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A B S T R A C T

Road traffic jams are a major problem in most cities of the world, resulting in massive delays, increased fuel
wastage, and monetary and productivity losses. Unlike conventional computer networks, which experience
congestion due to excessive traffic, road transportation networks can experience traffic jams over prolonged
periods due to traffic bursts over short time scales that push the traffic density beyond a threshold jam density.
We observe that the emergence of such jams can happen over a very short duration, hence we term them as
sudden traffic jams. We provide a formalism for understanding the phenomena of sudden traffic jams and show
evidence of its existence using loop detector data from New York City. Further, we show the signature of sudden
jams when observed at hourly resolution. We also provide a method to compute the traffic curve in a situation
where we do not have access to fine-grained flow and density information. With this method, using only hourly
speed data from Uber, we compute traffic curves for the road segments in Nairobi, São Paulo, and New York
City, which is, by our knowledge, the first attempt to do so for signalized road networks. Running our analysis
on the Uber movement speed data for the three cities, we show numerous instances of jams that last several
hours, and sometimes as long as 2–3 days. Empirically, we find that Nairobi experiences 3x the mean jam
time per road segment as compared to São Paulo and New York City. Based on key development metrics, we
find that the ratio of traffic load per road segment for São Paulo, New York City, and Nairobi is approximately
1:2:3. We propose that chaotic driving patterns and traffic mismanagement in the developing world cities
lead to tighter traffic curves, more intense jams and overall lower road capacity utilization, which explains
the observed data. We posit that the problem of traffic congestion in developing countries cannot be solved
entirely by building new infrastructure, but also requires smart management of existing road infrastructure.
1. Introduction

Poor road traffic management can trigger extended periods of traffic
congestion, as is witnessed in most parts of the world. As per Texas
Transportation Institute’s 2009 Mobility report (Texas Transportation
Institute), congestion in the US has increased substantially over the last
25 years with massive amounts of losses pertaining to time, fuel, and
money. In the top 10 cities with the worst levels of congestion in the
world, the average number of hours wasted per commuter per year
is over 150 h (Friedman, 2020). When the number of hours wasted
exceeds about 35 h per year, it is observed to affect the economy nega-
tively (Badger, 2013). This kind of prolonged traffic congestion persists
in many large urban cities (TomTom International B.V.). Especially in
developing regions, with poorly managed road networks and freeways,
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this remains an important barrier to economic development in these
regions. Reducing traffic jams improves the quality of life also in the
form of improved air quality. A report on the air quality study in Delhi
attributes nearly 20% of PM concentration in the air to traffic (Sharma
and Dikshit, 2016).

Traffic congestion can be both good and bad (Badger, 2013). A
certain level of congestion, especially in dense urban regions, may
indicate economic prosperity and thriving economic development, as
in many major cities. However, commuters wasting away their time
in jams that last for hours, such as on freeways, is an example of
bad congestion. We explore the issue of such bad congestion occur-
rences that happen mostly due to a sudden burst in traffic density.
Contrary to the conventional belief that traffic congestion is triggered
vailable online 20 December 2022
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Fig. 1. Traffic on the Williamsburg bridge in New York City.
due to excessive traffic, traffic jams for elongated time periods, such
as several hours, can actually be triggered by small traffic bursts over
small timescales (Jain et al., 2012; Kerner and Rehborn, 1996). The
underlying cause of the traffic jam is not due to the lack of road
capacity, but due to a ‘‘spiraling effect’’ triggered by a small burst that
pushes the road traffic network to a low-capacity equilibrium point.
This equilibrium point is highly stable and the only way to recover from
this is to dramatically reduce the input flow into the traffic network and
drain the congested network. This phenomenon occurs because traffic
links exhibit a traffic curve behavior where the capacity of a link is
variable dependent on the traffic density on any link; any input flow
beyond the optimal operational rate over a short time that triggers the
density beyond a critical threshold automatically triggers a spiraling
effect resulting in a traffic jam. We refer to any jam caused this way as
a sudden traffic jam. It should be noted that this spiraling phenomenon
is different from the disturbance propagation phenomenon that results
in phantom jams (Treiterer and Taylor, 1966; Treiterer and Myers,
1974) as this is a feature of the traffic curve rather than microscopic
perturbations emerging spontaneously.

Traffic collapse results when the traffic density on a link exceeds
a certain threshold. The operational free-flow exit rate of the link,
which determines how quickly the link is drained, varies with the traffic
density (May, 1990). Each traffic link reaches an optimal capacity
at a corresponding optimal operating density, beyond which the exit
rate rapidly drops. In New York City, consider the exit point of the
Williamsburg bridge on the Manhattan side (Fig. 1). A traffic light
immediately follows the bridge, and numerous vehicles are regularly
stuck there for several minutes, especially during the morning and
evening rush hours. The graph shown in Fig. 1(b) is a plot of the traffic
congestion at the exit point of the Williamsburg bridge. The 𝑦-axis is the
measure of the vehicle density, or the traffic density, on the road. The
𝑥-axis represents the time in seconds after 14:50:40 when the traffic
was observed. By manual inspection of the camera feed, we are able
to determine the min and max densities as well. The max density is
a density value above which there is complete congestion, whereas
the min is a value below which there is no congestion at all. In this
particular example, the min and max values were determined to be
68 and 39. The congestion can be mitigated if the input rate of the
vehicles into the bridge is controlled before it reaches the tipping point
for congestion collapse.

Our contributions in this paper are the following:

• We introduce the concept of sudden traffic jams, provide a formal
definition, and illustrate the signature of such jams on speed data
averaged at hourly resolutions using loop detector data from New
2

York City (New York City Department of Transport). Based on this
hourly signature, we propose a heuristic definition of jams (called
slowdown jams) for hourly resolution speed data. Using hourly
resolution Uber Movements speed data (Uber Technologies), we
compute the occurrences and statistics of slowdown jams in three
cities — Nairobi, São Paolo, and New York City.

• We also provide a method to compute the traffic curve in a
situation where we do not have access to fine-grained flow and
density information. Using this method, we compute traffic curves
for a large number of segments in each of the three cities. To
our knowledge, the concept of traffic curves for signalized net-
work conditions was a hypothetical assumption that has not been
validated and this is the first attempt to do so.

• Using the derived traffic curves and a simple definition of a traffic
jam, we have been able to show how a traffic jam can quickly
emerge within a short time period and we also show that once
a jam is hit, it often takes a long time to recover from a jam.
We have validated these points in our analyses using multiple
datasets.

