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Abstract

We introduce banks that issue liquid deposits backed by bonds and capital into

an otherwise standard cash-in-advance economy. Liquidity transformation by banks

increases aggregate consumption and investment relative to a cash-only economy but

can also lead to inefficient overinvestment. Furthermore, liquidity transformation

can lead to multiple steady-state equilibria with different interest rates and real

outcomes. Whenever multiple equilibria exist, one of them constitutes a ‘liquidity

trap’, in which nominal bond rates equal zero and banks are indifferent between

holding bonds and reserves. Whether economic activity is higher in a liquidity trap

or in a (coexisting) equilibrium with positive interest rates is ambiguous, but the

liquidity trap equilibrium is more likely to go in hand with overinvestment.
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1 Introduction

In the years following the financial crisis of 2007/08, many advanced economies spent

long periods in a liquidity trap – a situation in which returns on government bonds

and other similar assets are at the zero lower bound, and agents become indifferent

between holding these assets and fiat money. This episode has inspired numerous

papers aimed at better understanding the interaction between the financial system

and the macroeconomy in general, and liquidity traps more specifically. The present

paper is closely related, in particular, to the New Monetarist literature on the topic,

which has significantly contributed to our understanding of liquidity traps (e.g.

Williamson (2012, 2016), Andolfatto and Williamson (2015), Rocheteau et al. (2018)

and Altermatt (2022)). These papers highlight that interest rates on different assets

have a liquidity premium component, with liquidity traps describing situations in

which nominal rates on the most liquid assets are at the zero lower bound. A key

insight from this literature is that liquidity traps can arise endogenously as a result

of a ‘shortage’ of liquid assets, in which case the way out of the trap is to increase

the supply of these assets, for instance, through open-market bond sales (Rocheteau

et al. (2018)).

In this paper, we first replicate some of the main results from the New Mon-

etarist literature on liquidity traps within a cash-in-advance (CIA) model, which

demonstrates that these results do not depend on a particular modelling choice. In

particular, we highlight that a liquidity trap equilibrium is generally not equivalent

with the Friedman rule.1 Then, we go beyond the existing literature by showing

that even if policy is such that the supply of liquid (government-) bonds is relatively

scarce, a liquidity trap may not be the only equilibrium; rather, it may coexist with

equilibria where nominal bond rates are strictly positive. Therefore, a liquidity trap

may not only arise due to a policy-induced shortage of liquid assets, but may also

be a result of equilibrium selection.2

We start with a CIA economy as in Cooley and Hansen (1989), where firms use

capital and labour to produce a consumption good sold (only) against fiat money.

1While the former describes any situation where the nominal interest rate on bonds is equal

to zero, the latter only describes the special case where that is true and bonds pay no liquidity

premium. Thus, in a liquidity trap, the opportunity cost of holding money instead of bonds is

zero, but liquidity may still be scarce overall as both money and bonds pay a liquidity premium.
2Benhabib et al. (2001) show that active monetary policy adhering to the Taylor principle can

also lead to multiple steady-state equilibria, with the liquidity trap equilibrium being one of them.

In Benhabib et al. (2001), the root cause of equilibrium multiplicity are self-fulfilling changes in

inflation, which is different from the mechanism in our paper. Importantly, the liquidity trap

equilibrium in our paper is not associated with deflation.
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To this setup, we introduce banks, which can issue liquid deposits backed by gov-

ernment bonds and capital (think of the latter as loans to firms).3 We assume some

households still have to pay with fiat money even in the presence of banks, which

ensures that fiat money issued by the government continues to have value. While

only deposits and fiat money are directly liquid – meaning that households can use

them to pay for consumption – bonds and capital may still carry a liquidity premium

due to their ‘indirect’ liquidity value, which results from the fact that banks can fin-

ance these assets by issuing deposits.4 Liquidity transformation by banks increases

aggregate consumption and investment relative to a cash-only economy à-la Cooley

and Hansen (1989) for two reasons. First, as usual in economies with a liquidity-

in-advance constraint, aggregate demand on goods markets depends on the average

opportunity cost of carrying liquid assets, which decreases when (some) households

can pay with interest-bearing deposits. Second, when banks can finance capital

(partly) with deposits, the resulting liquidity premium on capital increases invest-

ment, which in some cases leads to inefficient overinvestment.

A key result is that liquidity transformation can lead to multiple steady-state

equilibria, which is due to the fact that households and firms interact both on goods

markets and on the financial side of the economy (through banks).5 This dual inter-

action means that liquidity premia and aggregate demand influence each other. On

the one hand, liquidity premia affect the deposit rate, which determines households’

opportunity cost of carrying liquidity and thereby influences aggregate demand. On

the other hand, changes in aggregate demand impact investment and thus the supply

of indirectly liquid assets, which, in turn, affects liquidity premia. This mechanism

enables self-fulfilling prophecies on goods markets that are accompanied by changes

in interest rates. Consider, for instance, a situation where interest rates are high.

If firms expect high demand on goods markets, they may be willing to invest a lot

despite the high interest rates, which make investment more expensive. In turn,

high investment by firms implies a high supply of indirectly liquid capital to banks,

which in turn implies that liquidity premia on assets with liquidity value are low

(i.e., interest rates on these assets are high). Finally, these low liquidity premia

3Aruoba et al. (2011) develop a New Monetarist model that shares some of the basic ideas with

Cooley and Hansen’s model. Altermatt et al. (2022) introduce banks into the Aruoba et al. (2011)

setup, and their model has many similarities with the one in the present paper. Besides using a

different modelling approach, the two papers have a different focus: while Altermatt et al. (2022)

study bank runs, the present paper abstracts from runs and focuses on steady-state equilibria.
4The liquidity premium on bonds is higher since banks can finance their entire bond holdings

with deposits, while capital holdings can only be partly funded with deposits.
5Similar mechanisms would be at play if households and firms interacted with each other

directly on financial markets rather than via banks.
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allow banks to pay high interest on deposits, which means that households’ oppor-

tunity cost of carrying liquidity are low. Hence, households are willing to carry a

lot of liquid assets which implies a high demand on goods markets, validating firms’

expectations. If instead firms expect low aggregate demand, this similarly allows for

a low-interest equilibrium to exist.6

In general, we show that there can be three types of steady-state equilibria in our

economy. First, if the supply of indirectly liquid bonds and capital is plentiful relat-

ive to banks’ demand for these assets, the economy is in a fundamental equilibrium

(FE), in which bonds and capital do not exhibit a liquidity premium, meaning their

real return equals the discount rate. The deposit return equals the discount rate as

well, such that carrying deposits entails no opportunity cost. Second, when banks’

demand for indirectly liquid assets exceeds the supply even when nominal bond

rates are zero, the economy is in a zero-lower bound equilibrium (ZE). Bonds and

deposits pay no interest in a ZE, such that the opportunity cost of carrying deposits

and money is the same; nevertheless, as long as capital has indirect liquidity value,

the resulting liquidity premium on capital means that investment and consumption

will be higher than in a cash-only economy. Lastly, when the asset market clears

at some intermediate interest rate, the economy is in an interior equilibrium (IE),

where interest rates on bonds and deposits are in between the zero-lower bound and

the discount rate.

After analysing under what conditions which type of equilibrium exists, we show

that all three equilibria may coexist for the same fundamental and policy parameters,

and we discuss what makes equilibrium multiplicity more likely. We also show that

in the case of multiple steady-state equilibria, it is ambiguous in which equilibrium

aggregate consumption and investment are highest. To see why, let us compare the

FE with the ZE. On the one hand, the opportunity cost of carrying liquidity is lower

in the FE due to the higher deposit rates which, taken by itself, would imply higher

economic activity in the FE. On the other hand, when capital has liquidity value,

the liquidity premium on capital in a ZE implies that investment and real wages in

the ZE are higher, which, however, can also be a sign of inefficient overinvestment.

We also study the transitional dynamics of the model to determine whether

multiple equilibria exist. Note that the existence of multiple steady-state equilibria

does not imply equilibrium multiplicity; for that, we further need that for some initial

level of capital, multiple stable saddle paths exist. To answer this question, we apply

a variation of a backward-shooting algorithm and find that while the multiplicity

6This is a slight simplification of the mechanism since demand on goods markets also depends

on real wages, which, in turn, depend on firms’ investment choices.
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of steady states does not always imply the existence of multiple equilibria in our

model, there are indeed parameters for which multiple equilibria exist, such that

from some initial level of capital, the economy may either transition to an FE or a

ZE equilibrium.

In our model, liquidity transformation by banks can cause bonds and capital to

carry a liquidity premium, which has repercussions on aggregate economy activity.

This relates our paper to a broader macro-financial literature studying models in

which assets other than fiat money carry a liquidity premium, either because they

can be used directly to settle transactions (Lagos and Rocheteau (2008), Andolfatto

and Williamson (2015), Rocheteau et al. (2018), Altermatt et al. (2023)), they can

be sold against money when needed (Geromichalos and Herrenbrueck (2022)) or,

as in our model, banks can finance them by issuing liquid deposits (Williamson

(2012, 2016), Altermatt (2022), Keister and Sanches (2023)). In all of these papers,

aggregate demand on goods markets is positively related to the aggregate supply

of assets with liquidity value: the more abundant (directly or indirectly) liquid as-

sets, the lower liquidity premia and thus the lower the opportunity cost of holding

liquid assets required to settle transactions. What distinguishes our paper is that

the interaction between asset supply and aggregate demand goes in both directions.

Specifically, in our model, an increase in aggregate demand spurs capital investment,

which then increases the aggregate supply of interest-paying assets that can be used

to back deposit issuance. This mutual interaction between aggregate asset supply

and aggregate demand is crucial for the multiplicity result we obtain.7

Outline. The rest of this paper is structured as follows: Section 2 presents the

environment; Section 3 discusses the equilibrium in an economy without banks; Sec-

tion 4 introduces banks; Section 5 discusses the banking equilibrium, including cases

where multiple steady-state equilibria coexist; Section 6 discusses the transitional

dynamics of the model to determine whether multiple equilibria are possible; finally,

Section 7 concludes.

7The only other paper featuring this two-way interaction we are aware of is Geromichalos and

Herrenbrueck (2022). Similar mechanisms are also present in Altermatt et al. (2022) but are not

the subject of analysis in that paper.
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2 Environment

Time is discrete, indexed by t = 0, 1, 2, .., and continues forever.8 The economy is

populated by a unit mass of infinitely-lived households. There is a single good in

the economy, which can be consumed by households or converted into capital one

for one. The good is produced according to

Y = F (K−1, L), (1)

where K−1 is capital brought into the current period, L is current aggregate labour

supply, and F is a constant returns to scale (CRS) production function exhibiting

the usual neoclassical properties. The aggregate resource constraint is

C +K = Y + (1− δ)K−1, (2)

where C is aggregate consumption by households, and δ ∈ (0, 1] is the depreciation

rate of capital. Both C and K are subject to nonnegativity constraints. Output is

produced by a representative firm, which rents capital and labour from households

at real prices ψ and w, respectively. We define the capital-labour ratio as κ ≡ K−1/L

and f(κ) ≡ F (κ, 1). Then, CRS of (1) implies

ψ = f ′(κ), (3)

w = f(κ)− κf ′(κ), (4)

and zero profits for the firm.

Besides capital K, two other storable objects exist in the economy: fiat money

M and one-period nominal bonds B, both issued by the government. Households

may store wealth in M , B, or K. Let ϕ denote the value of money (in terms of

numeraire Y), and let i denote the net nominal interest rate on bonds.9 We denote

the gross inflation rate by 1 + π ≡ ϕ−1/ϕ.

