
Monostoriné Grolmusz, Viola

Working Paper

Optimal forecast combination under asymmetric loss
and regime-switching

MNB Working Papers, No. 2023/3

Provided in Cooperation with:
Magyar Nemzeti Bank, The Central Bank of Hungary, Budapest

Suggested Citation: Monostoriné Grolmusz, Viola (2023) : Optimal forecast combination under
asymmetric loss and regime-switching, MNB Working Papers, No. 2023/3, Magyar Nemzeti Bank,
Budapest

This Version is available at:
https://hdl.handle.net/10419/299284

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/299284
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


.

VIOLA MONOSTORINÉ GROLMUSZ

OPTIMAL FORECAST COMBINATION

UNDER ASYMMETRIC LOSS AND

REGIME-SWITCHING

MNB WORKING PAPERS | 3

2023
D E C E M B E R

MNB WORKING PAPERS 3 • 2023 I



MAGYAR NEMZETI BANK

II MNB WORKING PAPERS 3 • 2023



OPTIMAL FORECAST COMBINATION

UNDER ASYMMETRIC LOSS AND

REGIME-SWITCHING

MNB WORKING PAPERS | 3

2023
D E C E M B E R

MNB WORKING PAPERS 3 • 2023 III



MAGYAR NEMZETI BANK

The views expressed are those of the authors’ and do not necessarily reflect the official view of the central bank of Hungary

(Magyar Nemze Bank).

MNB Working Papers 2023/3

Op mal forecast combina on under asymmetric loss and regime-switching *

(Előrejelzések op mális kombinálása aszimmetrikus veszteségfüggvény és változó rezsimek melle )

Wri en by Viola Monostoriné Grolmusz**

Budapest, December 2023

Published by the Magyar Nemze Bank

Publisher in charge: Eszter Hergár

Krisz na körút 55., H-1013 Budapest

www.mnb.hu

ISSN 1585-5600 (online)

*I am heavily indebted to Róbert Lieli for his guiding work as my Ph.D. advisor. In addi on, I am very grateful for Sergey
Lychagin, Zsolt Darvas, Lajos Szabó, Péter Gábriel and Anna Naszódi for their valuable comments and sugges ons.

**Magyar Nemze Bank (Central Bank of Hungary), e-mail: monostorinev@mnb.hu.

IV MNB WORKING PAPERS 3 • 2023

http://www.mnb.hu/


Contents

Abstract 4

1 Introduc on 5

2 Theory 8

2.1 Setup 8

2.2 The expected loss func on and the forecaster’s problem 9

2.3 Expected loss minimiza on in the general case 10

3 Numerical procedure for compu ng the weights 12

4 Analy cal examples 13

4.1 Scenario 1: one biased forecast 13

4.2 Scenario 2: different variances of individual forecasts 18

4.3 Scenario 3: correlated forecasts 18

4.4 Scenario 4: common factor 19

5 Conjectures 26

6 Conclusion 27

Appendix A Deriva on of the general expected loss func on 30

Appendix B Equa ons for special case 1 31

Appendix C Equa ons for special case 2 34

Appendix D Equa ons for special case 3 37

Appendix E Equa ons for special case 4 40

Appendix F Op mal weights for case 4: full tables 43

MNB WORKING PAPERS 3 • 2023 3



Abstract

Forecast combina ons have been repeatedly shown to outperform individual professional forecasts and complicated me series
models in accuracy. Their ease of use and accuracymakes them important tools for policy decisions. While simple combina ons
work remarkably well in some situa ons, me-varying combina ons can be even more accurate in other real-life scenarios in-
volving economic forecasts. This paper uses a regime switching framework to model the me-varia on in forecast combina on
weights. I use an op miza on problem based on asymmetric loss func ons in deriving op mal forecast combina on weights.
The switching framework is based on the work of Ellio and Timmermann (2005), however I extend their setup by using asym-
metric quadra c loss in the op miza on problem. This is an important extension, since with my setup it is possible to quan fy
and analyze op mal forecast biases for different direc ons and levels of asymmetry in the loss func on, contribu ng to the
vast literature on forecast bias. I interpret the equa ons for the op mal weights through analy cal examples and examine how
the weights depend on the model parameters, the level of asymmetry of the loss func on and the transi on probabili es and
star ng state.

JEL: C53.

Keywords: Forecast combina on, Loss func ons, Time-varying combina on weights, Markov switching.

Összefoglaló

A kombinált előrejelzések gyakran pontosabbnak bizonyulnak mind az egyedi szakértői előrejelzéseknél, mind a bonyolult idő-
soros modellek predikcióinál. Egyszerű használatuk és pontosságuk mia a döntéshozók számára is fontos eszközök lehetnek.
Míg bizonyos előrejelzési helyzetekben az egyszerű, sta kus kombinációk is jól teljesítenek, egyéb életszerű gazdasági szituá-
ciókban az időben változó kombinációs súlyok adnak pontosabb predikciót. Ebben a tanulmányban változó rezsimek feltéte-
lezése melle modellezem az előrejelzési kombinációs súlyok időbeli alakulását. A kombinációs súlyok kiszámítására használt
op malizációs problémában emelle aszimmetrikus veszteségfüggvényeket feltételezek. A felhasznált rezsimváltó modell Elli-
o és Timmermann (2005) munkáján alapul, azonban modelljüket kiterjesztem aszimmetrikus négyzetes veszteségfüggvények
használatára. Tanulmányom az előrejelzési torzítás irodalmához is jelentősen hozzájárul, hiszen a használt általánosabb ke-
retben számszerűsíthető és vizsgálható az előrejelzési torzítás op mális mértéke a veszteségfüggvény különböző mértékű és
irányú aszimmetriája esetén. Anali kus példákon keresztül értelmezem az op mális súlyokat meghatározó egyenleteket, és
megmutatom, hogyan függnek a súlyok a modellparaméterektől, a veszteségfüggvény aszimmetriájának szintjétől, valamint a
rezsimváltó folyamat kezdő szintjétől és átmene valószínűségeitől.
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1 Introduc on

Forecast combina ons have been repeatedly shown to outperform individual professional forecasts and complicated me se-
ries models in accuracy. Since the seminal paper of Bates and Granger (1969) that introduced op mal forecast combina ons,
many works have shown the theore cal and empirical benefits of using combined forecasts (see, among others the papers by
Clemen (1989), Diebold and Lopez (1996), Chan et al. (1999), Dunis et al. (2000), Stock andWatson (1998, 1999), Timmermann
(2006), Diebold-Shin (2019)). These benefits include diversifica on gains from combining forecasts whose forecast errors are
not perfectly correlated with one another, approxima ng reality with many models of different nature that are not encom-
passed by one complicated model and the ease of combina on versus using a highly complex forecas ng model (Ellio and
Timmermann (2005)).

While simple combina ons work remarkably well in some situa ons, me-varying combina ons can be even more accurate in
other real-life scenarios involving economic forecasts. The ranking of individual models according to accuracy is likely to change
over me, as shown by Stock and Watson (2003) and Aiolfi and Timmermann (2004), among others. One forecast might be
the most accurate in a period of high economic growth, but be outperformed by another forecast in mes of recession. Then
a combina on framework with me-varying weights would work be er at forecas ng throughout the business cycle than one
with stable weights. The idea of using me-varying forecast combina on weights was first introduced by Granger and Newbold
(1973), and extended to a regression framework by Diebold and Pauly (1987).

This paper uses a regime switching framework to derive op mal combina on weights. I use an op miza on problem based on
asymmetric loss func ons in deriving op mal forecast combina on weights. The switching framework is based on the work of
Ellio and Timmermann (2005) however, I extend their setup by using asymmetric quadra c loss in the op miza on problem.
This is an important extension, since with my setup it is possible to quan fy and analyze op mal forecast biases for different
direc ons and levels of asymmetry in the loss func on. At the same me, this chapter also extends the findings of Ellio and
Timmermann (2004). In this paper, the authors characterize the op mal combina on weights for the most commonly used
alterna ves to mean squared error loss, but do not include state-dependence. Thus, my main contribu on is the combina on
of state dependence with an asymmetric loss func on, which, to my knowledge, has not been addressed in the literature.

