
Bainomugisha, Engineer; Mwotil, Alex

Article

Crane Cloud: A resilient multi-cloud service abstraction
layer for resource-constrained settings

Development Engineering

Provided in Cooperation with:
Elsevier

Suggested Citation: Bainomugisha, Engineer; Mwotil, Alex (2022) : Crane Cloud: A resilient multi-
cloud service abstraction layer for resource-constrained settings, Development Engineering, ISSN
2352-7285, Elsevier, Amsterdam, Vol. 7, pp. 1-18,
https://doi.org/10.1016/j.deveng.2022.100102

This Version is available at:
https://hdl.handle.net/10419/299118

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.deveng.2022.100102%0A
https://hdl.handle.net/10419/299118
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Development Engineering 7 (2022) 100102

A
2
n

Contents lists available at ScienceDirect

Development Engineering

journal homepage: www.elsevier.com/locate/deveng

Crane Cloud: A resilient multi-cloud service abstraction layer for
resource-constrained settings
Engineer Bainomugisha ∗, Alex Mwotil ∗
Department of Computer Science, College of Computing & Information Sciences, Makerere University, Kampala, 7062, Uganda

A R T I C L E I N F O

Keywords:
Microservices
Kubernetes
Containers
Orchestration
Low-resource settings
Portable cloud apps
Cloud native platforms

A B S T R A C T

Developers and users situated in low-resource settings are faced with unique contextual and infrastructure
challenges when accessing and consuming cloud-based services. In low-resource settings, access to cloud
services and platforms is usually characterized by low-end computing devices and often unreliable and
slow mobile broadband Internet connections. In this paper, we discuss key challenges for developing for
and accessing cloud services in resource constrained settings, namely, (1) Frequent Internet partitions and
bandwidth constraints, (2) Data jurisdiction restrictions, (3) Vendor lock-in, and (4) Poor quality of service.
Inspired by these challenges, we propose a set of important design considerations and properties for a resilient
multi-cloud service layer, that includes: (1) Containerization and orchestration of applications, (2) Application
placement and replication, (3) Portability and multi-cloud migration, (4) Resilience to network partitions and
bandwidth constraints, (5) Automated service discovery and load balancing, (6) Localized image registry, and
(7) Support for platform monitoring and management. We present an implementation and validation case
study, Crane Cloud, an open source multi-cloud service abstraction layer built on-top of Kubernetes that is
designed with inherent support for resilience to network partitions, microservice orchestration (deployment,
scaling and management of containerized applications), a localized image registry, support for migration of
services between private and public clouds to avoid vendor lock-in issues and platform monitoring. We evaluate
the performance and user experience of Crane Cloud by implementing and deploying a computational and
bandwidth intensive machine learning system. The results show lower response times of the system on Crane
Cloud compared with hosting on other public clouds. The Crane Cloud platform is serving as a cloud-service
for students and developers in low-resource settings and also as an education platform for cloud computing.
1. Introduction

Cloud computing is now a popular model of delivering computing
services over the Internet (‘‘the cloud’’) with flexible pricing models
such as pay per use. It provides flexible on-demand access to an elastic
computing resource base and represents the infrastructure, software,
platforms, storage and application containers as a cloud where users
can provision and access services over a network. Cloud Computing has
a large number of deployed solutions in education (Alabbadi, 2011; Liu
et al., 2011; Sultan, 2010), big data computing (Hashem et al., 2015),
health (Nkosi and Mekuria, 2010; Rolim et al., 2010), private sector
and government (Kshetri, 2010; Zhang and Chen, 2010) domains.

Major global cloud platforms have their data centers concentrated
in countries and regions where there is stable infrastructure and high
reliability, performance and low latencies are guaranteed. Such cloud
platforms make two broad assumptions: The first assumption is that

∗ Corresponding author.
E-mail addresses: baino@mak.ac.ug (E. Bainomugisha), alex.mwotil@mak.ac.ug (A. Mwotil).
URL: https://ibaino.net (E. Bainomugisha).

since data centers run in regions with stable infrastructure, there is no
special considerations when architecting cloud platforms to deal with
unreliable Internet connectivity or frequent power cuts. The second
assumption is that developers and users who consume cloud services
have access to stable infrastructure to develop for or consume cloud-
based services. From experiences developing for and consuming cloud
services in low-resources settings, we find that these assumptions are
not true. In such settings, challenges such as frequent Internet parti-
tions, unannounced power shutdowns, poor quality of services, among
others, are the rule rather than the exception (Fig. 1). The availability
of high-speed Internet access is ranked the number one concern by
African-based stakeholders as a key barrier to adoption and use of
cloud computing in Africa (Maaref, 2012). Other concerns include
vendor lock-in, data security and protection, and price. Both users
and developers situated in low-resource settings are equally affected
vailable online 17 November 2022
352-7285/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.deveng.2022.100102
Received 9 June 2022; Received in revised form 14 September 2022; Accepted 7 N
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ovember 2022

https://www.elsevier.com/locate/deveng
http://www.elsevier.com/locate/deveng
mailto:baino@mak.ac.ug
mailto:alex.mwotil@mak.ac.ug
https://ibaino.net
https://doi.org/10.1016/j.deveng.2022.100102
https://doi.org/10.1016/j.deveng.2022.100102
http://crossmark.crossref.org/dialog/?doi=10.1016/j.deveng.2022.100102&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Fig. 1. Barriers to access of cloud services in low-resource settings.
by the above challenges when developing or consuming the cloud-
based services. With the increased reliance on digital services especially
for the attainment of global Sustainable Development Goals (SDGs),
addressing barrier to adoption of cloud computing services will be
critical.

The unanswered question is: How can cloud platforms be designed to
facilitate seamless access to cloud-services for users and developers situated
in low-resource settings? To address the above challenges and the arising
research question, this paper presents:

1. Challenges and requirements for designing and operating a re-
silient multi-cloud model for low resource settings.

2. The design considerations and properties for implementing a
resilient multi-cloud and bare-metal application cluster such as
application state, networking, loadbalancing, monitoring and
service exposure for external user access.

3. A prototype implementation of a resilient multi-cloud and bare-
metal application cluster (Crane Cloud) which is a subset instan-
tiation of the design and implementation options available. This
will provide researchers and practitioners with a review point
for further research and implementation cogitation respectively.

4. Evaluation of performance and user experience of Crane Cloud
platform by implementing and deploying a computational and
bandwidth intensive machine learning system that shows lower
response time compared when hosted on other public clouds.

2. Requirements for a custom cloud-service layer for low-resource
settings

As introduced above, low-resource settings are characterized by
contextual challenges that present additional and new requirements for
cloud platforms. To concretize these challenges, we use a real world
scenario from low resource settings and present the requirements in
Section 2.2.

2.1. Motivating scenario

The Automated Plant Disease Diagnosis (APDD) system is a real-
world case study of a machine learning system used by African farmers
and agricultural scientists in low-resource settings to diagnose plant
diseases (Mwebaze and Biehl, 2016). Specifically, it is designed to pro-
vide near real-time in-field diagnosis of plant diseases and identification
of pests for cassava crops by farmers and agricultural experts in the
East African region and national agricultural research organizations.
Originally conceived as a monolithic system, the APDD is transitioning
to a microservice architecture to optimize efficiency and work around
the technology constraints (Fig. 2). It consists of several microservices
including, (1) pest surveys module, (2) in-field automated pest iden-
tification and count (such as white-flies) on plant leaves, (3) rapid
2

Fig. 2. Monolithic vs micro-service architecture for the automated plant disease
diagnosis application.

plant disease diagnosis, and (4) prediction and spatial analysis of plant
disease incidences and spread.

The data pipeline for APDD system involves huge training datasets
of over 300 GB including images of diseased and healthy plant leaves.
The dataset is used for training and evaluation data for the machine
learning models. The images are crowd-sourced from local farmers
using mobile phones and can be stored on available public cloud
platforms as well as on local storage to allow online training and
evaluation of the machine learning models. The process flow typically
involves uploading and downloading a huge datasets from the local
storage and cloud systems. Such a dataset can take up to 24 h or so
to upload to a public cloud service provider over slow intermittent
connections that characterize many low-resource settings.

2.2. Scenario analysis and requirements

The above case study signals one of many other similar systems
faced with technical hurdles when delivering cloud-based solutions
in a low resource setting. To an extent, it reveals key requirements
and challenges that can be addressed by containerized cloud-based
systems that are developed in and for use in such environments. If not
addressed, they are likely to be significant barriers to development,
adoption and use of cloud-based solutions such as machine learning
services for many developers, researchers, startups, students, users
and organizations based in such settings. We argue that it should be
possible for users situated in such settings to take advantage of the
benefits offered by cloud-based computing models through creation of
appropriate abstraction service layers. We discuss the key requirements
and challenges below:

2.2.1. Frequent internet partitions and bandwidth constraints
Whereas the main cloud providers have set up cloud services on

stable infrastructure, developers and users situated in low resource
settings face major constraints when accessing their hosted applications
and cloud platforms. In such settings, access to cloud services and
platforms is often through low-end smartphones over slow and erratic



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
2G/3G/4G (von Wielligh et al., 2018) connections that are character-
ized by frequent network partitions and bandwidth constraints. As can
be observed from the above scenario, a developer uploading training
dataset of 300 GB images to a cloud platform could easily take several
days over a slow connection. The in-field data collection by farmers to
a public cloud repository can be very slow because of sporadic Internet
connectivity in rural areas. Access speed to cloud services would be
faster if the cloud data centers were located near to the users, however,
98.4% of the data centers of popular cloud providers are located
overseas (outside Africa) (Calandro et al., 2018; Corneo et al., 2021).
For instance, on the African continent, almost 70% of the content and
services consumed by the Internet users is hosted and delivered from
overseas data centers resulting in poor user experience due to high
network latencies (Corneo et al., 2021). Furthermore, mobile data costs
in Africa are significantly high in real and GDP-relative terms in the
world with the prices averaging US$ 7.04 per 1 GB (Ecobank Research,
2018; Gillwald and Mothobi, 2019) and speeds as low as 56 kbit/s.
However, it is important to note that these issues are similar in any
other location with similar resource constraints. The design and setup
of most public cloud platforms assume stable infrastructure across the
users and leave the issues of connectivity challenges to the applica-
tion developers. This shifts the burden and unnecessary complexity
to the application developers who must consider offering different
function-trimmed variations of their app services for users situated
in low-resource settings, for instance, Facebook Lite app (Shankar,
2015), WhatsApp Lite (DigitBin, 2019), Uber Lite (Uber, 2021), Google
Go (Google LLC, 2019) and Gmail Basic (Google LLC, 2021) for slow
Internet connections and low-end devices.

The above issues form the motivation of the research work in this
paper. Cloud platforms need to be designed and optimized to work
under frequent Internet partitions and bandwidth constraints chal-
lenges since they are the rule rather than the exception in low-resource
settings.

