP on this indicator, with an average 
error of − 20.42%. In the case of RAMP it is mainly due to the uniden
tified daytime loads; as for the surveys, they tend to overestimate the 
consumption in most cases, except for cluster 2. The NRMSE indicator 
evaluates the performance of both models considering the hourly esti
mations, for this, the simulations and RAMP presented an average per
formance below 2.5%, still the simulations obtained the lowest errors, 
ranging from 0.56 to 0.89%. It is important to note that the performance 
for RAMP could have been improved if the specific required inputs 
would have been included in the field data collection; meaning that 
RAMP is useful to apply when field data are collected from specific sites 
being considered for electrification projects. 

5.7. Geospatial representation of lighting consumption 

Kenya was selected as an example of how the methodology can be 
applied to geospatially project the lighting demand of rural households 
using publicly available data. The variables needed as input for the 
predictive models were extracted from each household in Dataset 2 for 
computing their typical load profiles and then calculating their monthly 
aggregate lighting consumption (kWh/month). This dataset was used 
because households are geo-referenced, which allows mapping their 
final results. It also contains information about their actual monthly 
electricity consumption (accounting for the total consumption, not only 
lighting), which allows its comparison with the simulated lighting 
consumption results. In Fig. 12, the top left figure presents the results of 
the simulated monthly lighting consumption, while the top right shows 
the actual monthly electricity consumption reported in the surveys. 
Overall, it was found that the average share of lighting in their total 
electricity consumption corresponds to 40.85%, with an average 
aggregate lighting consumption of 380.71 Wh/day (11.42 kWh/month) 
per household; however patterns are identified by province and by 
county. Previous research has explored the usage of geospatial data and 
application on economic development (Goldblatt et al., 2019). More 
widely, it has been studied the correlation between nighttime lights and 
economic activity (Ishizawa et al., 2017; Mellander et al., 2015), as 
economic development could be correlated to electricity access or even 
electricity consumption (Lee et al., 2020), the nighttime lights were 

included for further analysis. In the bottom right, a distribution of the 
identified clusters of households per county and province is presented, 
while in Fig. 13, the average shares of lighting in the total electricity 
consumption of a typical household per province and county are iden
tified (see Fig. A.8 in the appendix for reference on the counties’ loca
tion). For further discussion on the correlation of the type of lamp used 
and the households’ income, Fig. 14 shows the average ownership of 
each of the analyzed type of lamps, against the average households’ 
monthly income per province. The households’ monthly income was 
computed by aggregating each household member’s income, averaging 
it by province. From this figure, the correlation between the average 
households’ monthly income and the average ownership of incandes
cent and LED lamps has the strongest negative and positive trends, 
respectively. However, this correlation is not evident for fluorescent 
lamps. For the CFL lamps, a slight negative trend is found. 

An average household in Central, Eastern, and Rift Valley provinces 
consumes more electricity and lighting, and has the highest ownership 
of incandescent lights compared to other provinces. These provinces are 
among the ones with the largest share of households belonging to cluster 
4. According to the real measured data from Table 11, households in 
cluster 4 are the largest lighting consumers, with an average value of 
658.33 Wh/day. Lighting covers 27.76%, 40.11%, and 47.36% of the 
total electricity consumption of households in these provinces (Fig. 12). 
Some of the highest values of average monthly radiance are also found 
there (Fig. 12, bottom left), interestingly, the average monthly income of 
households included in this study from Central and Eastern provinces is 
the lowest (Fig. 14); therefore, no evident correlation was found be
tween the monthly average radiance and the average household income. 

Western province has the largest share of households belonging to 
cluster 3 compared to the others. Fig. 14 shows that the lighting share of 
the total electricity consumption of households in this province is 79%, 
although in Fig. 14 they presented to have one of the largest share of 
ownership of LED lamps with 59.52%, following the Coast and North- 
Eastern provinces. All sampled households in the North-Eastern prov
ince own LED; lamps, however, it is important to note that they only 
represent one county (Wajir). Analyzing the results at a county level, it is 
interesting to note the high shares of the total electricity consumption 
that is allocated to lighting in Kakamega, Busia and Vihiga in the 
Western province. According to the results, these three counties along 
with Embu (Eastern province) and West Pokot, Elgeyo-Marakwet and 
Baringo (Rift Valley) are the ones in which most rural households mainly 
use electricity for lighting purposes. 

Table 11 
Results of comparison by cluster.   