Households’ lifetime preferences are

U =
∞∑
t=0

βt
[
u(ct)− lt

]
, (5)

8To reduce notational clutter, we will mostly omit time subscripts. We use subscripts −1 and

+1 to denote previous-period and next-period variables, respectively.
9The value of money ϕ denotes how many units of numeraire Y one unit of money buys,

meaning that 1
ϕ is the price level. The nominal rate i+1 denotes the net return in terms of money

a bondholder earns when holding a bond from the current to the next period.
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where β ∈ (0, 1) denotes the households’ fundamental discount factor, while ct and

lt denote period-t household consumption and labour supply, respectively.10 We

assume u′(c) > 0 > u′′(c) and lim
c→0

u′(c) = ∞. Households are subject to the budget

constraint

c+ k + ϕ(m+ b) ≤
[
ψ + (1− δ)

]
k−1 + wl + ϕ

(
m−1 + (1 + i)b−1 + τ

)
,

where (m, b, k) denotes a household’s portfolio of money, bonds, and capital, and τ

is a nominal lump-sum transfer from the government (or tax if negative). Further,

as is standard in the CIA literature, we assume that households are subject to the

constraint

c ≤ ϕm−1, (6)

i.e. consumption has to be financed with money carried over from the last period.11

For now, households can only pay with fiat money M . In Section 4, we will intro-

duce banks and assume that some households can pay with bank deposits, which

themselves need to be backed by bonds B and capital K.

There is a government issuing money M and nominal government bonds B. We

denote by M ≡ ϕM and B ≡ ϕB the real supply of money and government bonds,

respectively. The government lets the money supply grow at a constant rate γ,

M = (1 + γ)M−1, (7)

where we assume γ > β − 1, which implies that steady-state inflation will be above

the Friedman rule. Next, the government determines the real quantity of bonds as

a function of output, the real money supply and the real interest rate,

ϕB = B(M, Y, i+1, π+1), (8)

where B is some nonnegative, differentiable function. We leave the exact fiscal rule

B(·) open for the moment. The government budget constraint then writes

ϕ(M +B) = ϕ(M−1 + (1 + i)B−1 + τ), (9)

10We use this quasilinear utility function in order to keep the model tractable in the sense that

portfolio decisions are independent of beginning-of-period wealth.
11We adopt the timing convention that the goods market opens before the asset market. That

is, after production has taken place at the start of a given period, households first use their liquid

assets brought over from last period to purchase the produced consumption goods and then decide

on the asset portfolio which they carry over to next period. An illiquid asset purchased at date t

pays out in the asset market of date t + 1. Date-t wages and transfers are paid out in the asset

market of date t.
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where the transfer τ adjusts such that (9) holds given (7) and (8).

For reasons that will become clear later on, we sometimes call w/(βw−1) the

(gross) discount rate, and we define

1 + ι ≡ 1 + π

β

w

w−1

(10)

as the ‘Fisher rate’, which, loosely speaking, is the nominal interest rate that com-

pensates for inflation and discounting.

The first-best allocation. As a benchmark, consider the first-best allocation,

which maximises households’ lifetime utility (5) subject to the economy’s resource

constraint (1)-(2), ct = Ct, lt = Lt, and given some initial capital stock K−1. The

first-best allocation satisfies

u′(ct) =
1

F ′
L(Kt−1, Lt)

and u′(ct) = βu′(ct+1)(FK(Kt+1, Lt) + 1− δ).

Denoting c∗ and κ∗ as the first-best steady-state values of c and κ, we find that

u′(c∗) =
1

w(κ∗)
and f ′(κ∗) + 1− δ =

1

β
, (11)

where w(κ∗) = f(κ∗)− f ′(κ∗)κ∗ is the real wage when κ = κ∗.

3 Equilibrium without Banks

In this section, we briefly discuss the model without banks, which serves as a useful

reference point. In the unbanked economy, households choose their asset portfolio

(m, b, k) each period. The representative household’s problem is given by

V (m−1, b−1, k−1) = max
c,l,m,b,k≥0

u(c)− l + βV (m, b, k)

s.t. c+ k + ϕ(m+ b) ≤
[
ψ + (1− δ)

]
k−1 + wl + ϕ

(
m−1 + (1 + i)b−1 + τ

)
s.t. c ≤ ϕm−1.

We ignore the non-negativity constraints on the household’s choice variables, and we

denote the Lagrange multipliers on the budget constraint and the liquidity constraint

by λ and µ, respectively.12 The first-order conditions of this problem are:

l : λ =
1

w
12It is safe to ignore the non-negativity constraints as they never bind in equilibrium: if either

m or k were zero, consumption would necessarily be zero as well, but this is at odds with the Inada

conditions. For bonds, demand cannot be negative in equilibrium as supply is positive, and prices

adjust such that the market clears.
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c : u′(c) = λ+ µ

m : ϕλ = βϕ+1[λ+1 + µ+1]

b : ϕλ = βϕ+1(1 + i+1)λ+1

k : λ = β
[
ψ+1 + (1− δ)

]
λ+1

Rearranging these yields:

1 + i

1 + π
= ψ + 1− δ =

1

β

w

w−1

(12)

u′(c) =
1 + i

w
(13)

ϕm ≥ (1 + π+1)c+1 with equality if i+1 > 0 (14)

Condition (12) contains a no-arbitrage condition stating that the real return on gov-

ernment bonds must equal the return on capital net of depreciation, and it states

that both these rates must equal the discount rate. This implies i = ι, i.e. the

equilibrium bond rate equals the Fisher rate.13 Next, condition (13) pins down

equilibrium consumption as a function of i and w; it shows that the nominal rate i

(the opportunity cost of holding money) creates a wedge between the marginal utility

of consumption and the opportunity cost of leisure. Finally, condition (14) simply

states that real money balances need to be sufficient to cover consumption expenses.

For the remainder of this section, we impose steady state where all real variables

are constant. Constant real money supply M implies γ = π, i.e. steady-state

inflation equals the money growth rate. Since real wages are constant in the steady-

state, we get from (12) that

1 + i = 1 + ι =
1 + γ

β
. (15)

Given our assumption that γ > β − 1, we get from (15) that i > 0, which implies

that the CIA constraint (14) binds. Next, from (3) and (12), we get that κ is pinned

down by
1

β
= f ′(κ) + 1− δ. (16)

Finally, from (4) and (13), we get that steady-state consumption is determined by

u′(c) =
1 + i

w
=

1 + i

f(κ)− κf ′(κ)
. (17)

13Quasilinear preferences imply that households are willing to hold an arbitrary amount of assets

paying the Fisher rate. They would not be willing to hold an asset paying less than the Fisher

rate, and they would choose to hold an infinite amount of assets paying more than the Fisher rate.
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Definition 1. A steady state in the economy without banking is given by i, κ, c that

solve equations (15)-(17).

Proposition 1. There exists a unique steady state in the economy without banking.14

We get from (11) and (16)-(17) that in the steady-state equilibrium of the un-

banked economy, κ = κ∗ and c < c∗. Steady-state consumption is below first-best as

a result of the CIA friction. Notice that, while κ is at its first-best level, the fact that

aggregate consumption C (and thus aggregate output Y ) is below first-best implies

that the aggregate capital stock K is below first-best as well. Note also that the

real bond supply B has no effect on the steady-state equilibrium in the unbanked

economy. Policy only matters through the money growth rate, which determines

the opportunity cost of holding money and thus affects equilibrium consumption,

output, and the aggregate capital stock.

The version of the model presented in this section represents the standard way of

thinking about monetary policy in much of the monetary literature. In particular,

there is no difference between the bond rate i and the Fisher rate ι. This, in turn,

implies that a zero-lower bound equilibrium (i = 0) is equivalent to running the

Friedman rule (ι = 0) and delivers the first-best. In the next section, we demonstrate

why this way of thinking may be misleading when bonds (and possibly capital) carry

a liquidity premium.

4 Banking Equilibrium

We now introduce a representative bank that issues nominal bank deposits D, which

can be backed by government bonds B, capital K, and money M .15 In any given

period some, but not all, households can pay for their consumption expenditures

with bank deposits. Specifically, with banking, households’ liquidity constraint is

given by

c ≤ (1−Θ)ϕm−1 +Θϕd−1,

14Unless mentioned otherwise, all proofs are given in Appendix B.
15The role of banking introduced here, namely to transform illiquid assets B and K into liquid

deposits, is the same as in Altermatt (2022). While our results hinge on bonds and capital having

liquidity value in the sense that they can be used (directly or indirectly) to pay for consumption, the

precise way how these assets become liquid is not crucial. While we believe that banks providing

liquidity transformation is a natural way to model this, similar results would obtain if instead

capital and bonds were directly liquid as, e.g. in Altermatt et al. (2023), or if they could be

traded on secondary asset markets after idiosyncratic shocks are realised as in Geromichalos and

Herrenbrueck (2022).
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where d−1 are bank deposits brought over from last period, and Θ ∈ {0, 1} is an

i.i.d. idiosyncratic shock. In any given period, an individual household finds itself

in state Θ = 1 with probability θ ∈ (0, 1), in which case the household can pay for

consumption by transferring bank deposits.16 With probability 1 − θ, a household

finds itself in state Θ = 0 and can only pay for consumption with fiat money.

Let cΘ denote consumption of households in state Θ ∈ {0, 1}, such that aggregate

consumption satisfies

C = (1− θ)c0 + θc1. (18)

Each period, all households contribute an identical amount of funds to the bank,

which the bank then invests into money, bonds and capital. At the start of the

next period when households’ idiosyncratic states are realised, the bank provides a

certain amount of money to households in state Θ = 0 (think of this as households in

state Θ = 0 withdrawing money from the bank) while it provides a certain amount

of bank deposits (backed by bonds, capital, and possibly money) to households in

state Θ = 1. Since there is no aggregate uncertainty, by a law of large numbers, in

any given period a fraction θ of the bank’s depositors will be in state Θ = 1 while

a fraction 1 − θ will be in state Θ = 0. To abstract from bank run equilibria, we

assume the bank observes the realisation of the states Θ.17

In each period, the bank chooses its asset portfolio (m, b, k) and the payouts

given to households (depositors) in state Θ ∈ {0, 1} so as to maximise the expected

utility of its depositors. The bank’s problem can be expressed as

V (m−1, b−1, k−1) = max
c0,c1,l,m,b,k≥0

θu(c1) + (1− θ)u(c0)− l + βV (m, b, k)

subject to the constraints:

θc1 + (1− θ)c0 + k + ϕ(m+ b)

≤
[
ψ + (1− δ)

]
k−1 + wl + ϕ

(
m−1 + (1 + i)b−1 + τ

)
(19)

(1− θ)c0 ≤ ϕm−1 (20)

θc1 ≤ ϕd−1 = (1 + i)ϕb−1 + χ(ψ + 1− δ)k−1 + [ϕm−1 − (1− θ)c0] (21)

Condition (19) is the budget constraint, which states that total consumption ex-

penditure plus investments in money, bonds and capital cannot exceed the revenue

from the previous asset portfolio plus households’ income from wage payments and

16The assumption that households in state Θ = 1 can only pay with deposits simplifies the

exposition and is without loss of generality. As long as banks are fully competitive, which we

assume throughout the paper, using deposits to pay for consumption always weakly dominates

using money as banks may use money to back deposits.
17Altermatt et al. (2022) show how self-fulfilling panics can occur in a similar model.
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transfers.18 Condition (20) is the liquidity constraint for households in state 0, say-

ing that their consumption needs to be financed entirely with money brought over

from last period. Finally, (21) is the liquidity constraint for households in state 1,

saying that their consumption needs to be financed with bank deposits brought over

from last period; the deposits, in turn, need to be backed by bonds, capital, and

money not paid out to households in state 0 (think of the latter as excess reserves).

The parameter χ ∈ [0, 1] denotes the fraction of the bank’s capital holdings that

can be used to back deposits.19 In what follows, we will sometimes say that capital

is ‘illiquid’ when χ = 0, i.e. when capital cannot be used to back deposit issuance.

Conversely, we will say that capital is ‘liquid’ whenever χ > 0, keeping in mind that,

in our model, capital is only indirectly liquid via liquidity transformation by banks.