2.2.2. Data jurisdiction restrictions
Many countries are coming up with new laws and guidelines to reg-

ulate the location of data and access. Countries have recently enacted
laws that enforce data sovereignty and prevent data from leaving the
country’s boundaries. This becomes difficult to implement in regions
where public clouds do not have physical presence. For instance,
on the African continent where public cloud data centers are still
sparse, it becomes almost impossible to comply with such policies.
The microservice architecture and cloud orchestration platforms such
as Kubernetes (Burns et al., 2016) promises potential remedies to this
challenge. In the above scenario, the APDD system can be broken
into independent microservices each with different data jurisdiction
policies. For instance, the data storage and management microservice
needs to be enforced to remain within the boundaries of the country
while the plant disease prediction service can run in a public cloud
without restrictions and benefit from the rich machine learning libraries
and tools. Such a setup would require a multi-cloud environment that
spawns boundaries with support for data jurisdiction policies specific
to a microservice and use case.

The popularity of cloud computing solutions has introduced gaps
in key processes of the data management cycle (collection, storage,
analysis and use/reuse). Most cloud solutions do not provide con-
trols over where data should be stored and in cases where there
is no infrastructure presence, users have to make exceptions at the
expense of prescribed hosting recommendations. Cloud providers also
distribute content over spatial infrastructure located in different regions
to maintain the cloud Quality of Service (QoS) along dimensions of
performance, availability and reliability. This leads to silos of data
spanning different geographical regions that users may have no idea
or control of.

Governments are now adopting data localization where a nation’s
3

data is collected, processed, and/or stored inside the country and data
sovereignty where data is subject to the laws and governance structures
within the nation it is collected. This has led countries and regions to
enact Data Protection and Privacy laws such as the European Union
(EU)’s operational General Data Protection Regulation (GDPR) that
impose stringent policy controls on the use of Personally identifiable
information (PII). In Africa, over 80% of the countries have data
protection laws with varying degrees of enforcement (Daigle, 2021).

2.2.3. Vendor lock-in
Vendor lock-in, which is a user difficulty of switching from one

vendor to another, is regarded as one of the major deterrents in the
adoption of cloud by developers as well as small and medium-sized
enterprises (SMEs) (Sahandi et al., 2013). These user categories may
not have the local computing resources to run their workloads and most
often resort to cloud providers but flexibility to switch/shift between
providers is one of their desirable properties. Other than vendor lock-
in, there are other variations including product lock-in, version lock-in,
architecture lock-in, platform lock-in, skills lock-in and mental lock-
in (Hohpe, 2019). Public clouds offer provider-specific proprietary
solutions to meet the market demands and this has resulted in an
interoperability, integration and portability downside across the cloud
divide. Consequently, the applications developed for a specific cloud
provider such as Amazon Web Services (AWS) may not work out-of-the
box with another cloud provider such as IBM cloud due to inherent de-
pendencies of the underlying IT infrastructure (hardware and software),
cloud semantics and non-standardized APIs (Opara-Martins et al., 2016;
Kratzke et al., 2014). The migration of cloud services from one provider
to another usually requires major reworks on the application that may
be catastrophic for mission-critical systems. For instance, the APDD
case study may use vendor-specific machine learning libraries and tools
making it difficult to migrate to another cloud when there is need.

The vendor lock-in challenge emphasizes the need for new abstrac-
tion layers to alleviate the difficulty of migrating applications between
clouds. New platforms and architectures such as Kubernetes (Burns
et al., 2016) offer new possibilities to implement a vendor neutral layer
on top of public and private clouds. However, the current offerings of
managed Kubernetes layers assume migration of services in situations
where there is stable connectivity and infrastructure and are not de-
signed for data centers that may be characterized by frequent network
partitions and bandwidth constraints.

2.2.4. Poor quality of service
In cases where cloud services are offered from data centers located

overseas and far from the consumers, user experience can be poor
compared to closely-located content. For a user located in Africa, the
average round trip time to reach cloud content ranges from 70 ms for
proximal services to over 250 ms for content such as in North America
and Europe (Corneo et al., 2021). Coupled with high costs of Internet
access, limited bandwidth and high latencies mainly introduced by
distance, the content load times are high and this negatively impacts
the user experience. Consider for example in the APDD case study
where a cloud-based service for farmers is situated on a public cloud
with a data center situated in the North America while the target
farmers are located on the African continent. The longer the distance,
the higher the number of intermediary links which can act as failure
points (bottlenecks) and potentially introduce network packet losses.
Furthermore, there are applications that are delay-sensitive and these
require optimal and stringent quality of service parameter values such
as low latency, low jitter and minimal or no packet loss for best
performance. Currently, public cloud providers attempt to solve this
challenge by moving services closer to the user. This approach however
assumes presence of data centers closer to the user. Unfortunately this
is not always the case for users located in regions where public cloud
data centers are sparse.

In the next section, we present the design options that need to
be considered when developing a multi-cloud service abstraction layer
to address the above challenges particularly in low resource settings.
In the subsequent sections, we demonstrated the instantiation of the

design considerations in a practical open source cloud project.



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
3. Design considerations for a resilient multi-cloud service

In this section, we present the design considerations and properties
for a resilient multi-cloud service layer that is envisioned to meet the
above requirements, namely, (1) Frequent Internet partitions and band-
width constraints, (2) Data jurisdiction restrictions, (3) Vendor lock-in,
and (4) Poor quality of service. In Section 4, we shall present the
first prototype implementation that instantiates some of these design
considerations (DC) and properties:

3.1. DC 1: Containerization and orchestration of applications

Many organizations are recently adopting microservice architec-
tures in place of traditional monolithic architectures so as to truly
reap from the benefits of modern cloud services. Microservice architec-
tures involve collaborations between different fine-grained and inde-
pendently deployable modules usually without a centralized controller
to achieve the desired overall functionality of the system (Nadareishvili
et al., 2016; Knoche and Hasselbring, 2019). Driven by application
features such as scalability, agility, performance and fault-tolerance,
microservice architectures involve autonomous software development
teams independently working to build loosely coupled application fea-
tures and employing collaborative workflows and automation tools
from version control systems to full scale production deployment (Has-
selbring and Steinacker, 2017). A number of popular technology com-
panies such as Uber, Spotify, Netflix, Amazon and Ebay are now using
microservices at the core of their business processes and have achieved
differing levels of reliability and scalability in their services (Knoche
and Hasselbring, 2019). As part of the inceptor team of the microservice
terminology, Fowler and Lewis (2014) identified the following key
properties and benefits of microservice applications:

1. Autonomous software components: A complex system is decom-
posed into service-specific pluggable components along business
service lines allowing for each service deployment and modifi-
cation without impacting other functional facets of the appli-
cation. The units are small, granular, manageable and loosely
coupled and they communicate using well defined interfaces
based on platform-independent data formats and technologies
such as HTTP/REST or messaging solutions such as Kafka or
RabbitMQ (Knoche and Hasselbring, 2019). Microservice archi-
tectures thrive on the notion of ’small size’ with reductions
in the scope of the problem, task completion time, feedback
response time and the size of the deployment unit. This in turn
translates to an application’s resilience to cascading failures,
easier maintenance and seamless deployment. In addition, the
decomposition yields small coherent components that are easy
to understand and debug.

2. Decentralization: The services (components) are distributed, as
there is no central controller and may store only data related
to the supported business domain or different instances of the
same database technology. Monolithic architectures usually have
a single logical database for a range of applications. The teams
are also decentralized and can adopt appropriate standards that
allow them to deliver the business domain functionality without
reinventing the wheel. The teams are responsible for the build
it/run it cycle of the service and this improves on the quality of
the code, fastens the deployment process, promotes component
reusability and isolates the impact of changes on the schema.

3. Technology independence: The microservices can be built using
different tools such as frameworks, programming languages and
databases given the architecture supports heterogeneous tech-
nologies. The frontend service and reporting tools could, for
example, be developed using a User Interface (UI) framework
4

Fig. 3. CI/CD pipeline.

Fig. 4. Virtual machines vs containers.

such as Node.js,1 the backend service could be written using
Java,2 a real-time component could use C++,3 the persistent data
storage mechanisms could employ MongoDB.4 The developers
are at liberty and can independently choose a technology stack
that best fits the work at hand hence placing the responsibility
of development, maintenance and generally ownership to the
teams.

4. Automation: One of the modern software development concepts
is Continuous Integration (CI), Continuous Delivery is where an
application is manually deployed and Continuous Deployment
(CD) where an application is automatically deployed. This has
immensely changed how developers and testers ship software
culminating into the famous CI/CD pipeline depicted in Fig. 3. In
CI, the development teams implement changes and write to ver-
sion control systems with automated build and test scripts and
in CD, the application is deployed/shipped to either a staging
or production environment. This has been spurred by the intro-
duction of Software Developers (Dev) and IT Operations (Ops)
generally termed as DevOps model for software development:
an end-to-end model for fast delivery of reliable applications
and services involving cultures(by and for the people), automa-
tion (testing, feedback, deployment and performance bench-
marks), quality measurement and sharing of ideas, processes and
tools (Hüttermann, 2012). In an incremental migration and ar-
chitectural refactoring of a commercial mobile backend (mono-
lithic application) as a service, Balalaie et al. (2016) noted that
the microservice architecture is an enabler for use of DevOps.
Automation does not imply management overhead on intro-
duction of new applications (Dragoni et al., 2017) but rather
increased agility and reliability. In low resource settings, further
automation of the containerization and deployment processes
can ultimately enhance adoption of cloud computing (Mwotil
et al., 2022).

At the application development and deployment levels, develop-
ers require appropriate abstractions to efficiently package and de-
ploy microservices on a cloud infrastructure. Recently, containers have

1 https://nodejs.org
2 https://www.java.com
3 https://www.cplusplus.com
4 https://www.mongodb.com

https://nodejs.org
https://www.java.com
https://www.cplusplus.com
https://www.mongodb.com


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil

h
o
a
r
e
s
t
a
o
c
p
o
o
i
c

t
a
a
c
m
a
e
s
p
p
i
o
p
t
d
d
c
c
e

3

i
s
a

emerged as a novel abstraction to deploy microservices as opposed
to traditional virtual machine approaches. Containers form the ba-
sic deployment units to release and ship microservices (Nadareishvili
et al., 2016) given their modular design which closely maps with
the functional decomposition of a complex business application. The
lightweight nature of containerized applications coupled with func-
tional and configuration encapsulation facilitates replication and porta-
bility, are cost-efficient and have a reduced overhead on the operation
and maintenance line. It is for these reasons that containers emerged
as the most suitable packaging toolset for microservices.

A container is a lightweight ‘‘virtual machine’’ based on the Linux
Kernel Extension (LXC)5 technology that allows running of many (up to
undreds) isolated and autonomous Linux environments on a single server
r virtual machine. It is a collection of communicating components such
s application code, runtime, system tools, system libraries and settings
equired to run an application. Container history dates back to the
arly 2000’s with the introduction of FreeBSD jails (Kamp and Wat-
on, 2000). The FreeBSD jails provide a logical isolation environment
hrough sandboxing for system features such as the filesystem, users
nd network mimicking a virtual machine but running on the same
perating system (Hope, 2002). In comparison with virtual machines,
ontainers consume much less computing resources and take the least
rovisioning time because virtual machines require different instances
f the operating system (guest OS) while containers use the same host
perating system as shown in Fig. 4. CoreOSrkt,6 Mesos Container-
zer,7 LXC Linux Containers, OpenVZ8 and containerd9 are examples of
ontainerization technologies but Docker10 is by far the most popular.