The larger implication of our findings is very significant for de-
velopment engineering. Developing countries invest large amounts to
upgrade road networks in urban cities to address traffic congestion. We
picked two cities in developing countries (Kenya and Brazil) and one
developed and highly industrialized city (New York City). We show
with the findings of our analysis that the ratio of mean time spent
in jam per road segment for São Paulo, New York, and Nairobi is
approximately 1:1:3. Using key development metrics, we also show
that the corresponding ratio of traffic load per road segment is ap-
proximately 1:2:3. Thus, we infer that developing world cities like
Nairobi and São Paulo have lower road capacity utilization (almost
0.5x) compared to a developed world city like New York City. This
paper shows that addressing the traffic congestion problem for urban
centers in developing countries is not just about building more roads
but actually more about careful traffic management.

We build specifically on one piece of prior work (Jain et al., 2012)
which provided a hypothesis for what triggers traffic congestion in
developing countries using the concept of traffic curves. The concept of
traffic curves, which are very popular in highway traffic networks, had
never been used in the context of signalized networks to understand
traffic flow. In 2012, there was very limited traffic flow data, especially
in the context of developing regions that could really help with the
sudden traffic congestion phenomenon. It was hypothesized in the
paper by Jain et al. that the sudden traffic congestion phenomenon
was a particular problem at several urban choke points in developing
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countries, especially with the lack of good traffic management and
chaotic driving with high densities of car packing. Once we hit a traffic
jam triggered by a sudden burst, it is very hard to recover from it for
several hours unless inbound traffic is carefully managed.

The rest of the paper is structured as follows. First, we present
relevant literature on traffic jams. Then we provide definitions and
formalism of traffic curve and sudden traffic jams, followed by il-
lustrations of sudden jams in the real world. Then we provide the
characterization of observed sudden jams for three different cities —
New York City, Nairobi and São Paulo. Finally, we conclude the paper
with our takeaways.

1.1. Prior art

Modeling of traffic flow has been a subject of study for several
decades, since the 1950s (Orosz et al., 2010). There are two primary
ways to model traffic flow — macroscopic (continuum) models and
microscopic (car-following) models. In the former, a relationship be-
tween traffic density and speed is established in the form of a partial
differential equation. This allows us to define jams precisely as ‘‘stop-
and-go’’ events. However, this requires high-quality data on the traffic
density, whereas in practice, most available data from existing instru-
mentation in cities or probe vehicles or other mobile sources are either
travel time data or travel speed data. The latter is even more difficult
in practice owing to the large number of parameters required for the
model. Zhao et al. (2016) define the concept of resilience in traffic
flows to understand how quickly we can recover from jams in the real
world. Stathopoulos and Karlaftis (2002) model the amount of time
taken for jams to drain as a function of the jam duration. They show
that the log-logistic functional form, similar to the form of the traffic
curve discussed in Section 3.1, is the best approximation. They also
find that if a jam lasts beyond a threshold value of around 20 min, it is
most likely caused by external factors and will last a long time. Knorr
et al. (2012) propose a strategy to prevent the occurrence of traffic jams
by enabling driver-to-driver communications, thus informing drivers of
impending congestion ahead. The drivers then slow down and maintain
a greater inter-car distance. Through simulations, they report that
penetration rates of 10% or less in a city can have a significant influence
on traffic flow.

Short-term traffic prediction and forecasting is a related topic that
has a long history in the academic community. The challenge is to
identify traffic flow patterns at some point in the future; commonly
between one and five minutes, but generally between one minute
and an hour. Much of the foundational work in short-term traffic
comes from models based on time series analysis; Kalman filtering
and the ARIMA-family of models, for example. Recent work has taken
a machine learning approach, modeling the regression using support
vectors, neural networks (Iyer et al., 2020), graphical models (Hu et al.,
2016), and pattern matching. For summaries, see Vlahogianni et al.
(2014) and Oh et al. (2015).

When classifying traffic state, researchers are essentially trying to
bin a snapshot of road condition into a particular state, sometimes
known as a level of service. Levels of service are sometimes estab-
ished using well-known standards, such as the Transportation Research
oard’s Highway Capacity Manual, but are sometimes more subjective,
sing an array of human judgment. Porikli and Li (2004) and Lozano
t al. (2009), for example, analyze images from traffic cameras to
etermine roadway conditions; Sen et al. (2013) use video feeds to
ccurately estimate traffic speed and density; Roy et al. (2011) use
trategically placed Wi-Fi transmitters to monitor traffic state. Rather
han determine traffic state specifically, Yang et al. (2014) use loop
etector data to detect changes in flow. What is common across such
ork, however, is the need to obtain volume data from the underlying
ata set. That is, an estimate of the density of traffic at a given time.
3

n this work, such information is not provided, nor can it be inferred;
thus, existing techniques from the ‘‘density’’ community are not directly
applicable.

One alternative is to use speed information to determine the traffic
state. Doing so requires a different process for establishing levels of
service, as what speed means to traffic jams is relative to a notion
of free flow at a given point. In the absence of this information, re-
searchers either have to establish a meaning of speed-versus-jam using
human judgment (Pattara-Atikom et al., 2006), or use novel techniques
to create their own (Yoon et al., 2007). Irrespective of the nature of the
data – whether it contains speed, volume, or a combination of both –
existing work has largely focused on highway data. A notable exception
being Yoon et al. (2007), who consider a suburban stretch containing
traffic signals.

2. Materials

2.1. New York City department of transportation data

This data comes from the City of New York Department of Trans-
portation (nycdot). The department provides a website (New York
City Department of Transport) that publishes traffic information for
various traffic segments throughout the five boroughs of New York City;
there are currently 153 such segments. Each segment has a name, a
unique identifier, and location data. The name is a string describing
the segment as most resident travelers would, ‘‘FDR, north 25th at 63rd
street,’’ for example. The location data consists of a polyline, suitable
for understanding the geography of the segment and placing it on a
map.

Along with basic information, measurements come with a times-
tamp and two types of speed data: the average vehicular speed over the
segment, and the average time required to traverse the segment. In the-
ory, each signal is continuous—its timestamp representing a snapshot.
In practice, and due to limitations in polling, the information is updated
each minute. Thus, although the timestamp is at the granularity of
seconds, it can be resampled to the granularity of minutes without loss
of generality.

However, the reporting reliability at each segment varies, so not
all segments have reports for each minute. Further, periodic system
downtime, on both the reporting and collection end, prevented com-
plete continuous polling. For a section of the data collected between
November 2014 through April 2016, on average, a segment consists of
approximately 513,000 measurements instead of the expected 740,000
measurements. Inter-polling statistics – the average amount of time
between traffic measurements – is one way of describing a segments’
reliability. For the above-mentioned section of the data, the average
inter-polling time across all segments was approximately 7.85 minutes,
however that number is dominated by a few very unreliable segments
as the standard deviation is almost 63 minutes. In the best case, there
is a measurement every 66.88 seconds; in the worst, every 12.72 h.
Fig. 2(b) presents a distribution of average reporting times across the
signals.