Notice that the deposit return equals the return on the bank’s asset portfolio used to

back deposits. In this manner, the return from the bonds and (a fraction χ of) the

capital brought into period t by the bank becomes (indirectly) available to finance

period-t consumption.20

Denoting λ as the Lagrange multiplier for the budget constraint, µΘ as the

multipliers for the liquidity constraints of households in state Θ ∈ {0, 1}, and using

our definition of the Fisher rate from (10), the first-order conditions of the bank’s

problem are:

l : λ =
1

w
(22)

c0 : u′(c0) = λ+ µ0 + µ1 (23)

c1 : u′(c1) = λ+ µ1 (24)

m : ι = w(µ0 + µ1) (25)

b : 1 + ι = (1 + i)(1 + µ1w) (26)

k : 1 + ι = (1 + π)(ψ + 1− δ)(1 + χµ1w) (27)

From (25) and (26), we find that

µ0 =
1

w

(
i(1 + ι)

1 + i

)
and µ1 =

1

w

(
ι− i

1 + i

)
. (28)

18Given that the bank maximises the expected utility of households, it is without loss of gener-

ality to assume that households contribute their entire income to the bank.
19Put differently, when deposit issuance is backed by capital, the bank needs to hold (1/χ) units

of capital per issued deposit, where we take the value of χ as exogenous. The share of the capital

held by the bank that is not used to back deposits can be regarded as (illiquid) bank equity held

in equal proportion by all households.
20Since there is no discounting within a period, the purchasing power of deposits in the goods

market does not depend on when exactly within the period the interest payments on deposits are

made (i.e. whether interest payments occur before or after the goods market is open).
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This shows that the liquidity constraint for households in state 0 binds whenever

i > 0, while the liquidity constraint for households in state 1 binds whenever i < ι.

If i = 0, the opportunity cost of carrying money and bonds is the same, such that

providing liquidity to households in state 0 and state 1 is equally costly. The higher

i, the lower the opportunity cost of carrying interest-paying assets and thus the

lower the cost of providing liquidity to households in state 1. If i = ι, then carrying

bonds entails no opportunity cost, meaning that providing liquidity to households in

state 1 is costless and the associated liquidity constraint is slack. Note the difference

between the Fisher rate ι and the bond rate i: while ι denotes the interest rate on

a perfectly illiquid asset, i denotes the rate on bonds that have liquidity value since

banks can use them to back issuance of bank deposits.

Next, combining (28) with (23) and (24), we get

u′(c0) =
1 + ι

w
and u′(c1) =

1

w

1 + ι

1 + i
, (29)

i.e. equilibrium consumption of households in state 0 is determined by the real

wage and the Fisher rate, while equilibrium consumption of households in state 1 is

determined by the real wage and the ratio of the bond rate to the Fisher rate.

Next, by combining (27) with our expression for µ1 from (28) , we get that the

return on capital net of depreciation satisfies

ψ + 1− δ =
1

β

w

w−1

1 + i

1 + i+ χ(ι− i)
. (30)

Condition (30) shows that if i < ι and χ > 0, then capital carries a liquidity

premium in the sense that the return on capital is below the discount rate. The

liquidity premium on capital is increasing in χ and decreasing in i.

Finally, from the liquidity constraint for households in state 0, (20), we get that

the bank’s demand for money satisfies

ϕm ≥ (1 + π+1)(1− θ)c0,+1 with equality if i+1 > 0, (31)

and from the liquidity constraint for households in state 1, (21), we get that the

bank’s demand for money, bonds and capital satisfies

ϕm+ (1 + i+1)ϕb+ (1 + π+1)χ(ψ+1 + 1− δ)k

≥ (1 + π+1)[(1− θ)c0,+1 + θc1,+1] with equality if i+1 < ι+1. (32)

We now impose steady state for the remainder of this section, which, as in Section

3, implies π = γ and

1 + ι =
1 + γ

β
. (33)
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Combining (29)-(30) with (3)-(4), we get that in steady-state

u′(c0) =
1 + ι

f(κ)− f ′(κ)κ
, (34)

u′(c1) =
1 + ι

1 + i

1

f(κ)− f ′(κ)κ
, (35)

1

β
= (f ′(κ) + 1− δ)

(
1 + χ

(
ι− i

1 + i

))
. (36)

Consider first equation (36), which pins down κ. If χ = 0 (capital cannot be used

to back deposits), then there is no liquidity premium on capital, i.e. the return on

capital is pinned down by fundamental parameters β and δ, and we have κ = κ∗. If

instead χ > 0 but i = ι, this still holds, since in this case, the liquidity constraint

for households in state 1 is slack, implying that there is no scarcity of investment

opportunities for banks to invest in. Finally, if χ > 0 and i < ι, then investment

opportunities are scarce, capital carries a liquidity premium, and we have κ > κ∗.

In this case, κ is strictly decreasing in i, which results from a no-arbitrage condition:

when i increases, the real return to bonds increases, which means the real return to

capital must increase as well. Consider next equations (34)-(35), which show that

c0 decreases in ι, while c1 decreases in the ratio (1 + ι)/(1 + i). Note that if χ > 0,

then changes in i indirectly affect both c0 and c1 by affecting κ and thus the real

wage w. Specifically, an increase in i will decrease κ, which then reduces w, thus

negatively affecting both c0 and c1. An increase in i will therefore negatively affect

c0, while the effect on c1 is ambiguous: on the one hand, the real wage falls, which

as such has a negative effect on c1, but on the other hand, the opportunity cost of

providing liquidity to households in state 1 falls as well, which as such has a positive

effect on c1.

Next, the aggregate resource constraint (2) together with our expression for

aggregate consumption (18) implies that

L =
(1− θ)c0 + θc1
f(κ)− δκ

. (37)

From (31), we get that the bank’s demand for real money holdings in the steady

state satisfies

M ≥ β(1 + ι)(1− θ)c0 with equality if i > 0, (38)

and from (32), we get that the bank’s demand for real assets satisfies

1

β(1 + ι)

[
M+ (1 + i)B

]
+ χ

(
f ′(κ) + 1− δ

)
κL

≥ θc1 + (1− θ)c0 with equality if i < ι. (39)

Finally, recall that the real bond supply satisfies (8).
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Definition 2. A steady-state equilibrium with banking is given by c1, c0, κ, ι, i ∈
[0, ι], M, B, and L that satisfy (8) and (33)-(39).

Compared to the allocation without banking discussed in Section 3, introdu-

cing banking affects the economy via two main channels. First, the transformation

of illiquid bonds and capital into liquid deposits relaxes the liquidity constraint of

households who pay with deposits, which has a positive effect on equilibrium con-

sumption of these households. Second, when capital carries a liquidity premium, the

capital-labour ratio κ increases, which in turn increases real wages and positively

affects consumption of all households, including those who continue to pay with

money. For these two reasons, aggregate consumption C, aggregate output Y and

the aggregate capital stock K are are all higher in the steady-state equilibrium with

banking compared to the unbanked economy. Note, however, that from (36), we

get that f ′(κ) < δ when χ is sufficiently high and i is sufficiently low, meaning that

capital accumulation can be inefficiently high in the economy with banking.21

In the following, we group steady-state equilibria into three equilibrium cases,

where the Lagrange multipliers identified in (28) determine these equilibrium cases.

Fundamental equilibrium (FE). An FE is a steady-state equilibrium in which

i = ι, which implies µ0 > 0 and µ1 = 0, i.e. the liquidity constraint for house-

holds in state 0 binds while the one for households in state 1 is slack. The liquidity

constraint for households in state 1 is slack since acquiring bonds to back depos-

its entails no opportunity cost for the bank. From (36) we get that, in an FE,
1
β
= f ′(κ)+1−δ. This shows that capital is fundamentally priced (it does not carry

a liquidity premium), and κ = κ∗. Denoting cNB as steady-state consumption in

the unbanked economy, we get from (34)-(35) that consumption levels c0 and c1 in

an FE satisfy cNB = c0 < c1 = c∗.

Zero-lower bound equilibrium (ZE). A ZE is a steady-state equilibrium in

which i = 0, which implies µ0 = 0 and µ1 > 0. From (36), we get that, in a ZE,
1
β
= (f ′(κ) + 1 − δ)(1 + χι). The term (1 + χι) reflects that, as long as χ > 0, the

bank overinvests in capital to provide liquidity to households, implying that capital

is priced above its fundamental value, and we have κ > κ∗. From (34)-(35), we

find that in a ZE c0 = c1 since the cost of providing liquidity is the same for all

households. For a given κ, consumption levels in the ZE are the same as in the

21The result that there can be overinvestment when capital has liquidity value is well known in

the New Monetarist literature (Lagos and Rocheteau (2008)). To the best of our knowledge, we

are the first to show this result in a CIA model.
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unbanked economy. However, as long as χ > 0, κ is higher than in the unbanked

economy, which implies that the real wage w and thus consumption levels c0 and c1

are higher as well.22 Note also that the ZE is the only equilibrium in which the bank

may choose to hold excess reserves, i.e. it may hold more money than necessary to

pay for consumption of households in state 0.

Interior equilibrium (IE). Finally, an IE is a steady-state equilibrium in which

i ∈ (0, ι), which implies µ1 > 0 and µ0 > 0, meaning that the liquidity constraint

binds both for households in state 0 and in state 1. Providing liquidity to households

in state 1 is costly for the bank since the bond rate i does not fully compensate for

inflation and discounting; providing liquidity to households in state 0 (by accumu-

lating non-interest bearing money) is even more costly. From (34)-(36), we get that

c1 > c0 in an IE, which reflects that providing liquidity to households in state 0 is

more costly than to those in state 1. Furthermore, as long as χ > 0, we have κ > κ∗

and c0 > cNB, meaning that (as a result of higher real wages) consumption of all

households is higher than in the unbanked economy.

In the following section, we discuss under which conditions different equilibrium

cases coexist. But before doing so, we want to relate the results we have just

presented to the discussion at the end of Section 3. As shown, once banking is

introduced, which in turn allows for bonds and capital to attain a liquidity premium,

the bond rate i may differ from the Fisher rate ι. This implies in particular that a

zero-lower bound equilibrium (i = 0) is generally not equivalent to a Friedman rule

equilibrium (ι = 0).23 As the next section will show, i can be varied by changing the

real amount of bonds in circulation, B. Since we can think of B as being affected

by monetary policy interventions such as open market operations, we view i as the

policy rate, while ι depends on the long-run inflation target γ.24 For a more in-depth

discussion of how to interpret i and ι in models similar to the one presented here

and what this implies for various puzzles in the literature, see Herrenbrueck and

22For χ = 0, we have κ = κ∗ and c0 = c1 = cNB , i.e. the allocation in a ZE is identical to the

steady-state equilibrium of the unbanked economy.
23While the Friedman rule implies that the economy must be at the zero-lower bound, the

converse is not true: a zero-lower bound equilibrium is any situation where i = 0, while ι may be

strictly positive. Note also that, as in the unbanked economy, the Friedman rule would implement

the first-best allocation in the economy with banking.
24Additional reasons to regard i and not ι as the rate set by monetary policy are that: (i) i is

observable in reality while ι typically is not, since almost all assets have some degree of liquidity;

(ii) while bond interest rates are not exactly identical to policy rates in reality, actual policy rates

such as the Fed funds rate behave similarly to bond rates.
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Wang (2023).

5 (Co-)Existence of Equilibrium Cases

We now discuss the conditions under which the different equilibrium cases exist,

and whether there is a unique equilibrium. Uniqueness here means that given the

economy’s fundamental parameters as well as fiscal and monetary policies, we can

determine which of the three equilibrium cases occurs. If there is coexistence of

equilibrium cases, there is no clear mapping from a given set of policies and para-

meters to equilibrium cases, and thus several real outcomes are possible for the same

underlying economic conditions.