Fully leveraging the elasticity of using container-based virtualiza-
ion requires automated orchestration and cluster management tools such
s Kubernetes,11 Nomad,12 Docker Swarm13 and DC/OS14 that provide
n abstraction layer between computing resource pools and the appli-
ations. These tools provide a number of attributes important to imple-
ent service discovery, scalability, load balancing, service replication

nd provisioning of replicas across multiple compute nodes (Dragoni
t al., 2017; Knoche and Hasselbring, 2019). Despite its complexity
uch as in installation, Kubernetes is the most widely adopted and
owerful container orchestration tool owing to its immense scalability,
erformance and advanced automation features. It has inbuilt mon-
toring and logging libraries and processes which are lacking in the
ther tools (Modak et al., 2018). In Kubernetes, the applications are
ackaged as containers and wrapped in a pod (a group of containers
hat form the basic deployable Kubernetes unit), which can then be
eployed via a declarative manifest (YAML15) file. In this file, the user
escribes the desired state of the application such as name, replica
ount, labels, storage mounts and exposed ports and the deployment
ontroller works to ensure that this state is maintained at all times for
xample by replacing pods that fail or are evicted from their nodes.

.2. DC 2: Application placement and replication

In a multi-cluster(node) environment, placement involves determin-
ng what cluster(node) should host an application based on factors
uch as application affinities, resource (storage, memory and network)
vailability, user preferences and data jurisdictions. The clusters(nodes)

5 https://linuxcontainers.org
6 https://coreos.com/rkt/
7 http://mesos.apache.org/documentation/latest/containerizers/
8 https://openvz.orghttps://openvz.org
9 https://containerd.io

10 https://www.docker.com
11 https://kubernetes.io
12 https://www.nomadproject.io
13 https://docs.docker.com/engine/swarm/
14 https://dcos.io
15
5

https://yaml.org
could be located in zones/sites with varying availability and regulatory
constraints. Application replication ensures that there is operational
business continuity in the face of downtime as a result of comput-
ing equipment failures, natural disasters, planned maintenance opera-
tions (Levijarvi and Mitzev, 2015), power outages, unreliable network
connectivity, limited bandwidth and utilization surges. Replication can
further be used to realize scalability, availability and fault-tolerance
of an application under scheduled or unplanned downtime periods.
The replica count, the number of clones of an application, depends
on the reliability assurance as a requirement for an application and
also the popularity of the service in a cluster(node) region. Replication
strategies fall into two broad categories:

1. Static replication strategy where the number of nodes and repli-
cas is defined beforehand

2. Dynamic replication strategy where replicas are automatically
created or destroyed based on changes such as user density, per-
formance, storage utilization, loadbalancing features and band-
width consumption.

For the rest of this section, we shall consider the four microser-
vices for the Automated Plant Disease Diagnosis (APDD) system: Sur-
veys, pest identification, rapid plant disease diagnosis and predic-
tion. A resilient multi-cloud service should provide an adaptive service
replication approach that considers the following attributes:

3.2.1. User defined and cost-sensitive replication policies
The cloud service should operate only within the user-defined repli-

cation limits but also ensuring minimal replication costs between the
clusters and the target nodes. In the deployment of APDD, the user
may specify a replication limit of 3: the cloud service should ensure
that there are three instances of APDD microservices available at all
times. Additionally, the replication approach in cases of downtime
should consider the replication costs such as the impact on the network
performance whenever provisioning is required. It should also be noted
that the cloud service provider may impose restrictions based on, for
example resource availability, which the user adheres to but regardless,
the user will operate on a higher level of abstraction.

Fig. 5 shows a 3-cluster cloud service located in different regions as
shown by the link latencies. The user specified a replication count of 3
(classic 3-replica replication strategy (Li et al., 2012)) and the services
are initially deployed on each of the three clusters. Cluster 2 experi-
ences a downtime and this requires scheduling of the four microservices
into another cluster. The decision on which cluster the services will be
provisioned on should consider the transmission cost and this will ulti-
mately be Cluster 1. Considering the costs that the fixed-replica count
strategy may impose, Li et al. (2011) presents a dynamic cost-effective
replication algorithm for data in cloud data centers. This approach
requires computation of a reliability requirement value which informs
the replica count. The default replica count is 1 and this will be scaled
upwards to meet the reliability requirement of a data intensive system.
The initial costs of this approach are significantly low but may increase
exponentially with provisioning of more replicas. This algorithm can
further be enriched by introducing user-defined boundary limits while
ensuring the reliability requirement is maintained.

3.2.2. Quality of service (QoS) and high availability
Some applications in heterogeneous clouds have higher QoS re-

quirements in comparison with others for example a critical medical
diagnosis system that should operate under stringent availability and
consistency constraints. In distributed cloud environments that sup-
port service geo-replication, maintaining consistency and performance
consecutively is desirable but not fully achievable according to the
CAP’s theorem (Brewer, 2000). Consistency may be achieved but at the
expense of degraded system performance. A number of research works
have been published in the line of QoS and high availability.

https://linuxcontainers.org
https://coreos.com/rkt/
http://mesos.apache.org/documentation/latest/containerizers/
https://openvz.orghttps://openvz.org
https://containerd.io
https://www.docker.com
https://kubernetes.io
https://www.nomadproject.io
https://docs.docker.com/engine/swarm/
https://dcos.io
https://yaml.org


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Fig. 5. Automated Plant Disease Diagnosis System with user-defined replication factor
3.

Esteves et al. (2012) developed a novel QoS consistency model
for geo-replicated data in cloud computing. In this model, the consis-
tency of an application module is either dynamically strengthened or
weakened based on its criticality needs. This requires an in-memory
cache system that has a monitor/control component, session manager,
scheduler and a QoS engine. These components manage the replication
of a service based on the cache statistics specific to the application. Gao
and Diao (2010) proposed a lazy master update propagation model for
transaction-based systems in cloud computing. This requires a master
(registry host) replication site with replica management, an update re-
ceiver, propagator and executor components. The components manage
replication through synchronization and message sends (transmission,
receipt and update) with different sites. The update instruction is first
committed at the master node and later replicated to other sites. This
model also uses an immediate update propagation variant for data
access to ensure that users only access a fully replicated service. The
success of this approach requires a highly available master site and
geographically nearby secondary sites as the updates directly impact
network performance. Boru et al. (2015) asserted that most cloud
applications interact with database systems that may be located locally
or remotely and data queries are sent to locations nearest to the user
for enhanced availability and improved user experience. The model
presented is intended to minimize energy consumption, bandwidth
utilization and communication delays in the network. The energy con-
sumption model aggregates power usage from computing servers as
well as core, aggregation, and access switches to build an optimal
profile.
6

3.2.3. Location-aware
Cloud-enabled applications necessitate different modes of delivering

system functionality to the end users for improved experience and this
includes location awareness: applications and data should follow the
users. Application replication models should dynamically consider lo-
cations of the end-users based on their density, proximity and mobility
and perform desirable provisioning in situ. Location awareness may
also be in line with the QoS requirements expected (requires continuous
monitoring for agreed QoS and replication should allow for reconfigu-
ration of available resources so that minimum QoS requirements are
achievable) of an application. If the main consumers of the APDD are
in Uganda, then provisioning of the application should be done on the
nearest clusters. At a certain point in time, the APDD consumers may
be in South Africa and this requires resource reconfiguration and pro-
visioning to serve the new user environment. Location-aware systems
should strive to achieve fairness in cost vis-a-vis performance (Shi et al.,
2020) in multi-cloud setups.

The design of a location aware system requires request tracking
based on the Internet Protocol (IP) address, monitoring components,
location sensing and prediction technologies and assorted geolocation
APIs so that user requests take advantage of nearby computing servers
to carry out demanding tasks. This allows users to have a more con-
textual and fulfilling experience while drastically reducing the costs of
delivering compute, network and storage resources. It should also be
noted that location-aware systems may impose serious privacy issues
and should be handled appropriately.

3.3. DC 3: Portability and multi-cloud migration

Portability in cloud computing can be defined as the ability for
movement of applications, workloads, processes and data from one
cloud environment to another with least disruption, whether manu-
ally or automatically. The least disruption should translate to lowest
possible cost, effort and time. The movement of one service, such as
the one instance of the prediction microservice for automated plant
diagnosis system from Cluster 2 to Cluster 1 as shown in Fig. 5, should
cause minimal or no downtime and should not compromise the QoS
attributes tagged to overall operation of the system. As noted earlier,
cloud computing offers significant benefits such as scalability, disaster
recovery, mobility and cost reduction in operation of an organization’s
IT infrastructure. This is evidenced in the introduction of different
cloud computing technologies and deployments to make it easy for
organizations to embrace and adopt this new wave of handling com-
pute, storage and network workloads. One of the pertinent issues in
the adoption of cloud computing is vendor lock-in (lack of portability
and interoperability across cloud platforms) where providers work with
specific technologies such as tools and programming interfaces. Given
the different deployment models and the cloud service models, orga-
nizations should be able to move cloud services from one provider to
another without worries of complexities and infrastructure dependence.

Bozman and Chen (2010) identified standardized programming in-
terface, abstraction layers and management capabilities as some of
the key enablers for portability and service migration between cloud
providers. A standardized programming interface includes program-
ming toolsets to support application movement, the abstraction layers
insulates users from infrastructure complexities and dependencies and
the management tools provide interfaces for operational activities such
as application deployment, monitoring and troubleshooting. However,
adopting a standardized approach to portability is a myth as it is
extremely difficult for providers to agree and adopt a unified set of
standards. This requires major rework of the proprietary APIs and
file formats, and this also destroys the competition spirit which has
been very effective in delivering high quality cloud services for the
market (Gonidis et al., 2012).



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Most of the research work geared to support portability across
different cloud environments such as mOSAIC16 (Open-Source API
and Platform for Multiple Clouds), Open Cloud Computing Interface
(OCCI) have focused on abstraction layers and management tools and
container-centric solutions. Containerization allows an application to
be built once, placed inside a container image or series of images for a
multi-service application and running it on any host operating system
that supports the containerization technology in perspective such as
Docker. It should however be noted that achieving full portability
out-of-the-box and application storage persistence using containers has
some limitations such as no support for cross operating system support
- a containerized Linux application requires a Linux host operating system, a
windows one requires a Windows operating system. Despite this limitation,
containerization is a big step in ensuring applications can run uniformly
and consistently across a plethora of computing platforms or cloud
environments.

3.4. DC 4: Resilience to network partitions and bandwidth constraints

Low-resource environments usually experience unreliable and inter-
mittent Internet connections due to power failures, few or no network
redundancy points and the low Internet penetration hindering access.
In a multi-cluster setup, this can result in network partitions where
some clusters are totally unreachable for prolonged periods of time.
This setup also requires additional bandwidth to support, for example,
synchronization of services across these fault domains that could be
distantly located. Network partitions can lead to ruinous system fail-
ures, some of which leaves the system in a continuous error state, that
capitulates into data loss, corruption, unavailability and inconsistency,
broken locks and system crashes (Alquraan et al., 2018).

