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A B S T R A C T

Internet-connected sensor technologies have recently been used to monitor water service infrastructure in
remote settings. In this study, 397 groundwater pumps were observed in Plateau State, Nigeria over 12 months
in 2021. Two hundred of these sites were instrumented with remotely reporting electronic sensors, including
100 hand-pump sensors, 50 electrical pump sensors, and 50 cistern water-level sensors. Every two months,
phone calls and site visits were used to collect a ground-truth of pump functionality: whether the pump
was capable of delivering water, regardless of actual use. Our study examined: (1) What are the operating
characteristics and trends of these different kinds of water pumps?; (2) Can water-point functionality be
predicted with electronic sensors?; and (3) Does the instrumented water-point sample accurately represent
average water-system functionality across the region? An automated classifier generated functional/non-
functional diagnostics for instrumented pumps on a weekly basis. Classifier diagnostics were compared to
ground-truth data, showing an overall accuracy of 91.7% (96.1% for hand-pumps, 63.9% for cisterns, and
93.2% for electrical boreholes), with high fleet-wide sensitivity in correctly identifying a functional pump
(94.4%), but poor overall specificity in correctly identifying a non-functional, broken pump (25.0%). This
discrepancy is attributable to the sensors’ difficulty in distinguishing between a broken pump and an unused
pump. Varied patterns were seen in pump usage as a function of rainfall, with hand-pump use decreasing
significantly, electrical pump usage decreasing to a lesser degree, and cistern use increasing in response to
local rainfall. A comparison of the 200 instrumented to 197 non-instrumented sites showed statistically similar
repair and failure rates. The high overall accuracy of the sensor–diagnostic system—and the demonstration that
sensor-instrumented sample sites can represent population-level breakdown and repair frequencies—suggests
this technology’s utility in supporting sample-based monitoring of overall water pump functionality and water
volume delivery. However, the poor performance of the system in distinguishing between broken and unused
pumps will limit its ability to trigger repair activities at individual pumps.
1. Introduction

1.1. Background

Nigeria faces increasing desertification associated with drought in
recent years, including in Plateau State (Olagunju, 2015), reducing
surface water resources and increasing reliance on groundwater for do-
mestic, livestock, and agricultural uses (*Gongden and Lohdip, 2009).
Across sub-Saharan Africa, groundwater resources and recharge are

∗ Corresponding author.
E-mail address: evan.thomas@colorado.edu (E. Thomas).

considerable, marking a significant source of future water security for
the continent and an important consideration for resilience in the face
of climate change (MacDonald et al., 2021; Taylor et al., 2009).

Rural water-supply interventions aim to improve water security in
low-income settings. However, they often have a less-than-expected
record of sustaining water services. Examples abound of technologies
whose useful lives were cut short by preventable causes such as lack
of operation and maintenance budgets, expertise, or supply chains
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for replacement parts, and conflicting management priorities (Boudet
et al., 2011). This is illustrated by the failure rates of hand-pumps in
rural communities in Africa, where as many as one in three are non-
functioning at a given time (Foster et al., 2020; Klug et al., 2018).
Other technologies fail to scale because supporting systems—including
economic and political contexts—are insufficient (Brown et al., 2009;
Hollander et al., 2020), or because technical or social components
of the interventions were poorly designed at the outset and proved
unacceptable to end-users (Luoto et al., 2011).

As described in recent literature (Thomas et al., 2018; Andres et al.,
2018; Thomas and Brown, 2021), new approaches and technologies to
monitoring how well interventions sustain or improve service delivery
for the world’s poorest and most vulnerable offer compelling opportu-
nities to make rural water supply more secure and reliable. In recent
years, electronic sensors were developed and applied in environmental
health programs to support health studies and provisioning of water
services. This study supports research into the potential for technology
solutions to support service delivery in the rural water sector in Low-
and Middle-Income Countries (LMICs). Specifically, the objective was
to analyze the potential for remote/wireless technologies to monitor
and predict the functionality of rural water infrastructure in developing
economies, with a study in Nigeria.

1.2. Objective

Previous literature has examined the use of near-real-time report-
ing sensors as direct water-point operations and maintenance (O&M)
support tools in Rwanda and Kenya (Nagel et al., 2015; Wilson et al.,
2017); quantified groundwater use changes as a function of local rain-
fall in Kenya (Thomas et al., 2019; Thomson et al., 2019); analyzed site
functionality across motorized boreholes in Northern Kenya (Turman-
Bryant et al., 2019); and called for the application of better and more
responsive monitoring systems to create accountability feedback mech-
anisms between service providers, funders, and communities (Thomas
and Brown, 2021). Additional has research leveraged networks of
sensor-equipped boreholes to support improved service-delivery mod-
els (Libey et al., 2022).

An O&M monitoring approach prioritizes mechanisms to monitor
all water systems that a water supplier (e.g., a utility, NGO, or gov-
ernment agency) is responsible for operating and maintaining. While
an O&M monitoring approach may not require Internet-of-Things (IOT)
connected sensors on all water-points, it does require consideration of
the viability and capacity of water system management organizations
to use and respond to the generated data. Operations and maintenance
monitoring is sensitive to equipment cost as it can require a consid-
erable proportion of water schemes to be instrumented. In contrast,
the objective of this study is to retroactively examine the operating
characteristics of a sample of electrical and manual boreholes in Plateau
State, Nigeria, to support an estimation of water system functionality.
These data can help to inform investments, policy, and progress, but
were not intended to support real-time operations.

Following the sensor deployment phase of the project, sensor data
analysis was performed to answer the following research questions:

• What are the water-pump operating characteristics and trends?
• Can water-point functionality be predicted?
• Does this statistical sample accurately represent water system

functionality in Plateau State?