2.2. Uber movements speed data for Nairobi, New York City and Sã o Paulo

We analyzed the Uber Movements data for Nairobi city in Kenya,
New York city in the United States of America, and São Paulo in Brazil
to study sudden traffic jams (Uber Technologies). The data has hourly
average speeds in all road segments in the city. Every segment or way in
the dataset is defined as the stretch of road between two junctions. Each
road segment has multiple nodes which are used to characterize the
stops along the way, and the dataset consists of average speed values
every hour for every pair of source and destination nodes. To calculate
the average speed in a segment, all the individual speeds across all
consecutive pairs of source–destination nodes in the segment were
averaged. Each segment corresponds to a way in OpenStreetMap (Open-
StreetMap contributors, 2017), denoted by a 𝑤𝑎𝑦_𝑖𝑑, and therefore we
are able to look up these segments on a map.
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Fig. 2. Available segments in the loop detector data feed from NYC DoT from November 2014 to April 2016. The left plot shows the segments on the map, color-coded by the
reporting frequency, and the right side shows the distribution of reporting frequencies.
Fig. 3. Cumulative distribution of hourly traffic speeds across all the segments in the
city of Nairobi.

We analyzed the dataset from January 2018 to March 2020. The
cities of Nairobi, New York, and São Paulo have respectively 4949;
35,602, and 89,121 segments respectively. Fig. 3 shows the cumulative
distribution of mean segment speeds across all 4949 segments for the
city of Nairobi. From the data of Nairobi city, we notice that only 12%
of the average speed exceeds the speed limit of 50 km/h (Hodge) and
the average length of such a road segment is about 80 m long (Nesbitt
and Dara-Abrams, 2017). We see similar behavior of speed distributions
for NYC and São Paulo. After sampling the mean speed time series of
each segment using a Poisson distribution with 𝜆 = 8 (for removing
temporal correlations), we put an assertion on the segments to have
at least 20 sampled points for generating reliable speed distribution
curves. After applying the above condition, we are left with 3063;
25,371, and 53,658 segments for Nairobi, New York City, and São Paulo
respectively. In our downstream analysis, we take these segments and
compute traffic jams based on an hourly-resolution definition.

While one would like to validate the Uber Movements data using
other well-known sources of traffic data like Google Maps, etc, this
4

exercise presents several hurdles in practice. We investigated the pos-
sibility of ‘‘ground truthing’’ the Uber movements dataset using google
maps. The most notable obstacle in this attempt is that Google maps
don’t provide access to historical data. The Uber movement data for all
cities ranges from 2018–2020, and comparing it with the google maps
data at the time of writing this article requires assuming that the traffic
patterns have remained constant over the last 2–3 years. We consider
this assumption questionable since 2–3 years is sufficient time for the
road network and corresponding traffic conditions to change, especially
in the context of developing countries. Another challenge is that Google
distance matrix API (google maps API) only gives travel-time estimates
between origin and destination points and does not give average speed
per road segment. The Uber movement data also provides aggregated
and bracketed travel time estimates, but the travel time data has not
been used much in our analysis. While one could validate the Uber
travel time data using google maps after taking the earlier assumption,
one would have to further assume that the correctness of Uber travel
time data implies the correctness of Uber speed data. Similar challenges
emerge when other sources of data are considered for validation.

In fact, there has been a prior study validating Uber travel time
data against Google maps travel time predictions (Wu, 2018), that
makes the constant traffic pattern assumption, albeit over a smaller
time duration of 6 months for the city of Sydney, Australia. Wu (2018)
notes that travel time from Google and from Uber is generally similar
but the observations from the Uber data are systematically lower than
Google’s predictions. Differences in the data collection method (actual
trip time for Uber vs prediction for Google), as well as the correspond-
ing subtle intents and objectives (like faster trips for Uber vs reliable
estimation for Google), have been attributed as possible causes of this
behavior. Wu (2018) indicates that the Uber travel time data is likely
to be correct and potentially valid. Thus, by extension, we assume the
correctness of the Uber speed data in all our downstream analyses.

3. Theory and empirical approximations

3.1. Traffic curve and traffic collapse

A transportation network is a collection of segments or links, where
a segment/link consists of a set of geographic coordinates representing
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Fig. 4. Traffic curves showing the instantaneous exit rate (left) and the maximum exit rate (right) as functions of the buffer size.
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Fig. 5. Merging of two freeways.

polyline and a collection of observations. Observations are a family
f average speeds along and/or travel time across the polyline at an
nstance in time: {(𝑥, 𝑦)𝑡}𝑡∈N, where 𝑥 and 𝑦 are speed and travel time,
espectively. For convenience and consistency with data, travel time
s dropped from the formalization, allowing the speed at time 𝑡 for

given segment 𝑥 to be denoted as simply 𝑥𝑡. Every finite stretch of
oad, a link, can be associated with a traffic density, or the fraction of
he link capacity that is occupied by vehicles, at a given time. This
ay equivalently be expressed by the buffer size or buffer capacity (𝐵𝓁),

which is the number of vehicles in the link. The exit rate or exit capacity
(𝐶𝓁) of a link is defined as the number of vehicles exiting the link
per unit time. The traffic curve captures the variation between these
two parameters (Jain et al., 2012). At high traffic densities (indicating
traffic jams), links have very low operational exit capacities and at low
densities, the exit rate varies linearly with the density (Fig. 4). We
define the optimal operating points of a traffic curve based on optimal
exit rate 𝐶∗

𝓁 where the exit rate is the highest and the corresponding 𝐵∗
𝓁 ,

the optimal buffer size at 𝐶∗
𝓁 . Based on the traffic curve, one can define

the maximum exit rate of a link as a function of the current buffer
capacity as shown in Fig. 4. The maximum exit rate is the maximum
number of vehicles that can exit the buffer per-unit time, 𝐶𝓁(𝐵𝓁(𝑡)),

hich is also equal to the maximum sustainable flow rate at equilibrium
or a given buffer capacity.