A stateful application is a data-driven application that requires
persistent storage across a set of multi-cloud clusters with strict data
consistency demands. To allow for this, there is a need for consensus
algorithms to ensure that cluster states are globally consistent thus
providing for dynamic leader election approach (the cloud cluster to
act as the leader and handle writes), replication for cluster consistency
and safety in ensuring that client requests are served with the correct
results (Ongaro and Ousterhout, 2014) in faces of complete, partial and
simplex network partitions (Alquraan et al., 2018). Distributed consensus
algorithms are a well-studied research problem with a popular conver-
gence in Raft,17 an implementation of Paxos, an easily understandable
and practically implementable algorithm that guarantees a shared state
among multiple servers for full operation of the system. Raft achieves
this by decomposing the consensus problem into leader election, log
replication and safety as independent tasks.

In resource-constrained environments, Internet traffic could be cat-
egorized into different priority classes such as sensitive(cluster replica-
tion), best-effort (service access) and undesired (other Internet traffic)
to closely correspond to high, medium and low priority traffic which
can then be dynamically allocated bandwidth. Assignment of optimal
bandwidth to the different traffic classes will ensure that the defined
QoS attributes such as availability and consistency of an application
deployed on the clusters is achievable. This requires a fast and rigorous
classification algorithm and considerable dynamic changes on the net-
work. Another approach would be to route user requests to the closest
cluster hence avoiding upstream bandwidth costs and limitations and
also improved user experience. Multi-cluster support for application
and data replication to achieve consistency, availability and tolerance
to network partitions over Wide Area Networks (WANs) and especially
geographically distant network points is still an open area of research.
This requires a good and redundant connectivity between communi-
cation endpoints and a compromise in application properties such as
data consistency, availability and user experience. In all this, a fair
concession for near-efficient application demands should be achieved.

16 https://occi-wg.org
17 https://raft.github.io
7

Fig. 6. DC 5:Service discovery and loadbalancer for the Automated Plant Disease
Diagnosis System.

3.5. DC 5: Service discovery and load balancing

In a multi-cloud environment, applications may need to be scaled
up by increasing application instances for improved user experience
or scaled down by destroying excess instances to limit compute costs.
In certain scenarios, an application may need to be moved from one
cloud provider to another and rescheduled on a particular node in the
new location. In the process, application settings such as its Internet
Protocol (IP) addresses and Domain Name Service (DNS) attributes may
change and this necessitates an update to all reliant services in order
to maintain application availability. Service discovery is the ability of a
client or service component to discover healthy and available services
(providers) that it can connect and communicate with. In addition, an
application with multiple instances of different services spread across
different clouds requires an internal and external load balancer solution
to prevent network and node overload which in turn translates to opti-
mal usage of computing resources. The internal load balancers consider
microservice communication inside a cluster (cloud provider) while
external load balancers consider routing of client requests to user facing
endpoints of an application. In Fig. 6, Abstraction-1 and Abstraction-2
represents the internal and external load balancers respectively. The
prediction microservice and the pest identification microservice have
to communicate and each has multiple instances and it is the role of the
internal load balancer to route the traffic to the appropriate instances. A
user visiting pestc.ai.net has no knowledge of what instance will respond
to the request as this is abstracted by the external load balancer. pestc-
01.ai.net at a certain point may be destroyed or rescheduled in another
node with possibly a new IP address and name and the abstraction
layers have to update their registries so that the request/response cycle
is always complete.

Kubernetes implements two options of service discovery: one based
on environment variables available and the preferable DNS-based ser-
vice discovery. Using environment variables, a service is identified by
the IP address and port it is running on for example PREDICTIONS
SERVICE HOST = 10.233.11.2 and PREDICTIONS SERVICE PORT =
5000. In DNS, the services are identified by names that are specific to
the cluster namespace that the application is deployed in for example,
prediction-01.dev.cluster1.local and prediction-02.prod.cluster2.local to
identify two instances of the prediction service deployed in the dev
and prod namespaces of Cluster 1 and Cluster 2 respectively. The DNS
option is more flexible as the environment variables are fixed for the
lifetime of the service and changes require a redeployment of the
application and/or service. Service discovery outside the Kubernetes
cluster requires services to be exposed through NodePort, Ingress and
LoadBalancer alternatives.

Most service discovery mechanisms in distributed computing and
service-oriented architectures employ a centralized approach where
a central server(s) maintains information about all the services that
includes access credentials, protocols, version numbers, service loca-
tion and environment details. The service discovery process involves

https://occi-wg.org
https://raft.github.io


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil

o
o
c
t
o
p
p
o
i
v
m

a distributed client querying the central registry for location and in-
formation of other services either using a client-side discovery (a
client queries the service registry, selects an available instance and
makes a request) or server-side discovery (a router acting on behalf
of the client queries the service registry and forwards the request to
an available instance) implementation. The popular centralized ser-
vice registry/discovery solutions include Netflix’s Eureka,18 CoreOS’s
highly available etcd19 key–value distributed datastore, consul20 and
Apache ZooKeeper.21 The major drawbacks of centralizing the service
registry/discovery are the introduction of points of failure, performance
bottlenecks and possible network congestion. Distributing the nodes
providing these services and ensuring there are multiple instances in a
consistent way usually suffices. Zhou and Shi (2010) and Ranjan et al.
(2010) proposed an unstructured Peer-to-Peer(P2P)-enabled service
discovery method for cloud environments based on Distributed Hash
Tables (DHTs) with a decentralized index system. The peers maintain
their own services and descriptions and a semantic-based matching rule
is used to map the user requirement expressed in the query message to
the desired service.

3.6. DC 6: Localized image registry

An image is an immutable file built according to instructions and
can only be extended by building a layer on top of it. A container is
an instance of an image with instructions on how to execute an ap-
plication and operate as isolated environments with ability to interact
with other containers and the host environment through well defined
interfaces (Jaramillo et al., 2016). To fully effect containerization, an
image of the application is created and pushed to a local or remote
image registry through which a user, such as a DevOps engineer, can
now pull and create an instance of it in a container host. A container
image registry provides a storage location and distribution portal for
images some with multiple versions identified by tags. Docker Hub,22

Google’s GCR,23 Azure ACR24 and Amazon ECR25 are some examples of
popular public/private image repositories.

According to Zhang et al. (2017), image pulling costs, workload
network transition costs (such as bandwidth, latencies and connection
limits) and energy conservation can significantly affect the scheduling
and deployment of applications into container hosts. If the images are
stored on the local container host, then the cost is negligible otherwise
extra costs shall be incurred depending on the sizes of the layers, image
location and bandwidth restrictions involved in fetching the image from
a remote repository. In resource-constrained settings, the image may
be located thousands of kilometers from the local container hosts and
this negatively impacts deployment, for example in cases of down-
time where provisioning on another local cluster instance to ensure
availability is required. Imagine a 10GB image file located on https:
//hub.docker.com to be provisioned on a container host in Uganda
with a dedicated upstream bandwidth limit of 2Mbps. On average, there
is a network latency of 357 ms between https://hub.docker.com and
Uganda. To fetch this image file, it will take close to 12 minutes and this
can have a huge negative impact on the availability QoS requirement.
To reduce container schedule (download) times, images may need to
be distributed across different cloud providers and located very close
to the container hosts.

18 https://github.com/Netflix/eureka
19 https://github.com/etcd-io/etcd
20 https://www.consul.io
21 https://zookeeper.apache.org
22 https://hub.docker.com
23 https://cloud.google.com/container-registry
24 https://azure.microsoft.com/en-us/services/container-registry/
25
8

https://aws.amazon.com/ecr/
3.7. DC 7: Platform monitoring and management

Monitoring is a critical and essential aspect of managing any IT
infrastructure. Systems are susceptible to failure and without monitor-
ing, it is difficult to ascertain the causes of failure and even anticipate
for future ones. Compared to traditional monolithic applications, moni-
toring of microservice applications requires intensive service reporting
features especially given their distributed nature (services run as in-
dependent processes on possibly geographically different hosts) and
dynamic behavior. Monitoring aids users in understanding the over-
all health of an application, gain insight into the performance of
constituent services of an application and to ensure that APIs are
available and performing as expected. The monitoring metrics divided
into platform/host (CPU, RAM, threads and database connections)
and application metrics (service availability, service and API endpoint
latency, success of API endpoints, API endpoint response times, API
request clients, errors and exceptions) should be collected at each stage
of the deployment pipeline. Haselböck and Weinreich (2017) identifies
four areas for microservice monitoring based on monitoring activities
of information generation, processing, dissemination and presentation:
Generation and collection of monitoring data, storage, hosting and distri-
bution of monitoring data, processing of the data to obtain platform and
application metrics and presentation of need-to-know information via a
dashboard to the relevant stakeholders. In addition, a real-time moni-
toring component of a production-ready microservices application to
detect current and imminent failures due to changes in key metrics is
necessary.

A number of monitoring tools and frameworks exist but most are
either native (Amazon Cloudwatch,26 Azure Monitor,27 Google Cloud’s
Operations Suite28) or virtualization type specific (such as cAdvisor29)
r commercial (such as Datadog30 and Dynatrace.31 Given a plethora
f monitoring options available and complexities of monitoring mi-
roservice applications, a monitoring framework should be designed
o capture, report and alert stakeholders on performance and failures
f an application based on critical metric data. Noor et al. (2019)
resents a framework for monitoring microservice-oriented cloud ap-
lications in heterogeneous virtualization environments. It is composed
f mainly two components: a monitoring agent (a cloud platform-
ndependent software component that collects information from a microser-
ice) and a monitoring manager (a software component that receives
onitoring information from agents in heterogeneous cloud environments).

4. Crane Cloud: an implementation of a resilient multi-cloud ser-
vice layer

This section presents Crane Cloud, a first-cut prototype instantia-
tion of design properties and considerations for a multi-cloud service
layer presented in Section 3 and summarized in Table 1. Motivated
by the unique requirements for low-resource settings in Section 2.2,
Crane Cloud is an open source project that attempts to encapsulate
the intricacies of operating heterogeneous application clusters into a
highly available unified platform for management and monitoring of a
microservice application lifecycle. The target users of the platform in-
clude developers, researchers, students, and startups located in resource
constrained environments. The public Github repository for the project
is available on Github https://github.com/crane-cloud/.

26 https://aws.amazon.com/cloudwatch/
27 https://azure.microsoft.com/en-us/services/monitor/
28 https://cloud.google.com/products/operations
29 https://github.com/google/cadvisor
30 https://www.datadoghq.com
31
 https://www.dynatrace.com

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://github.com/Netflix/eureka
https://github.com/etcd-io/etcd
https://www.consul.io
https://zookeeper.apache.org
https://hub.docker.com
https://cloud.google.com/container-registry
https://azure.microsoft.com/en-us/services/container-registry/
https://aws.amazon.com/ecr/
https://github.com/crane-cloud/
https://aws.amazon.com/cloudwatch/
https://azure.microsoft.com/en-us/services/monitor/
https://cloud.google.com/products/operations
https://github.com/google/cadvisor
https://www.datadoghq.com
https://www.dynatrace.com


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Table 1
Design considerations for a resilient multi-cloud service model.
ID Design Consideration

DC 1 Containerization and orchestration of applications
DC 2 Application placement and replication
DC 3 Portability and multi-cloud migration
DC 4 Resilience to network partitions and bandwidth
DC 5 Service discovery and load balancing
DC 6 Localized image registry
DC 7 Platform monitoring and management

Fig. 7. Crane Cloud components.