. Methods

The study deployed satellite-connected sensors provided by Virridy
previously SweetSense, Inc.) on hand-pumps and electrical pumps in
lateau State, Nigeria. Sensors collected data on pump run time and
unctionality, used to analyze trends in water-pump use and function-
lity predictive power.
2

2.1. Study setting

Plateau State is located in central Nigeria, West Africa. It is one of
the 36 states that, along with the Federal Capital Territory of Abuja,
constitute the Nigerian Federation. Plateau State has an estimated
population of 4.2 million (NBS, 2006), of which only an estimated
44.9% have access to basic water services (Federal Ministry of Water
Resources and National Bureau of Statistics, 2018). Plateau State com-
prises 17 Local Government Areas (LGAs). A map of the study area is
shown in Fig. 1.

2.1.1. Statistical approach
An expert-informed predictive model was developed, and its abil-

ity to determine water-pump functionality and failures was analyzed
against ground-truth observations. Using contact data collected during
on-site asset inventory, ground-truth data was collected via phone
calls every two months to ascertain the functionality of the pump and
reasons for any non-functionality. When a phone call could not be
completed successfully, a site visit was carried out.

The characteristics of the sites selected for inclusion in this study
might vary from the characteristics of similar sites in Plateau State.
Therefore it was important to compare water system functionality
trends and estimates generated with sensor data against other data
sources collected in the study area. Because the statistical sample
reflects initially-functional water points only, it is biased toward water-
scheme functionality.

2.1.2. Water scheme database development
To select a robust sample of water points to instrument, an indica-

tive database of water points in Plateau State was developed. This
was generated by reviewing data provided by the World Bank, the
Plateau Rural Water Supply and Sanitation Agency (PRUWASSA), the
Community and Social Development Project (CSDP), and Water Aid
Nigeria (WAN). Next, the team merged these databases, de-duplicated
records, corrected obvious typographic errors, and unified categori-
cal variables. Detailed ground-truthing and additional error correction
were conducted on a sub-sample of candidate sensor installations.
Several data sources were consulted that provided qualitative and quan-
titative characteristics on national and regional administrative levels in
Nigeria, as well as several databases with site-level water system data.

Databases which contributed to this unified water scheme list
include Nigeria’s national Water, Sanitation, Hygiene Information Man-
agement System (WASHIMS); informant interviews conducted in
Plateau State in February 2020; two World Bank reports (Bank, 2017;
Andres et al., 2019); a CSDP inventory of water systems; a PRUWASSA
database of water points and schemes for Plateau State (2015); and
the 2018 Water, Sanitation, Hygiene National Outcome Routine Map-
ping (WASH-NORM) survey (Federal Ministry of Water Resources and
National Bureau of Statistics, 2018).

The most comprehensive source about water systems in Plateau
State was the database of water points and schemes provided by
PRUWASSA and the World Bank. This list included 3,066 water points
and 32 water schemes. The CSDP inventory was then integrated with
this list to develop a harmonized list of 3,113 water points, summarized
in Table 1. This list suggests that 81% of known water systems in
Plateau State are hand-pumps, of which 53% are functional, and 18%
of water systems have electrical pumps, of which 46% are functional.

2.1.3. Sample size estimation
Based on these estimates, Table 2 presents a sample size calcu-

lation for the number of sensors required to provide a statistically
valid sample of monitored water points, stratified by electrical and
hand-pumps.

These estimates suggest that approximately 758,100 people are
served by approximately 2,500 hand-pumps, and approximately 1.38M
people are served by 552 electrical pump systems, for a total served
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Fig. 1. 17 Local Government Areas (left) are situated within Plateau State (center), in central Nigeria (right).
Table 1
Harmonized Plateau State water systems summary.

Handpumps Electrical pumps Other Total

Count Proportion Count Proportion Count Proportion Count Proportion

Functional 1,334 53% 252 46% 19 56% 1,605 52%
Non-functional 1,193 47% 300 54% 15 44% 1508 48%
Table 2
Sample size estimation calculation features.

Estimated number of handpumps (See Table 1) 2,527
Estimated population served per handpump (RWSN, 2022) 300
Total estimated population served by handpumps 758,100
Estimated number of electrical pumps (See Table 1) 552
Estimated population served per electrical pump (MacAllister et al., 2020) 2,500
Total estimated population served by electrical pumps 1,380,000
Total estimated population Plateau State (NBS, 2006) 4,200,000
Plateau state access to basic water services (Federal Ministry of Water Resources and National Bureau of Statistics, 2018) 44.9%
Population with access to basic water services 1,885,800
Confidence level, Interval 95%, 10%
Number of functional handpumps (See Table 1) 1,334
Handpump sample size 90
Number of functional electrical boreholes (See Table 1) 252
Electrical borehole sample size 70

Total sensors required 160
population of about 2.14M. To validate these estimates, a top-down
estimate of the population in Plateau State was multiplied by the
latest WASH NORM survey (Federal Ministry of Water Resources and
National Bureau of Statistics, 2018) findings on access to basic water
services in the state (44.9%), yielding about 1.9M million people with
access to basic water services.

Based on these calculations, we produced, delivered and installed up
to 200 sensors comprising a mix of hand-pump and electrical borehole
sensors to provide a robust, statistically significant estimate of water
system functionality across the state.

2.1.4. Sample selection and site validation
The harmonized water points list provided a short-list of candidate

water systems. The World Bank Water Global Practice was responsible
for the random selection, using exclusion criteria based on safety
and other considerations deemed relevant by PRUWASSA (e.g., known
water-system functionality, promoter, and water-system type). The fol-
lowing criteria were applied prior to randomization: (1) only motorized
pumps and hand-pumps, and (2) only pumps identified as or assumed
to be functional.

The World Bank Water Global Practice then applied the following
criteria to sample generation: (1) stratified by CDSP and PRUWASSA
managed water systems; (2) 30 randomly selected CSDP sites (all
hand-pumps); (3) 100 randomly selected motorized boreholes and 70
hand-pumps stratified by project implementer; (4) 19 randomly se-
lected observations as first backups; and (5) 22 additional randomly
selected observations as secondary backups. Note that backups were
distributed proportionally accordingly to the criteria above to the
extent possible.
3

Initially, the project team intended to validate the selected sample
sites through phone calls to confirm pump presence, type, functionality,
and physical safety and security prior to a site visit. However, limited
data on the water points resulted in ambiguities when attempting to
contact local operators and communities. Instead, the team conducted
site visits, which included a combination of community engagement,
site validation, asset-inventory surveys, and sensor installations if ap-
propriate. During site visits, an asset inventory survey was deployed
through the mWater app, and included questions on water site location,
pump caretaker contact information, infrastructure characteristics, in-
stallation year, management structure, functionality, number of users,
water-use behaviors (including seasonal influence), alternative water
sources, tariffs, water volume yields, and recent maintenance. Addition-
ally, the survey process included taking pictures of the pump and any
visible components.