Now, consider the case where the input rate is larger than the
ptimal exit rate for a short time period, causing the link buffer to
row. Once the buffer size increases beyond the optimal value 𝐵∗

𝓁 , the
xit rate begins to decrease, leading to a more rapid increase of the
uffer size, which further perpetuates the cycle, until a point is reached
hen the buffer is full and the exit rate is at its lowest possible value.
his is called a traffic collapse. A very common real-world example

s two freeways merging into a single freeway. A simple example is
llustrated in Fig. 5, where vehicles in 𝐿 are merging with the stream

of vehicles on 𝐻 . This simple example can be viewed in two ways: two
lanes in the same freeway merging into a single lane or two separate
freeways merging or a single lane merging into a freeway. To visualize
this problem from the perspective of traffic curves, consider three links
5

in the setup: (a) 𝐻𝑏𝑒𝑓 representing, a small segment of 𝐻 (covering
a short distance of up to 0.5 miles) before the merge point; (b) a
small segment 𝐿 before the merge point; (c) 𝐻𝑎𝑓𝑡, representing a small
segment of 𝐻 after the merge point. Each of the links can be associated
with their corresponding traffic curves. Since we are dealing with a
discrete version approximation using traffic curves, we should choose
reasonable lengths to have meaningful buffer values for the links. The
above traffic merging can be viewed using a simple 3-link topology
where 𝐻𝑏𝑒𝑓 and 𝐿 merge into 𝐻𝑎𝑓𝑡, and each segment has an associated
traffic curve. We primarily concentrate on two specific parameters of
𝐻𝑎𝑓𝑡: 𝐶∗

𝑙 (𝐻𝑎𝑓𝑡) and 𝐵∗
𝑙 (𝐻𝑎𝑓𝑡). If the sum total of the exit rates of 𝐻𝑏𝑒𝑓

and 𝐿 is always less than the optimal exit rate 𝐶∗
𝑙 (𝐻𝑎𝑓𝑡), then the

merging never faces a congestion problem. If, however, the sum of the
input rates of 𝐿 and 𝐻𝑏𝑒𝑓 is larger than 𝐶∗

𝑙 (𝐻𝑎𝑓𝑡), then the buffer size
of 𝐻𝑎𝑓𝑡 grows. If the buffer of 𝐻𝑎𝑓𝑡 grows beyond 𝐵∗

𝑙 (𝐻𝑎𝑓𝑡), then the
xit rate of 𝐻𝑎𝑓𝑡 begins to drop thereby, triggering the spiraling effect.

3.2. Identifying sudden jams

The phenomenon of traffic collapse as defined in the previous
section leads to a traffic jam, which is a prolonged state of very slow
movement of vehicles on the road. A road segment is said to be in a
state of complete jam when the density is maximum and the average
speed of vehicles in the segment is 0 i.e. the vehicles have come to a
standstill. Above a certain threshold of density, or equivalently, below
a certain threshold of the average speed of the flow of vehicles in the
segment, the segment can be said to be approaching a jam. The choice of
either threshold is based on the range of possible speeds in the segment.
We define sudden jam qualitatively as the state when we approach a jam
quickly. That is, if the traffic collapse happens over a very short time
period (typically within a matter of minutes), then we call it a sudden
jam. This can happen due to a rapid build-up in the buffer size, in turn
resulting in a rapid drop in vehicle speeds in the segment. Sudden jams
are very common in congested cities all over the world (Jain et al.,
2012).

Formally, a sudden jam may be defined as follows. Consider a point
in time 𝑡 in segment 𝑖 and 𝑇𝑖 be the corresponding time-series array of
observation times. Let 𝑖𝑑𝑡 be the index of time 𝑡 in 𝑇𝑖. Consider two
positive integers, 𝑚 and 𝑛 where 𝑚 < 𝑛. The prediction window is the
interval (𝑡, 𝑇𝑖(𝑖𝑑𝑡 +𝑚)), and the target window is [𝑇𝑖(𝑖𝑑𝑡 +𝑚), 𝑇𝑖(𝑖𝑑𝑡 + 𝑛)].
urther, let the observation window be an interval prior to 𝑡 that is the
ame size as the target window based on the number of observations:
𝑇𝑖(𝑖𝑑𝑡 − (𝑛 − 𝑚)), 𝑡]. A sudden jam at time 𝑡 is a condition in which ac-
eleration between the target and observation windows is less-than, or
qual to, some threshold 𝛼. Eq. (1) shows the mathematical definition
f the sudden jam function.

𝑡(𝑥, 𝑚, 𝑛) =

⎧

⎪

⎨

⎪

1 if 1
(𝑇𝑖(𝑚)−𝑡)×(𝑛−𝑚)

(

∑𝑡+𝑛
𝑖=𝑡+𝑚 𝑥𝑖 −

∑𝑡
𝑖=𝑡−(𝑛−𝑚) 𝑥𝑖

)

≤ 𝛼

0 otherwise.
(1)
⎩
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Fig. 6. Examples of most segments (90%) where there were two clear break points in the CDF of observed speeds. We named these breakpoints 𝑠1 and 𝑠2. The 𝑠1 speed would be
pproximately the point at which the traffic crosses the ‘‘threshold’’ density for a jam. These breakpoints were obtained by fitting a piecewise linear model to the CDF function.
Fig. 7. Examples of some segments (10%) where the speed CDFs were different. There were no two clear breakpoints, hence not a well-defined threshold density to define a jam.
Note that this is not an artifact of the amount of available data in these segments — some of these segments had even more data available than those in the first set.
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Essentially, there is a sudden jam if the average speed of the obser-
vation window differs from the average speed of the target window,
hence the division by the window size 𝑛 − 𝑚. The additional factor in
the denominator, 𝑇𝑖(𝑚) − 𝑡, is the temporal size of the target window,
converting the derivation to one of acceleration, and allowing 𝛼 to be
xpressed as gravitational units. This not only allows the metric to be
onsistent with the literature on sudden braking events (Harbluk et al.,
007; Simons-Morton et al., 2009), but removes biases toward segments
ith faster free-flows. By ‘‘normalizing’’ with respect to deceleration,

he impact that the slow down has on the passenger remains relatively
onstant. We apply this definition in our New York dataset, where we
ave speed data from very selected road segments, especially freeways,
ridges, and tunnels, every minute, collected using loop detector instru-
entation, from the local transportation department (NYC DOT) (New
ork City Department of Transport). The results are shown in the next
ection Section 4.

.3. Speed-distribution curves

We explore the distribution of mean segment speeds in the Uber
ovements dataset by plotting the cumulative distribution of speed

ime series. Given the hourly speed data in a road segment over a
eriod of time, we first sample the speed time series using a Poisson
istribution with 𝜆 = 8 to remove temporal correlation effects in the
peed data. The value of 𝜆 was chosen based on the length of observed
egions of low-speeds (or jams). Then we plot a distribution of all the
easured/observed average vehicle speeds as a cumulative density,
hich shows the distribution of speeds across all the segments observed
ver the entire time period of two years. For well-behaved segments
hown in Fig. 6, which make up almost 90% of all segments, we obtain
n S-shaped curve, while for the remaining segments, as shown in
ig. 7, we see irregular shapes.

For the well-behaved segments, it is clear that there are two turning
oints, which show significant transitions in the traffic behavior of the
egment. To obtain the corresponding values of speeds for these points,
e fit a 3-way piecewise linear function to this CDF using the pwlf
6

ibrary in Python (Jekel and Venter, 2019) to obtain the two break f
points, 𝑠1 and 𝑠2, such that 𝑠1 < 𝑠2. Well-behaved segments have
wo clear break-points while the remaining segments don’t have clear
reak-points.