4.1. Architecture and overview

Crane Cloud is an open source multi-cloud service layer designed
to enable developers, organizations and researchers to set up reli-
able cloud-services in low resource setting. The Crane Cloud software
layer was conceived to address the key hurdles of operating a cloud-
service platform in resource constrained environments characterized
by challenges identified in Section 2.2. Its main ingredients include
resilience to network partitions, support for microservice orchestration,
support for migration of services between private and public clouds
to avoid vendor lock-in issues, seamless downtime and network traf-
fic load distribution, monitoring metrics, and tools for transforming
existing non-cloud compliant services into compliant cloud services.
The multi-cloud service layer has five components (managed portal,
authentication and authorization, monitoring and billing, local registry
and the backend service) purposely designed taking into consideration
features described in Section 3 and are shown in Fig. 7.

4.1.1. Multi-cloud cluster support
Crane Cloud enables harmonization of clusters from different cloud

providers (public or private) and bare metal environments. It is de-
signed to provide for easy migration, replication and loadbalancing
of services across different clusters and cloud providers to ensure
high availability and improve the general user experience. The cloud
providers are chosen based on location, API service offering and costs
of running workloads in their data centers.

4.1.2. Managed portal
The managed portal provides an interface for access to the rest

of the abstracted Crane Cloud multi-cloud components. Developers
can deploy and access their application services, monitor resources
and running services, manage users and access the local private reg-
istry. Administrators can monitor the different clusters and nodes,
view project details such as resource usage and its users, add or
remove clusters, manage projects and accounts in the system and
ensure that the clustered environment is performing optimally viz-
a-viz the running services. The portal is a window to Crane Cloud
features for management of resources in a clustered computing environ-
ment. As a developer, infrastructure setup complexities and application
9

deployment intricacies are eliminated and focus shifts to software
functionality. As a service consumer (user), the availability of a service
and user experience regardless of location and underlying technologies
is paramount.

4.1.3. Authentication and authorization
Crane Cloud uses the concept of user projects to closely map with a

cluster namespace. A namespace is a logical environment that supports
resource management for users working in a team or across teams. In
Crane Cloud, access to the cluster resources requires valid credentials
and the right privileges mediated by an API. This involves creation of
projects and accounts that correspond to specific privilege levels in the
cluster. This ensures that users can only access what may be required
to perform functions within the cluster without affecting other projects.
Two types of accounts are supported: Project user accounts that are
managed outside the cluster and service accounts inside the cluster. The
service accounts are directly used to manage resources in the cluster
while the project user accounts are mapped to service accounts but
usually with defined privileges/roles over a namespace.

4.1.4. Platform and service monitoring support
Monitoring is integral to the overall operation of Crane Cloud in

terms of infrastructure and the distributed services hosted to ensure the
QoS attributes are in check. The infrastructure includes the nodes while
the services are the client applications and supporting tools. Monitoring
coupled with an alert system also ensures that possible failures are
averted early on before turning catastrophic. More specifically, the
cluster monitoring involves the state of the cluster (collection of nodes)
which is a constituent of node resource utilization parameters such
as network bandwidth, disk utilization, CPU, and memory utilization
while the service metrics include CPU, network, and memory usage
irrespective of the nodes they are running on.

4.1.5. Local registry
The localized and replicated registry provides a platform through

which users can easily upload, store and deploy their applications fast.
The registry also provides trust signing and vulnerability scanning of
container images. This significantly reduces the costs of upload and
download of container images from public registries. The registry is
locally available on all the clusters and container images are replicated
on all. A local registry also ensures that administrators have more
control over it.

4.1.6. Crane backend
The Crane Backend is the heartbeat of Crane Cloud providing ab-

stractions and hooks for a number of services. The backend ensures
that applications are appropriately scheduled on a cluster(s) or nodes,
creation of service endpoints for communication between parts of an
application and also ensure users can access the application, manage-
ment of volumes for deployment of stateful applications, location-aware
and user preference deployment of applications. It also provides end-
points for management of container images through the registry API
and monitoring of deployed services.

4.2. Implementation

Crane Cloud is implemented using a combination of tools ranging
from the design of the managed portal to the backend and from mon-
itoring, registry and persistent volume management to the container
orchestration. In most cases, open source solutions were experimented

and used as much as possible.



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil

m
T
a
H
M
o
f
a
o
t
&
t
i
o
i
a
o
p
a
d

4

f
c
a
p
w
C
(
e
s
m
m
d

Table 2
A comparison of major container orchestration implementation tools.
Feature Apache Mesos Docker Swarm Kubernetes Nomad

Community (As
of September
2022)

Has a medium active
community with 18,178
Github commits and 322
contributorsa

Started in 2014, Docker
Swarm has a relatively
smaller community with
3,570 Github commits and
177 contributorsb

Larger community with
over 110,144 Github
commits and 3,238
contributorsc making it
one of the most active
open source projects

Released in 2015 by
HashiCorp, Nomad is
gaining traction. Has over
23,707 Github commits
and 576 contributorsd

Open Source Yes Yes but with an enterprise
edition that detriments the
open source version

Yes Yes

Scalability &
Flexibility

Automatic scaling but may
require definitions in the
application.

Manual scaling Automatic scaling based on
resource utilization

Dynamic & resource-centric

Fault tolerance Yes Yes Yes Yes
Monitoring Has a diagnostic utility for

health and other metrics
but requires queries and
aggregation through APIs

Uses basic out-of-the-box
tools and supports other
3rd-party logging and
monitoring tools

Uses inbuilt tools for
logging and monitoring
with support for third
party integrations to keep
track of logs and other
performance metrics

Run-time metrics available
for use with external
monitoring tools

ahttps://github.com/apache/mesos.
bhttps://github.com/docker/classicswarm.
chttps://github.com/kubernetes/kubernetes.
dhttps://github.com/hashicorp/nomad.
f
s
a
w
a
o
r
s
a
s

4

s
a
c
l
h
t
t
n
O
d
o
o
e
s

4.2.1. Container orchestration
Container orchestration tools are used to automate the deployment,

anagement, scaling, and networking of containerized applications.
hese tools provide an abstraction layer between pools of resources
nd the application containers that run on those resources. Kubernetes,
ashiCorp Nomad (Sabharwal et al., 2021), Docker swarm and Apache
esos are the most popular tools with the former taking a fair share

f the cloud-native market. With an impressively large community and
unctionality, backed by Cloud Native Computing Foundation (CNCF)
nd its open source nature, Crane Cloud uses Kubernetes for container
rchestration. We considered five factors in selecting the most viable
ool for our setup: Community (Support), Open Source, Scalability

Flexibility, Fault tolerance and Monitoring support. As shown in
he comparison Table 2, Kubernetes is an open source project that
mpressively commands the cloud-native market with an adoption rate
f 50% in the past 6 months and 87% market penetration support-
ng application scalability, fault tolerance and has inbuilt monitoring
nd logging tools and hence was the preferred choice for container
rchestration implementation of Crane Cloud. Additionally, Kubernetes
rovides automated scheduling of applications, self healing capabilities,
utomated roll-out and rollback, service loadbalancing and a higher
ensity of resource utilization.

.2.2. Developer tools
The managed portal (frontend) was implemented using React.js,32 a

ast, scalable, and simple JavaScript library for building user interfaces
reated and open-sourced by Facebook. It uses the component-based
rchitecture and declarative approach hence simplifying the debugging
rocess. It allows creation of simple reusable and stateful components
hich can be composed to build complex user interfaces. The Crane
loud backend was implemented as a REpresentational State Transfer
REST) API, using Python Flask,33 for ease of use and integration while
nsuring effective maintenance. Python Flask was used because it is
imple, flexible and lightweight and now considered as one of the
ost popular Python web application frameworks by the program-
ing community. PostgreSQL34 is an open source object-relational
atabase management system that Crane Cloud uses to maintain state

32 https://reactjs.org
33 https://github.com/pallets/flask/
34
10

https://www.postgresql.org
for its internal workings. Applying multi-version concurrency control
(MVCC) which allows several concurrent read/write operations, Post-
greSQL can handle multiple tasks simultaneously and efficiently. In
addition, PostgreSQL is SQL standards-compliant, highly programmable
and extensible by many third-party tools and libraries.

4.2.3. Image registry
In implementation of the image registry, Crane Cloud considered

open source extensible tools that can secure, scan and sign container
images and also support replication across clusters. Harbor35 perfectly
itted into the picture, providing an extensible API that the backend
ervice would easily consume. Harbor delivers a consistent experience
cross multiple clouds and works best for environments that may not
ant to rely on public registries but rather a private one packaged as
n add-on. Harbor additionally provides features such as access control
n registry images, image vulnerability scanners, image storage and
eplication using a clustering mechanism. Crane Cloud a is multi-cloud
ervice layer that can work with cloud providers in different regions
nd availability zones and a zonal scalable registry with a replication
ervice is cardinal.

.2.4. Stateful applications
Containerization technologies were originally designed to support

tateless applications but considerable efforts have now been made to
lso support stateful applications owing to community adoption and
ontribution. This enables organizations to work with data-driven and
egacy applications while leveraging the portability, scalability and
ighly available features of containers. Traditionally, Kubernetes used
o provide support for manual attachment of cloud-backed storage
o applications limiting usage outside the cloud provider but cloud
ative storage solutions have now been advanced. Crane Cloud uses
penEBS,36 an open source Container Attached Storage (CAS) solution
eveloped using the microservice architecture. Distributed, monolithic
r streaming, OpenEBS allows deployment of storage technologies and
ptimizations appropriate to an application type using different storage
ngines. Additionally, OpenEBS is a multi-cloud storage solution that
hares the same philosophy of Crane Cloud borderless computing.

35 https://goharbor.io
36 https://openebs.io

https://github.com/apache/mesos
https://github.com/docker/classicswarm
https://github.com/kubernetes/kubernetes
https://github.com/hashicorp/nomad
https://reactjs.org
https://github.com/pallets/flask/
https://www.postgresql.org
https://goharbor.io
https://openebs.io


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Table 3
Mapping of Crane Cloud components and design considerations.

Crane Cloud Component Design Consideration Requirements and
Challenges

1 Multi-cloud Cluster Support Containerization and container orchestration engines. Vendor lock-in, Poor
quality of service

2 Managed Portal Manual service deployment, placement and replication,
monitoring and alerts portal

Data jurisdiction
restrictions

3 Authentication and
Authorization

Portability and multi-cloud migration Cloud resource security

4 Crane Backend Application containerization and orchestration, Ingress,
Service discovery, scheduling, replication and loadbalancing
for QoS, location-aware and user defined policy management.

Frequent Internet partitions
and bandwidth constraints,
Poor quality of service

5 Crane Registry Localized image registry Poor quality of service
6 Crane Monitor Platform monitoring, alerts and management Poor quality of service
4.2.5. Monitoring
Crane Cloud uses a combination of the inbuilt Kubernetes Metrics

server and Prometheus.37 The Metrics server is a cluster-wide aggrega-
tor of container resource metrics such as container CPU and memory
usage exposed on each cluster node and available through the Metrics
API. Prometheus is an open source time series database optimized
to store monitoring metrics using a periodic data pull model and
provides API endpoints. Providing basic visualizations and dashboards,
Prometheus can be deployed alongside dedicated visualization and
dashboard solutions from React.js libraries. Using the Prometheus APIs,
visualizations can be generated and customized for users.