2.2. Sensor operation

Virridy sensor systems comprise a satellite-connected Gateway that
logs and transmits data at a 12- or 24-hour frequency, and an Accessory
that collects data to transmit to the Gateway at a 40-minute frequency,
which minimizes daily satellite data-transmission costs. The Gateway
is powered by a solar panel, while the Accessory is self-powered.

Three types of sensor systems were used to instrument water-pump
infrastructure in Plateau State: (1) AC-powered electrical boreholes
were instrumented with self-powered inductive current clamps; (2) DC-
powered electrical borehole cisterns were instrumented with battery-
powered water-level sensors; and (3) India Mark 3, India Mark 2, and
AFRIDEV hand-pumps were instrumented with battery-powered direct-
use sensors (see Fig. 5). Both the AC electrical and hand-pump sensors
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Fig. 2. Three sensor types were used to measure usage at three types of pumps. Hand-pump sensors convert handle motion counts into usage estimates (top). AC current clamps
use 40-minute current readings to estimate runtime (center). Water level sensors in storage reservoirs convert water level changes to filling and emptying events on DC pumps
(bottom).
Fig. 3. Project milestones relate to this study spanned 2020–21.
record direct measures of pump use. The cistern sensor measures water
supply in storage tanks on-site as a proxy for water-system use. Fig. 2
shows the operating principles behind converting raw data from each
sensor type into estimates of pump run time and water extraction.

2.3. Implementation process

A broad timeline describing the scope and activities in this project
is shown in Fig. 3.

Amid travel restrictions related to the COVID-19 pandemic, the
team organized virtual training sessions with in-country partners, WAN
and PRUWASSA. Training comprised sessions for each sensor installa-
tion type. Following each training, partner feedback was incorporated
into training materials. Additional feedback from partners enabled a
co-design process to improve sensor deployment opportunities. Per-
sistent 3D models were made available to installers to internalize
the mechanics of the sensor system and support in-field installation
processes.

Detailed installation manuals were provided by the sensor design-
ers. Each installation manual was modified in response to stakeholder
input following initial review, and following training sessions and
evolving field knowledge. Manuals went through several iterations,
incorporating feedback from in-country design collaborators. The final
manuals are shown in Fig. 4.
4

Partner teams used the mWater platform to record data about
potential installation and control sites in an asset inventory form.
Additionally, at each installation site, and each time a sensor was
installed, removed, or replaced, a smartphone-based survey (mWater)
was completed by the technician performing the work. This form
records the installation location, barcode of the gateway, type of acces-
sory installed, and collects other relevant asset and site data, including
installation pictures.

A number of mechanical, electrical, and site issues required contin-
ual operations and maintenance activities to be carried out in partner-
ship with WAN and PRUWASSA staff to maintain sensor functionality
and record events such as complete pump-site failure, sensor system
theft or vandalization, etc. Staff continually monitored the raw data
coming from each sensor site, and deployed mWater-based Work Orders
on roughly a monthly basis for site visits to respond to apparent sensor
system or site issues.

2.3.1. Sensor system deployment
Water facilities that met the following criteria were prioritized

for sensor installation: (1) Located in rural or small-town area; (2)
A public good with unrestricted access by the public; (3) Located in
an operationally safe Ward and LGA; and (4) Sensor instrumentation
is acceptable to the community, identified through the initial asset
inventory interview with the pump operator or caretaker.
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Fig. 4. Three installation manuals were developed with support and iterative input from project stakeholders.
Fig. 5. Sensor installations on rural water Afridev handpump (a), India MkIII handpump (b), AC electrical motorized pumps (c), and DC borehole on-site steel cistern (d).
2.3.2. Asset inventory, ground-truth, and classifier training set
In collaboration with local government leaders, pump reports of

water system status (functional or non-functional) were collected using
mWater. For both sensor-equipped pumps and a comparison sample
of non-sensor-equipped pumps, complete asset-inventory surveys were
first collected through in-person visits. Then, the operators of these
pumps in both samples were called every two months starting in April
2021 to record pump functionality status. Sometimes the operator
could not be reached by phone, in which case the team physically
visited the site to confirm the operational status of the pump in ques-
tion. In addition to these scheduled visits and phone calls, pump status
reports were submitted during sensor-data-triggered field visits and
5

phone calls, reviewed by program staff for data completeness and for
accuracy of repair and failure event dates.

In combination, these reports provided details on the ground-truth
status of both the pumps and the sensors. Event dates from the reports
enabled comparison with sensor data, and where pump report dates
were found to be misaligned with pumping data, data validation was
performed based on field team recall, other available status reports,
and sensor run-time data. When known, repair events were logged and
incorporated into this analysis as known periods of non-functionality
before the repair, and known functionality after the repair.

WAN and PRUWASSA team members carried out asset inventory
baselining in March and April 2021. All asset inventories included a
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Fig. 6. A conceptual model describing the operating conditions of the groundwater pump system, sensor and remote sensing data sources, interpretation approach, and classification
conditions.
site visit, interviews with local caretakers, and an inventory of the
population served by the pump, and other demographic data. At each
site, at least one caretaker’s contact information was recorded, with
a secondary caretaker’s contact information included when possible.
WAN and PRUWASSA then made ground-truth phone calls and site
visits every two months.