To derive existence conditions for the different equilibrium cases, it will be useful

to define

As(i) ≡ B(i) + χ(1 + ι)

1 + i+ χ(ι− i)
K(i) (40)

as the ‘liquidity adjusted’ real asset supply, which, loosely speaking, equals the

sum of the real bond supply plus the share of the capital stock that can be used

to back deposit issuance. For χ = 0 (capital has no liquidity value), we have

As(i) = B(i), and for χ = 1 (capital has the same liquidity value as bonds), we have

As(i) = B(i) +K(i). The dependence of all variables on i has been made explicit

in (40). With regard to the real bond supply, the only thing that will matter for

our purposes is how it changes with i; we thus express the real bond supply as a

function of i only, capturing both direct and indirect (e.g., via M or Y ) effects of i

on B. Further, by using K = κL together with condition (37), we get

K(i) = q(κ(i))C(i), where q(κ) ≡ κ

f(κ)− δκ
. (41)

Notice that q′(κ) > 0.25 Expression (41) highlights that the aggregate capital stock

K depends both on the capital-labour ratio κ as well as on aggregate consumption

C. Changes in i affect K both via their effect on κ and via their effect on C. For

instance, as long as χ > 0, an increase in i reduces κ (see equation (36)), which,

taken by itself, has a negative effect on K. Whether C increases or decreases in i is

ambiguous. On the one hand, an increase in i reduces the real wage w (via the effect

of i on κ), which negatively affects both c0 and c1. On the other hand, an increase in

i reduces the cost of providing liquidity to households paying with deposits, which

has a positive effect on c1.

25Denoting α̂(κ) ≡ [κf ′(κ)]/f(κ) as the capital share (the fraction of output going to capital

owners), we have q(κ) = [α̂(κ)]/[f ′(κ)− δα̂(κ)], i.e. q is increasing in the capital share.
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Next, define

Ad(i) ≡ β(1 + ι)

1 + i
θc1(i) (42)

as the real asset demand resulting from the bank’s deposit issuance required to grant

households in state 1 a given consumption level c1(i). Expression (42) highlights

that, as usual, changes in i affect the asset demand Ad(i) both via a substitution

effect and an income effect. On the one hand, an increase in i reduces the cost

of providing liquidity to households in state 1 relative to those in state 0, which

effectively makes consumption in state 1 cheaper relative to consumption in state 0

and will increase the optimal ratio c1/c0; taken by itself, this has a positive effect

on Ad(i). On the other hand, an increase in i means the bank has to purchase less

assets to provide households in state 1 with a given consumption level c1, which,

taken by itself, has a negative effect on Ad(i). Which effect dominates depends on

the curvature of the utility function u(c). Note that, in addition to these standard

substitution- and income effects, changes in i affect Ad(i) also via their effect on the

real wage, which in turn affects the desired consumption level c1.

From (38) and (39), we get that asset market clearing requires:

As(i)


≥ Ad(i) if i = ι (FE)

= Ad(i) if i ∈ (0, ι) (IE)

≤ Ad(i) if i = 0 (ZE)

(43)

Condition (43) shows that the economy will be in an FE if the asset supply is

plentiful relative to the asset demand, it will be in a ZE if the asset supply is scarce

relative to the asset demand, and it will be in an IE in an intermediate case.

We can see immediately from expression (43) that a necessary condition for

multiple steady-state equilibria is that the difference As(i)−Ad(i) (weakly) increases

in i over at least part of the interval i ∈ [0, ι]. Intuitively, if an increase in i (i.e.

a decrease in asset prices) leads to an increase in the asset supply As relative to

the asset demand Ad, then changes in asset prices can be self-fulfilling and multiple

equilibria are possible.

Note that the economy can always be put in an FE by saturating it with bonds.

Furthermore, multiple equilibria become more likely when the real bond supply B(i)
increases in i, which makes it more likely that As(i)−Ad(i) increases in i. Our main

interest is to study how the liquidity premium on capital can generate multiple equi-

libria. To focus on this, we will assume for most of the following analysis that the

government keeps the real amount of bonds in circulation at some constant level.

Additionally, we will also consider the case where the government keeps the ratio of

money to total government debt constant, which, as we will show, implies that B(i)
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decreases in i. We will now briefly discuss these two policies.

Fixed real bond supply. Suppose the government keeps the real quantity of

bonds at some (exogenous) constant level B ≥ 0. With a constant real bond supply,

the aggregate asset supply As(i) is fully driven by changes in the aggregate capital

stock K(i). It will be helpful to define

Q(i) ≡ Ad(i)−As(i) + B(i) = Ad(i)− χ(1 + ι)

1 + i+ χ(ι− i)
K(i) (44)

as the difference between the bank’s demand for assets to back deposit issuance and

the total capital stock that can be used to back deposits. In other words, Q(i) is the

difference between asset demand and the supply of real assets (i.e. without bonds).

With a fixed real bond supply, our asset market clearing condition from (43) can be

rewritten as:

B


≥ Q(i) if i = ι (FE)

= Q(i) if i ∈ (0, ι) (IE)

≤ Q(i) if i = 0 (ZE)

(45)

Lemma 1. Suppose B(·) = B. A sufficient condition for an FE, an IE and a ZE to

coexist for some B > 0 is that Q(0) > 0 and Q′(i) < 0 for i ∈ [0, ι].

Intuitively, Q′(i) < 0 means that the aggregate capital stock (more precisely, the

liquidity value of the aggregate capital stock) increases by more (or decreases by

less) than the bank’s demand for assets when i increases. Put differently, a fall in

asset prices (an increase in i) increases asset supply relative to asset demand, such

that the fall in asset prices can be self-fulfilling. Note that if Q(0) < 0, then capital

is so plentiful that the economy cannot be in a ZE for any nonnegative bond supply.

Constant money-to-debt ratio. Suppose now that, instead of fixing the real bond

supply, the government fixes the ratio of money to total nominal government debt.

Denoting η ∈ (0, 1] as the constant money-to-debt ratio, we then haveM = η(M+B)

and B = 1−η
η
M. The key difference to before is that the real bond supply now

changes with i since equilibrium real money balances depend on i. To see this,

note that whenever i > 0, the CIA constraint for households in state 0 binds, and

steady-state real money balances M are strictly increasing in c0 (see (38)). From

(34) we get that c0, in turn, is strictly increasing in the real wage w, which itself is

decreasing in i (via the effect of i on κ). Therefore, a higher steady-state interest

rate i is associated with lower M. Given that B is a fixed multiple of M, a higher

steady-state interest rate is thus associated with a lower B. Via this channel, an
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increase in i exerts a negative effect on the aggregate asset supply As(i) under a

fixed money-to-debt ratio, which makes it less likely that As(i)−Ad(i) increases in

i. For this reason, multiple equilibria are generally easier to obtain with a fixed real

bond supply than with a fixed money-to-debt ratio.

Lemma 2. Suppose an FE and a ZE coexist for some fixed money-to-debt ratio

η ∈ (0, 1). Then there exists some B > 0 such that an FE and a ZE coexist in the

same economy when the real bond supply is held constant at B.

5.1 Illiquid Capital

In this subsection, we discuss briefly the case where capital cannot be used to back

issuance of bank deposits (χ = 0). The return to capital is then pinned down by β

and δ (see condition (36)), and we have κ = κ∗.

Proposition 2. Suppose χ = 0,
∂B(i)
∂i

≤ 0 and u(c) =
c1−σ

1− σ
. Then a sufficient

condition for uniqueness of the steady-state equilibrium is σ < 1.

The intuition for the result in Proposition 2 is as follows. As described above,

multiple equilibria are only possible if the asset supply As(i) increases relative to

the asset demand Ad(i) when i increases. With χ = 0, we have As(i) = B(i). Given

B′(i) ≤ 0, a necessary condition for multiplicity is then that asset demand Ad(i)

(weakly) decreases in i. When χ = 0, κ is fixed at κ∗, which means real wages do

not move with i. Therefore, whether Ad(i) increases or decreases in i depends only

on whether the substitution- or the income effect, as described above, dominates.26

If σ is low, then households have a high willingness to shift consumption away from

state 0 towards state 1 when i increases. This implies that the substitution effect

dominates and Ad(i) increases in i, which precludes multiple equilibria.

The result of Proposition 2 evidently applies to the case where the real bond

supply B is held constant. Furthermore, it is not hard to see that the result also

applies to the case where the money-to-debt ratio is kept constant. The reason

is that, as described above, a constant money-to-debt ratio implies that a higher

steady-state interest rate i is associated with a lower real bond supply B.

Proposition 3. Suppose χ = 0, B(·) = B and u(c) =
c1−σ

1− σ
with σ ≥ 1. Then there

exist debt levels B > 0 such that an FE, an IE and a ZE coexist.

26We show in the proof of Proposition 2 that a sufficient condition for uniqueness with a general

utility function is
c′1(i)

c1(i)
>

1

1 + i
over i ∈ [0, ι].
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Proposition 3 shows that with illiquid capital, multiple equilibria can occur when

σ is high. With high σ, households have a low willingness to shift consumption away

from state 0 towards state 1 when i increases, implying that the real asset demand

Ad(i) falls in i. In this case, an increase in i (i.e. a decrease in bond prices) goes

together with a decrease in the real amount of bonds demanded, which can in turn

justify the lower bond prices and opens up the possibility of multiple equilibria.27

While we are not aware of a reference which makes this point explicitly, we

believe the result that multiple steady-state equilibria may exist when σ ≥ 1 is well

understood among economists working on banking and macro-finance since several

papers from this literature assume σ < 1 (examples include Haslag and Martin

(2007), Williamson (2012), and Altermatt (2022)). We also focus on σ < 1 for the

remainder of the paper because (i) we want to highlight how a liquidity premium

on capital can be a novel source of equilibrium multiplicity, over and above the

multiplicity that may result from a strong income effect due to high σ; and (ii) as

pointed out in Footnote 27, assuming σ > 1 implies that money demand increases

with inflation, which goes against the empirical evidence.

With illiquid capital and σ < 1, our economy behaves very similarly to the one

in Williamson (2012).28 Marginal exogenous changes in the real bond supply B have

no effect on the steady-state equilibrium if bonds are very scarce (in which case the

economy will be in a ZE) or plentiful (in which case the economy will be in an FE). If

the economy is in an IE, a marginal exogenous increase in B will lead to an increase

in i, thereby relaxing the liquidity constraint of households in state 1 and increasing

c1; this in turn will increase output Y and the aggregate capital stock K.

5.2 Liquid Capital

We now consider the case where χ > 0, meaning that capital can be used to back

issuance of bank deposits. This implies that aggregate consumption affects the

supply of assets that can be used to back deposit issuance, which in turn affects

aggregate consumption. This feedback loop can expand the set of parameters for

which multiple equilibria are possible – in particular, multiple equilibria can occur

for σ < 1:

27 In a similar vein, an increase in inflation π can lead to an increase in the amount of real

money M demanded when σ is high.
28The main difference is that in Williamson (2012), capital is not used to produce the consump-

tion good sold against money and deposits. However, with illiquid capital, this difference does not

materially affect the behavior of the economy.

20



Proposition 4. Consider an economy with a utility function

u(c) = D
c1−σ

1− σ
with σ < 1 (46)

and a CES production function

Y = A
(
αK

ρ−1
ρ + (1− α)L

ρ−1
ρ

) ρ
ρ−1

(47)

with A,D > 0, α ∈ (0, 1) and ρ ≥ 0. Suppose B(·) = B. There exist parameters

and debt levels B > 0 for which an FE, an IE, and a ZE coexist. Denoting Cj as

aggregate consumption in equilibrium case j ∈ {FE, IE, ZE}, there exist cases with

multiple equilibria where CFE > CIE > CZE, and there exist cases with multiple

equilibria where CFE < CIE < CZE.

We prove Proposition 4 by examples. Below, we provide an example of an

economy with multiple equilibria where CFE > CIE > CZE, and in Appendix A.1,

we provide an example with CFE < CIE < CZE.