In this paper I study a forecaster’s problemwho has access to a set of individual forecasts and wants to combine them op mally
in a regime switching environment under asymmetric loss. I derive the first order condi ons for an op mal linear combina on
and provide a numerical procedure (akin to GMM) for compu ng them. I interpret the op mal weights through analy cal
examples and examine how the weights depend on the model parameters, the level of asymmetry of the loss func on and the
transi on probabili es and star ng state. I quan fy the op mal forecast bias as a func on of the asymmetry parameter of the
forecaster’s loss func on, adding to the literature on forecast bias (see Mincer and Zarnowitz (1969), Holden and Peel (1990),
Batchelor (2007), Ellio et al. (2008), Dovern and Janssen (2017)). In the following paragraphs, I mo vate my choices for using
a Markov-switching framework, asymmetric losses, and I give context on op mal biases in forecasts.

There are different methods of using me-varying weights in forecast combina ons. Using rolling window regressions to de-
termine the combina on weights for every forecast period is a popular and methodologically straigh orward choice. Time-
varying parameter models could also be es mated using the Kalman filter. A third choice, proposed by Deutch et al. (1994) is
to determine weights based on a regime-switching model with an observable state variable. Ellio and Timmermann (2005)
compare these three methods in crea ng combina on forecasts from surveys and me series models. The authors find that
the last method is the most accurate in terms of mean squared forecast error. Using the regime-switching model also enables
the researcher to analyze the op mal weights and forecast errors assuming different star ng regimes and different transi on
probabili es between regimes. This makes it possible to draw conclusions on op mal forecast biases for different economic
states.

Ellio and Timmermann (2005) derives op mal combina on weights in a latent state regime switching environment. The au-
thors illustrate the result with an empirical applica on combining survey and me series forecasts and comparing the accuracy
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of combina on forecasts based on different me-varyingweigh ngmethods. In the deriva on of the op mal switchingweights,
the authors assume mean squared (MSE) loss.

Mean squared loss is widely used in the literature due to the ease of computa on, analy cal convenience and its favorable
sta s cal proper es¹. However, its use is difficult to jus fy on economic grounds and likely does not capture the true behav-
ior of forecasters. The arguments against the use of symmetric loss func ons go back to Granger and Newbold (1986) and
are developed in more recent works such as Christoffersen and Diebold (1996, 1997), Granger and Pesaran (2000), Ellio et al
(2005) and (2008), Pa on and Timmermann (2007), Wang and Lee (2014). The use of asymmetric loss func ons is based on the
idea that forecasters could be averse to ‘bad’ outcomes: low real GDP growth, high infla on, etc., and they could incorporate
this asymmetry into their forecasts. In another forecas ng situa on there might be different costs in overpredic on versus
underpredic on of sales: overpredic on can lead to higher inventory holding costs, while underpredic on can lead to stockout
costs, loss of reputa on and revenues when the demand is too high (Ellio et al. 2008). The rela ve costs of overpredic on
versus underpredic on depend on the preferences of the firm, and it is reasonable to believe that the preferences are asym-
metric. The forecaster is likely to be aware of the asymmetric preferences (their salary could even depend on using the right -
asymmetric - loss func on and producing accurate forecasts as a result), and would therefore use an asymmetric loss func on
in their forecasts.

Biases in economic forecasts could also be related to asymmetric loss func ons. It is well documented that survey forecasts
are frequently biased (Mincer and Zarnowitz (1969), Holden and Peel (1990), Batchelor (2007), Ellio et al. (2008), Dovern and
Janssen (2017)). The size and direc on of the bias can depend on the affilia on of the professional forecaster, as well as on
the current state of the business cycle. Ellio et al. (2008) examine US Survey of Professional Forecasters (SPF) and Livingston
survey data on output growth and find that close to 30 percent of individual forecasts are biased at a 5 percent significance
level. The authors also find that on average, forecasters are more likely to underpredict growth (sugges ng that the cost of
overpredic on is higher than the cost of underpredic on). The biases vary by the affilia on of the forecaster: academics have
almost symmetric loss func ons, while banking and industry economists rely on more asymmetric loss func ons (Ellio et al.
(2008)).

Recent research suggest that state dependence and asymmetric loss are poten ally both at play in some economic forecasts.
Dovern and Janssen (2017) examine systema c forecast biases over the business cycle. On a panel of forecasts for the annual
real GDP growth rate in 19 advanced economies² (1990-2013), they find that on average, forecasters overes mate GDP growth.
However, there is a substan al difference between forecasts for different business cycle states. Forecasts made for recession
periods exhibit large nega ve forecast errors (in advance, forecasters overes mate the growth for these periods). By contrast,
forecasts for recoveries show small posi ve errors, while forecasts for expansions are unbiased.

As an illustra on, I have reproduced Figure 1. from the paper of Dovern and Janssen (2017) using a different data set. I have
used Consensus Economics surveys for annual real GDP growth for 11 Easters European countries³, for the period between
2007 and 2019. The forecast horizons used range from 3 months to 24 months.

The figure for Eastern European economies confirms the same results as Dovern and Janssen’s example of 19 advanced coun-
tries: forecasts made for recessions exhibit large nega ve biases, forecasts for recoveries o en underpredict growth, while
forecasts for expansions are on average unbiased (Figure 1). The differences between forecast biases made for different peri-
ods are large and significant (see Batchelor (2007) and Dovern and Janssen (2017)). Time series forecasts also frequently exhibit
biases, especially around business cycle turning points. When construc ng forecast combina ons, it would be beneficent to let
the weights depend on the state of the economy, as well as allow the loss func on to be asymmetric. This chapter introduces
an op mal combina on weigh ng scheme that meets these criteria.

The rest of this paper is organized as follows. Sec on 2 shows the theore cal setup and outlines the expected loss minimiza on
problem in the general case. Sec on 3 describes the procedure used for deriving the op mal weights numerically. Sec on 4

¹ When assuming MSE loss, the ra onal forecasts are unbiased and the forecast errors are uncorrelated with all variables in the current informa on
set. Therefore, ra onality tes ng is straigh orward if quadra c loss is assumed. However, as Ellio et al. (2005, 2008) point out, tes ng ra onality
this way assumes a joint hypothesis of ra onality and quadra c loss. The la er might not hold in many cases; the results of such ra onality tests are
not valid for forecasts constructed using asymmetric losses.
² Dovern and Janssen (2017) use Consensus Economics surveys for the following countries: Austria, Belgium, Canada, Switzerland, Germany, Denmark,
Spain, Finland, France, Greece, Ireland, Italy, Japan, the Netherlands, Norway, Portugal, Sweden, the United Kingdom, and the United States.

³ Bulgaria, Czech Republic, Estonia, Croa a, Hungary, Latvia, Lithuania, Poland, Romania, Slovenia, Slovakia
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INTRODUCTION

Figure 1
Systema c survey forecast errors by horizon

Notes: The figure shows es mates of the systema c forecast errors (in percentage points) as a func on of the forecast horizon. The lines represent
point es mates from regressions of the forecast errors on a set of 24 dummy variables (one for each forecast horizon).

analyzes how the op mal bias and the combina on weights depend on the parameters through four analy cal examples with
different parametriza ons. Sec on 5 assembles general observa ons from the results that could be formalized as theorems
and also outlines some possible extensions. The last sec on concludes.
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2 Theory

In the introduc on, I have already argued for the high importance of allowing for asymmetric loss func ons when combining
forecasts. In this sec on, I introduce the theore cal setup and solve the expected loss minimiza on problem in the general
case.

2.1 SETUP
We would like to forecast yt 1 on the basis of It {y 1, y }t 1, where

y 1 (y1 1, … ym 1) (1)

is the vector ofm individual forecasts. The informa on set includes the realized values of the target variable yt up un l the cur-
rent period when the forecast is made, together with the past and current values of the m individual one-step-ahead forecasts.
The last available individual forecasts in the forecaster’s informa on set in t are the forecasts made in t for the t 1 horizon.