Fig. 8 shows the distribution of the minimum, maximum, 𝑠1, and
2 speeds for all the valid segments for Nairobi, New York City, and
ão Paulo. We note that the median value of 𝑠1 is about 20 kph across
ll three cities. This is an interesting observation, given that the other
hree quantities show significant differences across the three cities. In
he next section, we hypothesize that 𝑠1 value of a segment corresponds
o an important phase-transition point in the traffic curve. This might
e the reason why we get similar values of 𝑠1 across all cities.

.4. Estimating traffic curves

In practice, sudden jams happen over very short timescales, such as
ithin 5 min (Jain et al., 2012), and we might not always have speed
r density data at that fine granularity in order to be able to analyze
hem. In such situations, we cannot apply the formula from Eq. (1).
dditionally, we might not have information about the actual vehicle
ensity on the road. In such cases, under the framework of certain
ssumptions, we can estimate the traffic curve from the speed data
lone, from which we can identify key threshold points for determining
udden jams.

Now we describe a methodology to compute the traffic curve, as
n Fig. 4, from observed hourly speed data. We begin by dividing the
raffic curve into three different regions based on our observations in
ean-speed distributions, namely the free-flow region, the spiraling

egion, and the jam region. The free-flow region of the traffic curve
epresents a constant flow under equilibrium, which is only possible
efore the optimal buffer capacity (𝐵∗

𝑙 ) as shown in Fig. 4. The spiraling
egion of the traffic curve represents the phase after the optimal buffer
apacity has been crossed and when the exit rate of the link rapidly
rops. The spiraling region ultimately leads to the final region of
he traffic curve, the jam region where entire traffic is brought to a
tandstill and moves forward at a very small constant speed. Fig. 9
rovides an illustration of these regions. We make a few assumptions

or simplistic modeling.
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Fig. 8. Distribution of the maximum, minimum, 𝑠1 and 𝑠2 speeds across all segments
with sufficient data points. The medians for each of the four quantities are shown at
the top of the plot. We observe that the median value of 𝑠1 corresponds to the value
of 20 kph across all three cities.

• Drivers try to keep moving as fast as possible at all times, keeping
with the pace of the rest of the traffic, while driving safely and not
exceeding the speed limit. This is based on Newell’s car-following
traffic stream model (Newell, 2002), where every car follows the
preceding car with a minimum space and time gap.

• All vehicles are modeled as rectangular blocks of fixed length and
all roads are single lanes only, with only a single direction of
travel. Overtaking dynamics are not considered. In terms of traffic
queuing theory, we assume a FIFO (first in - first out) queue dis-
cipline, which is the most commonly used queuing model (May,
1990). This assumption is also implicit in the car-following traffic
stream model.
7

Fig. 9. Dividing the traffic curve into different regions based on traffic behavior. The
free-flow region corresponds to equilibrium traffic where the link can maintain free-
flow traffic before the optimal buffer capacity. The spiraling region corresponds to the
rapid drop in exit rate with increasing buffer capacity, which ultimately leads to traffic
collapse, leading to the jam region of the traffic curve.

First, we focus on the free-flow region of the traffic curve. Based
on common knowledge in written driving tests (Driving Test Success),
drivers are required to maintain a certain stopping distance with vehi-
cles in front of them, which consists of two components, the thinking
distance, and the braking distance. The thinking distance is based on
the human reaction time and is linear with the speed of the vehicle
while the braking distance is the distance it takes for the brakes to bring
the vehicle to stop, which is quadratic with respect to the speed of the
vehicle. Thus, the stopping distance can be expressed as:

𝑑(𝑠) = 𝑡 × 𝑠 + 𝑡′ × 𝑠2 (2)

where 𝑡 represents the human reaction time threshold while 𝑡′ is the
corresponding constant for the quadratic term, and 𝑠 is the speed of
the vehicle. It should be noted that the above relationship between
inter-car distance and vehicle speed should be largely accurate for the
low buffer-density phase of the traffic curve. Based on (Driving Test
Success), the values for 𝑡 and 𝑡′ should be 0.675 and 0.076 respectively.
Traffic mismanagement and chaotic driving conditions are likely to
cause these values to be lower than the recommended values.

Now, let us assume an infinite road segment constrained under
previous assumptions, filled with cars maintaining a constant speed s.
In this case, the buffer density of the link would be:

𝐵(𝑠) =
𝑙𝑐

𝑙𝑐 + 𝑑(𝑠)
=

𝑙𝑐
𝑙𝑐 + 𝑡 × 𝑠 + 𝑡′ × 𝑠2

(3)

where 𝑑 is the stopping distance and 𝑙𝑐 is the length of each car. For
simplicity, we assume all cars are of equal length 𝑙𝑐 = 4 m. At the same
time, we have the following relations between exit rate, buffer density
and speed in the segment:

𝐶(𝑠) = 𝐵(𝑠) × 𝑠
𝑙𝑐

⟹ 𝐶(𝑠) = 𝑠
𝑙𝑐 + 𝑑(𝑠)

= 𝑠
𝑙𝑐 + 𝑡 × 𝑠 + 𝑡′ × 𝑠2

(4)

Eqs. (3) and (4) give us a parametric relationship between buffer
capacity and exit rate, which is valid for the low-density phase of the
traffic curve. Now, let us consider the other extreme phase of the traffic
curve, the jam region.

The jam density is the upper limit on free-flowing traffic density,
beyond which the road segment is said to be in the state of a jam (May,
1990). Although there is a bit of variation on this threshold density in
literature (Knoop and Daamen, 2017; Wu, 2002), the theory according
to May (1990) gives a value for jam density of 185 to 210 vehicles
per kilometer per lane, which translates to between 74% and 84% lane
occupancy, assuming an average car length of 4 m. We assume the
threshold for a jam to be 66% occupancy of the road segment. This
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corresponds to a spacing of half a car between every two cars. We
believe that such a small distance between vehicles is enough to bring
the traffic to a stand-still.