4.2.6. Mapping of Crane Cloud, design considerations and challenges ad-
dressed

The Table 3 shows a mapping between components of Crane Cloud,
the design considerations and low-resource computing environment
challenges addressed. The registry, monitor and backend are contin-
uously being refined for a seamless user experience. It should also
be noted that resistance to network partitions and bandwidth con-
straints as a design consideration and how Crane Cloud can practically
implement this is an ongoing research area.

5. Experiments and results

To demonstrate the utility of the Crane Cloud platform, we deployed
the rapid plant disease diagnosis (mcrops) microservice of APDD on
the Crane Cloud platform. As introduced in Section 2, mcrops provides
machine learning-based diagnostic tools to detect viral crop diseases
in cassava plant using mobile and web-based technologies. In brief,
the users upload images of suspected infected cassava root tubers
through a mobile application or web browser and mcrops computes
the Cassava Brown Streak Disease (CBSD) score to indicate the disease
presence levels. The users can perform single uploads and/or multiple
uploads of the image data. As shown in Section 2, mcrops is deployed
as a monolith and for Crane Cloud deployment support, the appli-
cation was containerized using Docker. The containerization process
involved access to the mcrops source code, writing of the Dockerfile,
iterative building and tagging of the Docker image and pushing it to
the Crane Cloud image registry https://registry.cranecloud.io/. On the
Crane Cloud portal, the deployment involved providing the application
details such as name, container port and the docker image reference
(as shown in Fig. 8) from which mcrops is run and ingress resources
for external access are subsequently created and availed for use.

37 https://prometheus.io
11
Fig. 8. Deployment of mcrops on Crane Cloud.

5.1. Experiment setup

The purpose of the experiment was to evaluate the performance and
user experience of mcrops when deployed on a public cloud (AWS)
compared to the deployment on the Crane Cloud platform. We consider
the response time metric as an important metric for the measurement
of the quality service and user experience. The response time has been
pointed out as one of the key quality of service metrics for cloud
providers (Xiong and Perros, 2009; Alhamad et al., 2010). Response
time is particularly relevant to resource constrained environments that
are characterized by frequent Internet partitions and bandwidth con-
straints and poor quality of service. We used Apache JMeter,38 a

38 https://jmeter.apache.org/

https://registry.cranecloud.io/
https://prometheus.io
https://jmeter.apache.org/


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil

p
t
u
s
e
u
t
(
w
t
n
T
q
s
f
l
t
s
a
e
T
w
t
c
m
w
t
i
t

5

1
a
r
a
i
t

W
t
p
s
u
o

n
r
s
u

4
f
m
F
a
t
f
f
A
h
T
c

3
s
m
a
s
f
i
v
o
H
a
s
w
t
r
u

2
m
T
v
t
A
h
t
e

a
i
r
a
i
t
F
r
c
G
s
m

I
e
b
t

Table 4
JMeter Test Settings.

Code Images Users Loops Ramp-Up time

A1 1 1 10 10
B1 1 1 20 20
A2 10 1 10 10
B2 10 1 20 20

Table 5
Experimental setup for mcrops tests.

Connection/Sampler unet.mcrops.org mcrops.cranecloud.io

2G (45 Kbps) A1,B1
A2,B2

A1,B1
A2,B23G (4 Mbps)

4G (8 Mbps)
WiFi (10 Mbps)

opular performance testing tool. Specifically we used JMeter tool
o measure the response times of the two application setups against
ploaded images over different mobile/wireless connections for a user
ituated in a bandwidth constrained setting. These testing settings and
nvironments are a representative of the realities that developers and
sers working in the low-resource settings experience. On JMeter, four
hread groups representing the image upload settings and two samplers
the two application setups: unet.mcrops.org and mcrops.cranecloud.io)
ere used as shown in Tables 4 and 5. In A1 and B1, we considered

he simplest scenario of a user uploading a single image but varied the
umber of times to 10 and 20 respectively as represented by the loops.
he ramp-up time represents the seconds between successive user re-
uests and we set this as same as the loops. In A2 and B2, we randomly
et the number of images to 10 to test a multi-upload use case as this
eature is supported by the application. As the number of images and/or
oops was increased, the response times were assumed to also rise hence
he need to increase the ramp-up time. In all scenarios, 1 user was
imulated because this is the typical field use case where a device has
non-shared connection to the next transmitting network device, for

xample an extension worker or rural smallholder farmer in a garden.
he connection speeds for 2G, 3G, 4G and a local WiFi access point
ere determined by performing tests using the online Internet speed

est tool speedtest.net 39 for upload and download speeds and the average
omputed and recorded in Table 5. The connections under use are
otivated by real-world setups of resource constrained environments
ith no ideal and consistent network connectivity. Overall, we wanted

o assess the utility of a platform like Crane Cloud for end-users situated
n these environments. In this example, the students and researchers of
he Computer Science Department at the University.

.2. Results and discussion

The results of from the experiments are presented in Figs. 9, 10,
1 and 12 and Table 6. In the analysis, the median and mean (aver-
ge) times were used to conclude on which experiment had a shorter
esponse time using the different connections for both unet.mcrops.org
nd mcrops.cranecloud.io. The median was given priority in cases where
ts difference compared to the mean is large since it is not inflated by
he existence of outliers in the data collected.

ifi connection test results. In the WiFi connection setup, the response
imes for experiment B1 and A2 were lower in unet.mcrops.org com-
ared to mcrops.cranecloud.io using the median and mean times as
hown in Table 6. For experiment A1, the results indicate that
net.mcrops.org has its lowest response time at 11.23 s with an average
f 22.9 s compared to mcrops.cranecloud.io at 6.91 s with an average

39 http://speedtest.net/
12

t

of 11.66 s. The mean times also indicate that responses are better
(lower) in mcrops.cranecloud.io compared to unet.mcrops.org. The exper-
iment B2 response times are lower in mcrops.cranecloud.io compared to
unet.mcrops.org using both median and mean. The erratic behavior of
the graphs for unet.mcrops.org in Fig. 9 is partly attributed to the high
umber of network hops, packet losses (as shown by the completion
ates in Table 7 and connection variations from the packet sources. It
hould also be noted that the completion rates for mcrops.cranecloud.io
nder WiFi was at 100% compared to unet.mcrops.org at 95%.

G connection test results. Using the 4G connection, the response times
or experiment B1 and B2 was lower in unet.mcrops.org compared to
crops.cranecloud.io using both the median and mean as shown in
ig. 10 and Table 6. In experiment B1, unet.mcrops.org had 28.01 s
nd 29.69 s while mcrops.cranecloud.io had 47.29 s and 49.06 s for
he median and mean times respectively. For experiment B2, the results
ollowed a similar pattern. However, experiments A1 and A2 per-
ormed significantly better under mcrops.cranecloud.io for example; in
2, unet.mcrops.org had 24.43 s and 33.29 s while mcrops.cranecloud.io
ad 10.81 s and 10.999 s for the median and mean times respectively.
he completion rates for mcrops.cranecloud.io under WiFi was at 100%
ompared to unet.mcrops.org at 88.75%.

G connection test results. Under the 3G connection, the average re-
ponse time for experiments A1, A2 and B2 is lower in
crops.cranecloud.io compared to unet.mcrops.org as shown in Fig. 11
nd Table 6. In experiment A2, for example, unet.mcrops.org had 64.37
and 60.05 s while mcrops.cranecloud.io had 27.18 s and 30.48 s

or the median and mean times respectively. This was quite signif-
cant as the response times for mcrops.cranecloud.io were half and
ery similar patterns for A1 and B2. Despite the presence of an
utlier in experiment A1, mcrops.cranecloud.io still performed better.
owever, for experiment B1, the response time was much lower
t an average of 30.97 s using unet.mcrops.org compared to 107.46
econds for mcrops.cranecloud.io. This could be attributed to a net-
ork congestion or server load at execution time especially given

he positive results from A1, A2 and B2. In general, the completion
ate for mcrops.cranecloud.io under 3G was at 100% compared to
net.mcrops.org at 85%.

G connection test results. Using the 2G connection, only two experi-
ents (A1 and B1 were completed successfully as shown in Fig. 12 and
able 6. These experiments involved single image data with the loops
aried. mcrops.cranecloud.io in both experiments had lower response
imes compared to unet.mcrops.org using both the median and mean. In
1, unet.mcrops.org had 57.33 s and 56.61 s while mcrops.cranecloud.io
ad 38.81 s and 48.48 s for the median and mean times respec-
ively. The spikes in the graphs are attributed to network unreliability
specially under constrained capacities supported by 2G.

The computation of the CBSD score is a resource-intensive task
s shown by the response times recorded in all the scenarios. The
ncreasing response times are attributed to the ramp-up time where new
equests are generated at specific intervals before some computations
re concluded. From the results, it is also clear the mcrops.cranecloud.io
s more consistent in the increasing response times and this is attributed
o the completion rates of the execution as shown in Table 7 and
ig. 13. In all instances, mcrops.cranecloud.io has a 100% completion
ate compared to unet.mcrops.org at 89.64%. In cases where the public
loud hosted instance performs better, server errors such as 502 (Bad
ateway) and 504 (Gateway Timeout) were recorded. As expected and

hown by the Internet speed results, the WiFi connection performs
uch better compared to the rest of the connectivity options.

The behavior of the trends as observed in the graphs is due to the
nternet speed variations during the course of the experiments. For
xample, we noticed that experiments done in the morning provide
etter response times compared to the later hours. This is explained by
ypical network usage patterns over a 24-hour period that characterize

hese settings (Alliance, 2021).

http://speedtest.net/


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Fig. 9. WiFi connection test results.
Table 6
Comparison of the Execution Response Times (exp = Experiment, min = Minimum, med= Median, max = Maximum, avg =
Average).

Sampler -> unet.mcrops.org (seconds) mcrops.cranecloud.io (seconds)

Connection exp min med max avg min med max avg

2G

A1 31.09 57.33 69.10 56.61 28.38 38.81 157.48 48.48
B1 67.34 106.29 303.91 143.39 47.70 100.76 426.60 141.19
A2 – – – – – –
B2 – – – – – –

3G

A1 13.31 22.94 33.91 22.03 7.88 11.11 78.03 17.41
B1 13.51 30.97 59.10 35.26 69.03 107.46 163.94 111.52
A2 17.69 64.37 89.80 60.05 17.52 27.18 51.97 30.48
B2 19.04 47.56 75.28 46.19 11.16 26.06 55.82 30.86

4G

A1 9.32 28.10 37.37 26.03 7.95 12.50 20.48 13.19
B1 10.65 28.01 62.56 29.69 23.16 47.29 80.31 49.06
A2 12.72 24.43 64.39 33.29 7.06 10.81 15.68 10.99
B2 16.5 27.53 69.18 37.75 21.69 41.05 66.18 41.37

WiFi

A1 11.23 22.90 35.70 22.90 6.91 10.78 18.03 11.66
B1 14.62 29.24 95.23 35.31 20.42 44.30 74.13 45.67
A2 26.01 43.61 89.97 46.93 36.74 51.36 67.07 51.31
B2 18.04 49.04 81.70 49.55 9.09 18.80 44.81 20.55
The results from this experiment show the response time patterns
for applications and services hosted at cloud providers situated in
rich-resource settings and accessed from varying resource constrained
13
environments. The results are thus not specific a cloud provider, in this
case AWS and the choice of the application but rather a general pattern
of applications with similar characteristics.