The equa on for the linear combina on of forecasts is the following:

yt 1 0 𝝎 yt 1 et 1, (2)

where 0 ∶ is a constant, and 𝝎 ∶ is an m-vector of weights. The forecaster’s goal is to op mally combine the individual
forecasts in order to minimize her expected loss from the combined forecast. She can do this by op mizing the combina on
weights 0 and𝝎 based on her specific loss func on.

I assume that the joint distribu on of the target yt 1 and the vector of individual forecasts yt 1 is driven by an unobserved state
variable, St ∈ (1, … , k) that is not part of the informa on set; St ∉ It. Condi onal on the informa on set It and the underlying
state St 1 st 1, assume that the joint distribu on of the target and the vector of individual forecasts is Gaussian:

yt 1

𝐲𝐭 𝟏

∼ N yst 1

𝝁yst 1

,
2
yst 1

𝝈yyst 1

𝝈yyst 1
𝚺yst 1

(3)

Given equa on (2), assump on (3) implies that the corresponding condi onal distribu on of the error et 1 is also Gaussian
with some mean est 1

and standard devia on est 1
.

Finally, I also assume (following Hamilton (1989) and Ellio and Timmermann (2005)) that the states are generated by a first
order Markov chain with the following transi on probability matrix, where ij denotes the transi on probability of arriving at
state j when star ng from state i:

⎛
⎜
⎜
⎜
⎜

⎝

11 12 … 1k

21 22 … 2k

⋮ ⋮ ⋱ k 1k

k1 … kk 1 kk

⎞
⎟
⎟
⎟
⎟

⎠

(4)
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THEORY

Furthermore, if at me t the state of the process is st, then the probability that the process will transi on to state st 1 in period
t 1 will be denoted as

P(st 1|st) st 1 ,t

Hence, st 1 ,t is the element of the matrix (4) that corresponds to row st and column st 1.

2.2 THE EXPECTED LOSS FUNCTION AND THE FORECASTER’S PROBLEM
Devia ng from the setup of Ellio and Timmermann (2005), I choose the more flexible asymmetric quadra c (or quad-quad⁴)
loss func on in the forecaster’s op miza on problem, instead of the symmetry-assuming MSE loss⁵. The loss func on takes
the following form:

L(e)
(1 )e2, if e 0
e2, if e 0

(5)

where 0 1. The parameter alpha in the loss func on captures the asymmetry preferences of the forecaster. For
alpha values lower than 1

2
, nega ve forecast errors entail a smaller cost for the forecaster as opposed to posi ve forecast

errors, overpredic on is preferred. For 1
2
, posi ve errors entail smaller costs than nega ve errors, thus underpredic on is

preferred. 1
2
is the symmetric case, the loss func on reduces to the same form as the mean squared error loss.

Assuming the loss func on takes the form expressed in equa on 5, the posited objec ve is to minimize the following expected
loss formula:

E{L(et 1)|It, st}
k

st 1 1
st 1 ,tE [ (2 1)1est 1 0]e2st 1

It, st 1 , (6)

where 1est 1 0 denotes the indicator func on, i.e.,

1est 1 0
1, if est 1

0
0, if est 1

0

and est 1
is the (s ll random) value of the error et 1 in state st 1.

Let us interpret the objec ve func on in equa on 6. The expecta on on the le hand side is taken with respect to the condi-
onal distribu on of et 1 given the forecaster’s informa on set It and the current state st. This is then expanded as an iterated

expecta on on the right hand side. For any possible value st 1 of the future state, the inner expecta on is with respect to the
condi onal distribu on of est 1

given It and st 1. This expecta on is, by assump on, no longer dependent on st, i.e., it does not
ma er how the process arrives at the state st 1. The outer expecta on then averages over all possible future states, using the
transi on probabili es corresponding to the current state st as weights (these are contained in the corresponding row of the
transi on matrix). This expecta on, by contrast, is no longer dependent on It, as the Markov property implies that transi on
probabili es depend solely on the current state.⁶

To evaluate the expected loss (6) in prac ce, one needs to assume specific values for the transi on probabili es st 1 ,t or es -
mate them based on an auxiliary model. There is a set of transi on probabili es st 1 ,t corresponding to each possible current

⁴ The double quadra c term refers to the type of the loss func on for both nega ve and posi ve forecast errors.
⁵ The asymmetric quadra c loss func on I use in this chapter has been studied by other authors as well. It is a special case of the family of loss func ons
studied by Ellio , Komunjer and Timmermann (2005, 2008). In another paper, Ellio and Timmermann (2004) derive the op mal forecast combina on
in a permanent-state environment assuming the same loss func on.

⁶We can summarize this discussion more formally as follows. Using the law of iterated expecta ons, we can write the le hand side of equa on 6 as
E{L(et 1)|It , st} E E[L|It , st , st 1] It , st E E[L|It , st 1] st , where the last equality follows from the condi onal independence condi ons discussed
above.
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state st. However, st is not directly observed by the econometrician, which means that the evalua on of (6) also requires an
assump on about the current state st or an es mate of it.

I now turn to the forecaster’s problem. The forecaster’s goal is to choose the combina on weights 0 and 𝝎 in equa on
(2) in a way that minimizes her expected loss (6). To this end, I write the value of the forecast error in state st 1 as est 1

est 1
est 1

zst 1
, where est 1

and est 1
are the state-specific mean and standard devia on, respec vely, and zst 1

is a standard
normal random variable. Using equa on (2) and assump on (3), these moments are given by

est 1 yst 1
0 𝝎 𝝁yst 1

2
est 1

2
yst 1

𝝎 𝚺𝐲st 1
𝝎 2𝝎 𝝈y𝐲st 1

.

Subs tu ng est 1 est 1
est 1

zst 1
into (6) and making the corresponding change of variables in the integral yields the

following expression:⁷

E{L(et 1)|It, st}
k

st 1 1
st 1 ,tE{( (2 1)1est 1 0)e2st 1

|It, st}

k

st 1 1
st 1 ,t[ 2

e
2
e] (2 1)

k

st 1 1
st 1 ,t

e
e

( e ezst 1
)2 F(zst 1

), (7)

where e and e are shorthand for est 1
and est 1

, respec vely, and F(⋅) is the standard normal cumula ve distribu on func-
on.

The goal is to minimize (7) with respect to the constant 0 and the slope coefficients (or weights)𝝎, where these parameters
are implicit in the defini on of e and e. However, as discussed above, the expected loss objec ve (6) has several ‘versions’
depending on the ini al state st; there is, therefore, a corresponding set of minimizers for each possible current state. To
emphasize this dependence, I will denote the op mal weights as ∗

0t and𝝎∗
t . Thus, if the econometrician’s assessment of the

current state evolves from period to period, so do the op mal weights.

I will now characterize ∗
0t and 𝝎∗

t as the solu ons to the first order condi on of the expected loss minimiza on problem
outlined above.

2.3 EXPECTED LOSS MINIMIZATION IN THE GENERAL CASE

Let us minimize the expected loss func on in the general case (7) by deriving the corresponding first order condi ons (FOCs).

Taking the par al deriva ve with respect to the constant 0t yields:

E{L(et 1)|st, It}
0t

0 ∶

k

st 1 1
st 1 ,t e (2 1)

k

st 1 1
st 1 ,t

⎡
⎢
⎢
⎣ e

e

( e e zst 1
) F(zst 1

)
⎤
⎥
⎥
⎦

0
(8)

⁷ See the detailed deriva ons in appendix A, equa on 23.
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THEORY

Subs tu ng e and e with their defini ons (and omi ng the state and me subscripts for clarity), we can write the FOC in
the following form:

E{L(e)|s, I}
0t

0 ∶

s
s ys 0t 𝝎t𝝁ys

(2 1)
s

s

⎡
⎢
⎢
⎢
⎢
⎣

y 0 𝝎t 𝝁𝐲s
2
y 𝝎t 𝚺𝐲𝝎t 2𝝎t 𝝈y𝐲

ys 0t 𝝎t𝝁𝐲s ( 2
y 𝝎t𝚺𝐲𝝎t 2𝝎t𝝈y𝐲) z F(z)

⎤
⎥
⎥
⎥
⎥
⎦

0

(9)

E{L(e)|s, I}
0t

0 ∶

s
s ys 0t 𝝎t𝝁𝐲s

(2 1)
s

s

⎡
⎢
⎢
⎢
⎢
⎣

y 0 𝝎t 𝝁𝐲s
2
y 𝝎t 𝚺𝐲𝝎t 2𝝎t 𝝈y𝐲

( ys 0t 𝝎t𝝁𝐲s ( 2
y 𝝎t𝚺y𝝎t 2𝝎t𝝈y𝐲) z) F(z)

⎤
⎥
⎥
⎥
⎥
⎦

0

(10)

The op mal weights ∗
0t and𝝎∗

t must then sa sfy equa on (10).