2.4. Pump functionality prediction algorithm development and validation

The algorithms described in this report were developed by lever-
aging a combination of in-situ and remotely sensed data validated
with manually collected ground-truth. We built on related efforts with
similar systems in Kenya and Ethiopia (Thomas et al., 2020; Thomas
and Brown, 2021). The flowchart shown in Fig. 6 describes the oper-
ating conditions of the groundwater pump system. Each pump has two
primary, real-world conditions: it is either ‘‘Functional’’ and capable of
delivering water, or it is ‘‘Non-functional’’ and cannot currently deliver
water. A non-functional pump includes pumps that require a repair
or management intervention, and sites where local drought conditions
prevent water extraction. The classifier was calibrated and evaluated
through comparison against the ground-truth site reports and periodic
phone calls to confirm water-pump functionality.

As a first-order approximation to distinguish functional from non-
functional conditions, electrical run-time sensors indicate if the pump
is switched on or off, cistern sensors detect changes in water level,
and hand-pump sensors detect handle motion. However, these approx-
imations are insufficient to reflect the operating environment for these
pumps. Namely, many pumps may not be used during the rainy seasons
in these regions even if they are functional, when people are otherwise
able to secure surface water for themselves and their livestock. A more
sophisticated classification system is required to distinguish between
‘‘Non-functional’’, a true-negative condition, and ‘‘Not-running on pur-
pose’’, a true-positive condition where the pump is capable of delivering
water, even if it is not being used. The following sections describe the
data-collection and interpretation methods applied to improve on this
distinction.
6

Our work previously used remotely sensed rainfall estimates from
the Monthly Climate Hazards Group InfraRed Precipitation with Sta-
tions (CHIRPS) (Funk et al., 2015) data to show that pump usage
inversely correlates to local rainfall, and that groundwater demand
increases when absence of rainfall limits the availability of surface
water alternatives (Thomas and Brown, 2021). Therefore, in the predic-
tive classifier described in this report, remotely-sensed data for rainfall
estimates were incorporated using the CHIRPS system in order to use
rainfall as a potential predictor of pump run-time. Each data point
corresponds to a 0.05◦ area, or roughly 31 square kilometers.

2.5. Water pump run-time analysis

In this analysis, time-series methods are used to evaluate trends
in water system functionality collected from the instrumented water
pumps. The key outcome is pump functional time, operationalized as
the count of functional pump hours, and collected on a continuous basis
during the study period via installed sensors. Data on functional time
is aggregated into weekly time intervals, and is generally presented as
a percentage of total run-time, compared to a maximum run-time of
100%, which would indicated 24-hour daily usage.

2.6. Expert classifier design

To build and then validate our classification algorithm’s ability
to detect pump functionality, a training set was used that reflects a
ground-truth of pump conditions. To associate the site-report ground-
truth data with the daily sensor readings, the site-report data needed to
be extended to adjacent days when the apparent state was unchanged.
To accomplish this, the sensor data was segmented into ‘‘blocks’’ of use
or non-use. Pump days were categorized as either usage (at least two
sensor readings of activity) or non-usage (zero or one sensor readings
of activity). Contiguous runs of days of usage or non-usage were treated
as a block of unchanging state. Blocks were smoothed by eliminating
short blocks of non-usage (shorter than seven days). Finally, contiguous
blocks were truncated at plus or minus 30 days from the ground-truth
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Fig. 7. Baseline functionality rates across water supply technology types (left) and across management types (right).
site report and a new block started in order to minimize the risk of
separate pump states and site reports being grouped together. Thirty
days was chosen as an approximation of the Nyquist rate for sampling
at twice the frequency of the signal measured (Candes and Wakin,
2008). The algorithm truncates at 30 days plus or minus the report
date to minimize the chance that a block captures both rainy and dry
seasons. In other words, any wider of an estimating window could
transect seasonal changes in rainfall and therefore pump demand. Any
site report dated within a block was then assumed to reflect the true
status of the pump for the entirety of the block.

3. Results

3.1. Asset inventory baseline findings

3.1.1. Water supply technology distribution, management and baseline
functionality

A total of 400 water points were initially selected for inclusion in
the study (200 sensor instrumentation sites and 200 comparison control
sites). These 400 study sites comprised four types of water supply
technology: two types of hand-pumps (Afridev and IMK2/3), and two
types of electric boreholes (AC-powered boreholes and DC-powered
boreholes). Overall, hand-pumps were the most prevalent technology
among the study sites (52%). Afridev hand-pumps made up 30% of the
study sites, India MK2/3 hand-pumps made up 22%, and AC and DC
electrical boreholes made up 25% and 23% respectively. Following site
visits, 3 control sites had insufficient data to track them, decreasing the
overall sample to 397 sites.

A vast majority (90%) of study facilities were under the man-
agement of the communities they served. Other management entities
were Philanthropist or Donor (6%) and the Government (3.2%). Some
facilities (0.8%) lacked any form of management. Including both in-
strumented and control sites, overall baseline functionality among all
study facilities was 71%, with a 59%–82% range across all water supply
technology types. Afridev hand-pumps had the highest functionality
rate, while DC-powered boreholes had the lowest (see Fig. 7).

Functionality rates were highest among facilities managed by phi-
lanthropists or donors, and lowest among facilities without a man-
agement entity or those managed by the government. Note that April
data are not included in these figures because site selection continued
through May, causing an overlap between baseline and observed data
until June.

3.1.2. Geographical location
Study sites were located across all 17 LGAs of Plateau State. Some

LGAs had a higher share of instrumented sites than others. For example,
Kanke LGA had the highest share, at 11%, while Langtang South had
the lowest, at 1%. The vast majority (91%) of study sites were located
in rural or small-town settings. The remaining 9% were located in urban
settings.
7

3.1.3. Attributes of baseline functionality status
The results of a logistic regression model on water facility attributes

show that some are important in relation to the functionality status of
the facility. These include: (1) the management status; (2) the type of
pump; and (3) the payment method for the water service. Facilities
with inactive or unknown management status were less likely to be
functional at baseline (p < 0.001 and 𝑝 = 0.013, respectively). Similarly,
facilities with hand-pumps were more likely to be functional compared
to facilities with electric pumps (p < 0.001 for Afridevs, 𝑝 = 0.029 for
IMK2/3). Additionally, facilities where users did not pay for the water
service were less likely to be functional (𝑝 = 0.038). On the other hand,
the setting, either rural or urban, was not found to be a statistically
significant predictor of baseline functionality (𝑝 = 0.601, 𝑝 = 0.623).