From the jam point onward, the relationship between buffer capac-
ity and exit rate no longer follows the parametric Eqs. (3) and (4). For
deriving a relationship between the two entities, we consider the case
where the cars are packed in the road segment with inter-car spacing
D and the traffic is at standstill. Say that after this particular road
segment, we cross the choke point and the traffic resumes its free flow
state. An example of such a situation could be a smaller road merging
into an express highway. In this case, say that 𝑁 cars are able to exit
the road segment in time duration T. Then, the exit rate 𝐶0 is given
by 𝑁

𝑇 . Now, consider the case when the inter-car spacing is reduced by
a small amount 𝛿𝐷. Then, the buffer capacity of the new situation is
iven by:

(𝛿𝐷) =
𝑙𝑐

𝑙𝑐 +𝐷 − 𝛿𝐷
(5)

Also, due to the cars having lesser inter-car spacing, each car must
wait an additional time 𝛿𝑇 before it can accelerate to the speed of the
car in front of it. But, it should be noted that this additional time keeps
getting accumulated for each car since the second car must wait 𝛿𝑇 for
the first car before accelerating, while the third car must wait 𝛿𝑇 for
the second car, and so on. Therefore, the time taken for 𝑁 cars to cross
the choke point will be 𝑇 +𝑁×𝛿𝑇 . Therefore, the exit rate, in this case,
would be:

𝐶(𝛿𝑇 ) = 𝑁
𝑇 +𝑁 × 𝛿𝑇

(6)

Now, we consider the lowest of the traffic corresponding to the jam
exit rate 𝐶0 as 𝑆. In that case, we have the following relation:

𝛿𝐷 = 𝑆 × 𝛿𝑇

Following the parametric forms in Eqs. (3) and (4), we have:

𝐶0 =
𝑆

𝑙𝑐 +𝐷
⟹

𝑁
𝑇

= 𝑆
𝑙𝑐 +𝐷

⟹ 𝑁 = 𝑆 × 𝑇
𝑙𝑐 +𝐷

Then, substituting the above-obtained value of 𝑁 in Eq. (6), we get:

𝐶(𝛿𝑇 ) = 𝑆 × 𝑇
(𝑙𝑐 +𝐷) × (𝑇 + 𝑆𝑇 𝛿𝑇

𝑙𝑐+𝐷
)

⟹ 𝐶(𝛿𝑇 ) = 𝑆
𝑙𝑐 +𝐷 + 𝑆 × 𝛿𝑇

Now, we use the relationship between 𝛿𝐷 and 𝛿𝑇 in the above
quation. Thus, we have:

(𝛿𝐷) = 𝑆
𝑙𝑐 +𝐷 + 𝛿𝐷

(7)

Eqs. (5) and (7) give a parametric relationship between buffer
capacity and exit rate for the high buffer density or jam-phase of
the traffic curve. Thus, we have two different parametric forms of
relationship between exit rate and buffer capacity in three different
regions, namely the free-flow and jam regions, of the traffic curve. In
the spiraling region lying in between the two regions, the dynamics of
the exit rate and buffer capacity are non-trivially related and hard to
deduce. As we saw in Section 3.3, the mean segment speed distributions
show clear break points at 𝑠1 and 𝑠2, where for speeds lower than 𝑠1,
we observe rapidly decreasing values of mean segment speeds, showing
the relationship between 𝑠1 and traffic collapse. Thus, we hypothesize
that the free-flow region of the traffic curve transitions to the spiraling
region around the 𝑠1 speed value for a given segment. This gives us the
phase-transition point between the free-flow and the spiraling phases of
the traffic curve. The spiraling phase would then smoothly join into the
jam phase of the traffic curve. We assume that the jam phase starts at
𝐵0 = 0.66 and the corresponding speed of traffic at this point (i.e. 𝑆) is
3.6 km/h (1 m/s). Then, we use parabolic curve fitting and smoothing
to complete a continuous and differentiable transition between the two
regions of the traffic curve and obtain the complete traffic curve as
given in Fig. 10 for different segments.
8

3.5. Sudden jams in hourly resolution

In reality, the perception of a ‘‘jam’’ would depend on the particular
road segment. On a highway, where speed limits may normally be
upwards of 100 kph, drivers may perceive the state of driving at less
than, say even 40 kph, to be in a state of a jam. Whereas on a city road,
the limit is much lower.

We observe two inflection points in the speed distribution (𝑠1 and
𝑠2), where there is a sudden change in the gradient. We also note that
the median speed of the segment is close to 𝑠1+𝑠2

2 . Another observation
is that 𝑠2 ≤ 3 × 𝑠1 with high probability. Based on this, we heuristically
define traffic jams (called slowdown jams) as instances of time when
the value of mean segment speed falls below 𝑠1+𝑠2

4 . Since we see a
sudden drop in speeds below 𝑠1 and 𝑠1+𝑠2

4 < 𝑠1 with high probability, we
choose this as the threshold for our definition. Note that other values
of the threshold can be chosen with similar justifications.

For understanding, if there is a correlation between sudden jams
and showdown jams, we generate the hourly resolution of a section of
the NYCDOT dataset by averaging the speeds reported over a segment
for each hour. Note that this method of generating hourly resolution
is inaccurate because we don’t have data about the density of cars in
the given links. Also, we see that in hourly resolution data obtained by
this process, most segments don’t ‘‘behave well’’, in that they don’t have
clear breakpoints. Still, we proceed to apply the definition of slowdown
jams on the hourly resolution of the NYCDOT data to compute the
occurrences of slowdown jams. After this, for each occurrence of a
slowdown jam, we take a look at the observations that make up the
hourly average and check if we observe a sudden jam based on the
definition given in Eq. (1). Taking the recent 2 million observations
from the NYCDOT data, we find that in 67.38% of the cases where
we observe a slowdown jam, we can see a sudden jam appearing in
the corresponding hour. Note that this happens even for ‘‘ill-behaved’’
segments, hence, we can safely assume that the occurrence of slowdown
jams, in reality, should be strongly correlated with sudden jams in
reality.

4. Results

4.1. Sudden jams in NYCDOT dataset

When characterizing sudden jams, signals with average reporting
rates of 90 seconds or less were used. Further, segments had to have
a polyline component. These two conditions reduced the total set of
153 segments to 98. Finally, to be eligible for jam classification, the
observation and prediction components of a given window cannot
contain missing data.

Recall that a window consists of three components—observation,
prediction, and target. A window is considered a sudden traffic jam
if the average speed between the observation and target portions
decreases by more than a particular rate. ‘‘Prediction window’’ is thus
the time between the observation and target portions. Fig. 11 presents
an overview of frequency using a fixed 𝛼 = −0.002, and window sizes
arying from 1 to 10 min. The two window portions – observation
nd target – remained equal throughout. As such, they are denoted
imply as ‘‘adjacent.’’ The frequency of sudden jams depends not only
n the characteristics of the segment but on parameters to Eq. (1); in
articular, the size of the window and the choice of 𝛼.