There aremmore first order condi ons corresponding to the par al deriva veswith respect to the individual weights𝝎t. These
are given by:

E{L(e)|s, I}
𝝎 0 ∶

s
s 𝐲 e 𝚺𝐲𝝎 𝝈y𝐲

(2 1)
s

s

⎡
⎢
⎢
⎣ e

e

( e e z) 𝐲
1
e
𝚺𝐲𝝎 𝝈y𝐲 z F(z)

⎤
⎥
⎥
⎦

0

(11)

The op mal weights ∗
0t and𝝎∗

t must also sa sfy equa on (11).

Due to the complexity of these equa ons, the solu ons for the op mal weights cannot be given in closed form. However, it
is possible to solve these equa ons numerically, adop ng the idea behind the well-known generalized method of moments
(GMM) es mator. I will describe this the general procedure in the next subsec on. In Sec on 4 I will compute the op mal
weights and consequent average losses in three specific scenarios and analyze the results in detail.
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3 Numerical procedure for
compu ng the weights

Suppose that all the parameters in equa ons (10) and (11) are given except for the weights 0 and 𝝎. The main difficulty in
solving the first order condi ons lies in the evalua on of the integrals with respect to dF(z), especially given that the integra on
limits are also dependent on the unknown weights. Let me generically represent these integrals as

b

a
g(z; 𝜽)dF(z), (12)

where 𝜽 ( 0, 𝝎 ) stands for the vector of unknown weights and a and bmay also depend on .

I then evaluate the first order condi ons in the following way. First, I formally eliminate the integra on limits by using indicator
func ons; that is, I represent the integrals ∫b

a g(z; 𝜽)dF(z) as ∫ g(z; 𝜽)1[a,b](z)dF(z), where the la er integral is taken over the
en re real line (i.e., from minus infinity to infinity). The two integrals are equal because the func on 1[a,b](z) is one if z falls
into the interval [a, b] and is zero otherwise.

Second, as F stands for the standard normal cdf, I can again regard these integrals as expecta ons over a standard normal
random variable; that is,

g(z; 𝜽)1[a,b](z)dF(z) E{g(Z; 𝜽)1[a,b](Z)}, Z ∼ N(0, 1). (13)

Using this representa on of the integrals with respect to dF(z), the first order condi ons (10) and (11) can be thought of as a
set of moment condi ons

E[mj(Z; 𝜽)] 0, j 0, … ,m, (14)

where, for example,

m0(Z, 𝜽)
s

s ys 0 𝝎 𝝁𝐲s

(2 1)
s

s ys 0 𝝎 𝝁𝐲s ( 2
ys 𝝎 𝚺𝐲s𝝎 2𝝎 𝝈y𝐲s) Z ⋅ 1[as , )(Z)

(15)

with

as
ys 0 𝝎 𝝁𝐲s

2
ys 𝝎 𝚺𝐲s𝝎 2𝝎 𝝈y𝐲s

. (16)

Equa ons (10) and (11) can be wri en this way because the linearity of the expecta ons allows it to be pulled ’outside’ of all
the other opera ons.

Third, I replace themoment condi onswith their ’empirical’ counterparts using a large sample of ar ficial observa ons Z1, … , Zn
drawn from the standard normal distribu on. That is, instead of expecta ons, I work with averages of the form

1
n

n

i 1

mj(Zi, 𝜽) 0, j 0, … ,m. (17)

For large n, the law of large numbers guarantees 1
n
∑n

i 1 mj(Zi, 𝜽) ≈ E[mj(Z, 𝜽)], and I can make this approxima on precise by
choosing n as large as computa onally feasible.

Thus, in the three steps outlined above, I have reduced the computa on of the op mal weights to a standard generalized
method of moments (GMM) es ma on problem, where the parameter vector 𝜽 ( 0, 𝝎 ) is just-iden fied. This means that
one can use well-developed numerical procedures and readily available rou nes to compute the op mal forecast combina on
weights for any given parametriza on of the forecaster’s problem.
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4 Analy cal examples

In this sec on, I es mate and interpret the op mal weights and average losses in four different parametriza ons. The simu-
la ons were carried out in order to be er understand the differences between the asymmetry-allowing op mal combina on
weights and the ET combina on weights that are based on MSE loss. For ease of interpreta on, I consider only 2 states and
2 forecasts in all cases, and a one-period forecast horizon. State 1 parameters are different in the four cases, while they are
always compared to the baseline parametriza on in state 2 (state 2: unbiased forecasts, both variances are 1, forecasts are
uncorrelated).

4.1 SCENARIO 1: ONE BIASED FORECAST
Let us assume a simple data genera ng process of the following form:

yt 1
st
1 xt

st
2 wt t 1 f1t f2t t 1 (18)

Where t 1 is a standard normal error term, s1∼N(0, 1); s2∼N(0, 1). The two individual forecasts that we would like to
combine are the following:

f1t
st
1 xt

f2t
st
2 wt

(19)

The linear combina on of the two forecasts gives the combined forecast:

yt 1|t 0t 1t f1t 2t f2t (20)

In the first parametriza on, asymmetry is introduced by a small posi ve bias of forecast 1 in state 1 (see table 1 for the full
parametriza on). The other forecast stays unbiased throughout ( f2,s1 f2,s2 0). The variances of the forecasts are equal
in both states and the two individual forecasts are uncorrelated E(xtwt) 0, ∀t. The op mal weights are derived using the
numerical procedure introduced in sec on 3.

I specialize the general expected loss func on from equa on 6 by subs tu ng in the adoquate forms of e and e.

e,s1 0,s1 1,s1 f1,s1 0,s1 1,s1 0.1

e,s2 0,s1

2
e,s1

2
e,s2 2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1);

As the variances of the individual forecasts are unity and the forecasts are uncorrelated, the expected loss func on and first
order condi ons are not overly complicated (see appendix B). The variance-covariance matrix of the two forecasts and the
covariances between the target and the individual forecasts take the following forms:
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Table 1
Scenario 1: one biased forecast

s1 s2
s1
1 1 s2

1 1
s1
2 1 s2

2 1
s1
x 0.1 s2

x 0
s1
x 1 s2

x 1
s1
w 0 s2

w 0
s1
w 1 s2

w 1
s1
y 0 s2

y 0
s1
y √2 s2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

y

1 0

0 1
yy

1

1

When there are two possible Markov states, then we get two sets of op mal weights, each referring to the star ng state that is
assumed to be known whenmaking the forecast. The equa on for the expected loss func on and the first order condi ons are
stated in appendix B. Applying the GMM-based numerical procedure to these analy cal results, we get the op mal combina on
weights outlined in table 2 and 3. For deriving the results in table 2, the symmetric transi on probabili es from the matrix P1
were used, while for the results in table 3, the asymmetric transi on probabili es from P2 were used.

P1
0.5 0.5

0.5 0.5
P2

0.9 0.1

0.1 0.9

First, let us interpret the results of table 2. The transi on probability does not depend on the star ng state in this scenario,
therefore, the op mal weights are the same for each star ng state. The op mal weights of the two individual forecasts, 1t
and 2t are essen ally 1 (minor es ma on errors occur from the GMM procedure). This is the same as their true values, 1
and 2 from the DGP. The op mal bias is captured in 0, whose value changes as the asymmetry parameter increases.