Real Sim % Err Sim RAMP % Err RAMP Survey % Err Survey 

Cluster 1 

Load Factor 0.26 0.24 − 7.83 0.20 − 20.79   
Peak Load (W) 62.50 52.50 − 16.00 143.00 128.80   
Aggregate Consumption (Wh/day) 387.50 300.00 − 22.58 702.25 81.23 1444.00 272.65 
NRMSE (%)  0.89  2.23    
Cluster 2 

Load Factor 0.39 0.38 − 3.88 0.26 − 32.84   
Peak Load (W) 68.75 60.00 − 12.73 40.25 − 41.45   
Aggregate Consumption (Wh/day) 643.75 540.00 − 16.12 253.13 − 60.68 357.75 − 44.43 
NRMSE (%)  0.66  0.77    
Cluster 3 

Load Factor 0.30 0.40 33.21 0.19 − 35.54   
Peak Load (W) 70.00 43.00 − 38.57 60.00 − 14.29   
Aggregate Consumption (Wh/day) 505.00 413.25 − 18.17 279.00 − 44.75 663.00 31.29 
NRMSE (%)  0.56  0.84    
Cluster 4 

Load Factor 0.30 0.29 − 1.54 0.22 − 27.39   
Peak Load (W) 91.67 70.00 − 23.64 66.67 − 27.27   
Aggregate Consumption (Wh/day) 658.33 495.00 − 24.81 347.67 − 47.19 950.00 44.30 
NRMSE (%)  0.65  1.01     
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6. Study boundaries and limitations 

The overall limitations of this study include that, as a data-driven 
methodology, it is highly dependent on the quality and amount of 
data used for creating the models. Even if the average accuracy of all 
predictive models is 80%, further developments for increasing their 
robustness by adding more samples in the training dataset are required. 
The power ratings’ definition for each type of lamp was made based on 
the assumptions specified in Table 5. However, the luminous efficacy 
and the power rating for each lamp type may vary from wider ranges 
than the ones proposed in this paper, and the arbitrary selection of a 
final value from the proposed ranges may act only as an approximation. 
For future work, the methodology can be improved by developing a 
calibration method to account for the activity variation during the 
weekdays and weekends, as well as for the seasonal variation. In addi
tion, more measured data should be collected for validation. 

7. Conclusion 

Creating data-driven methods to support the planning of energy ac
cess solutions in developing countries is of great importance mainly for 
optimizing the investment of resources for future electrification projects. 

The proposed methodology was created using publicly available data 
from two of the most representative countries of East Africa, Kenya and 
Tanzania, applying machine learning approaches for determining 
occupant behavior patterns, lighting requirements, lamps type and 
ownership to compute hourly lighting profiles for rural households. Its 
application was validated by modeling the profiles of 13 measured 
households in rural Kenya, obtaining an average normalized root mean 
squared error of 0.7%, which is 0.6% less compared to existing simu
lation approaches based on on-site data collection. The model generally 
underestimated other indicators, such as the peak power and the 
aggregate consumption; however, the average errors were relatively low 
compared to existing approaches. The inconsistency on the information 
provided by households through surveys and their real lighting con
sumption measurements can be perceived, affecting specially the per
formance of the existing approaches, as they depend on these data as 
input. The latter approaches are suitable when field data are collected 
from specific sites. Furthermore, data collection implies a high amount 
of resource investment for project developers. To facilitate this task, the 
proposed methodology uses only publicly available data as input, thus it 
can be applied in places where specific information is not available. 
However, it is important to note that even if the simulated approxima
tions are made considering different household-level attributes as 

Fig. 12. Top left, geospatial representation of the model’s results with predictions of the monthly lighting consumption, averaged per county. Top right, geospatial 
representation of the actual electricity consumption documented in Dataset 2, averaged per county. Bottom left, nighttime lights extract for Kenya, Dataset 5. Bottom 
right, distribution of households belonging to each cluster per province. The sub-county representation for the top figures is found inFig. A7 in the Appendix. 
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indicators, this does not mean that computer-generated data will replace 
the qualitative data that can be collected on-site. 