Fig. 11(a) outlines the inverse relationship between sudden jam
frequency and respective window sizes on a sample segment. Prediction
windows range from 0 to 10, where 0 signifies a comparison between
adjacent points in time. The adjacent windows range from 1 to 10, as
a lower bound of 0 would mean a comparison between non-existent
windows. Darker cells denote higher occurrences, with each cell an-
notated with the number of occurrences. The number of sudden jams

increases as the size of the adjacent window increases and as the size of
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Fig. 10. Empirically derived traffic curves for four different road segments with their open street map way id given in figure titles. As can be seen, the first phase transition point
lies close to the values of exit rate and buffer capacity given by 𝑠1 according to Eqs. (3) and (4). The second transition point is fixed on the traffic curve based on our assumptions.
Fig. 11. Sudden jam characterization across all segments in the network.
the prediction window decreases. The increase across prediction win-
dows is exponential, while the increase across the adjacent windows is
linear. With respect to the adjacent windows, this relationship is likely
due to variability in average speed. Using observation and prediction
windows of size one means that the model is taking into consideration
‘‘unsmoothed’’ values. In some cases, these observations may not be
entirely representative of actual conditions; a result of measurement
anomalies, for example. As window sizes increase, spurious values can
augment average speed such that a sudden jam is harder to determine.
With respect to prediction windows, the inverse relationship is largely
a result of the manner in which sudden traffic is calculated: larger
prediction windows require a larger decrease in speed between the
observed and target windows to be classified as traffic events.

Fig. 11(b) presents the average standard deviation at varying adja-
cent window sizes across all segments considered. The large number
9

of traffic incidents shown in Fig. 11(a) for smaller adjacent window
segments is dominated by a relatively small number of road segments.
Measurements across mid to large windows, while less in number, are
spread more evenly.

4.2. Slowdown jams in Uber movements dataset

We apply the 𝑠1+𝑠2
4 threshold on every one of the valid segments

in all three cities. We observe the statistics for the slowdown jams in
the three cities as shown in Table 1. From the table, it is clear that
the average jam time per segment per day for Nairobi is outrageously
higher than (almost 3x) the same for New York City and São Paulo.

We present the histogram distribution of the time of jams occurring
in Fig. 12 and of the duration of jams in Fig. 13. From Fig. 12, we
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Table 1
Jam statistics for slowdown jams across all three cities. We present the number of segments, the number of valid segments with sufficient data
points, the number of slowdown jams observed, the total hours across all jams, and the mean amount of time spent in jams for each segment
each day in hours.
City Segments Valid segments Jams Total jam hours Mean jam time

Nairobi 4949 3063 3930954 4753618 1.89
New York 35602 25371 8400572 14033002 0.67
São Paulo 89121 53658 20091200 29340467 0.67
Table 2
Sample of 9 segments from the 6 junctions, showing total hours in jams, the number jams observed, the mean hours per day spent in jams, the mode hours (most commonly
observed jam duration), and the mode hour of the day (most commonly observed time of day when jams occur).

Way ID Total hours in jams Number of jams Mean hours in a jam Mode hours in a jam Mode hour of day

9931279 1453 1453 1.77 1.0 05:00
678371493 865 334 1.05 2.0 13:00
364279376 643 219 0.78 2.0 13:00
678371494 658 259 0.80 2.0 13:00

4724017 2763 2763 3.37 1.0 12:00
336067605 3303 3303 4.02 1.0 15:00
39573541 405 162 0.49 2.0 11:00

580233744 4092 4082 4.92 1.0 14:00
4742016 4794 4794 5.84 1.0 14:00
o

observe that the jam time patterns for São Paulo and New York City
match each other largely, with both cities suffering congestion during
late night hours while Nairobi presents an inverted case with most of
the congestion occurring during afternoon hours. In Fig. 13, we observe
that for all three cities, most jams last only one hour. This refers to the
pattern of finding only one entry in the speed time series to be less than
the threshold surrounded by entries that are larger than the threshold.

4.3. Investigating important junctions

Table 2 shows statistics for six representative junctions in the city
of Nairobi, covering a variety of settings — T-junctions in the city,
highway merges and roundabouts, and Figs. 14 to 15 show some sample
snapshots for the six segments on various days. The faint lines show the
input segments into the output segment(s) of interest, which are shown
with thicker lines. The red color shows a jam, which is when the speed
in a segment drops below the 𝑠1+𝑠2

4 for that segment. The snapshots
how how the average speeds in the segments vary over the course of
he day.3 We note a large number of instances of prolonged congestion
i.e. jam) in the sink segment in junctions B, D, and E. In the roundabout
unctions C and F, we observe jams at one or two output sink segments.

e observe that in many cases, the jams persist for over 2 to 3 h. In the
unctions B, D, and E particularly, which are all 2–1 merges, we observe
hat the average speed in the output segment is below the respective
hreshold continuously for more than several hours on multiple days.

.4. Travel time impact

For an individual segment of fixed length, the travel time for the
egment and the mean speed are expected to follow an inversely
roportional relation. We validated this assumption for the NYCDOT
ataset by computing the product of travel time and mean speed for
ll entries of particular segments, and computing the coefficient of
ariation of these products. The coefficient of variation equals the ratio
f standard deviation to the mean of the data, and a value of less than
ne is considered to be a small variation in data. Given that we expect

3 For the sake of brevity, we only show handpicked snapshots for each of
he junctions that best illustrate the different phases. We will be happy to
hare our analyzed data in greater detail as needed for the reproduction of
ur results.
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the product to remain constant, our threshold for the coefficient of
variation should be much smaller. In practice, we obtained a value of
less than 0.1 for all road segments in the NYCDOT dataset except 2
utliers, with most segments having values in the range of ∼0.01. Thus,

we can assume for individual segments:

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 ∝ 1
𝑚𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑

Under jam conditions, the average segment speed can fall down to
5 km/h for a segment with an operational speed of 50 km/h, meaning
that the travel time for jammed segments can see up to 10x increase.
Depending on the source and destination as well as the commute path
taken, the impact of jams on travel time will be variable. In the Uber
movements dataset, we find the travel time data for cities of Nairobi
and São Paulo between source and destination hex-clusters averaged
by hour buckets per day from January 2020 to March 2020. Due to
differences in resolution from speed data as well as lacking data on the
commute path between the clusters, we have been unable to join the
travel time data with the speed data to understand the impact of jams
on travel time with high granularity. Still, we compared the maximum
observed mean travel time on the segments to the average of the mean
travel time. The results are shown in Fig. 16. We observe that for a
majority of source–destination pairs, the travel time in a jam can be
more than 50% of the average travel time. For a smaller fraction of
cases, the jam can cause the travel time to increase by 3x or higher.

5. Discussion and conclusion

In this paper, we have presented the concept of sudden traffic jams,
with a formal definition, the methodology to detect such jams and the
corresponding theoretical foundation. It should be noted that sudden
traffic jams are not a phenomenon emerging due to over-subscription
of traffic flow but rather due to momentary bursts in the traffic. In our
analysis, we found that highways and other free-flow segments are also
susceptible to the phenomenon. Based on the comparisons between the
three cities of New York, Nairobi, and São Paulo, we have determined
that the city of Nairobi experiences unexpectedly higher severity of
jams as compared to the other two cities.