To gain some intuition about the result in Proposition 4, consider first the case

where CFE > CIE > CZE, i.e. the FE is the high-activity equilibrium and the ZE

the low-activity equilibrium. To illustrate why multiple equilibria with this property

can occur, suppose we start from a ZE (i = 0) and consider what happens when the

interest rate i increases. Recall that an increase in i has counteracting effects on C:

on the one hand, an increase in i implies lower opportunity costs of carrying liquidity

for households who can pay with deposits, but on the other hand, an increase in i

leads to a decrease in the capital-labour ratio κ and thus to a decrease in the real

wage w. Suppose the first effect dominates, such that an increase in i goes together

with an increase in C. The increase in consumption demand resulting from a higher

i then leads firms to invest more despite the higher interest rate. If the resulting

increase in the aggregate capital stock K(i) outpaces (to a sufficient degree) the

increase in the bank’s demand for assets Ad(i), then Q(i) decreases, and the fall in

asset prices (i.e. the increase in i) can be self-fulfilling.

Consider next the case of multiple equilibria where CFE < CIE < CZE, i.e.

the FE is the low-activity equilibrium and the ZE the high-activity equilibrium.

To illustrate why multiple equilibria with this property can occur, suppose again

we start from a ZE (i = 0) and consider what happens when the interest rate i

increases. Suppose that, different to the previous example, the negative effect of an

increase in i on C (via the fall in real wages) dominates, such that C falls in i. The

fall in consumption demand then implies a decrease in the bank’s demand for assets,

Ad(i). If the decrease in Ad(i) is sufficiently large relative to the fall in K(i), then

Q(i) decreases, and the fall in asset prices can again be self-fulfilling.
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In general, multiple equilibria are more likely to exist when the capital-labour

ratio κ is relatively insensitive to changes in i. To see this, note that when κ de-

creases strongly in i, it is less likely that K(i), and hence As(i), increases relative

to Ad(i) when i increases.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

i

1.018

1.02

1.022

1.024

1.026

1.028

1.03

1.032

1.034

1.036

As

Ad

Figure 1: Example of equilibrium multiplicity with CFE > CIE > CZE.

Table 1: Parameter values for Figure 1.

β γ θ σ D A α ρ χ δ B
0.95 0.045 0.8 0.7 1 2 0.1 1/3 1 1 0.5

Example of multiple equilibria with CFE > CIE > CZE. Figure 1 shows

Ad(i) and As(i) for the parameter values given in Table 1. Comparing the figure

with (43) reveals that the conditions for all types of equilibria are satisfied simul-

taneously: Ad(0) > As(0), which constitutes a ZE since banks can make up the

shortfall in asset supply by holding excess reserves at the zero-lower bound; we also

have Ad(ι) < As(ι), which constitutes an FE since banks are happy to hold the

excess supply of assets as it is costless to do so in a fundamental equilibrium; fi-

nally, we have Ad(0.063) = As(0.063), implying that there is an IE at a bond rate

of 6.3%. Aggregate consumption levels in the three equilibria equal CFE = 1.307,

CIE = 1.282 and CZE = 1.238.

An explicit condition for multiplicity. It turns out that deriving an explicit

parameter condition guaranteeing the existence of multiple equilibria is easier for a
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fixed money-to-debt ratio than for a fixed real bond supply:

Proposition 5. Consider an economy with a CRRA utility function (46) with D =

1, a CES production function (47), and χ > 0. Suppose B = 1−η
η
M, and define

q∗ ≡ q(κ∗). If

q∗ <
βθ

χ
, (48)

and

ρ <
βf ′(κ∗)

q∗(1 + δq∗)

[
θ

χ2

(
β − 1

σ

(
β − χq∗

))
−
(
1

χ
− 1

)
q∗
]
, (49)

and ι is sufficiently close to 0, then there exist money-to-debt ratios η ∈ (0, 1) such

that an FE, an IE and a ZE coexist.

Condition (48) ensures that the first-best capital stock (more precisely, the share

of the capital stock that can be used to back deposit issuance) is not too high, since

otherwise the economy will be in an FE even if the bond supply is zero (η = 1).

Condition (49) is equivalent to the condition that As(i)−Ad(i) be strictly increasing

in i in an ϵ-neighbourhood of the Friedman rule. Notice that (49) can only be

fulfilled if the elasticity of substitution between labour and capital, ρ, is not too high,

which ensures that κ does not fall too strongly when i increases. While assuming

ι to be close to zero simplifies considerably the derivation of a parameter condition

guaranteeing existence of multiple equilibria, this is not a necessary condition for

equilibrium multiplicity: in Appendix A.2, we provide an example where multiple

equilibria exist for a constant money-to-debt ratio with ι = 0.1.

The result in Proposition 5 also allows to show formally that multiple equilibria

can occur for σ < 1 under a constant money-to-debt ratio. To see this, note that

for χ = 1, condition (49) becomes

ρ <
βθf ′(κ∗)

q∗(1 + δq∗)

(
β − 1

σ
(β − q∗)

)
. (50)

The right-hand side of condition (50) is strictly positive whenever σ > 1− (q∗/β). It

follows that for any σ satisfying 1− (q∗/β) < σ < 1, condition (50) will be fulfilled

as long as ρ is sufficiently low.

Finally, it follows immediately from Lemma 2 that the parameter conditions

(48)-(49) are also sufficient to obtain multiplicity (in the vicinity of the Friedman

rule) for some constant real bond supply. But they are not necessary: in fact, for the

parameter values in Table 1, condition (49) is not satisfied, yet multiple equilibria

exist.

Comparing the FE and the ZE. Given that multiple steady-state equilibria may

coexist, it is natural to ask how, in case of equilibrium multiplicity, the different

23



equilibria compare to the first-best allocation. We focus our discussion of this issue

on the FE and the ZE, and we assume χ > 0 and u(c) = c1−σ/(1−σ).29 Notice that

there are three margins to consider: the amount of output produced, the combination

of capital and labour with which a given output is produced, and how a given output

is distributed among households.30

We denote steady-state values in the FE (ZE) by an FE- (ZE-) superscript. As

already shown further above, we get from (36) that κFE = κ∗ and κZE > κ∗. From

(2) and (11), we get that steady-state labour supply in the first-best allocation

satisfies

l∗(κ) =
c

f(κ)− δκ
=

[w(k)]σ

f(κ)− δκ
.

From (34)-(35) and (37), we get that labour-supply in the ZE and the FE, respect-

ively, satisfies

lZE(κ) =

(
1

1 + ι

)σ
l∗(κ) and lFE(κ) =

[
(1− θ)

(
1

1 + ι

)σ
+ θ

]
l∗(κ).

This shows that lZE(κ) < lFE(κ) < l∗(κ), i.e., for a given κ, labour supply is lower

than optimal both in the FE and in the ZE, and it is lower in the ZE than in the

FE. The latter reflects that the liquidity-in-advance friction is mitigated in the FE

since part of households can pay with interest-bearing deposits.

From (11), we have that consumption in the first-best allocation satisfies c∗(κ) =

[w(κ)]σ. From (34)-(35), we get that consumption levels c0 and c1 in the FE and

the ZE satisfy

cFE0 (κ) = cZE0 (κ) = cZE1 (κ) =

(
1

1 + ι

)σ
c∗(κ) and cFE1 (κ) = c∗(κ).

This shows that, given κ, consumption levels are again closer to the first-best in the

FE. Nevertheless, since l(κ) is inefficiently low in both equilibria, we know from the

theory of the second best that an unambiguous welfare ranking of the two equilibria

is not possible. Specifically, correcting the inefficiently low l(κ) with an inefficiently

29Whenever both an FE and a ZE exist, then an IE (with κ in between the FE and the ZE)

exists as well.
30The fact that there are three relevant margins is an important difference to Geromichalos and

Herrenbrueck (2022), where there is only one relevant margin. In Geromichalos and Herrenbrueck

(2022), as in our model, output and investment can be inefficiently low when ι > 0. In their model,

this wedge can be fully closed by setting i < ι, which spurs investment and allows to attain the

first-best allocation even when ι > 0. Different to Geromichalos and Herrenbrueck (2022), who

assume an inelastic labour supply, it is in general not possible to achieve the first-best allocation

with an inefficiently large capital stock in our model. While it may in principle be possible to bring

output to its first-best level by setting κ > κ∗, the output will be produced with an inefficient mix

of capital and labour.
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high κ can in principle increase welfare.31 Note in particular that, since κFE < κZE,

we have cFE0 < cZE0 independent of whether the FE or the ZE is the high-activity

equilibrium, and cZE0 may be closer to c∗ than cFE0 .

6 Transitional Dynamics

The coexistence of multiple steady states in itself does not imply that multiple

equilibria exist in the economy we have described. Additionally, what is required

for multiple equilibria is that for certain values of the state variables, multiple saddle

paths with different real allocations exist. Since the amount of capitalK−1 is the only

state variable in this economy, what is thus required for equilibrium multiplicity is

that the same initial amount of capital may lead to different steady-state equilibria.

In this section, we investigate the transitional dynamics of the model to determine

whether multiple equilibria do exist. Because of the highly non-linear nature of our

model, we focus on global dynamics for parametrised examples.

To study the transitional dynamics, we consider the case where B(·) = B, i.e.
where the government fixes the real debt supply. The solution technique we apply

relies on backward iteration, and in particular on the following proposition:

Proposition 6. If B(·) = B and cu′′(c)/u′(c) > −1 ∀c, then, given X = (κ,K,Z),

where Z ≡ ϕM−1, there is a unique X−1 such that the equilibrium conditions hold.

The proposition states that there is a unique mapping from X 7→ X−1.
32 We

refer to this map as g in what follows, and we use it to backward iterate from

some terminal XT , resembling a backward-shooting algorithm in the spirit of Judd

(1999) and Brunner and Strulik (2002).33 Now, denote X̄FE and X̄ZE as the values

of X which describe the FE and ZE steady states, respectively. To derive the

transitional dynamics, we use linearisation to characterise sets Eϵ,FE ⊆ Bϵ(X̄FE)

and Eϵ,ZE ⊆ Bϵ(X̄ZE), where Bϵ(X) is some ϵ-neighbourhood around X, so that if

X ∈ Eϵ,FE, the economy will transition to X̄FE; and if X ∈ Eϵ,ZE, the economy will

31The matter is further complicated by the fact that, as is well known, the first-best allocation

does not maximize steady-state utility, which is maximized when the capital stock is at the golden

rule level, f ′(κ) = δ. For this reason, a capital stock exceeding κ∗ (as is the case in the ZE) may

be associated with a higher steady-state utility than the first-best allocation.
32Importantly, this does not imply that that the inverse is true, i.e., that X−1 7→ X. In fact,

equilibrium multiplicity only exists if this is not the case.
33Judd (1999) mentions that standard forward-shooting algorithms have limited value in infinite-

horizon economic models due to saddle-path stability of equilibrium, entailing that such algorithms

are extremely sensitive to small errors in the initial guess.
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transition to X̄ZE.
34,35 Given this, we can define

Kε,J =
∞⋃
T=0

gTK(Eε,J), J ∈ {FE,ZE}. (51)

So, if K−1 ∈ Kε,FE, then ∃T ∈ N0 and ∃X ∈ Eε,FE such that gTK(X) = K−1; for

starting value K−1, our numerical approximation suggests existence of an equilib-

rium path that converges to the FE steady state. Likewise, if K−1 ∈ Kε,ZE, the

approximation suggests existence of an equilibrium path that converges to the ZE

steady state. Thus, we have ‘approximated’ equilibrium multiplicity for some start-

ing value K−1 if K−1 ∈ Kε,FE∩Kε,ZE. In other words, multiple equilibria exist if, by

backward iterating both from some X ∈ Eϵ,FE and X ′ ∈ Eϵ,ZE, we find values of K−1

from which we can transition to either steady state equilibrium. For all paramet-

risations we consider, we find that both the FE and ZE equilibrium are saddle-path

stable, meaning that ln (Eϵ,J) , J ∈ {FE,ZE} is a one-dimensional linear subspace,

i.e., a straight line. If we therefore define

Bϵ(X̄) ≡
{
X s.t.