3.1.4. Comparison of sensor and non-sensor study sites
Significant differences exist between sites selected for sensor selec-

tion (n = 200) and the comparison sites (n = 197), as shown in Table 3.
While Pump and Management Types were not significantly different
for the two study groups, Management Status, Water Quality Testing
Status, and Last Known Functionality Status all differed significantly.
Additionally, baseline functionality was significantly different between
the sensor and non-sensor study sites. This is a result of the selection
criteria for study sites, which required that a pump be functional for
a sensor to be installed there. This functionality requirement was not
applied to the comparison group, which was otherwise selected with
the same random sample approach.

3.2. Observed functionality over time, and failure and repair rates

Functionality over time was determined by repeat phone calls. Base-
line functionality is based on asset inventory surveys, and functionality
change points between phone calls were tracked and are presented in
this section. These failures and repairs serve as ground-truth data for
comparison with sensor-based classifiers.

3.2.1. Pump functionality levels over time
Fig. 8 shows reported functionality of pumps by study group and by

pump type. There are significant differences between the sites at which
sensors were installed and the non-sensor sites. Especially notable is the
very low functionality of DC boreholes in the control group.

Overall, 43% of the control sites were functional on average, with
a standard deviation of 2.2%. In contrast, 88% of the sensor sites were
functional on average, with a standard deviation of 6.0%.

3.2.2. Breakdown and repair events over time
While the overall functionality of the two groups differs, the rates

of failure and repair are similar. A relatively flat level of functionality
in both groups is maintained by close parity between breakdown and
repair events. Several sites lacked sufficient data to conduct this analy-
sis, reducing the number of analyzed sites to 390 (195 sensor sites, 195
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Table 3
Comparison of sensor and non-sensor sites.
Fig. 8. Functionality levels of sensor and non-sensor sites differed considerably. The functionality of sensor-equipped sites was much higher than control sites (left). Within sample
groups, there were considerable differences in the makeup of functional pumps (right).
Table 4
Breakdown and repair events observed via bimonthly calls.

April June August October December SUM

Control breakdowns 10 12 10 15 7 54
Control repairs 13 10 18 8 14 63
Instrumented breakdowns 19 18 13 16 9 75
Instrumented repairs 3 13 9 10 16 51
control sites). For the majority of pumps, no breakdown was observed
during the study period (147 sensor sites, 140 control sites). A signif-
icant number of pumps saw one breakdown (45 sensor, 48 control),
with a smaller number of sites seeing two breakdowns (3 sensor, 6
control), and one site in the control group seeing three breakdowns.
Table 4 shows the record of repairs and breakdowns by study group.
One-way ANOVA tests showed no statistically significant differences
between sensor and non-sensor sites for pump failures (F(1,6) = 1.35,
p = 0.289) or pump repairs (F(1,6) = 0.034, p = 0.86).
8

3.3. Sensor site asset inventory results

Much of the analysis that follows focuses on sensor sites, with
usage data generated by transforming raw sensor feeds into hourly or
weekly usage totals. Due to significant differences shown between sen-
sor and non-sensor sites, it could be useful to examine sensor-specific
site properties: pump types at sensor-enabled sites were AC Electrical
(28%), Afridev hand-pump (26%), DC Electrical (23%), and India Mark
2/3 Handpump (22%). Of the electrical boreholes, 52% were rural,
29% were small-town, and 18% were urban settings. For hand-pumps,
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Fig. 9. Average run-times as percentages of possible daily usage, displayed by pump type.
these respective settings were 90%, 9%, and 1%. Installation quantities
varied by LGA, with the most sensors installed in Bassa and Mangu
(13% and 10%) and the fewest installed in Qua’an Pan, Kanam, and
Jos East (each 2%).

3.4. Pump usage results

Raw data from three types of sensors were converted into an ap-
proximate daily run-time at each site. These processed data take the
form of percentages of daily run-time; that is, 100% would imply that
a pump was running 24 h per day, 50% would imply 12 h per day, and
so on.

Overall estimated run-time of each pump type is shown in Fig. 9.
These data are displayed as weekly averages with a smoothed usage
line overlaid.

Hand-pump daily usage (average 13.5 h per day) is much higher
than AC pump usage (average 2.6 h per day), and both decrease during
the rainy season. DC pump average usage falls between the other types
(8.4 h per day), and appears to respond to the rainy season in the
opposite direction. While the cistern sensors installed to track usage
on DC pumps were installed roughly half-way through the project
because of programmatic logistical delays, this data was incorporated
into our analysis in aggregate. There is no anticipated impact on the
statistical reporting as metrics are presented in aggregate and control
for seasonal impacts. The data included here are weekly averages across
three date ranges: 11/29/2020 to 12/26/2021 for hand-pump sensors,
12/13/2020 to 12/26/2021 for AC electrical sensors, and 5/23/2021
to 12/26/2021 for DC water level sensors.

3.5. Expert classifier and sensor system results over time

The Expert Classifier algorithm described in the Methodology sec-
tion assigns a Status to each pump for each week of run-time, drawing
on the pump’s prior usage and local rainfall data, allowing the algo-
rithm to identify periods of Normal and Low use, or Seasonal Disuse.
One way to examine these data is in terms of incidence over time.
Fig. 10 shows weekly incidence of each status type. Note that the
category ‘‘Seasonal’’ (meaning Seasonal Disuse) often replaces incidents
of the category ‘‘No Use’’ during the rainy season, indicating that the
classifier algorithm is likely over-estimating the impact of seasonality
on pump functionality.

One important factor influencing the adoption of IOT technology
for remote monitoring is the reliability of sensor technology. Sensors
require maintenance, which can increase the total O&M workload for
pump maintenance. Over the course of the year-long deployment of
sensors in this study, overall sensor system functionality dropped from
85% to 69%, as shown in Fig. 11. ‘‘Offline’’ refers to a satellite gateway
that is not communicating with the satellite. ‘‘No Data’’ refers to a
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system where some other component of the sensor system has failed.
‘‘TOTAL OFFLINE’’ is the sum of these statuses.