The main findings of the study include that rural households in East 
Africa can be characterized into four different occupant behavior pat
terns: the ones that mostly perform farming activities, those that 
perform domestic work, those that own a business at home, and finally, 
those that have salaried jobs. These are defined considering not only the 
household member’s activity diaries, but also different socioeconomic 
and demographic attributes. Predictive models for classifying house
holds based on their behavioral patterns, the type of lamps they own, 

and the number of lamps used for indoor and outdoor purposes were 
created, with average accuracy of prediction of 80% on the testing sets. 
The overall input variables for the proposed methodology range from 
demographic, socioeconomic and geographic attributes at household 
and village/sub-county levels, including the household size, housing 
materials, livestock and other assets ownership, nighttime lights of 
specific locations, village access to grid-electricity, among others. 
Interestingly, the nighttime lights extracted from satellite imagery 
showed having an impact for defining the type of lamps that households 
own. Thus, stronger average monthly radiance has a positive 

Fig. 13. Average lighting share of the total electricity consumption (%) per province.  

Fig. 14. Average ownership of lamps (% of households) against the average monthly income (KSh), for each type of lamp and each province.  
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contribution on the use of fluorescent and CFL lamps; while it affects 
negatively the use of incandescent and LED lamps. The village and sub- 
county level variables were found having more impact for defining the 
number of indoor and outdoor lights owned by households, rather than 
for the type of lamps they own. These variables are the sub-county access 
to streetlights and population density, and village access to grid- 
electricity. A geospatial characterization for Kenya is also presented as 
an example of the application of this methodology for geographically 
identifying sites with the highest lighting consumption using publicly 
available data. From this, it is identified that households in the provinces 
of Western, Rift Valley and Eastern use an average of 79%, 47% and 
40%, respectively, of their total electricity consumption to meet their 
lighting needs. 

Finally, this paper introduces a methodology for characterizing rural 
households based on their occupant behavior and predicting their 
detailed lighting devices ownership in terms of type of lamp used, and 
amount owned for indoor and outdoor purposes. From this, their po
tential energy usage dedicated only to lighting can be identified. The 
results obtained in this study can serve as reference to project developers 
or solar home system distributors of the amount of the electricity con
sumption that rural households allocate only to meet their lighting 
needs, which bridges a knowledge gap in the literature that contributes 

to a better understanding of their electricity consumption habits. The 
methodology can be potentially applied for performing pre-feasibility 
studies, as most existing load simulation approaches require specific 
on-site collected input data in order to get estimations of what would be 
the latent energy demand (energy that households may consume when 
given electricity access). The required inputs for this methodology can 
be easily accessed from public databases, which increases the possibil
ities of applying and validating the methodology in other countries in 
the region. 
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Appendix A  

Table A.1 
Variables tested in linear discriminant analysis (LDA) for selecting the most significant variables for the clusters definition. The criterion used for selection was a 
relative significant t-value and a p-value equal of less than 0.001. The selected variables are in bold.  

Variable t-value p-value 

Pseudo F Pseudo R2 Levene Pseudo F Pseudo R2 Levene 

Demographics/economic activities 

Household Size 1.2E+00 3.3E-02 3.7E+00 1.6E-02 1.6E-02 4.8E-03 
Respondent gender* 2.0E+01 4.2E-02 2.7E+01 2.0E-04 2.0E-04 2.0E-04 
Age 1.1E+00 1.3E-01 4.2E+00 3.6E-02 3.5E-02 2.0E-04 
Relationship to household head* 5.3E+00 3.4E-02 1.7E+01 2.0E-04 2.0E-04 4.0E-04 
Food farming 8.2E+00 1.8E-02 3.1E+00 2.0E-04 2.0E-04 7.5E-02 
Cash farming 5.3E+00 1.1E-02 1.4E+01 2.0E-04 2.0E-04 4.0E-04 
Livestock raising 6.2E+00 1.3E-02 1.3E+01 2.0E-04 2.0E-04 4.0E-04 
Non farming activities 5.0E+00 1.1E-02 1.2E-01 2.0E-04 2.0E-04 7.4E-01 
Salaried job 4.6E+00 9.9E-03 6.7E-03 2.0E-04 2.0E-04 9.3E-01 
Fishing 3.7E+00 7.9E-03 4.3E+00 2.0E-04 2.0E-04 4.0E-02 

Housing 

Number of rooms 1.1E+00 1.2E-02 5.3E+00 2.3E-01 2.1E-01 3.2E-03 
Walls material 1.4E+00 1.8E-02 3.8E+00 1.4E-03 8.0E-04 7.6E-03 
Roof material 1.0E+00 9.1E-03 8.4E+00 2.9E-01 3.0E-01 3.2E-03 
Floor material 1.8E+00 4.0E-03 5.0E+00 9.4E-03 8.2E-03 2.6E-02 
Cooking fuel 1.3E+00 1.2E-02 7.6E+00 1.1E-02 1.2E-02 1.3E-02 