∣∣∣∣X − X̄

X̄

∣∣∣∣ ≤ ϵ

}
, (52)

where | · | is the Euclidean norm, then we obtain

Eε,J = {X̄J ⊗ (1 + λX̂J), ∀λ ∈ [−ϵ, ϵ]}, (53)

where X̂J = [κ̂J , K̂J , ẐJ ] is uniquely determined up to some normalisation—we set

its Euclidean length to one. Note that it is infeasible to compute gT (Eϵ,J) numerically

because Eϵ,J is an uncountable set. We therefore compute gT ({en,J}Nn=0) for a discrete

sample instead.36

Although the direct implication of the procedure sketched above is that we ‘only’

obtain points in gT (Eϵ,J), these points in fact allow us to say more about the set

gT (Eϵ,J). The reason is that the proof of Proposition 6 implies:

Corollary 1. The map g(X) is continuous in X.

The implication is that the set gT (Eϵ,J) is continuous, too. Thus, if we find that

K ′
−1, K

′′
−1 ∈ gTK(Eϵ,J), with K ′

−1 < K ′′
−1 then we know that [K ′

−1, K
′′
−1] ⊆ gT (Eϵ,J).

Thus, given the sample {en,J}Nn=0 ∈ Eϵ,J , our best approximation of gT (Eϵ,J) is

g̃T ({en,J}Nn=0) ≡
[

min
e∈{en,J}Nn=0

{
gT (e)

}
, max
e∈{en,J}Nn=0

{
gT (e)

}]
, (54)

34The linearisation technique is described in Appendix A.3.
35Note that we cannot start the backward iteration at the steady-state values since g(X̄FE) =

X̄FE and g(X̄ZE) = X̄ZE . Note also that the smaller ϵ, the more accurate are the approximations.
36In particular, we sample en,J = X̄J ⊗ (1 + λn,JX̂J) and {λn,J} ∈ [−ϵ, ϵ], and we do this for

T ∈ {0, 1, ..., T} and use λn,J = {−100,−99, ...,−1, 1, 2, ..., 100} × e−9.
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Table 2: Parametrisation where equilibrium is unique.

β γ θ σ D A α ρ χ δ B
0.98 0.02 0.8 0.7 1.0 2.0 0.1 0.3333 1.0 0.6 0.6250

Table 3: Steady state values for parametrisation where equilibrium is unique.

κ K Z C Y L π ι i

FE steady state 0.6413 0.7420 0.3284 1.7192 2.1644 1.1571 2.00 4.08 4.08

IE steady state 0.6542 0.7457 0.3343 1.6937 2.1412 1.1399 2.00 4.08 1.16

ZE steady state 0.6596 0.7473 0.3381 1.6835 2.1319 1.1331 2.00 4.08 0.00

where we know that {en,J}Nn=0 ⊆ Eϵ,J ⇒ g̃TK({en,J}Nn=0) ⊆ gTK(Eϵ,J). In other words,

any value of K−1 that lies between the most extreme values we find must also be on

a saddle-path towards the steady-state equilibrium we backwards-iterate from.

We start by considering the parameterisation described in Table 2, with corres-

ponding steady-state values given in Table 3. Note that for this parametrisation,

an FE, an IE and a ZE all exist. Figure 2 plots the results, which show that the

values for K−1 we obtain by backwards iterating from the FE and ZE steady states

do not overlap; instead, backwards iterating from the FE steady state leads K−1

to approach the IE steady state from below while backwards iterating from the ZE

steady state approaches the IE steady state from above. This shows several things:

first, the IE steady state is unstable; second, for K ∈ (0, K̄IE), we transition to

the FE steady state, while for K ∈ (K̄IE,∞), we transition to the ZE steady state;

finally, this implies that although this parameterisation allows for multiple steady

states, multiple equilibria do not exist in this case. The existence of multiple steady

states may still be relevant for policy, however: It suggests that after an (unexpec-

ted) shock to capital, the economy may not transition back to the same steady state,

even if policy remains unchanged.

Next, consider the parametrisation characterised in Table 4, with corresponding

steady-state values in Table 5. The results from the backward iteration for this

Table 4: Parametrisation with multiple equilibria.

β γ θ σ D A α ρ χ δ B
0.98 0.02 0.8 0.7 1.0 2.0 0.1 0.3333 1.0 1.0 0.5225
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0 5 10 15 20 25 30
T

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
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capped from below and from above for enhanced visibility.

Figure 2: Approximations g̃TK({en,FE}Nn=0) and g̃
T
K({en,ZE}Nn=0) for parametrisation

where equilibrium is unique.

Table 5: Steady state values for parametrisation with multiple equilibria.

κ K Z C Y L π ι i

FE steady state 0.5136 0.5531 0.2581 1.3513 1.9045 1.0769 2.00 4.08 4.08

IE steady state 0.5182 0.5522 0.2610 1.3372 1.8895 1.0657 2.00 4.08 2.14

ZE steady state 0.5234 0.5512 0.2688 1.3215 1.8726 1.0531 2.00 4.08 0.00
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parametrisation are presented in Figure 3. In this case, we can observe a clear

overlap for values of K−1 such that the economy may either transition to the FE

or the ZE steady state, showing that this parametrisation presents a case of true

equilibrium multiplicity. Note further that as T increases, both paths again approach

the IE steady state, implying that the IE equilibrium is again unstable. In Figure 4

we plot two equilibrium trajectories starting from K−1 = 0.5522; one that moves to

the FE steady state and one that moves to the ZE steady state. To do so, we first

calculate

êJ = argmin
e∈{en,J}Nn=0

|gTK(e)−K−1|, J ∈ {FE,ZE}, (55)

where we set T = 30 because Figure 3 suggests that K−1 = 0.5522 ∈ gTK(Eϵ,FE) ∩
gTK(Eϵ,ZE) for T = 30. Then, we use as approximate equilibrium trajectories {Xt,J}Tt=0 =

{gT−t(êJ)}Tt=0, J ∈ {FE,ZE}. One interpretation is that after a shock to capital

such that K−1 = 0.5522, the economy coordinates on a path that will lead it either

to an FE or to a ZE equilibrium, and that output, interest rates, and inflation ad-

just accordingly immediately. As the figure shows, the real implications of the two

equilibria are markedly different both on the transition path as well as in the corres-

ponding steady state. Note, however, that these two trajectories are not necessarily

the only two equilibria that exist: Studying Figure 3 shows that the starting value

for capital we use also lies at saddle paths where T > 30; hence, other saddle paths

are possible, and potentially even cyclical equilibria.

In sum, we have shown by example that multiple equilibria may exist in this

economy, but also that the existence of multiple steady states does not generally

imply multiple equilibria.

7 Conclusion

In this paper, we studied liquidity transformation by banks in a monetary model

and analysed the channels through which liquidity transformation increases aggreg-

ate output and investment. We showed how liquidity transformation can lead to

macroeconomic instability in the sense that it can lead to multiple steady-state

equilibria with different interest rates in economies that do not exhibit such equi-

librium multiplicity without liquidity transformation. By studying the transitional

dynamics of the model, we confirm that the coexistence of steady states sometimes

allows for equilibrium multiplicity. The paper also makes a methodological contri-

bution by showing how banks can be introduced in a cash-in-advance model. Key
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Figure 3: Approximations g̃TK({en,FE}Nn=0) and g̃
T
K({en,ZE}Nn=0) for parametrisation

with multiple equilibria.
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Figure 4: Equilibrium dynamics withK−1 = 0.5522 for parametrisation which allows

for multiple equilibria. There is an equilibrium path to the FE (•) steady state and

an equilibrium path to the ZE (•) steady state.
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results from the New Monetarist macro-financial literature, e.g. on the emergence

of liquidity traps, can be replicated within the CIA framework.
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Appendix A Additional Material

A.1 Example of Multiple Equilibria with CFE < CIE < CZE
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Figure 5: Example of equilibrium multiplicity with CZE > CIE > CFE.

Table 6: Parameter values for Figure 5.

β γ θ σ D A α ρ χ δ B
0.95 0.045 0.95 0.5 1.1 1.3 0.3 1/11 0.38 1 0.003

Figure 5 shows Ad(i) and As(i) for the parameter values given in Table 6. From

the figure, it is clear that the conditions for all types of equilibria from (43) are satisfied

simultaneously, with the IE existing for an interest rate of 1.6%. Aggregate consumption

levels in the three equilibria equal CFE = 0.113, CIE = 0.114 and CZE = 0.115; hence,

the ordering of aggregate consumption and welfare is inverse in this example relative to

the one presented in the main body of the paper.

A.2 Example of Multiple Equilibria with a Constant Money-

to-Debt Ratio

Table 7: Parameter values for Figure 6.

β γ θ σ D A α ρ χ δ η

0.95 0.045 0.8 0.7 1 2 0.1 1/5 1 1 0.45
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Figure 6: Example of equilibrium multiplicity with a constant money-to-debt ratio.

Figure 6 shows Ad(i) and As(i) for the parameter values given in Table 7. From

the figure, it is clear that the conditions for all types of equilibria from (43) are satisfied

simultaneously, with the IE existing for an interest rate of 3.4%. Aggregate consumption

levels in the three equilibria equal CFE = 1.168, CIE = 1.145 and CZE = 1.131, which

shows that aggregate consumption in this example is highest in the FE and lowest in the

ZE.

A.3 Details on the Linearisation

Given the map X → X−1 = G(X), we can log-linearise around a steady state X̄ to obtain

X̂−1 = εg,X̄X̂, where X̂ ≡ (X − X̄)⊘X, (56)

and ε̄g,X is a 3-by-3 matrix.

To find how ε̄g,X looks like for either an FE, ZE, or IE, steady state, it is useful to

first log-linearise Equations (86), (89), and (91). This yields

κ̂−1 =
ε̄w,κ − ε̄ψ̃,κ

ε̄w,κ
κ̂+

1

ε̄w,κ

χ(1 + ῑ)

(1− χ)(1 + ῑ) + χ(1 + ī)

(
1̂ + i− 1̂ + ι

)
, (57)

K̂−1 =
1

σ

1

φ̃(κ̄)K̄

[
C̄(ε̄w,κκ̂− 1̂ + ι) + θc̄11̂ + i

]
+

K̂

φ̃(κ̄)
− ε̄φ̃,κκ̂, (58)

Ẑ−1 =
(1− χ)(1 + ī)

(1− χ)(1 + ī) + χ(1 + ῑ)
1̂ + ι+

χ(1 + ῑ)

(1− χ)(1 + ī) + χ(1 + ῑ)
1̂ + i+ Ẑ − ε̄ψ̃,κκ̂, (59)

where we defined

ε̄ψ̃,κ ≡ κ̄f ′′(κ̄)

f ′(κ̄) + 1− δ
, ε̄φ̃,κ

f ′(κ̄)− f(κ̄)/κ̄

f(κ̄)/κ̄+ 1− δ
, and ε̄w,κ = − κ̄2f ′′(κ̄)

f(κ̄)− κ̄f ′(κ̄)
. (60)

Money and asset market clearance themselves pin down (ι, i) as a function of X, so

we can think of the log-linearised equations for money and asset market clearance as

1̂ + ι = ε̄ι,κκ̂+ ε̄ι,KK̂ + ε̄ι,ZẐ (61)
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1̂ + i = ε̄i,κκ̂+ ε̄i,KK̂ + ε̄i,ZẐ (62)

where ε̄ι,κ, ε̄ι,K , ε̄ι,Z , ε̄i,κ, ε̄i,K , and ε̄i,Z follow from log-linearisation. Using Equations

(61) and (62) in the system (57)-(59) then implicitly gives ε̄g,X .