Following each work-order site visit, the issue found was logged
based on notes from the team in the field, with the goal of ana-
lyzing which failures were mechanical (a broken component, a dis-
connected solar panel, etc.) and which failures were non-mechanical
(non-functional electronics, insufficient solar resource, etc.). Over the
course of the project, these work order results were classified as: Reed
Switch Disconnected or Broken (4%); Reed Switch or Bracket Damaged
or Moved (3%); Solar Panel Disconnected or Broken (11%); Vandalized
or Stolen (13%); Vibration Damage (1%); Water Damage, (3%); or
Other or Unknown Mechanical Failure (6%). In total, 41% of work-
order visits found some mechanical problem as the source of the sensor
system issue, with theft or vandalism the most common cause, closely
followed by a disconnected or severed solar panel.

3.6. Expert classifier performance

In previous research, the performance of a similar classifier algo-
rithm showed high sensitivity (true positive rate) (82%), but relatively
low specificity (true negative rate) (50%) (Thomas et al., 2021). We
find similar results from this study—namely, the statuses generated by
the classifier do a good job of predicting when a pump is functional, but
are less skilled at discerning when a pump is not functional vs. simply
unused.

Fig. 12 shows four potential outcomes of classifier performance.
These plots show: (a) several true-positive conditions (blue), illustrat-
ing a highly used and functional pump, detected by the sensor and
confirmed by two site reports; (b) both true-positive (blue) and true-
negative (green) conditions, illustrating the sensor data and expert clas-
sifier accurately detecting a pump in its functional and broken states;
(c) true-positive (blue) and false-positive (red) conditions, showing that
the expert classifier interpreted sensor noise as pump functionality; and
(d) true-positive (blue) and false-negative (purple) conditions, showing
that the sensor was damaged or moved, and is falsely reporting the
pump as non-functional.

Overall, the expert classifier model had high sensitivity but rela-
tively low specificity. Table 5 shows the performance characteristics of
the expert classifier.

3.7. Influence of rainfall on run-time

As described in previous work, seasonality can significantly impact
water-pump demand and usage. Specifically, we observed decreases in
groundwater usage in areas where surface water availability increases
due to local rainfall, and increases in groundwater demand in response
to drought (Thomas et al., 2019). We saw an overall 22.9% increase
in borehole run-times following local rain deficit, a 1.1% decrease in
borehole use one week after each 1 mm increase in rainfall in Kenya,
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Fig. 10. Cumulative weekly incidence of sensor-based classifier statuses over time. Note a large increase in overall weekly incidence in early June, when DC pump sensors were
installed on raised water cisterns.
Fig. 11. Monthly aggregated sensor system statuses.
Table 5
Classifier performance, where a true positive is a functional pump and a true negative
is a non-functional pump.

Performance metric Expert classifier performance

All data (functional and non-functional pumps)
Overall accuracy 91.7%
True positive rate (sensitivity) 94.4%
True negative rate (specificity) 25.0%
Positive predictive value 96.1%
Negative predictive value 15.0%

and a 1.3% decrease in borehole use after each 1 mm increase in
Ethiopia.

This study compares run-times to average daily rainfall aggregated
by week. Rainfall is estimated from remote sensing observations from
CHIRPS data. As shown in Fig. 13, rainfall influences pump run-times
across all data, from all instrumented pumps. On average, there is a
decrease of 1.8% daily run-time per 1 mm of rainfall. This regression
was run on weekly averages of daily rainfall and pump usage.

To test the sensitivity of the regression to zero-rainfall weeks, a
linear fit was also applied to the data after removing all completely dry
weeks. While the goodness of fit remained roughly the same (𝑅2 = 0.3
with dry weeks, 𝑅2 = 0.28 with no dry weeks), the slope of the line
changed significantly. To further examine the impact of zero- and low-
rainfall weeks, the data was binned into dry weeks (no rainfall) and
three equally-sized bins of non-dry weeks, showing an increase in the
significance of rainfall on pump run-time as rainfall conditions become
wetter.

This linear regression analysis was repeated on the LGA level, and
the results are shown in Fig. 14. This reveals differing responses to rain-
fall across LGAs. Several LGAs are not included in these visualizations
due to low levels of instrumentation or available data.
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Finally, the relationship between run-time and rainfall was exam-
ined as a function of pump type, shown in Fig. 15. Hand-pumps are
significantly more impacted by local rainfall (𝑅2 = 0.54), followed
by AC boreholes (𝑅2 = 0.27). DC boreholes, where cisterns were
instrumented, have a lower coefficient of determination (𝑅2 = 0.25)
and respond in the opposite direction to local rainfall. Possible reasons
for this are discussed below. Overall, monthly rainfall levels appear to
have a strong impact on pump run-time. The impact of rainfall on pump
use is especially apparent at hand-pump sites, where a 1 mm increase
in local rainfall correlates to roughly a 30-minute decrease in pump
run-time on average.

4. Discussion

4.1. Observed functionality patterns

Phone calls and site visits carried out every two months indicated
relatively stable levels of functionality across both sensor and non-
sensor sites in this study. On average, across a baseline and five
phone-call deployments, the sample of sensor-equipped pumps saw 7.5
breakdowns and 5.1 repairs per month (3.8% and 2.6% of instrumented
pumps, respectively). The control group of non-sensor-equipped pumps
saw 5.4 breakdowns and 6.3 repairs per month (2.8%, 3.2%). These
incidents had minimal impact on the overall functionality of each study
group, where ground-truth survey data showed average functionality
rates of 43% for control-group pumps (standard variance = 0.05%) and
88% for instrumented pumps (standard variance = 0.36%).