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Fig. 10. 4G connection test results.
Table 7
Execution Completion Rates (%).

Connection/Sampler Experiment unet.mcrops.org (%) mcrops.cranecloud.io (%)

2G

A1 90 100
B1 90 100
A2 – –
B2 – –

3G

A1 100 100
B1 90 100
A2 60 100
B2 90 100

4G

A1 100 100
B1 90 100
A2 90 100
B2 75 100

WiFi

A1 100 100
B1 90 100
A2 100 100
B2 90 100

6. Related work

Van den Bossche et al. (2011) addressed the challenge of cost-
efficiently scheduling deadline constrained batch type applications on
14
IaaS (virtual machines) hybrid clouds using custom heuristics. Proper-
ties such as high availability, scalability, fault-tolerance and monitoring
are not discussed and the use of virtual machines may not be the most
cost-effective approach to running application workloads. Filip et al.
(2018) proposed a solution that considers a finite catalog of primitive
microservices and designs a hybrid scheduling algorithm that matches
tasks to resources based on task history and availability of resources.
In addition to benefits of using a microservice architecture, the paper
asserted that costs can further be reduced by placing data closer to
processing points based on user density. Müssig et al. (2017) describes
the concept of a high scalable microservice infrastructure using custom
metrics in addition to commonly used ones such as CPU and RAM .
In this paper, custom metrics such as service utilization for scaling,
load balancing and load prediction often results in better business-
alignment of the scaling behavior as well as cost reduction. Guerrero
et al. (2018) presented an optimization approach to reduce service
cost, microservices repair time, and microservices network latency
overhead in the orchestration process of containers in multi-cloud envi-
ronments using the scale level of the microservices and their allocation
in the virtual machines, the provider and virtual machine type selection
and the number of virtual machines. Sousa et al. (2016) developed
a framework for automated deployment of microservice applications
in multi-cloud environments with containers. The application’s multi-
cloud requirements are defined and a systematic method for obtaining



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Fig. 11. 3G connection test results.
proper configurations that comply with the application’s requirements
and the cloud providers’ constraints is adopted. Rancher40 and D2C41

are two examples of container management platforms that simplify the
process of operating container clusters on any cloud or infrastructure
platform. The downside with these platforms is in addressing applica-
tion requirements such as data processing and storage restrictions and
the distinctive requirements for resource constrained settings. As more
established cloud providers such as Microsoft, Google, Oracle and Ama-
zon move towards hosted cloud-native platforms such as Kubernetes
for easier configuration and management, the vendor-lockin issues are
expected to exacerbate especially with no plans of integration tools or
APIs. In summary, there is no standardized solution for implementation
and operation of a multi-cloud service layer but rather blocks that
independently address the design considerations in Section 3.

7. Conclusion and future work

In this paper, we presented Crane Cloud - a resilient multi-cloud
service layer for resource constrained environments using Kubernetes
and assorted management tools. We highlighted the characteristics

40 http://rancher.com/
41 http://d2c.io
15
of a resource constrained environment that includes poor Internet
connectivity, frequent Internet partitions and data center power cuts
ultimately resulting in poor user experience or even service unavail-
ability. Based on these challenges, we enumerated a number of design
considerations and properties for a resilient multi-cloud service layer
that would form the foundation for Crane Cloud. From easing terminal
complexities of operating a cloud service, desirable scaling, availabil-
ity, migration and loadbalancing to platform monitoring, Crane Cloud
tries to provide an all-inclusive solution that best fits the resource
constrained compute environment. As much as Crane Cloud directs
implementations for the subject environment, it should be noted there
are many moving parts some of which are under active development
and research. The bandwidth constraints, for example, may require
consensus algorithms for better handling of network splits but there are
always trade-offs that should be considered. Management of persistent
storage, replication and fault tolerance across geographically distant
clusters accessible via Wide Area Networks (WANs) is still an open
research area. There are always penalties introduced on the network
especially with application data that has to traverse bottleneck links
to maintain real-time application consistency. Further future work
includes analyzing and optimizing the scheduling processes for ap-
plications in production Crane Cloud clusters. In bare metal clusters,
service load balancing usually requires more investment in the network

http://rancher.com/
http://d2c.io


Development Engineering 7 (2022) 100102

16

E. Bainomugisha and A. Mwotil

Fig. 12. 2G connection test results.

Fig. 13. Instance completion rates.



Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
infrastructure which is not an option in a low resource setting and
should be further explored.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to acknowledge all persons who have con-
tributed to the thought process of Crane Cloud and resources in funding
or in-kind to bring the project to life. We thank Paul Maritz for
the support and advice in the conceptualization of the Crane Cloud
project. We thank the Crane Cloud team for feedback and input. The
authors would also like to acknowledge support from the Government
of Uganda through the Makerere University Research Innovation Fund
(RIF).

References

Alabbadi, M.M., 2011. Cloud computing for education and learning: Education and
learning as a service (ELaaS). In: 2011 14th International Conference on Interactive
Collaborative Learning. IEEE, pp. 589–594.

Alhamad, M., Dillon, T., Wu, C., Chang, E., 2010. Response time for cloud computing
providers. In: Proceedings of the 12th International Conference on Information
Integration and Web-Based Applications and Services. iiWAS ’10, Association for
Computing Machinery, New York, NY, USA, pp. 603–606. http://dx.doi.org/10.
1145/1967486.1967579.

Alliance, U., 2021. UbuntuNet monitor. https://monitor.ubuntunet.net/cacti/. (Accessed
21 July 2021).

Alquraan, A., Takruri, H., Alfatafta, M., Al-Kiswany, S., 2018. An analysis of network-
partitioning failures in cloud systems. In: 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). pp. 51–68.

Balalaie, A., Heydarnoori, A., Jamshidi, P., 2016. Microservices architecture enables
DevOps: Migration to a cloud-native architecture. IEEE Softw. 33 (3), 42–52.
http://dx.doi.org/10.1109/MS.2016.64.

Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.Y., 2015. Models for effi-
cient data replication in cloud computing datacenters. In: 2015 IEEE International
Conference on Communications. ICC, IEEE, pp. 6056–6061.

Bozman, J., Chen, G., 2010. Cloud computing: The need for portability and
interoperability. IDC Exec. Insights.

Brewer, E.A., 2000. Towards robust distributed systems. In: PODC, vol. 7. Portland,
OR.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J., 2016. Borg, omega, and
kubernetes. Queue 14 (1), 70–93.

Calandro, E., Chavula, J., Phokeer, A., 2018. Internet development in africa: a
content use, hosting and distribution perspective. In: International Conference on
E-Infrastructure and E-Services for Developing Countries. Springer, pp. 131–141.

Corneo, L., Eder, M., Mohan, N., Zavodovski, A., Bayhan, S., Wong, W., Gunning-
berg, P., Kangasharju, J., Ott, J., 2021. Surrounded by the clouds: A comprehensive
cloud reachability study. In: Proceedings of the Web Conference 2021. pp. 295–304.

Daigle, B., 2021. Data protection laws in Africa: A pan-African survey and noted trends.
J. Int’L Com. Econ. 1.

DigitBin, 2019. WhatsApp lite APK download for Android. https://www.digitbin.com/
whatsapp-lite/. (Accessed 30 June 2021).

Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M., 2017. Microservices: Migration of
a mission critical system. ArXiv preprint arXiv:1704.04173.

Ecobank Research, 2018. The high cost of mobile data in Sub-Saharan Africa. High data
costs are constraining Africa’s digital revolution. URL https://www.ecobank.com/
upload/publication/20180910054643018QJEBKEVZKD/20180910054635730h.pdf.

Esteves, S., Silva, J., Veiga, L., 2012. Quality-of-service for consistency of data geo-
replication in cloud computing. In: European Conference on Parallel Processing.
Springer, pp. 285–297.

Filip, I.-D., Pop, F., Serbanescu, C., Choi, C., 2018. Microservices scheduling model
over heterogeneous cloud-edge environments as support for iot applications. IEEE
Internet Things J. 5 (4), 2672–2681.

Fowler, M., Lewis, J., 2014. Microservices a definition of this new architectural term.
p. 22, URL: http://martinfowler.com/articles/microservices.html.
17
Gao, A., Diao, L., 2010. Lazy update propagation for data replication in cloud com-
puting. In: 5th International Conference on Pervasive Computing and Applications.
IEEE, pp. 250–254.

Gillwald, A., Mothobi, O., 2019. After Access 2018: A Demand-Side View of Mobile
Internet from 10 African Countries. Research ICT Africa.

Gonidis, F., Paraskakis, I., Kourtesis, D., 2012. Addressing the challenge of application
portability in cloud platforms. In: 7th South-East European Doctoral Student
Conference. pp. 565–576.

Google LLC, 2019. Lite but packs a punch: Google go comes to Android everywhere.
https://www.blog.google/products/search/lite-packs-punch-google-go-comes-
android-everywhere. (Accessed 30 June 2021).

Google LLC, 2021. See Gmail in standard or basic HTML version - Gmail Help.
https://support.google.com/mail/answer/15049?hl=en. (Accessed 30 June 2021).

Guerrero, C., Lera, I., Juiz, C., 2018. Resource optimization of container orchestration:
a case study in multi-cloud microservices-based applications. J. Supercomput. 74
(7), 2956–2983.

Haselböck, S., Weinreich, R., 2017. Decision guidance models for microservice monitor-
ing. In: 2017 IEEE International Conference on Software Architecture Workshops.
ICSAW, IEEE, pp. 54–61.

Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U., 2015. The
rise of ‘‘big data’’ on cloud computing: Review and open research issues. Inf. Syst.
47, 98–115.

Hasselbring, W., Steinacker, G., 2017. Microservice architectures for scalability, agility
and reliability in e-commerce. In: 2017 IEEE International Conference on Software
Architecture Workshops. ICSAW, IEEE, pp. 243–246.

Hohpe, G., 2019. Don’t get locked up into avoiding lock-in. URL https://martinfowler.
com/articles/oss-lockin.html.

Hope, P., 2002. Using jails in freebsd for fun and profit. Login: The Magazine of USENIX
& SAGE 27 (3).

Hüttermann, M., 2012. DevOps for Developers. A Press.
Jaramillo, D., Nguyen, D.V., Smart, R., 2016. Leveraging microservices architecture by

using Docker technology. In: SoutheastCon 2016. IEEE, pp. 1–5.
Kamp, P.-H., Watson, R.N., 2000. Jails: Confining the omnipotent root. In: Proceedings

of the 2nd International SANE Conference, vol. 43. p. 116.
Knoche, H., Hasselbring, W., 2019. Drivers and barriers for microservice adoption-

a survey among professionals in germany. Enterprise Modelling and Information
Systems Architectures (EMISAJ)-Int. J. Concept. Model. 14 (1), 1–35.

Kratzke, N., et al., 2014. Lightweight virtualization cluster how to overcome cloud
vendor lock-in. J. Comput. Commun. 2 (12), 1.