At 0.5, the loss func on is symmetric and coincides with the MSE loss. Therefore, we see that the es mated op mal
weights are exactly the same in the asymmetry-allowing case and theMSE loss-based combina on (ET). 0 takes the value that
offsets the bias competely, resul ng in an unbiased forecast:

0 (forecast bias × Pr(arriving in biased state)) (21)

For lower -s, overpredic on is preferred. This is achieved in the combina on forecast, by only sligthly offse ng the bias
from f1; 0 is close to zero. As increases toward 0.5, the preference for overpredic on is weaker, therefore, 0 increases
in absolute value, resul ng in a less biased op mal combina on forecast. For -s above 0.5, underpredic on is preferred, 0
offsets the bias coming from f1, and produces an overall posi ve forecast error.

Figure 2 and 3 shows the average asymmetric quadra c losses for the transi on probability matrices P1 and P2. The figures
depict the result of a thought experiment where a one-period forecast is made and we would like to know the expected loss for
the next period. In figure 2, the transi on probability matrix P1 results in a symmetric loss func on that is always lower than
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ANALYTICAL EXAMPLES

the constant loss resul ng from the ET op mal combina on. The loss is lower for more extreme asymmetry preferences ( -s
close to 0 and 1). Again, the star ng state does not influence the results.

When the transi on probability matrix takes the from of P2, two different sets of op mal weights are calculated based on the
star ng state. Now, the system is likely to stay in the star ng state (with probability 0.9). When this is the biased state 1, 0
needs to be higher in absolute value to offset the bias. The rela on in equa on 21 stays true; for instance when 0.5, the
constant from the op mal combina on needs to be 0.09 to yield an unbiased forecast (this is also the op mal 0 for the ET
loss). As the asymmetry parameter changes, we can see a similar dynamic in the change of 0 as in table 2: for lower -s, the
preferred overpredic on of the target variable is achieved by only partly offse ng the bias from f1, while for -s higher than
0.5, an 0 higher in absolute value is needed to produce an op mally biased combina on forecast. The coefficients of f1 and
f2 are 1 throughout, hi ng the true coefficients from the DGP.

Table 2
Op mal weights from case 1, symmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 -0.010 1.000 1.000 -0.010 0.999 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.3 -0.030 0.998 1.000 -0.030 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.5 -0.050 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.7 -0.070 0.997 1.000 -0.070 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

0.9 -0.090 1.000 1.000 -0.090 1.000 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

Table 3
Op mal weights from case 1, asymmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 -0.050 0.998 1.000 -0.001 1.000 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.3 -0.079 0.998 1.000 -0.005 1.000 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.5 -0.090 0.999 1.000 -0.010 0.999 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.7 -0.095 0.999 1.000 -0.021 0.998 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

0.9 -0.104 0.997 0.998 -0.050 0.993 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000
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Figure 2
Asymmetric qaudra c losses as a func on of alpha based on parametriza on with one biased forecast (s1); P=[0.5 0.5; 0.5
0.5]

quad-quad losses, star ng state: s1

quad-quad losses, star ng state: s2
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Figure 3
Asymmetric qaudra c losses as a func on of alpha based on parametriza on with one biased forecast (s1); P=[0.9 0.1; 0.1
0.9]

quad-quad losses, star ng state: s1

quad-quad losses, star ng state: s2
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4.2 SCENARIO 2: DIFFERENT VARIANCES OF INDIVIDUAL FORECASTS

In this scenario, both forecasts are unbiased throughout. The difference in the forecasts stems from the second forecast having
a higher variance in state 1 (see table 4 for full parametriza on). The two individual forecasts are uncorrelated. Again, state 2
is characterized by the baseline parametriza on of equal variances and no bias. The state-dependent means and variances of
the forecast error are the following:

e,s1 e,s2 0,s1

2
e,s1 3 (2 2

1,s1
2
2,s1) 2(2 1,s1 2,s1);

2
e,s2 2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1);

In this parametriza on, the variance-covariance matrix of the two forecasts and the covariances between the target and the
individual forecasts are changed from the baseline to the following forms. The resul ng expected loss func on and first order
condi ons are detailed in appendix C.

y

2 0

0 1
yy

2

1

The op mal combina on weights are shown in tables 5 (symmetric transi on probabili es characterized by P1) and 6 (asym-
metric transi on probabili es characterized by P2). It is appearent that the higher variance of f1 in s1 does not change the
op mal weights, thus the true parameters stemming from the data genera ng proccess, [ 0, 1, 2] [0, 1, 1] are found. At
extreme asymmetry parameters, the minor differences are due to calcula on errors from the GMM procedure. When a bias
is introduced to forecast 1 in state 1 in addi on to the higher variance, the op mal combina on weights are the same as in
scenario 1.

4.3 SCENARIO 3: CORRELATED FORECASTS

Let us examine a parametriza on with correlated individual forecasts in state 1. In state 1, f1 has an indirect effect on y, through
its correla on with f2. Similarly to the other specifica ons, state 2 is characterized by the baseline DGP and forecasts.

ys1t 1 f2t t 1

ys2t 1 f1t f2t t 1

Where t 1 is a standard normal error term, s1∼N(0, 1), s2∼N(0, 1).

In state 1, each individual forecast consists of a common part, f, and an addi onal error term:

f1s1t ft t

f2s1t ft t
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where t∼N(0, 1) and t∼N(0, 0.2)

The forecast is the linear combina on of the individual forecasts.

yt 1|t 0t 1t f1t 2t f2t

y

2 1

1 1.2
yy

1

1.2

e,s1 e,s2 0,s1

2
e,s1 1.2 2 2

1,s1 1.2 2
2,s1 2( 1,s1 2,s1) 2( 1,s1 1.2 2,s1);

2
e,s2 2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1);

To be er understand the results, assume first that there was no switching and the system stayed in s1. As f1 does not appear
in the DGP, and has a higher variance than f2, we would expect the op mal combina on weights to be [ 0, 1, 2] [0, 0, 1].
In the simula on of such a case, whose results are presented in table 4.3, these weights are indeed found (at very high -s we
can see some es ma on errors).

Returning to the original switching framework, let us first assume equal transi on probabili es (transi on probability matrix
is P1). Then the es mated op mal combina on weights are those shown in table 4.3. As both forecasts are unbiased in both
states, the weights do not change with the asymmetry parameter, similarly to scenario 2. 0 is zero throughout as there is no
bias to offset coming from the individual forecasts. However, the op mal weights of the two forecasts differ in this case: the
coefficient of f1 is lower (0.39) than that of f2 (0.82). The weights take values between their op mal values if the system always
stayed in state 1; [ 0, 1, 2] [0, 0, 1], and their op mal values if the system always stayed in state 2; [ 0, 1, 2] [0, 1, 1].
The es mated ∗

1t and
∗
2t are lower than the simple average of the above two sets of weights [0.5, 1]. This is due to the

variance-minimizing objec ve of the forecast: the forecast with higher variance, f1, is assigned a lower combina on weight.
Since f2 is posi vely correlated to f1, it is also intui ve in light of the variance-minimizing objec ve that ∗

2t is lower than 1.

Assuming a more persistent transi on probability matrix, P2, we can see from table 4.3 that the star ng state ma ers for the
op mal weights. When the star ng state is s1, where the forecasts are correlated, f1 is assigned a low weight of 0.82 that is
even lower than the probability of leaving the star ng state (P12 0.1). ∗

2t is slightly higher (0.92) than the probability of
staying in state 1 (P11 0.9).

When the star ng state is s2, the op mal weights are close to (0, 1, 1), (op mal weights for a system that always stays in s2) as
the probability of arriving at state 1 is low.

4.4 SCENARIO 4: COMMON FACTOR

In this scenario, the combina on forecast in state 1 is again characterized by two correlated individual forecasts. In addi on
to these two forecasts, the data genera ng process includes a third forecast, f3, that is the common factor responsible for the
correla on between f1 and f2. As in the other examples, state 2 is the baseline parametriza on (two uncorrelated, unbiased
forecasts with equal coefficients in the DGP):
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ys1t 1 f1t f2t f3t t 1

ys2t 1 f1t f2t t 1

Where t 1 is an i.i.d. error, s2∼N(0, 1). is the idiosynchra c error from the state 1DGPwith correlated variables, s1∼N(0, 1).