Of the total sample in this study, 3.3% were observed to fail each
month on average, and 2.9% were observed to be repaired each month.
Bimonthly breakdown and repair rates were not statistically significant
between the study groups, with an average of 6.5 breakdowns and 5.7
repairs each month during the study across all 390 sites.
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Fig. 12. Four possible outcomes of classifier functionality status assignments. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 13. For all data collected at instrumented pumps in this study, there is a decrease in average daily pump usage as a function of local rainfall (left). This impact becomes
more visible when data is binned by rainfall level (right).
Identification of sites with high rates of breakdowns was flagged
as a potentially useful outcome of this study from an operational
perspective. Additionally, quantification of repair response times could
be used to examine the efficiency of the utility’s O&M planning. At
PRUWASSA’s request, an mWater-based dashboard was made available
with these data presented spatially to identify geographical variations
in pump usage and breakdown patterns. A few examples of these
interactive data are shown in Fig. 16.

4.1.1. Pump usage patterns
Pumps instrumented in this study showed large variation in usage

based on the pump type, with hand-pumps used at much higher rates
11
than electrical boreholes, and DC boreholes used at a higher rate than
AC boreholes. Consistent overall usage patterns are visible across LGAs,
which show a clear response to local rainfall. The study showed a minor
decreasing trend in the usage of online, instrumented pumps.

PRUWASSA identified pump over-use as a driver of potential O&M
improvements. To support identification of sites or regions with high
pump usage, an mWater dashboard was made available showing pump
locations and usage levels derived from sensor data. Fig. 17 shows
one way to present these data to stakeholders. Additionally, monthly
usage patterns were mapped on the shared dashboard to present a
longitudinal summation of the data.
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Fig. 14. Pump usage as a function of rainfall varies by LGA.
Fig. 15. The impact of rainfall on pump run-time varies by pump type.
Fig. 16. An interactive dashboard presents spatial functionality, breakdown, and repair response data for use by PRUWASSA.
4.1.2. Classifier statuses and performance
Classifier statuses are derived from sensor-based run-time estimates

and remote-sensing rainfall data. These provide a more detailed picture
of pump usage over the course of the study year, showing variations
that are invisible in monthly sampling regimes.

One difficulty in matching classifier statuses to ‘‘Non-functional’’
ground-truth statuses results from ambiguous changes in pump usage.
This also helps explain the low specificity of the classifier. High levels
of rainfall are often interpreted as driving non-use of a pump, where in
12
reality the pump might be broken. A calibration experiment in which
the ‘‘Seasonal Disuse’’ classifier status was scaled down and replaced
with ‘‘No Use’’ shows that adjusting the sensitivity of the classifier
to rainfall offers a closer match with ground-truth functionality sta-
tuses. Specifically, Fig. 18 shows the result of reassigning 25% of the
classifier’s ‘‘Seasonal Disuse’’ category to ‘‘No Use’’, effectively treating
these pumps as broken. Comparing classifier and ground-truth values
on the closest matching dates, this reallocation resulted in a change
from 6.1% functionality difference to 4.3%. Future work should draw
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Fig. 17. An interactive dashboard made available to PRUWASSA staff presents spatial
average hourly usage across all sensor-enabled sites.

Table 6
Results of handpump usage threshold adjustments.

Threshold cutoff 1000 1500 2000 2500 5000
Overall accuracy 96.1% 94.6% 94.5% 93.4% 89.0%
Bias (mean difference) 2.9% 1.5% 1.5% 0.5% −3.7%
True positive rate (Sensitivity) 99.5% 98.0% 97.9% 96.8% 92.3%
True negative rate (Specificity) 12.5% 12.5% 12.5% 12.5% 22.2%

on additional features to calibrate the impact of rainfall on pump usage
in order to better classify pump statuses, potentially including previous
activity patterns before the onset of rain events to more accurately
identify seasonal disuse.

Another weakness of the classifier algorithm is an assumed het-
erogeneity of hand-pump usage with respect to sensor data. As it
stands, hand-pump functionality or non-functionality is determined by
interpreting any 40-minute period of hand-pump use above a certain
threshold as ‘‘In Use’’, and below that threshold as ‘‘No Use’’. For each
of these periods, the number of either reed switch events or vibration
switch events is summed and compared to this threshold, which was
set to 1,000 by default in order to filter out, for example, unsuccessful
pump use events. A brief optimization experiment was carried out to
examine the impact of threshold modification. The results are shown
in Table 6.

Modification of the original threshold improved the model’s speci-
ficity, even when applied across the entire sample of hand-pump sen-
sors. These results indicate that calibration of this threshold could im-
prove the model’s performance in identifying functional hand-pumps.
Future work could use a threshold specific to each hand-pump to
calibrate individual, site-specific functionality and non-functionality,
possibly based on periods of known use immediately following instru-
mentation.

4.1.3. Seasonality patterns
Based on prior research, a decrease in groundwater use in response

to increased local rainfall is unsurprising. It has been posited elsewhere
that populations which rely on boreholes often turn to surface water
when it is available (Thomson et al., 2019). This is an important
consideration given changes in precipitation trends expected from cli-
mate change, which will impact both water-table levels and human
behavior (Dey et al., 2020; Nyakundi et al., 2015). Foreknowledge
of these patterns can improve service levels and public health, since
a community turning to surface water for drinking-water needs can
nullify the health benefits of seasonal access to fossil or piped water
supplies. Models of the hydrological impact of rainfall on groundwater
levels could be improved by including human behavior.
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One surprising finding from this research is an unexpected increase
in pump usage as a function of increased rainfall in the case of the
DC pumps. Meetings with PRUWASSA and other partners resulted in
possible explanations for this phenomenon. First, DC pump infrastruc-
ture is more accessible during the rainy season, making it preferable
to hand-pumps. Second, even at times of lower demand, when surface-
water access increases, many DC systems have automatic controls that
keep the cistern full as long as there is sunlight to power the pump.
Therefore, no time is required to prime the pump, and water can be
immediately drawn from the tap.

This seasonality response varied considerably across the LGAs in this
study, suggesting that populations even within a single state responded
differently to changes in rainfall. This variation could be due to geo-
graphic features, including accessible surface-water sources. Feedback
from local PRUWASSA and WAN staff identified several features that
might explain this variability, specifically in LGAs that saw little sea-
sonal response. Mangu is a low-level region, surrounded by mountains
that produce springs, leading to year-round spring water availability.
The population generally uses this surface water, so their daily habits
might depend less on rainfall. Wase is an agrarian community, and
water facilities are positioned far from residential areas. Additionally,
the groundwater in some areas of Wase are contaminated with heavy
metals, which impacts the taste of the water and discourages its use. As
such, the population might depend less on the instrumented facilities in
general. These hypotheses are supported by overall low levels of usage
in these two LGAs, independent of rainfall, with pump usage generally
falling below 25%.

