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A1. Environmental Indicators and Determinants of Ecological Degradation: 

Related Literature  

 Environmental Indicators 

o Carbon footprint of consumption and carbon footprint of production. 

The carbon footprint of consumption measures the total carbon emissions 

associated with the consumption of goods and services within a country, 

accounting for all emissions generated throughout the lifecycle of 

products—including their production, transportation, and disposal. In 

contrast, the carbon footprint of production focuses exclusively on the direct 

emissions produced within a specific geographical area during the 

production of goods and services. It comprises the carbon emissions 

generated by industries, factories, and businesses within that region, and 

does not consider the emissions resulting from the consumption of these 

products. 

o Ecological footprint of consumption and ecological footprint of 

production. The ecological footprint of consumption measures the 

environmental impact linked to the consumption patterns of communities 

within an economy. Specifically, it quantifies the biologically productive land 

and sea areas necessary for resources consumed and waste generated 

during the life cycle of goods and services. On the other hand, the 

ecological footprint of production assesses the environmental impact 

associated with the production of goods and services, thus reflecting the 

biologically productive land and sea areas required for raw materials, 

energy, waste, and emissions throughout the production process. 

 Economic Growth 

o Per-capita gross domestic product. Since the early contributions that 

explored the determinants of environmental degradation, considerable 

attention has been devoted to understanding the role played by the process 

of economic growth and development. The studies in this context commonly 

employ per-capita gross domestic product (GDP) as a measure of 

development, to address the so-called “scale” effect. This suggests that 

increased economic activity tends to lead to higher pollution levels, as 

industries and consumption patterns associated with economic growth are 

typically pollution-intensive.  However, as countries become wealthier and 
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social awareness of environmental issues increases, they tend to 

progressively switch to more environmentally friendly production 

techniques and goods. The combination of these two opposing trends is 

consistent with the well-known classic Environmental Kuznets Curve 

(EKC), depicting an inverted U-shaped relationship between economic 

growth and environmental decay (e.g., Grossman and Krueger 1991, 

Harbaugh et al. 2002). Meanwhile, recent literature has conjectured the 

existence of even more complex, cubic interplays between environmental 

degradation and economic growth—resulting in either N-shaped or inverted 

N-shaped EKCs. These are consistent with the presence of two turning 

points and three different phases. Our estimations account for these 

potential EKC functional forms by including the (logs of) linear, squared, 

and cubed terms of per-capita GDP.  

 Sectoral Composition 

o Agriculture, industry, and services values added. The sectoral 

composition of an economy, represented by the GDP shares of agriculture, 

industry, and services, can significantly affect pollution emissions. This is 

because environmental impacts vary across sectors, owing to different 

production processes, type and intensity of energy and other resource use, 

etc. Typically, industry-biased structural transformation boosts pollutant 

emissions, as agriculture and service activities are generally characterized 

by lower emissions (e.g., Panayotou 1997, Suh 2006, Wang et al. 2017, 

Khan et al. 2020, Lin and Li 2020). 

 Energy Variables 

Energy sources play a fundamental role in shaping environmental outcomes. The 

choices made regarding energy production, consumption, and demand can 

significantly impact pollution levels and environmental sustainability. Based on the 

empirical literature, we consider the following indicators: 

o Fossil fuel energy consumption. The burning of fossil fuels, such as coal, 

oil, and natural gas, is a primary source of greenhouse gas (GHG) emissions 

(Huijbregts et al. 2006, Baek 2016, Henriques and Borowiecki 2017). When 

these fuels are combusted for energy, they release carbon dioxide (CO2) and 

other pollutants into the atmosphere. For this reason, we expect a positive 

sign for the associated coefficient, especially for GHG emissions. 
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o Alternative and nuclear energy. These sources—including wind, solar, 

hydropower, and nuclear energy—are considered low-carbon alternatives, 

as they produce minimal or no direct CO2 emissions during energy 

generation. Therefore, these are typically associated with lower levels of 

emissions per unit of output (e.g., Dong et al. 2018, Piłatowska et al. 2020).  

o Energy imports. Evidence suggests that whether a country is a net energy 

importer or exporter matters for its emissions profile. Specifically, big energy 

importers tend to have higher emissions, particularly if the imported energy 

comes from non-renewable sources (e.g., Álvarez-Herránz et al. 2017b). 

