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Abstract

We ”translate” Hotelling’s continuous-time, exhaustible resource extrac-
tion Model of 1931 into a linear program of present value extraction cost
minimization subject to a stock endowment and period by period demand
constraints. The appropriate form of the demand constraints allows for
resource rent rising at the rate of interest in the dual program. A useful
variant has the stock size endogenous.
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1. Introduction

We present a linear programming version of Hotelling’s 1931 model of exhaustible
resource extraction. The formulation turns on novel demand inequalities that in-
corporate present value terms, terms that were not present in Nordhaus’s 1973
linear programming version of a multi-source, multi-site ”Hotelling” extraction
model.1 We set out first a single location, multi-period case in the tradition of
Hotelling [1931]. For our exposition below, there is only one type of exhaustible

1Nordhaus’s demands are set out on page 546 of his article. Herfindahl [1967] originated the
extension to multiple sources in Hotelling’s model. Gaudet, Moreaux and Salant [2001] took
up the Herfindahl model and extended the analysis to incorporate multiple distinct locations of
demand and supply. Hence the Gaudet et. al. model is ”parallel to” the Nordhaus model but
is not in a linear programming form.



resource available at an exogenous unit cost of extraction. This classic formula-
tion turns on the assumption of an exogenous stock of the exhaustible resource.
The desired solution turns on special values of initial parameters (our knife-edged
parameter choice problem). We turn then to a variant that has the size of the
exhaustible stock endogenous. This model is free of the knife-edged value problem
inherent in the first model. Both models are at odds with Nordhaus’s approach,
namely the ”simulation” of energy futures, given initial stocks, using linear pro-
gramming.

2. The Stock Constrained Model

Our primal linear program (LP) below has the present value of extraction costs
as its objective function:

cq0 + [
1

1 + r
]cq1 + ...+ [

1

1 + r
]T cqT , (2.1)

for r, the interest or discount rate, c, the positive dollar cost of extracting one
unit of the exhaustible resource, and qt, the non-negative current quantity of
the resource extracted. T + 1, the number of periods is exogenous. A principal
constraint is, the aggregate of demands for the exhaustible resource over the many
specified periods cannot exceed the initial exogenous endowment, S, of stock of
the exhaustible resource:

q0 + q1 + ...+ qT ≤ S. (2.2)

The other constraints indicate that exogenous demands for the resource specified
by period, q

t
must be satisfied in a solution. That is

[
1

1 + r
]tqt ≥ q

t
; t = 0, 1, ..., T ; q0, q1, ..., qT positive. (2.3)

The q
t
demand requirement parameters ”connect to” flow variables, qt, weighted

by present value qualifiers (the [ 1

1+r
]t terms).2 Our primal problem is: select

q0, q1, ..., qT to maximize (2.1), subject to (2.2) and the T +1 constraints in (2.3).
Observe that in (2.3), the left side can never solve as larger than the right side

because such a solution involves ”extra” costs, via an ”inflated” value of a qt, in

2These parameters, [ 1

1+r
]t, do not appear in Nordhaus’s specification of demands for his

model. Hence his linear program is not precisely in the Hotelling tradition. His dual problem
will not have resource rent rising at the interest rate in a solution.
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the objective function. Hence in the dual problem below, the shadow price, pt
associated with one of these constraints will in general not solve as zero (if the
solution has [ 1

1+r
]tqt < qt then pt = 0, (complementary slackness)). We note the

other complementary slackness condition.

if the solution has q0 + q1 + ...+ qT < S, then λ = 0,

for λ the shadow price of a unit of S.
It turns out that the ”default solutions” involve q0 + q1 + ... + qT < S and

λ = 0 or q0 + q1 + ... + qT > S and the problem is not feasible. This defaultness
is occurring because the specification of demands, q

t
is tightly connected to the

solution values, q′
t
s, which in turn must be related to the initial exogenous value

of S. Given exogenous demands, only a particular value of S is compatible with
λ greater than zero (the knife-edged parameter choice problem). A Hotelling like
solution would have q0+ q1+ ...+ qT = S and λ > 0. Such a solution only obtains
above if the exogenous demands and the value of S are carefully ”calibrated” ab
initio.
The dual problem can admit of a classic Hotelling valuation solution with

current resource rent on a unit of resource stock rising at the exogenous rate of
interest. The dual LP involves finding non-negative prices, pt, (t = 0, 1, ..., T ) and
a non-negative shadow price for the resource stock, λ, that maximize

p0q0 + p1 q1 + ...+ pT qT − λS (2.4)

subject to

[
1

1 + r
]tpt − λ ≤ [

1

1 + r
]tc ; t = 0, 1, ...T ; (2.5)