In this study year, pump usage responded significantly to seasonal
changes. Future work could examine whether this behavior is consis-
tent from year to year, which could have significant implications for
drought management.

4.2. Challenges and constraints

A number of challenges impacted this study, including travel and
communication restrictions caused by the COVID-19 pandemic, me-
chanical challenges related to pump geometry changes over time, theft
and vandalism impacting hand-pump sensors, and solar resource issues
with the smaller panels installed with the hand-pump sensors. Cellu-
lar connectivity was also frequently interrupted during rainy months,
making recurring phone calls more challenging.

4.2.1. COVID-19
Significant obstacles were introduced by the onset of the COVID-19

pandemic, which impacted the design and deployment processes in this
project. We previously described a theory for product design for service
providers (Sharpe et al., 2019), and the pandemic altered the tools by
which project stakeholders could communicate, placing even greater
emphasis than usual on the importance of collaborators in the design
process. Crucially, the primary designers of the products described in
this study were unable to directly access the infrastructure on which
the products would be deployed. This resulted in sub-optimal product
performance, but also highlighted the potential utility of long-distance
communication tools in supporting successful product design.

The COVID-19 pandemic required a radical departure from the
typical approach to deploying this study. Instead of on-the-ground
engagement by staff versed in the sensor technologies, this project
engaged local water system experts, and NGO and government staff
trained remotely in sensor installation and data collection. This ap-
proach had the advantage of building independent capacity among
government and NGO partners in Nigeria. Furthermore, remote com-
munication enabled a participatory approach to sensor design, training,
installation, and data collection, which included local expertise to a
greater degree than might have occurred had foreign engineers made
local determinations on-site.
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Fig. 18. The classifier initially overestimates broken pumps during most months (left). Manually applying a 25% reallocation of ‘‘Seasonal Disuse’’ categories to ‘‘No Use’’ results
in a closer fit to observed functionality data across the sensor-enabled sample (right).
4.2.2. Mechanical sensor failures and O&M
As with any piece of operating equipment, some sites require con-

stant minor sensor repair and upkeep due to normal wear and tear,
especially at high-use water facilities. These include replacing bro-
ken wires or tightening loose mounting screws. Other repairs are less
frequent and require site visits by WAN staff.

More significant repairs are generally required at high-use sites.
There are a few mechanisms for these. First, at sites with very high
use, loading on the electrical components can cause batteries to become
displaced, connectors to disconnect, or even mechanical failure of PCB
components. These issues can often be resolved by visiting the site,
opening the sensor, and resetting its power supply. Second, sites with
very high use often see minor mechanical failures in pump components,
such as worn-out bearings. This has downstream effects caused by
geometric changes in the pump that can disrupt the sensor input or
even damage the sensor system. Designers of hand-pump monitoring
systems should be aware of the potential for significant mechanical and
tolerance changes caused by use, especially by bearings wearing down
and changing the pump handle’s location and range of motion.

4.2.3. Representativeness of sensor sites
One significant constraint in this study was the requirement that

all sensor sites be functional at the time of sensor installation. This
requirement was imposed because: (1) it was expected that this might
be required in order to observe enough pump breakdowns to make
meaningful claims about the algorithm’s True Positive rate; and (2)
it was unknown whether existing broken pumps would see repairs
during the study period. The result of this constraint was a signifi-
cant difference in functionality between sensor equipped test sites and
non-equipped control sites.

5. Conclusion

This study was designed to establish whether sensor-based moni-
toring of rural water infrastructure could be accurate and effective in
representing system-wide water pump functionality and use.

Data processed from the year of sensor and survey observations
was incorporated into an interactive dashboard made available to
PRUWASSA to support planning and management activities. This dash-
board includes detailed asset inventory data for all sites, observed pump
failures and repairs over time based on ground-truth phone calls, and
repair times for all 400 study sites. For sensor-equipped sites, average
hourly usage and other spatial and longitudinal data are presented.

We evaluated three questions:
(1) What are the operating characteristics and trends of these dif-

ferent kinds of water pumps?
On average, hand-pumps are operated for 13.5 h per day, while

AC pumps are operated for 2.5 h per day. Both hand-pump and AC
electrical pump usage decreases as rainfall increases. In contrast, DC
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pump powered cisterns operate for an average of 8.4 h per day, which
increases during the rainy season.

(2) Can water-point functionality be predicted with electronic sen-
sors?

Sensor-derived functionality predictions were compared to ground-
truth data collected with site visits and phone calls. While the ability
to detect running pumps was relatively high (94.4% sensitivity), the
ability to correctly identify broken pumps as broken was much lower
(25.0% specificity). This is largely due to difficulties involved in identi-
fying a pump that is actually broken versus a pump that is currently not
being used. Overall, the classifier used in this study overestimated the
influence of seasonality on pump usage. Future work should improve
these methods to determine what pumps are seasonally disused or
actually broken.

(3) Does the instrumented water-point sample accurately represent
average water system functionality across the region?

Sensor-installed sample pumps compared to a random sample of
other water pumps in Plateau State varied in terms of overall function-
ality, averaging 43% for control sites and 88% for sensor sites. This is
unsurprising as inclusion criteria for the sensor-installed sites included
day-of functionality.

However, over the course of the 12-month study period, breakdown
and repair counts were found to not be significantly different, with
3.3% of sites on average failing each month and 2.9% on average being
repaired each month.

The high overall accuracy of the sensor–diagnostic system and
the demonstration that sensor-instrumented sample sites can represent
population-level breakdown and repair frequencies, suggests a utility
of this technology to support sample-based monitoring of overall water
pump operation and water volume delivery. However, the poor per-
formance of the system in distinguishing between broken and unused
pumps will limit the ability to use these technologies to trigger repair
activities at individual pumps.
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