In state 1, f1 and f2 consists of a common factor, f3, and an addi onal error term with different variances:

f1s1t f3t t

f2s1t f3t t

where t∼N(0, 0.1) and t∼N(0, 9)

The forecast is the linear combina on of forecasts f1 and f2.

yt 1|t 0t 1t f1t 2t f2t

Let us first examine the op mal weights in a constant-state system to be er understand the results from the switching simula-
on. Assume that there is no switching and the prevailing state is always s1. Then, wewould expect the op miza on procedure

to assign f2 lower weights than f1, due to the variance-minimizing objec ve.

y

1.1 1

1 10
yy

3.1

12

e,s1 e,s2 0,s1

2
e,s1 16.1 1.1 2

1,s1 10 2
2,s1 2( 1,s1 2,s1) 2(3.1 1,s1 12 2,s1);

2
e,s2 2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1);

Table 4.4 shows the op mal weights from the no-switching exercise⁸. The results are intui ve: 0 is zero similarly to the other
cases where the forecasts are unbiased, and the op mal weights do not change with . This is also likely due to the unbiased-
ness of the forecasts (this conjecture and some other general observa ons from the results are summarized in sec on 5). As
expected, f2 is assigned lower weights than f1, due to its higher variance. S ll assuming a no-switching environment, if the
system stayed in state 2 throughout, the op mal weights would be [ 0, 1, 2] [0, 1, 1], as we have seen in the previous
examples.

⁸ Results for -s lower than 0.3 and higher than 0.7 are truncated from table 4.4, since the numerical procedure produced large es ma on errors. The
full table can be found in appendix F.
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Returning to the regime-switching environment, let us first examine the op mal weights under symmmetric transi on prob-
abili es between states (P2 transi on probability matrix), shown in table F⁹. 0 is zero since the forecasts are unbiased. Also
likely due to unbiasedness, the op mal weights are constant for different asymmetry parameter values. The op mal weight of
f2, the forecast with the higher variance is lower than that of the other forecast. The op mal combina on weights in table F
are very close to the arithme c means of the op mal weights from the previous no-switching exercises (s1: [0, 1.9, 0.01]; s2:
[0, 1, 1]).

Table F shows the op mal weights assuming asymmetric transi on probabili es (P2)¹⁰. When the star ng state is s1, the system
is expected to stay in this state with a probability of 0.9, therefore, the op mal weights are close to the results from table 4.4.
Conversely, when the star ng state is s2, the op mal weights are close to [0,1,1], as in the scenario where the system stayed in
s2 throughout.

⁹ Results for -s lower than 0.3 are truncated from table F due to es ma on errors at these extreme values. The full table can be found in appendix F.
At 0.7 the outlier values are also likely due to es ma on error.

¹⁰ Again, the results for 0.1 are truncated due to es ma on errors, see the full table in appendix F.
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Table 4
Scenario 2: one forecast has higher variance in state 1

s1 s2
s1
1 1 s2

1 1
s1
2 1 s2

2 1
s1
x 0 s2

x 0
s1
x √2 s2

x 1
s1
w 0 s2

w 0
s1
w 1 s2

w 1
s1
y 0 s2

y 0
s1
y √3 s2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

Table 5
Op mal weights from case 2, symmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 0.000 1.000 1.000 0.003 1.000 0.999 0.000 1.000 1.000 0.000 1.000 1.000

0.3 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.7 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.9 0.000 1.000 1.000 -0.004 1.000 0.999 0.000 1.000 1.000 0.000 1.000 1.000

Table 6
Op mal weights from case 2, asymmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.3 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.7 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

0.9 -0.008 1.002 1.002 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
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Table 7
Scenario 3: correlated forecasts

s1 s2
s1
1 1 s2

1 1
s1
2 1 s2

2 1
s1
x 0 s2

x 0
s1
x √2 s2

x 1
s1
w 0 s2

w 0
s1
w 1 s2

w 1
s1
y 0 s2

y 0
s1
y √3 s2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

Table 8
Op mal weights from case 3, only one state (s1)

op mal weights

star ng state: s1

0t 1t 2t

0.1 0.000 0.000 1.000

0.3 0.000 0.000 1.000

0.5 0.000 0.000 1.000

0.7 0.000 0.000 1.000

0.9 -0.052 -0.226 1.379

Table 9
Op mal weights from case 3, symmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 -0.010 0.392 0.821 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.3 -0.002 0.393 0.821 0.001 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.5 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.7 -0.001 0.393 0.821 -0.006 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821

0.9 -0.007 0.393 0.821 -0.017 0.395 0.821 0.000 0.393 0.821 0.000 0.393 0.821
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Table 10
Op mal weights from case 3, asymmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 0.001 0.083 0.937 0.005 0.824 0.918 0.000 0.082 0.937 0.000 0.826 0.919

0.3 0.001 0.083 0.937 -0.001 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919

0.5 0.000 0.082 0.937 0.000 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919

0.7 0.000 0.082 0.937 0.001 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919

0.9 -0.079 0.115 0.929 -0.005 0.824 0.918 0.000 0.082 0.937 0.000 0.826 0.919

Table 11
Scenario 2: one forecast has higher variance in state 1

s1 s2
s1
1 1 s2

1 1
s1
2 1 s2

2 1
s1
3 0 s2

3 0
s1
f1 0 s2

f1 0
s1
f1 √1.1 s2

f1 1
s1
f2 0 s2

f2 0
s1
f2 √10 s2

f2 1
s1
f3 0 s2

f3 0
s1
f3 1 s2

f3 1
s1
y 0 s2

y 0
s1
y √16.1 s2

y √2
Cov(x,w)s1 0 Cov(x,w)s2 0

Table 12
Op mal weights from case 4, only one state (s1)

op mal weights

star ng state: s1

0t 1t 2t

0.3 0.000 1.900 1.010

0.5 0.000 1.900 1.010

0.7 0.000 1.900 1.010
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ANALYTICAL EXAMPLES

Table 13
Op mal weights from case 4, symmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.3 -0.001 1.452 1.050 -0.001 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.5 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.7 0.089 0.490 1.162 0.090 0.481 1.167 0.000 1.452 1.050 0.000 1.452 1.050

0.9 0.008 1.449 1.050 0.098 0.479 1.176 0.000 1.452 1.050 0.000 1.452 1.050

Table 14
Op mal weights from case 4, asymmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.3 0.001 1.810 1.019 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.5 0.000 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.7 0.001 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.9 0.000 1.810 1.019 -0.002 1.095 1.048 0.000 1.810 1.019 0.000 1.094 1.048
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5 Conjectures

In this sec on I assemble general observa ons from sec on 4 that could be formalized as theorems given further evidence.

1. If the individual forecasts are unbiased, the op mal combina on weights do not depend on the loss func on’s asymmetry
parameter. In case 1, we have seen that the constant term in the forecast combina on, 0 changed as increased.
However, in the other three scenarios, the op mal weights were constant despite changing asymmetry preferences. In
scenarios 2 through 4, both forecasts were unbiased, only their variances and covariance changed. When cases 1 and 2
were combined (f1 was biased and had higher variance in s1), the resul ng op mal weights were iden cal to the results
from case 1; again, the op mal bias captured by 0 was different for different -s.

2. If one of the individual forecasts are biased, the bias is adjusted for through 0, the constant in the combina on. The
op mal combina onweight of the biased individual forecast is its trueweight from the data genera ng process (conjecture
from scenario 1).

3. If the individual forecasts are uncorrelated and unbiased, the difference in their variances does not lead to differences in
their op mal combina on weights. In case 2, we have seen that for such parametriza on, the forecasts were assigned
their true coefficients from the DGP as combina on weights.