 Sociodemographic Variables 

o Urban population. Higher urbanization can influence pollutant emissions 

due to several factors. Urban areas often exhibit more concentrated 

economic activities, transportation networks, and higher per-capita energy 

consumption. Additionally, increased urbanization can lead to greater 

energy demands for heating and cooling, often matched by relying on fossil 

fuels. Therefore, higher urbanization typically correlates with increased 

emissions, making it a key factor in understanding pollution dynamics (e.g., 

Liddle 2013, Sadorsky 2014).  

o Population density. Similar to urbanization, high population density can 

intensify pollutant emissions due to increased human activities and 

resource consumption. In fact, dense urban areas often experience 

elevated energy demand, leading to higher industrial output, transportation-

related emissions, and increased waste generation. Additionally, 

concentrated populations may exert pressure on land use, potentially 

contributing to deforestation and changes in land cover (e.g., Zarco-Perinan 

et al. 2021) 

o KOF Globalization Index. Globalization can influence pollutant emissions 

in several ways. Increased trade and production often lead to greater 

energy consumption, potentially resulting in higher emissions (e.g., Wang 

2018, Destek 2019). On the other hand, by laying bare the need for 

environmental improvements and the fight against climate change, 

globalization can help create the political conditions for the approval of more 

stringent environmental regulations (e.g., Chen et al., 2020). At the same 

time, globalized lifestyles may encourage resource-intensive behaviors and 
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increased consumption, which can contribute to worsening environmental 

conditions (Destek 2019, Wang et al. 2019). Therefore, globalization’s 

multifaceted nature can affect pollutant emissions through different 

channels, working in opposite directions. The KOF Globalization Index 

synthesizes economic, political, and social aspects of globalization and is 

included in our empirical analysis to capture the overall magnitude and sign 

of the impact of globalization.  

 Technology and Total Factor Productivity  

o Investment-specific technological progress. According to the literature, 

technological progress, particularly when embedded in investments, can 

influence pollution emissions through two main mechanisms. On one hand, 

it can lead to emissions reduction by promoting cleaner and more efficient 

production processes and energy sources (e.g., Greaker and Hagem 2014, 

Li and Wang 2017). Conversely, technological innovation may result in 

emissions increases if it fuels higher industrial activity and energy demand 

(Wang et al. 2019, Li et al. 2021). Thus, the direction of impact depends on 

the nature and adoption of these technologies within the economic system. 

We assess the contribution of this factor in shaping emissions dynamics 

using a proxy of investment-specific technological progress, constructed as 

the ratio of the price level of capital formation to the price level of household 

consumption (Gravina and Lanzafame 2021).1 

o Total factor productivity level. Total factor productivity (TFP) can affect 

pollutant emissions through various mechanisms. An increase in TFP often 

results in a more efficient use of resources, reducing emissions per unit of 

output and leading to lower pollution levels (e.g., Cole et al. 2005, Marin 

2013). But rapid TFP growth, especially in developing economies, can 

stimulate economic activity, potentially increasing overall emissions (Yao 

and Tang 2020). Thus, the net effect of TFP on emissions depends on the 

relative strength of these mechanisms. 

  

 
1 The relative price of investment goods can be considered as a good proxy for investment-specific technological 
progress, as it captures changes in technology that affect the cost and productivity of capital goods. As this relative 
price decreases, it suggests improvements in investment-specific technology, leading to increased investment and, 
ultimately, contributing to economic growth (e.g., Greenwood et al. 1997, 2000). 
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 Environmental Institutions and Policies 

Environmental institutions and policies can contribute to reducing polluting 

emissions associated with economic activity (e.g., Tang et al. 2014, Khan et al. 