Kshetri, N., 2010. Cloud computing in developing economies. Computer 43 (10), 47–55.
Levijarvi, E.S., Mitzev, O.S., 2015. Private Cloud Replication and Recovery. Google

Patents, US Patent 8, 930, 747.
Li, W., Yang, Y., Chen, J., Yuan, D., 2012. A cost-effective mechanism for cloud

data reliability management based on proactive replica checking. In: 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Ccgrid
2012, IEEE, pp. 564–571.

Li, W., Yang, Y., Yuan, D., 2011. A novel cost-effective dynamic data replication strategy
for reliability in cloud data centres. In: 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing. IEEE, pp. 496–502.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D., 2011. NIST cloud
computing reference architecture. NIST Spec. Publ. 500 (2011), 292.

Maaref, S., 2012. Cloud computing in africa situation and perspectives. Telecommun.
Dev. Sect.-ITU 70.

Modak, A., Chaudhary, S., Paygude, P., Ldate, S., 2018. Techniques to secure data
on cloud: Docker swarm or kubernetes? In: 2018 Second International Conference
on Inventive Communication and Computational Technologies. ICICCT, IEEE, pp.
7–12.

Müssig, D., Stricker, R., Lässig, J., Heider, J., 2017. Highly scalable microservice-based
enterprise architecture for smart ecosystems in hybrid cloud environments. In: ICEIS
(3). pp. 454–459.

Mwebaze, E., Biehl, M., 2016. Prototype-based classification for image analysis and its
application to crop disease diagnosis. In: Advances in Self-Organizing Maps and
Learning Vector Quantization. Springer International Publishing, pp. 329–339.

Mwotil, A., Bainomugisha, E., Araka, S.G., 2022. Mira: an application containerisation
pipeline for small software development teams in low resource settings. In:
Proceedings of the Federated Africa and Middle East Conference on Software
Engineering. pp. 31–38.

Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M., 2016. Microservice
Architecture: Aligning Principles, Practices, and Culture. O’Reilly Media, Inc.

Nkosi, M., Mekuria, F., 2010. Cloud computing for enhanced mobile health applications.
In: 2010 IEEE Second International Conference on Cloud Computing Technology
and Science. IEEE, pp. 629–633.

Noor, A., Jha, D.N., Mitra, K., Jayaraman, P.P., Souza, A., Ranjan, R., Dustdar, S., 2019.
A framework for monitoring microservice-oriented cloud applications in heteroge-
neous virtualization environments. In: 2019 IEEE 12th International Conference on
Cloud Computing. CLOUD, IEEE, pp. 156–163.

Ongaro, D., Ousterhout, J., 2014. In search of an understandable consensus algo-
rithm. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). pp.
305–319.

http://refhub.elsevier.com/S2352-7285(22)00011-2/sb1
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb1
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb1
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb1
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb1
http://dx.doi.org/10.1145/1967486.1967579
http://dx.doi.org/10.1145/1967486.1967579
http://dx.doi.org/10.1145/1967486.1967579
https://monitor.ubuntunet.net/cacti/
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb4
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb4
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb4
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb4
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb4
http://dx.doi.org/10.1109/MS.2016.64
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb6
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb6
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb6
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb6
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb6
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb7
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb7
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb7
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb8
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb8
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb8
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb9
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb9
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb9
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb10
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb10
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb10
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb10
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb10
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb11
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb11
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb11
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb11
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb11
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb12
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb12
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb12
https://www.digitbin.com/whatsapp-lite/
https://www.digitbin.com/whatsapp-lite/
https://www.digitbin.com/whatsapp-lite/
http://arxiv.org/abs/1704.04173
https://www.ecobank.com/upload/publication/20180910054643018QJEBKEVZKD/20180910054635730h.pdf
https://www.ecobank.com/upload/publication/20180910054643018QJEBKEVZKD/20180910054635730h.pdf
https://www.ecobank.com/upload/publication/20180910054643018QJEBKEVZKD/20180910054635730h.pdf
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb16
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb16
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb16
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb16
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb16
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb17
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb17
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb17
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb17
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb17
http://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb19
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb19
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb19
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb19
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb19
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb20
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb20
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb20
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb21
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb21
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb21
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb21
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb21
https://www.blog.google/products/search/lite-packs-punch-google-go-comes-android-everywhere
https://www.blog.google/products/search/lite-packs-punch-google-go-comes-android-everywhere
https://www.blog.google/products/search/lite-packs-punch-google-go-comes-android-everywhere
https://support.google.com/mail/answer/15049?hl=en
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb24
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb24
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb24
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb24
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb24
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb25
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb25
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb25
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb25
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb25
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb26
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb26
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb26
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb26
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb26
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb27
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb27
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb27
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb27
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb27
https://martinfowler.com/articles/oss-lockin.html
https://martinfowler.com/articles/oss-lockin.html
https://martinfowler.com/articles/oss-lockin.html
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb29
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb29
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb29
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb30
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb31
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb31
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb31
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb32
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb32
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb32
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb33
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb33
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb33
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb33
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb33
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb34
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb34
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb34
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb35
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb36
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb36
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb36
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb37
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb38
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb38
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb38
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb38
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb38
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb39
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb39
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb39
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb40
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb40
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb40
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb41
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb42
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb42
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb42
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb42
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb42
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb43
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb43
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb43
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb43
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb43
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb44
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb45
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb45
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb45
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb46
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb46
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb46
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb46
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb46
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb47
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb48
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb48
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb48
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb48
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb48


Development Engineering 7 (2022) 100102E. Bainomugisha and A. Mwotil
Opara-Martins, J., Sahandi, R., Tian, F., 2016. Critical analysis of vendor lock-in and
its impact on cloud computing migration: a business perspective. J. Cloud Comput.
5 (1), 4.

Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., Parashar, M., 2010. Peer-to-peer cloud
provisioning: Service discovery and load-balancing. In: Cloud Computing. Springer,
pp. 195–217.

Rolim, C.O., Koch, F.L., Westphall, C.B., Werner, J., Fracalossi, A., Salvador, G.S., 2010.
A cloud computing solution for patient’s data collection in health care institutions.
In: 2010 Second International Conference on EHealth, Telemedicine, and Social
Medicine. IEEE, pp. 95–99.

Sabharwal, N., Pandey, S., Pandey, P., 2021. Getting started with nomad. In:
Infrastructure-As-Code Automation using Terraform, Packer, Vault, Nomad and
Consul. Springer, pp. 201–236.

Sahandi, R., Alkhalil, A., Opara-Martins, J., 2013. Cloud computing from SMEs
perspective: a survey based investigation. J. Inf. Technol. Manage. 24 (1), 1–12.

Shankar, V., 2015. Announcing facebook lite. Facebook Newsroom.
Shi, T., Ma, H., Chen, G., Hartmann, S., 2020. Location-aware and budget-constrained

service deployment for composite applications in multi-cloud environment. IEEE
Trans. Parallel Distrib. Syst. 31 (8), 1954–1969.

Sousa, G., Rudametkin, W., Duchien, L., 2016. Automated setup of multi-cloud environ-
ments for microservices applications. In: 2016 IEEE 9th International Conference
on Cloud Computing. CLOUD, IEEE, pp. 327–334.
18
Sultan, N., 2010. Cloud computing for education: A new dawn? Int. J. Inf. Manage. 30
(2), 109–116.

Uber, 2021. Uber lite - fast, reliable, and just 5MB. https://www.uber.com/ug/en/u/
uber-lite-app/. (Accessed 30 June 2021).

Van den Bossche, R., Vanmechelen, K., Broeckhove, J., 2011. Cost-efficient scheduling
heuristics for deadline constrained workloads on hybrid clouds. In: 2011 IEEE Third
International Conference on Cloud Computing Technology and Science. IEEE, pp.
320–327.

von Wielligh, R.J., Grobler, M.J., Marais, H.-J., 2018. Cellular IoT capacity estimation
for african smart cities. In: 2018 IEEE Global Conference on Internet of Things.
GCIoT, IEEE, pp. 1–6.

Xiong, K., Perros, H., 2009. Service performance and analysis in cloud computing. In:
2009 Congress on Services - I. pp. 693–700. http://dx.doi.org/10.1109/SERVICES-
I.2009.121.

Zhang, W., Chen, Q., 2010. From E-government to C-government via cloud computing.
In: 2010 International Conference on E-Business and E-Government. IEEE, pp.
679–682.

Zhang, D., Yan, B., Feng, Z., Zhang, C., Wang, Y., 2017. Container oriented job
scheduling using linear programming model. In: 2017 3rd International Conference
on Information Management. ICIM, pp. 174–180.

Zhou, J., Shi, Z., 2010. Unstructured P2P-enabled service discovery in the cloud
environment. In: International Conference on Intelligent Information Processing.
Springer, pp. 173–182.

http://refhub.elsevier.com/S2352-7285(22)00011-2/sb49
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb49
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb49
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb49
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb49
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb50
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb50
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb50
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb50
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb50
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb51
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb52
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb52
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb52
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb52
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb52
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb53
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb53
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb53
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb54
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb55
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb55
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb55
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb55
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb55
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb56
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb56
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb56
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb56
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb56
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb57
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb57
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb57
https://www.uber.com/ug/en/u/uber-lite-app/
https://www.uber.com/ug/en/u/uber-lite-app/
https://www.uber.com/ug/en/u/uber-lite-app/
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb59
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb60
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb60
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb60
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb60
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb60
http://dx.doi.org/10.1109/SERVICES-I.2009.121
http://dx.doi.org/10.1109/SERVICES-I.2009.121
http://dx.doi.org/10.1109/SERVICES-I.2009.121
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb62
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb62
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb62
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb62
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb62
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb63
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb63
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb63
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb63
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb63
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb64
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb64
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb64
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb64
http://refhub.elsevier.com/S2352-7285(22)00011-2/sb64

	Crane Cloud: A resilient multi-cloud service abstraction layer for resource-constrained settings
	Introduction
	Requirements for a Custom Cloud-service Layer for Low-resource Settings
	Motivating Scenario
	Scenario Analysis and Requirements
	Frequent Internet partitions and bandwidth constraints
	Data jurisdiction restrictions
	Vendor lock-in
	Poor quality of service


	Design Considerations for a Resilient Multi-cloud Service
	DC 1: Containerization and orchestration of applications
	DC 2: Application placement and replication
	User defined and cost-sensitive replication policies
	Quality of service (QoS) and high availability
	Location-Aware

	DC 3: Portability and multi-cloud migration
	DC 4: Resilience to network partitions and bandwidth constraints
	DC 5: Service discovery and load balancing
	DC 6: Localized image registry
	DC 7: Platform monitoring and management

	Crane Cloud: an implementation of a resilient multi-cloud service layer
	Architecture and Overview
	Multi-cloud Cluster Support
	Managed Portal
	Authentication and Authorization
	Platform and Service Monitoring Support
	Local Registry
	Crane Backend

	Implementation
	Container Orchestration
	Developer Tools
	Image Registry
	Stateful Applications
	Monitoring
	Mapping of Crane Cloud, design considerations and challenges addressed


	Experiments and Results
	Experiment setup
	Results and Discussion

	Related Work
	Conclusion and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