4. If f1 and f2 are correlated and have different variances, then the variance-minimiza on objec ve is taken into account in
es ma ng their op mal weights. The individual forecast with higher variance is assigned a lower weight.
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6 Conclusion

This paper uses a regime switching framework and assumes asymmetric quadra c loss func on to derive the op mal combina-
onweights of individual forecasts. The switching framework is based on the paper of Ellio and Timmermann (2005), however

I extend their setup by using asymmetric quadra c loss in the op miza on problem. This is an important extension, since with
my setup it is possible to quan fy and analyze op mal forecast biases for different direc ons and levels of asymmetry in the
loss func on, contribu ng to the literature on ra onal forecast bias.

A er introducing the expected loss func on and first order condi ons in the general case, I present the numerical procedure
used to calculate the op mal weights in specific parametriza ons. The op mal forecast combina on weights are calculated
in four scenarios exhibi ng different bias, variance and covariance proper es between the individual forecasts. The general
observa ons from these examples are summerized in sec on 5. Themost important conjecture is that assuming an asymmetric
quadra c loss func on and regime switching, the op mal combina onweights depend on the asymmetry parameter only in the
case when one of the forecasts are biased. In this case, for asymmetric preferences, the average loss based on the asymmetric
quadra c loss func on strongly dominates the MSE-based average loss.

If the individual forecasts are unbiased and only their variances differ (in both uncorrelated and correlated scenarios), then the
op mal weights resul ng from the asymmetric loss func on are the same as those resul ng from the mean squared loss. The
op mal weights are independent from the asymmetry parameter.

In future work, conduc ng simula ons calibrated to the real economy and analyzing the performance of the op mal forecast
combina ons introduced here might prove important.
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Appendix A Deriva on of the general
expected loss func on

In this appendix, I show the deriva on of the general expected loss func on in equa on 7 by subs tu ng est 1 est 1

est 1
zst 1

.

The forecaster needs to minimize the following expected loss:

E{L(et 1)|It, st 1}
k

st 1 1
st 1 ,tE{(( (2 1)1est 1 0)(e2st 1

))|It} → min (22)

For simplifying nota on, I am going to remove the st 1 subscripts from est 1
for the following equa ons: e.g. e means est 1

.

Note that zst 1

est 1 est 1

est 1

is the standardized forecast error. E[zst 1
] 0; E[z2st 1

] 1 Taking the expected value into parts:

E{L(et 1)|It, st 1}
k

st 1 1
st 1 ,tE{( (2 1)1est 1 0)[e2st 1

]} (23)

k

st 1 1
st 1 ,t E[ 2

e
2
ez2st 1

2 e ezst 1
] (2 1)

k

st 1 1
st 1 ,tE[1est 1 0 e2st 1

]

E(z2st 1 ) 1; E(zst 1 ) 0
↓ k

st 1 1
st 1 ,t E[ 2

e
2
e] (2 1)

k

st 1 1
st 1 ,t

0

e2st 1
F(est 1

)

changing variables in the integral
↓ k

st 1 1
st 1 ,t[ 2

e
2
e] (2 1)

k

st 1 1
st 1 ,t

e
e

( e ezst 1
)2 F(zst 1

)
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Appendix B Equa ons for special
case 1

In this specifica on, f1 has an upward bias of 0.1 on state 1 (see table 1 and equa ons 10-12 for full specifica on). The expected
loss takes the following form:

E{L(e)|I, s1} [P11( 2
e,s1

2
e,s1) P12( 2

e,s2
2
e,s2)]

(2 1)
⎡
⎢
⎢
⎢
⎣

P1,1
e,s1
e,s1

( e,s1 e,s1z)2 F(z) P1,2
e,s2
e,s2

( e,s2 e,s2z)2 F(z)
⎤
⎥
⎥
⎥
⎦

P11[( 0,s1 1,s1 f1,s1)
2 (2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1))]

P12[( 0,s1)2 (2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1))]

(2 1)

⎡
⎢
⎢
⎢
⎢
⎣

P11
0,s1 1,s1 f1,s1

2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

0,s1 1,s1 f1,s1

2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)z

2

F(z)

P12
0,s1

2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

( 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)z)2 F(z)

⎤
⎥
⎥
⎥
⎦

(24)

When the star ng state is assumed to be s2, we get a similar expected loss func on to equa on 24, but the transi on probaili es
P21 and P22 are used in place of P11 and P12. When all elements of the transi on probability matrix are 0.5, the two sets of
weights are equal.
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Minimizing the expected loss in equa on 24 yields the following first order condi ons:

E{L(e)|s, I}
0

0 ∶

P11( 0,s1 1,s1 f1,s1) P12( 0,s1)

(2 1)

⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎢
⎣

0,s1 1,s1 f1,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

0,s1 1,s1 f1,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1) z F(z)

⎤
⎥
⎥
⎥
⎥
⎦

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1) z F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(25)

The op mal weights for the two individual forecasts, 1 and 2 are determined by solving first order condi ons 26 and 27:

E{L(e)|s, I}
1,s1

0 ∶

P11[( 0,s1 1,s1 f1,s1) f1,s1 1,s1 1] P12( 1,s1 1)

(2 1)

⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎢
⎣

0,s1 1,s1 f1,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs1 f1,s1 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 1,s1 1) F(z)

⎤
⎥
⎥
⎥
⎥
⎦

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 1,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭
(26)

where

cs1 0,s1 1,s1 f1,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)
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APPENDIX B EQUATIONS FOR SPECIAL CASE 1

E{L(e)|s, I}
2,s1

0 ∶

P11( 2,s1 1) P12( 2,s1 1)

(2 1)

⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎢
⎣

0,s1 1,s1 f1,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs1 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 2,s1 1) F(z)

⎤
⎥
⎥
⎥
⎥
⎦

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 2,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(27)

where

cs1 0,s1 1,s1 f1,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

When star ng from s2, the transi on probabili es in the above equa ons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respec vely.
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Appendix C Equa ons for special
case 2

In this specifica on, f1 has an higher variance in state 1 (see table 4 and the setup in sec on 4.2 for a full specifica on). The
expected loss takes the following form:

E{L(e)|I, s1} [P11( 2
e,s1

2
e,s1) P12( 2

e,s2
2
e,s2)]

(2 1)
⎡
⎢
⎢
⎢
⎣

P1,1
e,s1
e,s1

( e,s1 e,s1z)2 F(z) P1,2
e,s2
e,s2

( e,s2 e,s2z)2 F(z)
⎤
⎥
⎥
⎥
⎦

P11[( 0,s1)2 (3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1))]

P12[( 0,s1)2 (2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1))]

(2 1)
⎡
⎢
⎢
⎢
⎣

P11
0,s1

3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1)

0,s1

3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1)z

2

F(z)

P12
0,s1

2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

( 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)z)2 F(z)

⎤
⎥
⎥
⎥
⎦

(28)

When the star ng state is assumed to be s2, we get a similar expected loss func on to equa on 28, but the transi on probaili es
P21 and P22 are used in place of P11 and P12. When all elements of the transi on probability matrix are 0.5, the two sets of
weights are equal.
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APPENDIX C EQUATIONS FOR SPECIAL CASE 2

Minimizing the expected loss in equa on 28 yields the following first order condi ons:

E{L(e)|s, I}
0

0 ∶

P11( 0,s1) P12( 0,s1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
3 (2 2

1,s1
2
2,s1) 2(2 1,s1 2,s1)

0,s1 3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1) z F(z)

⎤
⎥
⎥
⎥
⎦

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1) z F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(29)

The op mal weights for the two individual forecasts, 1 and 2 are determined by solving first order condi ons 26 and 30:

E{L(e)|s, I}
1,s1

0 ∶

P11[2 1,s1 2] P12( 1,s1 1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
3 (2 2

1,s1
2
2,s1) 2(2 1,s1 2,s1)

cs1 z 3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1)

1
(2 1,s1 2) F(z)

⎤
⎥
⎥
⎥
⎦

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 1,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(30)

where

cs1 0,s1 3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)
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E{L(e)|s, I}
2,s1

0 ∶

P11( 2,s1 1) P12( 2,s1 1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
3 (2 2

1,s1
2
2,s1) 2(2 1,s1 2,s1)

cs1 z 3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1)