FE steady state. We have that ī = ῑ so that 1̂ + i = 1̂ + ι. In turn, because money

market clearance condition (93) must hold with equality, we can log-linearise it to obtain

1̂ + ι = ε̄w,κκ̂− σẐ. (63)

ZE steady state. We have that ī = 0 so that 1̂ + i = 0. The asset market clearance

condition (98) pins down the Fisher rate and it can be log-linearised as[
1

σ
− ϖB(1− χ)(1 + ī)

(1− χ)(1 + ī) + χ(1 + ῑ)

]
1̂ + ι

=

[
ε̄w,κ
σ

+

(
ϖK +

χψ̃(κ̄)

φ̃(κ̄)− χψ̃(κ̄)

)
(ε̄φ,κ − ε̄ψ,κ)−ϖBε̄ψ,κ

]
κ̂−ϖKK̂ −ϖZẐ, (64)

where

ϖZ =
Z

C

φ̃(κ̄)

φ̃(κ̄)− χψ̃(κ̄)
, ϖK =

K

C

χψ̃(κ̄)

φ̃(κ̄)− χψ̃(κ̄)

and ϖB =
ψ̃(κ̄)B
C

φ̃(κ̄)

φ̃(κ̄)− χψ̃(κ̄)

(1− χ)(1 + ī) + χ(1 + ῑ)

1 + ῑ
. (65)

IE steady state. We have that 0 < ī < ῑ, so that both Equations (93) and (98) must

hold with equality. This gives the log-linearised equations (63) and[
1θ

σ

c̄1
C̄

− ϖB(1− χ)(1 + ī)

(1− χ)(1 + ī) + χ(1 + ῑ)

]
1̂ + i

= −

[
ε̄w,κ
σ

+

(
ϖK +

χψ̃(κ̄)

φ̃(κ̄)− χψ̃(κ̄)

)
(ε̄φ,κ − ε̄ψ,κ)−ϖBε̄ψ,κ

]
κ̂

+ϖKK̂ +ϖZẐ +

(
1

σ
−ϖB

(1− χ)(1 + ī)

(1− χ)(1 + ī) + χ(1 + ῑ)

)
1̂ + ι,

(66)

where ϖZ , ϖB, and ϖK are as in Equation (65).

Appendix B Proofs

B.1 Proof of Proposition 1

The equilibrium nominal rate i is pinned down by (15), and, since f(κ) is strictly concave,

condition (16) uniquely determines κ. Since u(c) is strictly concave, condition (17) then

uniquely determines c given i and κ. ■
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B.2 Proof of Lemma 1

Note first that if Q(0) > 0 and Q′(i) < 0 for Q(i) ∈ [0, ι], then there exists some constant

B > 0 with B ∈ (Q(ι), Q(0)). For any such B, we have B > Q(ι) and B < Q(0) such that,

by (45), both an FE and a ZE exist. Furthermore, since Q(i) is continuous, we get from

the intermediate value theorem that there exists some i ∈ (0, ι) such that B = Q(i), which

means that an IE exists as well. ■

B.3 Proof of Lemma 2

Denote

Bη(i) =
1− η

η
M(i) (67)

as the real bond supply under a fixed money-to-debt ratio η ∈ (0, 1).

Step 1: iH ≥ iL ⇒ c0(iH) ≤ c0(iL). This follows from the fact that, by (34), c0(i) is

strictly increasing in w, which itself is strictly increasing in κ, which, in turn, is weakly

decreasing in i (see (36)).

Step 2: iH ≥ iL ⇒ Bη(iH) ≤ Bη(iL). This follows immediately from (38) and (67) together

with the result in Step 1.

Suppose an FE and a ZE coexist for some fixed money-to-debt ratio η. By (40) and (43),

this implies that

Bη(ι) + χK(ι) ≥ Ad(ι) and Bη(0) +
χ(1 + ι)

1 + χι
K(0) ≤ Ad(0). (68)

From Step 2, we know that there exists a strictly positive constant B with B ∈ [Bη(ι),Bη(0)].
Since the schedules K(i) and Ad(i) do not depend on the specification of the bond supply

rule B(i), we have for any such constant B that

B + χK(ι) ≥ Ad(ι) and B +
χ(1 + ι)

1 + χι
K(0) ≤ Ad(0) (69)

such that, by (43), both an FE and a ZE exist when B(i) = B. ■

B.4 Proof of Proposition 2

Define

Z(i) ≡ As(i)−Ad(i). (70)

It follows immediately from (43) that a sufficient condition to rule out multiple equilibria

is that Z ′(i) < 0 for i ∈ [0, ι]. With χ = 0, we have

Z(i) = B(i)−Ad(i) = B(i)− β(1 + ι)

1 + i
θc1(i),
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where we used the definitions of As(i) and Ad(i) in (40) and (42), respectively. Given

B′(i) ≤ 0, we thus get that

Z ′(i) < 0 ⇔ ∂Ad(i)

∂i
> 0 ⇔

∂
[
c1(i)
1+i

]
∂i

> 0 ⇔ c′1(i)

c1(i)
>

1

1 + i
. (71)

With χ = 0, κ does not depend on i (see (36)), which implies that the real wage w does

not change with i (see (4)). With CRRA utility, we then get from (35) that

c1 =

(
1 + i

1 + ι
w

) 1
σ

and
c′1(i)

c1(i)
=

1

σ

1

1 + i
. (72)

It follows from (71) and (72) that Z ′(i) < 0 for i ∈ [0, ι] when σ < 1. ■

B.5 Proof of Proposition 3

Note first that from the definition of As(i) in (40), we get that if χ = 0 and B(i) = B, then
As(i) = B. Suppose the real bond supply is fixed at B = Ad(i1) for some i1 ∈ (0, ι).37 It

then follows from (43) that: (i) an IE exists and (ii) if Ad(i) is weakly decreasing in i over

i ∈ [0, ι], then an FE and a ZE exist as well.

Using the definition of Ad(i) from (42), we get that

∂Ad(i)

∂i
≤ 0 ⇔

∂
[
c1(i)
1+i

]
∂i

≤ 0 ⇔ c′1(i)

c1(i)
≤ 1

1 + i
. (73)

From (72), we get that with CRRA utility and χ = 0, condition (73) is satisfied for all

i ∈ [0, ι] when σ ≥ 1. Therefore, if σ ≥ 1 and the real bond supply is fixed at B = Ad(i1)

for some i1 ∈ (0, ι), then an FE, an IE and a ZE coexist.38 ■

B.6 Proof of Proposition 5

Consider an economy in an IE. From (43), we have that Z(i) = 0 in an IE, where Z(i) is

defined as in (70). It follows from (43) that in the limit as ι approaches zero, a sufficient

condition for a ZE, an IE and an FE to coexist is that Z ′(i) > 0 at the point Z(i) = 0. In

the following, we will derive a sufficient condition for the latter to be the case.

With a constant money-to-debt ratio, the real bond supply satisfies

B(i) = 1− η

η
M(i) =

1− η

η
β(1 + ι)(1− θ)c0(i), (74)

where, in the second step, we made use of the fact that (38) holds with equality in an IE.

Furthermore, with CRRA utility, we get from (18) and (34)-(35) that

c0(i) =
1

(1− θ) + θ(1 + i)
1
σ

C(i) and c1(i) =
(1 + i)

1
σ

(1− θ) + θ(1 + i)
1
σ

C(i). (75)

37Since c1 > 0, which follows from the fact that limc→0 u
′(c) = ∞, Ad is always strictly positive.

38If σ = 1, there exist a continuum of equilibria, with any i ∈ [0, ι] constituting an equilibrium.
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Substituting (41), (42), (74) and (75) into

Z(i) = As(i)−Ad(i) = B(i) + χ(1 + ι)

1 + χι+ (1− χ)i
K(i)−Ad(i)

yields

Z(i) = T (i)C(i), (76)

where

T (i) ≡ (1− η)β(1 + ι)(1− θ)

η[1− θ + θ(1 + i)
1
σ ]

+
χ(1 + ι)q(i)

1 + χι+ (1− χ)i
− βθ(1 + ι)

(1− θ)(1 + i)1−
1
σ + θ(1 + i)

. (77)

In (77), we used the notation q(i) = q(κ(i)). In an IE, we have Z(i) = 0 and hence

T (i) = 0. Evaluating T (i) at the limit where ι = i = 0, we have that

T (i) = 0 ⇔ η =
β(1− θ)

β − χq(0)
≡ η̂. (78)

An IE with a strictly positive bond supply exists iff η̂ ∈ (0, 1); since q(0) = q(κ(0)) =

q(κ∗) = q∗ when ι = i = 0, this is equivalent to condition (48) in Proposition 5.

Next, from (76), we get that Z ′(i) = T ′(i)C(i)+T (i)C ′(i). In an IE (where Z(i) = 0),

we therefore have that Z ′(i) > 0 ⇔ T ′(i) > 0. From (77), we find that

T ′(i) = −β(1 + ι)

(
1− η

η

)
1

σ

θ(1− θ)(1 + i)
1
σ
−1[

1− θ + θ(1 + i)
1
σ

]2
+

χ(1 + ι)

1 + χι+ (1− χ)i
q′(i)− χ(1− χ)(1 + ι)

[1 + χι+ (1− χ)i]2
q(i)

+
βθ(1 + ι)[

(1 + i)θ + (1 + i)1−
1
σ (1− θ)

]2 [(1− θ)

(
1− 1

σ

)
(1 + i)−

1
σ + θ

]
. (79)

Evaluating T ′(i) at ι = i = 0 and using the fact that η = η̂ in an IE, we find that

T ′(i) > 0 ⇔ χ(1− χ)q(0)− χq′(0) < θ

[
β − 1

σ
(β − χq(0))

]
. (80)

It remains to determine the derivative q′(0). From the definition of q(i) = q(κ(i)) in (41),

we get that

q′(i) =
w(κ)

(f(κ)− δκ)2
κ′(i). (81)

Next, defining

F (κ, i) = f ′(κ) + 1− δ − 1

β

1 + i

1 + i+ χ(ι− i)
,

we get from (36) that F (κ, i) = 0 implicitly defines κ as a function of i. From the implicit

function theorem, we get

κ′(i) = −F
′
i (κ, i)

F ′
κ(κ, i)

=
χ(1 + ι)

β[1 + i+ χ(ι− i)]2
1

f ′′(κ)
. (82)
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With a CES production function (47), we have

f ′(κ) = γ

(
f(κ)

κ

) 1
ρ

and f ′′(κ) = −w(κ)
ρ

f ′(κ)

κf(κ)
. (83)

Combining (81), (82) and (83) and evaluating q′(i) at ι = i = 0, we get

−q′(0) = χρ

β

κ∗f(κ∗)

f ′(κ∗)(f(κ∗)− δκ∗)2
. (84)

Inserting (84) into the condition in (80), and using q∗ = q(0), yields

ρ ≤ βf ′(κ∗)(f(κ∗)− δκ∗)2

κ∗f(κ∗)

[
θ

χ2

(
β − 1

σ

(
β − χq∗

))
−
(
1

χ
− 1

)
q∗
]

⇔ ρ ≤ βf ′(κ∗)

q∗(1 + δq∗)

[
θ

χ2

(
β − 1

σ

(
β − χq∗

))
−
(
1

χ
− 1

)
q∗
]
,

which is the same as condition (49) in Proposition 5.

By continuity, conditions (48) and (49) guarantee coexistence of an IE, a ZE and an

FE when η = η̂ and ι > 0 is sufficiently close to zero. ■

B.7 Proof of Proposition 6

The strategy of proof is constructive: we detail the derivation of the map X 7→ X−1,

where X = [κ,K,Z], with Z ≡ ϕM−1, and then show that this map is unique. Of course,

we restrict attention to X ∈ R3
+. The first step is to derive that there is a unique map

(X, ι, i) 7→ X−1, i.e., once we know the asset market equilibrium, we can backward iterate

one period on X. The second step is that given (X, ι, i), we can characterize the money

market and asset market clearance conditions. The final step is to show that given X,

there is a unique tuple (ι, i) such that 0 ≤ i ≤ ι (this must always hold to have bounded

demand for money and other assets) and the money market and asset market clear.