2021, Puertas and Marti 2021). These usually set regulatory frameworks, provide 

incentives for cleaner technologies, determine penalties for environmental 

violations, and create a conducive environment for sustainable practices. We use 

two indicators to measure the impact of such institutions and policies:  

o Environmental ministry establishment. It is represented by a dummy 

variable, equal to 1 from the year a country introduced the dicastery and 0 

otherwise.2 

o The number of international environmental agreements ratified per 

year. International environmental agreements (IEAs) establish stringent 

environmental regulations, encouraging member states to adopt measures 

that reduce emissions and enhance pollution control. In addition, 

participation in IEAs facilitates the exchange of cleaner technologies among 

member states, promoting innovation and the adoption of more sustainable 

practices. Relatedly, ratifying IEAs can stimulate market demand for eco-

friendly products and services, incentivizing investment in cleaner 

technologies and practices (e.g., Vollenweider 2013, Oikonomou et al. 

2021). 

 Natural Characteristics 

Forest land (percentage of land area). Forest land, through mechanisms 

like CO2 absorption, soil conservation, support for biodiversity, and 

sustainable management practices, significantly influences pollutant 

emissions. This impact extends to reducing GHG emissions, preventing 

deforestation-related carbon release, maintaining healthy ecosystems, 

fostering sustainable industrial practices, and contributing to air quality 

through the release of volatile organic compounds (Pan et al. 2011). 

 Economic Variables 

o Tertiary education. The literature typically suggests that individuals with 

 
2 To harmonize it with other variables considered in our analysis, we followed Aklin and Urpelainen’s (2014) procedure 
to extend the time-series coverage of this indicator from 2010 to 2015. 
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more education tend to be more environmentally conscious and aware of 

the consequences of pollution. They are more likely to support and adopt 

sustainable practices, both in their personal lives and through their influence 

on policy decisions (e.g., Goetz et al. 1998, Graff Zivin and Neidell 2013). 

Moreover, education can lead to innovation and the development of cleaner 

technologies, further contributing to emission reduction (Blackman and 

Kildegaard 2010).  

o Foreign direct investment net inflows. Foreign direct investment (FDI) 

inflows can have contrasting effects on polluting emissions, depending on 

several factors. In fact, the empirical literature typically suggests that FDI 

can influence emissions in both directions. FDI may lead to an increase in 

emissions when foreign investors introduce polluting industries or 

technologies in the host country, prioritizing economic gains over 

environmental concerns (e.g., De Pascale et al. 2020, Opoku and Boachie 

2020). Conversely, FDI can contribute to reducing emissions if associated 

with the adoption of cleaner technologies, managerial practices, and 

environmental standards. Foreign investors tend to promote energy 

efficiency, cleaner production processes, and sustainable practices if 

incentivized to meet international standards and to enhance their corporate 

image (e.g., Solarin and Al-Mulali 2018, Rafique et al. 2020).  

o Gini index before taxes. Income inequality can impact polluting emissions 

through various transmission mechanisms—Berthe and Elie (2015) have a 

full review. In economies with significant income inequality, the wealthiest 

individuals often exhibit higher consumption patterns, which can drive up 

emissions. These individuals may prefer energy-intensive products and 

lifestyles, all of which contribute to greater carbon footprints (e.g., Boyce 

1994, Pickett and Wilkinson 2010). Additionally, they might possess greater 

political influence, potentially advocating for pro-business policies that 

prioritize economic growth over environmental concerns, possibly resulting 

in higher emissions (e.g., Borghesi 2006). On the flip side, income inequality 

can spur shifts in economic structures. In some cases, societies with high 

income inequality might transition toward cleaner, service-oriented 

economies as rich individuals may be more inclined to adopt sustainable 

behaviors. This shift may result from a desire to reduce pollution levels in 
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urban areas, where the wealth gap is most noticeable. This could involve 

investing in renewable energy sources, adopting energy-efficient 

technologies, and advocating for eco-friendly policies (Scruggs 1998, 

Heenrik et al. 2001). 