Ownership of productive capital 

Land 6.3E+00 1.4E-02 5.5E+00 2.0E-04 2.0E-04 2.5E-02 
Other land 1.3E+00 2.9E-03 3.6E-01 9.3E-02 1.0E-01 5.6E-01 
Large livestocka 4.6E+00 1.0E-02 7.6E+00 2.0E-04 2.0E-04 6.0E-03 
Small livestockb 4.7E+00 1.0E-02 1.9E+01 2.0E-04 2.0E-04 2.0E-04 
Poultry 4.1E+00 8.9E-03 1.7E+01 2.0E-04 2.0E-04 2.0E-04 
Fish 2.3E+00 4.9E-03 2.8E-01 2.0E-03 1.0E-03 5.9E-01 
Non-mechanized farm equipmentc 6.3E+00 1.3E-02 4.0E+00 2.0E-04 2.0E-04 4.3E-02 
Mechanized farm equipmentd 1.3E+00 2.8E-03 2.3E+00 1.4E-01 1.2E-01 1.2E-01 
Business equipmente 1.9E+00 4.0E-03 3.9E+00 6.8E-03 8.0E-03 4.9E-02 
House 2.5E+00 5.4E-03 2.5E-01 4.0E-04 2.0E-04 6.1E-01 
Large appliancesf 3.8E+00 8.2E-03 2.1E+01 2.0E-04 2.0E-04 2.0E-04 
Small appliancesg 1.0E+00 2.2E-03 1.9E-01 4.0E-01 4.1E-01 6.6E-01 
Mobile phone 3.1E+00 6.6E-03 1.1E+01 2.0E-04 2.0E-04 1.4E-03 
Transport meansh 1.5E+00 3.2E-03 1.3E+00 5.6E-02 5.7E-02 2.7E-01 

Note: *Information from respondent, the rest of information addresses the household as a whole. 
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a Oxen, cattle. 
b Goats, pigs, sheep. 
c Hand tools. 
d Tractor plough, power tiller, treadle pump. 
e Solar panels used for recharging, sewing machine, brewing equipment, fryers. 
f Televisions, refrigerators, DVD. 
g Radios, mobile phones. 
h Bicycle, motorcycle, car. 

Fig. A.1. Impact of each variable on clusters classification prediction, expressed in mean SHAP values. The negative values represent a negative impact of the 
variable value. A value of ‘0’ indicates negation, while ‘1’ affirmation, e.g. owning poultry has a negative impact for clusters 1 and 3, and positive for clusters 2 and 4.  
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Fig. A.2. Confusion matrices and linear relation. The matrices’ columns represent the true class households belonging to each cluster, while the rows show the 
households that were predicted to belong to each cluster. The sum of the diagonal values are the households that were predicted correctly. 

Fig. A.3. Activity profiles, the y-axis represents the probability of activity at home that requires lighting, the x-axis represents the time of the day.   
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Fig. A.4. Impact of each variable on type of lamp prediction, expressed in mean SHAP values. The values indicated as “Low” or “High” represent values that are 
located either lower on higher than the mean of the respective variable in the dataset. For walls and floor materials, ‘0’ indicates negation, while ‘1’ affirmation. 

Fig. A.5. Impact of each variable on type of lamp prediction, expressed in mean SHAP values. The values indicated as “Low” or “High” represent values that are 
located either lower on higher than the mean of the respective variable in the dataset. For walls materials, SHS Access, Female and Male household head (HHH), ‘0’ 
indicates negation, while ‘1’ affirmation.  
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Fig. A.6. Impact of each variable on outdoor lamps ownership prediction, expressed in mean SHAP values. The values indicated as “Low” or “High” represent values 
that are located either lower on higher than the mean of the respective variable in the dataset. For floor material, SHS Access, Incandescent, Fluorescent, and 
Secondary Education, ‘0’ indicates negation, while ‘1’ affirmation. 

Fig. A.7. Left, geospatial representation of the model’s results with predictions of the monthly lighting consumption, averaged per sub-county. Right, geospatial 
representation of the actual electricity consumption documented in Dataset 2, averaged per sub-county.  
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Fig. A.8. Administrative areas of Kenyan counties.  
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