1
( 2,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 2,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(31)

where

cs1 0,s1 3 (2 2
1,s1

2
2,s1) 2(2 1,s1 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

When star ng from s2, the transi on probabili es in the above equa ons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respec vely.
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Appendix D Equa ons for special
case 3

DGP:
y f2 e (32)

forecast:
y 0 1f1 2f2 (33)

f1 f f2 f (34)

Cov(f1, f2) Var(f) Cov( , ) 1 (35)

The expected loss takes the following form:

E{L(e)|I, s1} [P11( 2
e,s1

2
e,s1) P12( 2

e,s2
2
e,s2)]

(2 1)
⎡
⎢
⎢
⎢
⎣

P1,1
e,s1
e,s1

( e,s1 e,s1z)2 F(z) P1,2
e,s2
e,s2

( e,s2 e,s2z)2 F(z)
⎤
⎥
⎥
⎥
⎦

P11[( 0,s1)2 1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1))]

P12[( 0,s1)2 (2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1))]

(2 1)
⎡
⎢
⎢
⎢
⎣

P11
0,s1

1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1

0,s1

1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1z
2

F(z)

P12
0,s1

2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)z)2 F(z)

⎤
⎥
⎥
⎥
⎦

(36)

When the star ng state is assumed to be s2, we get a similar expected loss func on to equa on 36, but the transi on probaili es
P21 and P22 are used in place of P11 and P12. When all elements of the transi on probability matrix are 0.5, the two sets of
weights are equal.
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Minimizing the expected loss in equa on 36 yields the following first order condi ons:

E{L(e)|s, I}
0

0 ∶

P11( 0,s1) P12( 0,s1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
(1.2 2 2

1,s1 1.2 2
2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)

0,s1

1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1) z F(z)

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1) z F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(37)

The op mal weights for the two individual forecasts, 1 and 2 are determined by solving first order condi ons 38 and 39:

E{L(e)|s, I}
1,s1

0 ∶

P11(2 1,s1 2,s1 1) P12( 1,s1 1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
1.2 2 2

1,s1 1.2 2
2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)

cs1 z 1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)
1
×

×(2 1,s1 2,s1 1) F(z)

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 1,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(38)

where

cs1 0,s1 1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)
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APPENDIX D EQUATIONS FOR SPECIAL CASE 3

E{L(e)|s, I}
2,s1

0 ∶

P11( 1,s1 1.2 2,s1 1.2) P12( 2,s1 1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
1.2 2 2

1,s1 1.2 2
2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)

cs1 z 1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)
1
×

×( 1,s1 1.2 2,s1 1.2) F(z)

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 2,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(39)

where

cs1 0,s1 1.2 2 2
1,s1 1.2 2

2,s1 2 1,s1 2,s1 2( 1,s1 1.2 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

When star ng from s2, the transi on probabili es in the above equa ons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respec vely.
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Appendix E Equa ons for special
case 4

DGP:
y f1 f2 f3 e (40)

forecast:
y 0 1f1 2f2 (41)

f1 f3

f2 f3
(42)

Cov(f1, f2) Var(f3) Cov( , ) 1 (43)

Cov(y, f1) Var(f1) Cov(f1, f2) Cov(f1, f3) 1.1 1 1 3.1
Cov(y, f2) Var(f1) Cov(f1, f2) Cov(f2, f3) 10 1 1 12

(44)

The expected loss takes the following form:

E{L(e)|I, s1} [P11( 2
e,s1

2
e,s1) P12( 2

e,s2
2
e,s2)]

(2 1)
⎡
⎢
⎢
⎢
⎣

P1,1
e,s1
e,s1

( e,s1 e,s1z)2 F(z) P1,2
e,s2
e,s2

( e,s2 e,s2z)2 F(z)
⎤
⎥
⎥
⎥
⎦

P11[( 0,s1)2 (16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1) 2(3.1 1,s1 12 2,s1))]

P12[( 0,s1)2 (2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1))]

(2 1)
⎡
⎢
⎢
⎢
⎣

P11
0,s1

16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1) 2(3.1 1,s1 12 2,s1)

0,s1

16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1) 2(3.1 1,s1 12 2,s1)z
2

F(z)

P12
0,s1

2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)z)2 F(z)

⎤
⎥
⎥
⎥
⎦
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APPENDIX E EQUATIONS FOR SPECIAL CASE 4

(45)

When the star ng state is assumed to be s2, we get a similar expected loss func on to equa on 45, but the transi on probaili es
P21 and P22 are used in place of P11 and P12. When all elements of the transi on probability matrix are 0.5, the two sets of
weights are equal.

Minimizing the expected loss in equa on 45 yields the following first order condi ons:

E{L(e)|s, I}
0

0 ∶

P11( 0,s1) P12( 0,s1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
(16.1 (1.1 2

1,s1 2 1,s1 2,s1 10 2
2,s1) 2(3.1 1,s1 12 2,s1))

0,s1

16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1) 2(3.1 1,s1 12 2,s1) z F(z)

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1) z F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(46)

The op mal weights for the two individual forecasts, 1 and 2 are determined by solving first order condi ons 47 and 48:

E{L(e)|s, I}
1,s1

0 ∶

P11(1.1 1,s1 2,s1 3.1) P12( 1,s1 1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
16.1 (1.1 2

1,s1 2 1,s1 2,s1 10 2
2,s1) 2(3.1 1,s1 12 2,s1)

cs1 z 16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1)

2(3.1 1,s1 12 2,s1)
1
(1.1 1,s1 2,s1 3.1) F(z)

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 1,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(47)

where

cs1 0,s1 16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1) 2(3.1 1,s1 12 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)
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E{L(e)|s, I}
2,s1

0 ∶

P11( 1,s1 10 2,s1 12) P12( 2,s1 1)

(2 1)
⎧
⎪
⎨
⎪
⎩

P11

⎡
⎢
⎢
⎢
⎣

0,s1
16.1 (1.1 2

1,s1 2 1,s1 2,s1 10 2
2,s1) 2(3.1 1,s1 12 2,s1)

cs1 z 16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1)

2(3.1 1,s1 12 2,s1)
1
( 1,s1 10 2,s1 12) F(z)

P12

⎡
⎢
⎢
⎢
⎣

0,s1
2 ( 2

1,s1
2
2,s1) 2( 1,s1 2,s1)

cs2 z 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

1
( 2,s1 1) F(z)

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

(48)

where

cs1 0,s1 16.1 (1.1 2
1,s1 2 1,s1 2,s1 10 2

2,s1) 2(3.1 1,s1 12 2,s1)

cs2 0,s1 2 ( 2
1,s1

2
2,s1) 2( 1,s1 2,s1)

When star ng from s2, the transi on probabili es in the above equa ons change from P(1,1) and P(1,2) to P(2,1) and P(2,2),
respec vely.
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Appendix F Op mal weights for case
4: full tables

Table 15
Op mal weights from case 4, only one state (s1)

op mal weights

star ng state: s1

0t 1t 2t

0.1 0.083 0.517 1.171

0.3 0.000 1.900 1.010

0.5 0.000 1.900 1.010

0.7 0.000 1.900 1.010

0.9 0.113 0.444 1.184

Table 16
Op mal weights from case 4, symmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 0.066 0.517 1.146 0.105 0.518 1.157 0.000 1.452 1.050 0.000 1.452 1.050

0.3 -0.001 1.452 1.050 -0.001 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.5 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050

0.7 0.089 0.490 1.162 0.090 0.481 1.167 0.000 1.452 1.050 0.000 1.452 1.050

0.9 0.008 1.449 1.050 0.098 0.479 1.176 0.000 1.452 1.050 0.000 1.452 1.050

Table 17
Op mal weights from case 4, asymmetric transi on probabili es

op mal weights ET op mal weights

star ng state: s1 star ng state: s2 star ng state: s1 star ng state: s2

0t 1t 2t 0t 1t 2t 0t 1t 2t 0t 1t 2t

0.1 0.058 0.517 1.167 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.3 0.001 1.810 1.019 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.5 0.000 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.7 0.001 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048

0.9 0.000 1.810 1.019 -0.002 1.095 1.048 0.000 1.810 1.019 0.000 1.094 1.048
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