o International tourism. International tourism can impact pollution emissions 

via various channels. Firstly, it often involves long-haul flights and extensive 

use of transportation, especially by air. These modes of travel are 

associated with significant carbon emissions, contributing to pollution 

(Lenzen et al. 2018). Secondly, the hospitality industry, including hotels and 

resorts, consumes substantial energy and resources, leading to increased 

emissions. Furthermore, large-scale tourist accommodations, particularly in 

environmentally sensitive areas, can strain local ecosystems and 

exacerbate pollution problems (Koçak et al. 2020).  

o Labor productivity. Labor productivity, measured as the amount of output 

produced per unit of labor input, can also influence emissions in various 

ways. When labor productivity increases, firms can produce more goods or 

services with the same amount of labor, boosting economic growth. 

Increased economic activity, if not accompanied by improvements in 

environmental efficiency, can potentially result in higher emissions due to 

higher energy consumption (e.g., Simionescu et al. 2021). On the other 

hand, higher labor productivity can also drive technological advancements 

and process innovations. Firms may invest in cleaner and more efficient 

technologies to maximize their productivity gains. These cleaner 

technologies often require less energy and generate fewer emissions per 

unit of output, which can contribute to reduced emissions (Mazzanti and 

Zoboli 2009). 

o Inflation. Inflation can affect energy consumption patterns. When prices 

rise, individuals and businesses may reduce their energy use to control 

costs, which can lead to lower emissions if energy production is carbon-

intensive (e.g., Setyadharma et al. 2021). The level of inflation also matters. 

Low inflation may provide more stable economic conditions, facilitating 

investment in cleaner technologies. Conversely, due to uncertainty and 

higher costs, high inflation may lead firms to delay or reduce investments in 

environmental innovations and cleaner technologies, thus prioritizing short-
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term economic performance over long-term environmental concerns 

(Ahmad et al. 2021).  

o Imports, exports, and overall trade of goods and services. Trade can 

influence emissions through various channels. Increased trade can lead to 

higher production and transportation activities, which can result in higher 

emissions. When countries engage in more trade, they often produce more 

goods for export and transport more raw materials and finished products, 

potentially increasing their carbon footprint (Wang and Ang 2018). The 

types of goods a country imports and exports can also influence emissions. 

If a country specializes in producing and exporting goods with a low carbon 

footprint (e.g., technology or services) while importing carbon-intensive 

goods (e.g., heavy machinery), its net emissions may decrease 

(Felbermayr et al. 2020, Misch and Wingender 2021). Trade can also 

facilitate the transfer of cleaner and more efficient technologies across 

borders. When countries import advanced technologies or cleaner 

production methods, it can lead to reduced emissions per unit of output 

(e.g., Herrerias et al. 2013). Economies with stricter environmental 

regulations might “outsource” more emissions by importing carbon-

intensive goods produced in countries with lax regulations (Cole 2004). 

Conversely, countries with stringent regulations may reduce emissions by 

exporting cleaner products (Peters and Hertwich 2008). To assess whether, 

and to what extent, the different dimensions of international trade may 

impact polluting emissions, the analysis separately considers imports and 

exports as shares of GDP, as well as a total trade measure, given by the 

sum of the first two. 

o Private credit. Financial development, typically measured as the ratio of 

banking sector credit to GDP, can also impact environmental emissions. A 

well-developed financial sector can allocate capital more efficiently, 

directing funds toward investments in cleaner and more sustainable 

technologies. This can lead to reduced emissions, as industries adopt 

environmentally friendly practices (e.g., Lv and Li 2021). Additionally, 

financial institutions can encourage compliance with environmental 

regulations by incorporating environmental, social, and governance criteria 

into lending and investment decisions. This can incentivize companies to 
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reduce their emissions to maintain access to capital (Li et al. 2020, Shi et 

al. 2022). On the other hand, by providing easier access to credit and 

investment capital, a more developed financial sector can also boost high-

emitting industrial activities, particularly in the early stages of development 

(e.g., Sadorsky 2011). 