Solutions, with λ positive, resemble a Hotelling formulation. Current rent, [1 +
r]tλ, is rising at the rate of interest between dates t and t+ 1. The other possible
solution (one of our ”default” solutions) solves with λ = 0 and S > q0 + q1 +
... + qT in (2.2). We do not see such solutions in the textbook versions of the
Hotelling extraction problem.3 The structure of exogenous demands here (scalar
values) is quite different from that in the standard versions of a Hotelling problem
with its given exogenous demand schedule. Given the exogenous demands, there
is a unique value of S that can correspond with λ > 0. Only one value of S

3A textbook Hotelling extraction problem can exhibit rent of zero each period for the special
case of the initial stock-size sufficiently large.
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”works” with a value of λ > 0, given a reasonable selection of values for the initial
exogenous quantities demanded.
Observe that the objective function in (2.4) can be interpreted as the present

value of dollar surplus. Recall that each q
t
is a standard quantity with an implicit

discount factor ”weight”. In a solution to the primal and dual problems the
values of the two distinct objective functions must be equal (a linear programming
theorem). Hence surplus in (2.4) solves as equal to cost in (2.1).
We have left open the question of where the value of T + 1, number of peri-

ods, comes from. This is a somewhat complicated issue. So far here T is given
exogenously. In Hotelling [1931], the price of an extracted unit rose period by
period and was intended to reach a ”choke price” at the instant that the initial
stock in the ground reached exact depletion. Working backwards from the termi-
nal date to the date of initial extraction defined the optimal number of periods of
active extraction. Roughly speaking the presence of a given demand schedule in
Hotelling [1931] allowed this scenario to occur. Hence to fit the correct number of
periods above to the initial stock, S, is a finicky numerical problem.
Nordhaus [1973] was interested in the issue of how exogenous natural resource

stocks related to energy supply, shaped the future of energy uses (demands) and
energy prices. The above model captures the Nordhaus scenario, but only satis-
factorily when λ is positive. And we emphasized that the solution with λ > 0 is a
knife-edged solution. Hence the above model is not able to solve quite generally as
a Nordhaus scenario. Only solutions with contrived initial parameters turn out as
”Nordhaus scenarios”. Now, we turn to a variant of the above model in which S is
endogenous, a variant we refer to as demand driven. This alternative formulation
is free of the knife-edged parameter-choice problem inherent in the model above.

3. A Demand Driven Variant

The central change is S is now endogenous, while the demands are the same as
we have for the model above. The price of a unit of stock is now v, exogenous,
and appears in the objective function. The new objective function is

cq0 + [
1

1 + r
]cq1 + ...+ [

1

1 + r
]T cqT + vS.

This function is to be minimized. The constraints are as above:

[
1

1 + r
]tqt ≥ q

t
; t = 0, 1, ..., T ; q0, q1, ..., qT positive
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and
q0 + q1 + ...+ qT − S ≤ 0.

The complementary slackness consitions are

if the solution has [
1

1 + r
]tqt < qt then pt = 0.

and
if the solution has q0 + q1 + ...+ qT < S, then λ = 0,

The dual LP involves finding non-negative prices, pt, (t = 0, 1, ..., T ) and a
non-negative shadow price, λ for the resource stock that maximize

p0q0 + p1 q1 + ...+ pT qT (3.1)

subject to

[
1

1 + r
]tpt − λ ≤ [

1

1 + r
]tc ; t = 0, 1, ...T ; (3.2)

and
λ ≤ v.

The complementary slackness conditions are of interest.

for a solution with q0 + q1 + ...+ qT − S < 0, then λ = 0

and
for a solution with λ < v, then S = 0.

This model is not burdened with the knife-edged property associated with the
value of S that the first model above is burdended with. This model also exhibits
the Hotelling property which we observed for the first model, namely rent rising
at the rate of interest (pt−c = (1+r)

tλ). We repeat: this model has the stock size
endogenous and the price of a unit of stock a parameter. The well-behavedness of
this model makes it closer to the Hotelling extraction model. However, this model,
like the one above, does not ”create” an energy future in the sense of Nordhaus
because here stock size is not exogenous. Exogenous stock sizes are not inducing
a future energy scenario of the type Nordhaus was interested in.
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