We show first that we can determine X−1 uniquely from (X, ι, i), were we suppose that

0 ≤ i ≤ ι since this must be true on the equilibrium path. Starting from the resource

constraint (2), we have

C +K = F (K−1, L) + (1− δ)K−1. (85)

Using the CRS property of F , that κ ≡ K−1/L, the fact that C = (1− θ)c0+ θc1, and the

first-order conditions for c0 and c1 (see Equation (29)) in the resource constraint gives

C +K = L[f(κ) + (1− δ)κ]

= K−1[f(κ) + (1− δ)κ]/κ

⇒ K−1 =
C +K

f(κ)/κ+ 1− δ

=
(1− θ)c0 + θc1 +K

f(κ)/κ+ 1− δ

(1− θ)u′−1
(

1+ι
w(κ)

)
+ θu′−1

(
1

w(κ)
1+ι
1+i

)
+K

f(κ)/κ+ 1− δ
,

(86)
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where w(κ) is the wage as a function of κ (see Equation (4)).

We then consider the return on capital as in Equation (30):

ψ(κ) + 1− δ =
1

β

w(κ)

w(κ−1)

1 + i

(1− χ)(1 + i) + χ(1 + ι)
, (87)

where ψ(κ) is the rental rate for capital as a function of κ (see Equation (3)). Rearranging

terms yields

w(κ−1) =
1

β

w(κ)

ψ(κ) + 1− δ

1 + i

(1− χ)(1 + i) + χ(1 + ι)
, (88)

Because w(κ) is strictly increasing in κ, its inverse exists so that

κ−1 = w−1

(
1

β

w(κ)

ψ(κ) + 1− δ

1 + i

(1− χ)(1 + i) + χ(1 + ι)

)
. (89)

We finally recall that Z ≡ ϕM−1, so that Z = Z−1(1+γ)/(1+π). Using the definition

of the Fisher rate (10) implies

Z−1 = Z
β(1 + ι)

1 + γ

w(κ−1)

w(κ)
. (90)

Given how w(κ−1) is determined according to Equation (88), we find Z−1 as a function

that depends only on (X, ι, i):

Z−1 =
1 + ι

1 + γ

1 + i

(1− χ)(1 + i) + χ(1 + ι)

Z

ψ(κ) + 1− δ
. (91)

This last part proves that there is a unique map (X, ι, i) 7→ X−1.

The second step is to detail how (ι, i) is determined by asset market clearance. To do

so, clearance of the market for money requires

(1− θ)c0 ≤ Z, with equality if i > 0. (92)

Using the first-order condition for c0 (29), we thus have a clearance condition in (X, ι, i):

(1− θ)u′−1

(
1 + ι

w(κ)

)
≤ Z, with equality if i > 0. (93)

Clearance for the market for liquid assets requires

(1− θ)c0 + θc1 ≤ Z + (1 + i)ϕB−1 + χ[ψ(κ) + (1− δ)]K−1. (94)

Here, we focus on B = ϕB fixed at B. This implies ϕB−1 = B/(1+π). Using the first-order

conditions for consumption (29) and the definition of the Fisher rate (10) implies

(1− θ)u′−1

(
1 + ι

w(κ)

)
+ θu′−1

(
1

w(κ)

1 + ι

1 + i

)
≤ Z +

B(1 + i)

β(1 + ι)

w(κ)

w(κ−1)
+ χ[ψ(κ) + 1− δ]K−1,

(95)

with equality if i < ι. We then eliminate K−1 and w(κ−1) by using Equations (86) and

(88) from the first step. We thus obtain the asset market clearance condition as function

of (X, ι, i):
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(1− θ)u′−1

(
1 + ι

w(κ)

)
+ θu′−1

(
1

w(κ)

1 + ι

1 + i

)
≤ Z + [ψ(κ) + 1− δ]

×

B (1− χ)(1 + i) + χ(1 + ι)

1 + ι
+ χ

(1− θ)u′−1
(

1+ι
w(κ)

)
+ θu′−1

(
1

w(κ)
1+ι
1+i

)
+K

f(κ)/κ+ 1− δ

 . (96)

Defining

ψ̃(κ) ≡ ψ(κ) + 1− δ and φ̃(κ) = f(κ)/κ+ 1− δ, (97)

we can write Equation (96) more compactly as

0 ≤ Q(X, ι, i) ≡ Z + ψ̃(κ)B (1− χ)(1 + i) + χ(1 + ι)

1 + ι
+
χψ̃(κ)K

φ̃(κ)

−
[
(1− θ)u′−1

(
1 + ι

w(κ)

)
+ θu′−1

(
1

w(κ)

1 + ι

1 + i

)]
φ̃(κ)− χψ̃(κ)

φ̃(κ)
, (98)

with equality if i < ι. Note that ψ̃(κ) < φ̃(κ) because f(κ) is strictly concave. Thus, given

X, (ι, i) should be such that Equations (93) and (98) hold, and it should satisfy 0 ≤ i ≤ ι.

The third and last step is to show that given X, there is a unique (ι, i) such that

0 ≤ i ≤ ι, and Equations (93) and (98) are satisfied. We split this part up by considering

two equilibrium cases separately: (a) 0 < i ≤ ι and (b) 0 = i ≤ ι.

Case (a): 0 < i ≤ ι. With 0 < i, Equation (93) implies

(1− θ)u′−1

(
1 + ι

w(κ)

)
= Z ⇒ 1 + ι = w(κ)u′

(
Z

1− θ

)
, (99)

thus uniquely pinning down ι as a function of X. Because 0 < i by supposition and i ≤ ι,

existence of an equilibrium with 0 < i ≤ ι requires that 0 < ι. This gives as existence

condition

Z < (1− θ)u′−1

(
1

w(κ)

)
, (100)

which depends only on X.

Using Equation (99) allows us to write Q(X, ι, i) in (98) as

Q(X, ι(X), i) =
χψ̃(κ)

φ̃(κ)
Z + ψ̃(κ)B (1− χ)(1 + i) + χ(1 + ι(X))

1 + ι(X)
+
χψ̃(κ)K

φ̃(κ)

− θ
φ̃(κ)− χψ̃(κ)

φ̃(κ)
u′−1

(
1

w(κ)

1 + ι(X)

1 + i

)
, (101)

where ι(X) captures that ι is pinned down as a function of X by Equation (99). Taking

the partial derivative of Q(X, ι(X), i) w.r.t. 1 + i we find

∂Q(X, ι(X), i)

∂(1 + i)
= ψ̃(κ)B 1− χ

1 + ι(X)
+ θ

φ̃(κ)− χψ̃(κ)

φ̃(κ)

u′(c1)

u′′(c1)

1

1 + i
. (102)
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Using that cu′′(c)/u′(c) > −1;∀c, we thus have

∂Q(X, ι(X), i)

∂(1 + i)
< ψ̃(κ)B 1− χ

1 + ι(X)
− θ

φ̃(κ)− χψ̃(κ)

φ̃(κ)

u′−1
(

1
w(κ)

1+ι(X)
1+i

)
1 + i

= − 1

1 + i

[
χψ̃(κ)[Z +K]

φ̃(κ)
+ χψ̃(κ)B −Q(X, ι(X), i)

] (103)

Because i ≤ ι and Q(X, ι(X), i) ≥ 0, with equality if i < ι, it follows directly that an

i ≤ ι(X) which solves Q(X, ι(X), i) ≥ 0 (with equality if i < ι(X)) is unique. Further, it

exists and it satisfies 0 < i (this must hold by supposition) if and only if Q(X, ι(X), 0) > 0,

which in turn holds if and only if

[χψ̃(κ)− θφ̃(κ)]Z + χψ̃(κ)(1− θ)K

(1− θ)φ̃(κ)
+ ψ̃(κ)B1− χ+ χ(1 + ι(X))

1 + ι(X)
> 0. (104)

Using (99), the above reads as

[χψ̃(κ)− θφ̃(κ)]Z + χψ̃(κ)(1− θ)K

(1− θ)φ̃(κ)
+ ψ̃(κ)B

 1− χ

w(κ)u′
(

Z
1−θ

) + χ

 > 0, (105)

which depends only on X. Thus, for the case 0 < i ≤ ι, given X a tuple (ι, i) that solves

Equations (93) and (98) exists if

X ∈ Xi>0 ≡
{
X ∈ R3

+ s.t. (100) and (105)
}
, (106)

and this (ι, i) is pinned down uniquely as a function of X.

Case b: 0 = i ≤ ι. With i = 0, Equation (98) implies

0 ≤ Q(X, ι, 0) = Z + ψ̃(κ)B1− χ+ χ(1 + ι)

1 + ι
+
χψ̃(κ)K

φ̃(κ)
− u′−1

(
1 + ι

w(κ)

)
φ̃(κ)− χψ̃(κ)

φ̃(κ)
,

(107)

with equality if 0 < ι. Taking the partial derivative of Q(X, ι, 0) w.r.t. 1 + ι yields

∂Q(X, ι, 0)

∂(1 + ι)
= −ψ̃(κ)B 1− χ

(1 + ι)2
− φ̃(κ)− χψ̃(κ)

φ̃(κ)

u′(C)

u′′(C)

1

1 + ι
(108)

Using that cu′′(c)/u′(c) > −1;∀c, we thus have

∂Q(X, ι, 0)

∂(1 + ι)
> −ψ̃(κ)B 1− χ

(1 + ι)2
+
φ̃(κ)− χψ̃(κ)

φ̃(κ)
u′−1

(
1 + ι

w(κ)

)
1

1 + ι

=
Z + χψ̃(κ)K/φ̃(κ) + ψ̃χB −Q(X, ι, 0)

1 + ι

(109)

Because 0 ≤ ι and Q(X, ι, 0) ≥ 0 (with equality if 0 < ι), it follows directly that an

0 ≤ ι which solves Q(X, ι, 0) ≥ 0 (with equality if 0 < ι) is unique. Equilibrium existence

however requires that Equation (93) holds, i.e.,

(1− θ)u′−1

(
1 + ι

w(κ)

)
≤ Z ⇒ 1 + ι ≥ w(κ)u′

(
Z

1− θ

)
(110)
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Since the 0 ≤ ι which solves Q(X, ι, 0) ≥ 0 (with equality if 0 < ι) is non-negative,

Condition (110) is satisfied trivially if

Z ≥ (1− θ)u′−1

(
1

w(κ)

)
, (111)

which is the exact opposite of Condition (100). If Condition (111) does not hold, then

Condition (110) is satisfied if and only if Q(X, ι, 0) > 0, where 1+ ι ≡ w(κ)u′
(

Z
1−θ

)
. This

translates into

[χψ̃(κ)− θφ̃(κ)]Z + χψ̃(κ)(1− θ)K

(1− θ)φ̃(κ)
+ ψ̃(κ)B

 1− χ

w(κ)u′
(

Z
1−θ

) + χ

 ≤ 0, (112)

which is the exact opposite of Condition (105). Thus, for the case 0 = i ≤ ι, given X, a

tuple (ι, i) that solves Equations (93) and (98) exists if and only if

X ∈ Xi=0 ≡
{
X ∈ R3

+ s.t. (111) or (112)
}
, (113)

and this (ι, i) is pinned down uniquely as a function of X.

Combining insights from the cases (a) and (b), we see that Xi=0 is the complement of

Xi>0. Hence, given X, we find a unique (ι, i) such that: (i) 0 ≤ i ≤ ι; (ii) the money

market clears, i.e., Equation (93) holds; and (iii) the asset market clears, i.e., Equation

(98) holds. In other words, there is a unique map X 7→ (ι, i). We also established there

is a unique map (X, ι, i) 7→ X−1, thus establishing a unique map X 7→ X−1; there is only

one way to backward iterate on X such that the equilibrium conditions are satisfied. ■
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