 Institutional Quality Variables 

Institutions play a pivotal role in shaping a nation’s approach to environmental 

sustainability and, consequently, its impact on emissions. Government bodies, 

regulatory agencies, legal frameworks, and governance structures collectively 

influence environmental policy and enforcement. Strong and capable institutions 

often contribute positively to environmental preservation by formulating and 

enforcing regulations, promoting sustainable practices, and fostering innovation in 

cleaner technologies (e.g., Adams and Klobodu 2017, Bhattacharya et al. 2017). 

Conversely, weaker or corrupt institutions may struggle to enforce regulations, 

creating an environment where businesses can evade environmental standards, 

consequently leading to higher emissions (Arminen and Menegaki 2019). In our 

empirical analysis, we consider the following indicators of institutional quality: 

o Corruption index. The index ranges from 0 to 6, where 0 represents the 

highest level of corruption. Corruption within institutions can have significant 

implications for polluting emissions. For instance, corrupt practices can 

undermine the enforcement of environmental regulations. When 

businesses can bribe officials or evade penalties, they are less motivated 

to reduce emissions. As a result, pollution levels may increase in regions 

where corruption is prevalent (e.g., Balsalobre-Lorente et al. 2019). 

Corruption can lead to the misallocation of resources, including 

environmental funds. Instead of investments in emission-reduction 

technologies or sustainable practices, funds may be diverted for personal 

gain. This misallocation can hinder progress in emissions reduction (Hao et 

al. 2020). Corrupt practices can enable industries to capture the 

policymaking process. This means that policies may be formulated in favor 

of polluting industries rather than in the interest of environmental protection. 

Consequently, emissions may rise due to lax regulations (Fredriksson and 

Svensson 2003). More generally, as pointed out by Welsch (2004) and Cole 
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(2007), corruption can influence pollutant emissions through direct and 

indirect effects. Typically, the direct effects of corruption are associated with 

higher emissions. Indirect effects, working through a reduction in per-capita 

income, may lead to lower pollutant emissions. The net effect remains 

ambiguous a priori and represents an empirical question. 

o Polity score index. This indicator quantifies the spectrum of regime 

authority on a 21-point scale that spans from –10 (representing hereditary 

monarchies) to +10 (denoting consolidated democracies). Countries with 

more democratic institutions are usually associated with reduced pollutant 

emissions. Democratic societies tend to have greater transparency and 

accountability in government decision-making, which can lead to more 

stringent environmental regulations and better enforcement of existing laws 

(e.g., Li and Reuveny 2006). Furthermore, democratic governments are 

often responsive to public concerns on environmental issues and may enact 

policies to address them, such as promoting renewable energy sources and 

regulating emissions (Bernauer 2013). Finally, democratic institutions can 

foster a greater sense of environmental stewardship among citizens, 

leading to voluntary efforts to reduce emissions (Neumayer 2002). 

Conversely, authoritarian regimes may be associated with higher emissions 

due to a focus on economic growth, limited environmental regulations, 

reduced accountability, and restricted public engagement in environmental 

matters. These factors can hinder efforts to mitigate emissions effectively 

(Shultz and Stone 1994). 

o Political polarization index. This index ranges from 0 to 2, where 0 

represents the absence of polarization, indicating that the chief executive’s 

party government holds an absolute political majority in the legislature. 