Table 3 presents some key development indicators of the three cities
including the population, percentage of households that own a car,
number of segments in the Uber Movements dataset, and the mean jam



Development Engineering 8 (2023) 100105A. Bhardwaj et al.
Fig. 12. Histogram of times when jams occur in all three cities. Both São Paulo and
New York City show a similar pattern in terms of jam times, with many jams observed
during late night hours while in Nairobi, we observe most jams around the afternoon.

time per segment per day (see Table 1). We calculate the mean traffic
load per segment in the city per segment by the simple formula given:

Mean Traffic Load= Population
Size of Household ∗

Household-Vehicle Percentage
100

∗ 1
#Segments

We assume an average household size of 4. We also assume that the
result of the above formula is representative of the actual traffic load
on the road segments in the cities.

We note that the ratio of mean time spent in jam per road segment
for São Paulo, New York, and Nairobi is approximately 1:1:3. At the
same time, we also see that the corresponding ratio of traffic load
per road segment is approximately 1:2:3. Comparison between Nairobi
11
Fig. 13. Histogram of the total duration of jams in all three cities. All cities, Nairobi,
São Paulo, and New York City show a similar pattern in terms of jam duration, with
most jams observed to last only a single hour. In New York City, we see the highest
fraction of jams lasting more than one hour.

and São Paulo shows that approximately reducing the traffic load per
segment by a factor of 3 also reduces the mean jam time by the
same factor, as expected. On the other hand, consider the comparison
between New York City and São Paulo, where São Paulo, despite having
2x lower mean traffic load, suffers on average, equal mean jam time.
This shows that the traffic management in New York City might be
better than São Paulo and Nairobi, leading to higher utilization of road
capacity.

While the lack of road infrastructure seems to be a key reason for
the traffic crisis in Nairobi, we believe that traffic mismanagement and
chaotic driving conditions are also some of the factors contributing
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Fig. 14. Junctions A through C. On the left, we have maps with arrows showing the direction of traffic flow. On the right, we see the speeds observed in different segments.
Faint lines represent in-flow traffic while thick lines represent out-flow traffic. Red is used to represent speeds below the threshold. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Table 3
Development statistics all three cities where we present the number of segments observed in Uber Movements data, the population based on
recent surveys, percentage of households owning motor vehicles (cars), the mean amount of time spent in jams for each segment each day in
hours and the average number of vehicles per segment.
Source: NYCEDC, Wambu, EMBARQ Network.
City Segments Population Household-vehicle

percentage
Mean jam time Mean traffic load

Nairobi 4949 4.4 M 16.9% 1.89 37.56
New York 35602 8.4 M 45% 0.67 26.54
São Paulo 89121 12.33 M 40% 0.67 13.84
to this. As described in Section 3.1, the phenomenon of sudden jams
emerges from the traffic collapse resulting from the decreasing link
capacity in the spiraling region of the traffic curve. We now show
how an aggressive driving culture can exacerbate the traffic congestion
12
problem. Consider the empirical formulation of traffic curve presented
in Section 3.4. Based on our observations from speed-distributions
shown in Section 3.3, we hypothesize that the traffic curve shifts from
the free-flow phase to the spiraling phase at segment speeds around the
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Fig. 15. Junctions D through F. Again, we have maps on the left and speed profiles on the right. Faint lines represent in-flow traffic while thick lines represent out-flow traffic.
Red is used to represent speeds below the threshold. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Travel time blow up for different source–destination pairs in Nairobi and Sao Paulo. In more than 50% of such pairs, we find an increase in travel time of more than
50%.
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Fig. 17. Traffic curves for aggressive and safe driving behavior. It can be seen that the
transition point from the free-flow to the spiraling region in the curve moves diagonally
upwards, leading to a higher downward slope in the spiraling region for the aggressive
curve.

value of 𝑠1, or the first break point in the speed distribution. The point
on traffic curve corresponding to this can be found by substituting s
with 𝑠1 in Eqs. (3) and (4) as follows:

𝐵(𝑠1) =
𝑙𝑐

𝑙𝑐 + 𝑡𝑠1 + 𝑡′𝑠21
𝐶(𝑠1) =

𝑠1
𝑙𝑐 + 𝑡𝑠1 + 𝑡′𝑠21

(8)

For aggressive driving behavior, we would consider smaller values
of t and t’. This would result in a higher value for both 𝐵(𝑠1) and 𝐶(𝑠1),
meaning that the point on the traffic curve will shift to the right and
up. Note that the second transition point on the curve is fixed, and
hence after curve fitting, we will obtain a higher downward slope in
the second case (see Fig. 17). A higher slope in the spiraling region of
the traffic curve can lead to more frequent and rapidly evolving jams,
causing a larger duration of jam-time.

How do we mitigate these jams? Obviously, the development of the
road infrastructure will help the problem to a large extent, as in the case
of São Paulo, but it comes at a significant economic cost. Hence, we
ask: is there a smarter way of traffic management that can increase the
utilization of existing road infrastructure? Again, turning to the traffic
curve from Section 3.1, the key idea is to be aware of the jam density
and the threshold speed in a segment. Real-time instrumentation, such
as the one in New York City, can inform drivers through navigation
apps about impending congestion in a segment. Such knowledge can
also be used in signaling at important points such as 𝑛-1 merges, where
we observe the most instances of congestion resulting in prolonged
jams. We believe designing such solutions will greatly benefit the de-
veloping cities around the world, which are disproportionately affected
by the problem of traffic congestion.

Thus, to conclude, the key takeaways from our work are the col-
lections of observations about traffic jams – they can appear in various
scenarios, for various durations, and can potentially result in prolonged
congestion of vehicles on the road, on many occasions lasting several
hours at a stretch. Sudden jams that appear due to an increase in vehicle
density beyond the threshold jam density are particular types of jams
that last for long periods of time. We have provided a traffic curve
formalism for understanding the phenomena of traffic collapse leading
up to sudden jams, and a formula for sudden jams in terms of the drop
in acceleration. For more sparse data such as in the Uber movements
dataset, where we do not have minute-on-minute data to use the
formula, we have proposed an alternative approach to estimating the
traffic curve from the speed data and some basic assumptions. We
compute an upper limit on the speed at the jam density in a road
14
segment from the speed distribution using two break points 𝑠1 and 𝑠2 in
the cumulative distribution of speeds and call these jams as slowdown
jams. Using the loop detector data from the New York City Department
of Transportation, we show that slowdown jams and sudden jams have
a high correlation. Applying the hourly definition to Uber movements
speed data, we see that the city of Nairobi experiences unexpectedly
high severity of traffic jams as compared to New York City or São
Paulo, cities representative of the developed and developing economies.
We attribute some part of this result to chaotic driving conditions and
traffic mismanagement and propose that designing smart solutions for
increasing road capacity utilization based on our work would reduce
the economic budget for tackling the problem.
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