Political polarization, characterized by stark ideological divisions among 

political parties and the electorate, can have mixed effects on polluting 

emissions. For instance, political polarization can lead to increased 

economic uncertainty, which may result in lower long-term investments— 

including those with potential environmental impacts. In turn, this may lead 

to lower levels of emissions (Azzimonti 2011). In cases where political 

polarization coexists with heightened public awareness and sustained 

pressure from environmental advocacy groups, political parties may be 
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compelled to enact more stringent environmental policies. The fear of losing 

electoral support can drive parties to promote robust environmental 

regulations (Fisher et al. 2013). International pressure and global climate 

agreements can compel political parties to collaborate in addressing 

pollution emissions. In these cases, political polarization may be 

superseded by the urgent need to adhere to international commitments 

(Garmann 2014). On the other hand, high levels of political polarization 

often result in policy gridlock, making it difficult to reach consensus on 

robust and consistent environmental policies. This can hinder progress in 

addressing pollution emissions (Coffey and Joseph 2013). Polarized 

political environments can foster a focus on short-term gains and immediate 

economic concerns over long-term environmental considerations. This 

could lead to policies that prioritize economic growth at the expense of 

emissions reduction (Di Bartolomeo et al. 2020). 

 

A2. Additional Tables and Figures 

 
Table A2.1: Economies Included in the Analysis 

 
Advanced economies 

 
Australia, Austria, Belgium, Canada, Croatia, Cyprus, Czech Republic, Denmark, Estonia, 
Finland, France, Greece, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, 
Netherlands, New Zealand, Norway, Portugal, Republic of Korea, Singapore, Slovak Republic, 
Slovenia, Spain, Sweden, United Kingdom, United States 

 
Emerging economies 

 
Armenia, Bahrain, Bolivia, Botswana, Brazil, Bulgaria, Cameroon, Chile, Colombia, Costa 
Rica, Dominican Republic, Ecuador, Egypt, Gabon, Guatemala, Honduras, Hungary, India, 
Indonesia, Iran, Jamaica, Jordan, Kazakhstan, Kenya, Malaysia, Mexico, Mongolia, Morocco,  
Mozambique, Namibia, Nicaragua, Niger, Panama, Paraguay, People’s Republic of China 
(PRC), Peru, Philippines, Poland, Russian Federation, Saudi Arabia, Senegal, South Africa, 
Sri Lanka, Sudan, Tanzania, Thailand, Togo,  Tunisia, Türkiye, Ukraine, Uruguay, Venezuela, 
Zambia 

Notes: Economy groups are defined following the International Monetary Fund’s World 
Economic Outlook (WEO) classification (https://www.imf.org/en/Publications/WEO/weo-
database/2023/April/groups-and-aggregates). The “Emerging economies” group includes 
economies in the WEO’s “Emerging Market and Developing Economies” group. 
Source: Authors. 
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Table A2.2: Alternative Dependent Variables’ Descriptive Statistics 

Variable Obs Mean Std. Dev. Min Max 
BC emissions, kilo tons per-capita (log) 1216 -14.418 0.567 -17.417 -12.977 
N2O emissions, kilo tons per-capita (log) 1216 -13.355 0.744 -15.221 -11.51 
CH4 emissions, kilo tons per-capita (log) 1216 -9.762 0.784 -11.277 -6.66 
NH3 emissions, kilo tons per-capita (log) 1216 -11.743 0.723 -14.348 -9.914 
CO emissions, kilo tons per-capita (log) 1216 -9.417 0.622 -11.731 -7.972 
NMVOC emissions, kilo tons per-capita (log)  1216 -10.745 0.467 -12.058 -9.207 
NOX emissions, kilo tons per-capita (log)  1216 -11.01 0.786 -13.309 -9.095 
OC emissions, kilo tons per-capita (log) 1216 -13.779 0.802 -16.731 -12.216 
PM10 emissions, kilo tons per-capita (log) 1216 -12.023 0.633 -14.299 -10.283 
PM25 emissions, kilo tons per-capita (log)  1216 -12.518 0.604 -14.902 -10.92 
SO2 emissions, kilo tons per-capita (log) 1216 -11.367 1.072 -14.931 -9.018 
Ecological footprint of consumption, gha per-capita (log) 1203 1.216 0.637 -0.242 2.875 
Ecological footprint of production, gha per-capita (log) 1203 1.157 0.728 -.376 2.669 
Carbon footprint of consumption, gha per-capita (log) 899 0.436 1.144 -2.966 2.567 
Carbon footprint of production, gha per-capita (log) 899 0.208 1.292 -3.67 2.228 

BC = black carbon, CH4 = methane, CO = carbon monoxide, gha = global hectare, N2O = nitrous oxide, NH3 = 
ammonia, NMVOC = non-methane volatile organic compounds, NOx = nitrogen oxides, OC = organic carbon, 
PM10 = particulate matter with a diameter of 10 micrometers or less, PM2.5 = particulate matter with a diameter of 
2.5 micrometers or less, SO2 = sulfur dioxide. 
Source: Authors’ calculations. 

 

 

Figure A2.1: Inverted N-shaped Environmental Kuznets Curve 

 

Source: Authors. 
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A3. Diagnostics 

Figure A3.1: Check for Model Sampling Convergence 

 
PMP = Posterior model probability. 
Source: Authors’ calculations. 
 
 

Figure A3.2: Diagnostic Plot for the g Parameter

 

Source: Authors’ calculations. 
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A4. Sensitivity Analysis 

 

Table A4.1: Robustness Checks—Two-Stage Least Squares–Bayesian Model Averaging 
Regression Results 

Dependent Variable: CO2 emissions per-capita (log) 

 (1) Fixed g-prior (2) Random g-prior 

Predictor PIP Mean Std. Dev. PIP Mean Std. Dev. 

Real GDP per-capita (log) * 1 -6.787 1.499 1 -6.761 1.474 

Real GDP per-capita squared (log) * 1 0.799 0.165 1 0.796 0.163 

Real GDP per-capita cubed (log) * 1 -0.030 0.006 1 -0.299 0.006 

Fossil fuel energy consumption (% of total) 1 0.013 0.001 1 0.013 0.001 

International tourism, number of arrivals per population (log) 1 0.090 0.013 1 0.090 0.012 

Urban population (% of total population) 1 0.011 0.002 1 0.011 0.002 

Forest Land (% of Land Area) 1 -0.015 0.001 1 -0.015 0.003 

Services, value added (% of GDP) 1 -0.009 0.001 1 -0.009 0.001 

KOF Globalization Index 0.999 0.009 0.002 0.998 0.009 0.002 

Agriculture, value added (% of GDP) 0.997 -0.009 0.002 0.997 -0.009 0.002 

Political Polarization Index 0.996 -0.023 0.006 0.994 -0.023 0.006 

Corruption Index 0.855 0.018 0.009 0.853 0.018 0.009 

Gini Index (log) 0.546 0.191 0.198 0.535 0.179 0.197 

Year fixed effects Y Y 

Country fixed effects  Y Y 

Time trend Y Y 

Model prior Uniform Uniform 

g-prior UIP  Robust  

Sampling correlation 0.999 0.991 

Number of observations 1,190 1,190 

Number of predictors 133 133 

Number of models 2273 1900 

Mean model size 116.466 116.411 

Existence condition of min & max 0.028 0.028 

Min (PPP adjusted 2017 international $) 1,110.96 1,107.78 

Max (PPP adjusted 2017 international $) 47,387.59 47,516.59 

2SLS = two-stage least squares, BMA = Bayesian Model Averaging, CO2 = carbon dioxide, GDP = gross domestic 
product, IEA = international environmental agreement, MC3 = MCMC Model Composition, MCMC = Markov chain 
Monte Carlo, OLS = ordinary least squares, PPP = purchasing power parity, Std. Dev. = standard deviation, UIP = unit 
information prior. 

Notes: 2SLS-BMA estimates using MC3 sampling algorithm with 2,500 burn-in iterations and MCMC sample size of 
200,000. Predictors marked with * represent the fitted values obtained from a first stage OLS regression on our set of 
instruments, while the remaining predictors are lagged one period. 
Source: Authors’ calculations. 
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Table A4.2: Two-Stage Double-Selection Least Absolute Shrinkage and Selection 
Operator Regression Results 

 
Dependent Variable: CO2 emissions per-capita (log) 

Predictor 
Selection 

Plugin CV Adaptive BIC Sqrt LASSO 

Real GDP per-capita (log) ^  -4.584*  -6.201***  -6.237**  -6.201***  -4.584* 

 (2.540) (2.149) (2.147) (2.149) (2.540) 

Real GDP per-capita squared (log) ^  0.656**  0.744***  0.746***  0.744***  0.656** 

 (0.272) (0.235) (0.235) (0.235) (0.272) 

Real GDP per-capita cubed (log) ^  -0.028***  -0.028***  -0.023***  -0.028***  -0.028*** 
 (0.009) (0.009) (0.009) (0.009) (0.009) 

Year fixed effects Y Y Y Y Y 

Country fixed effects Y Y Y Y Y 

Time trend Y Y Y Y Y 

Number of observations 1,215 1,215 1,215 1,215 1,215 

Number of selected controls 107 132 128 132 107 

Existence condition of min & max 0.049 0.026 0.026 0.026 0.049 

Min (PPP adjusted 2017 international $) 185.62 940.55 973.46 940.55 185.62 

Max (PPP adjusted 2017 international $) 38,159.62 41,797.82 41,885.73 41,797.82 38,159.62 

BIC = Bayesian information criterion, CO2 = carbon dioxide, CV = cross validation, GDP = gross domestic product, 
LASSO = Least Absolute Shrinkage and Selection Operator, OLS = ordinary least squares, PPP = purchasing power 
parity. 
Notes: ***, **, and * denote statistical significance at 1%, 5% and 10% levels, respectively. Robust standard errors in 
parentheses. Variables marked with ^ represent the fitted values obtained from a first stage OLS regression on our set 
of instruments. 
Source: Authors’ calculations. 
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Table A4.3: Robustness Checks: Two-Stage Double-Selection Least Absolute Shrinkage 
and Selection Operator Regression Results  

 
Dependent Variable: CO2 emissions per-capita (log) 

Predictor 
Selection 

Plugin CV Adaptive BIC Sqrt LASSO 

Real GDP per-capita (log) ^  -7.275***  -8.283***  -5.569**  -8.283***  -7.275*** 

 (2.460) (2.270) (2.365) (2.270) (2.460) 

Real GDP per-capita squared (log) ^  0.947***  0.972***  0.685***  0.972***  0.947*** 

 (0.258) (0.237) (0.244) (0.237) (0.258) 

Real GDP per-capita cubed (log) ^  -0.038***  -0.036***  -0.026***  -0.036***  -0.038*** 
 (0.009) (0.009) (0.009) (0.009) (0.009) 

Year fixed effects Y Y Y Y Y 

Country fixed effects Y Y Y Y Y 

Time trend Y Y Y Y Y 

Number of observations 1,190 1,190 1,190 1,190 1,190 

Number of selected controls 106 129 117 129 106 

Existence condition of min & max 0.069 0.039 0.028 0.039 0.069 

Min (PPP adjusted 2017 international $) 409.50 1,200.24 682.17 1,200.24 409.50 

Max (PPP adjusted 2017 international $) 40,617.19 43,141.42 47,720.58 43,141.42 40,617.19 

BIC = Bayesian information criterion, CO2 = carbon dioxide, CV = cross validation, GDP = gross domestic product, 
LASSO = Least Absolute Shrinkage and Selection Operator, OLS = ordinary least squares, PPP = purchasing power 
parity. 
Notes: ***, **, and * denote statistical significance at 1%, 5% and 10% levels, respectively. Robust standard errors in 
parentheses. Variables marked with ^ represent the fitted values obtained from a first stage OLS regression on our set 
of instruments, while the remaining predictors are lagged one period. 
Source: Authors’ calculations. 
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