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Abstract
Accurately classifying products is essential in international trade. Virtually all countries
categorize products into tariff lines using the Harmonized System (HS) nomenclature for
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toms authorities and the United States Department of Agriculture (USDA). We find that
while traditional machine learning (ML) models tend to perform well within the dataset
in which they were trained, their precision drops dramatically when implemented out-
side of it. In contrast, large language models (LLMs) such as GPT 3.5 show a consistently
good performance across all datasets, with accuracy rates ranging between 60% and 90%
depending on HS aggregation levels. Our analysis highlights the valuable role that ar-
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1 Introduction

Accurately classifying products is essential in international trade. Virtually all countries

use the Harmonized System (HS) nomenclature to categorize products into tariff lines for

both statistical and duty collection purposes. Misclassification, both intentional and unin-

tentional, can be very costly. It can result in imprecise measurement of trade flows, inappro-

priate determination of origin, foregone duty collection, inadequate application of restric-

tions or prohibitions, significant delays to border monitoring and processing times, and the

design and implementation of misguided trade policies, particularly trade remedies (such as

countervailing duties, antidumping, and safeguards).

Traditionally, the bulk of product categorization tasks has been carried out manually, fre-

quently based on experts’ judgments, and has accordingly been extremely time-consuming.1

As a consequence, classification is challenging for governments, firms, and researchers, espe-

cially on a large scale. Thus, the rise of cross-border e-commerce requires customs agencies

to process several million small shipments per year. In many developing countries, this has

generally resulted in most shipments being classified based on their value or size instead of

the specific goods they consist of, which limits their ability to conduct risk assessments prop-

erly and that of their countries to accurately measure the composition of a growing portion

of their international trade. Firms, in turn, particularly those that are small or have no previ-

ous experience in international trade, typically find it difficult to assign their products to HS

codes and need to rely on costly specialized services to do so.2 Last but certainly not least,

various databases that could potentially provide inputs for novel, policy-relevant research

report valuable product-level information according to product names or descriptions. This

makes it hard for researchers to combine them, leading to imperfect merges with standard

trade databases based on the HS nomenclatures. In this paper, we look at an important

1As highlighted by public customs’ agencies resolutions, classification is often the object of firms’ ex-ante con-
sultations and is subject to ex-post adjustments.

2Furthermore, in an effort to reduce the wrong attribution of tariff lines, custom agencies often impose heavy
misreporting fines, which can be burdensome for exporters.
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example of one such attempt to classify products into the HS nomenclature using product

descriptions.

The advent of machine learning (ML) is likely to reduce these classification efforts and

increase their accuracy (see WCO, 2022a).3 While there is an incipient literature that aims to

assess the accuracy of ML for product classification, most existing models rely on tests on

the same dataset used to train them. As a consequence, there is very limited evidence on

how these models perform on real external datasets and hence on their general applicability.

Further, such evidence is missing altogether in the case of large language models (LLM) such

as GPT-3.5, which are yet to be tested at scale for this purpose.

In this paper, we will examine the performance of a variety of ML models, including

GPT-3.5, at classifying products according to the HS nomenclature at different aggregation

levels. In doing so, we will go beyond the train-and-test dataset and thus explicitly assess

the external validity of the models. For this, we will use three different datasets: (i) a dataset

containing product descriptions from the Chilean customs agency to train and test ML al-

gorithms, following earlier literature; (ii) a dataset containing product descriptions from the

customs agency of a different country, Paraguay; and (iii) a database of product descriptions

from the United States Department of Agriculture (USDA).4 This third data source describes

products for which firms obtain an organic certification. In all cases, our analysis will be

limited to animal, vegetable, and food products, since these are the product categories for

which firms can obtain organic certification (Marra de Artiñano et al., 2023)5.

Our analysis reveals that while standard ML algorithms performed very well within the

test set, their accuracy dropped dramatically when these models were applied to datasets on

which they were not explicitly trained. In contrast, GPT-3.5 performed very evenly across

all datasets. Its accuracy was relatively high: it achieved percentages of approximately

3The BACUDA project run by the World Customs Organization (WCO) is an example of ongoing work using
these techniques for customs applications.

4We use Paraguayan customs data because, like Chilean data, they are freely available
5This project was originally conceived with the objective to match product descriptions of organic certified firms
with the HS Codes. In a future study we will approach the problem from a holistic point of view, i.e. for all
products under HS classification.
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60%—70% at the HS 6-digit level (highly granular product nomenclature), 70%—80% at the

HS 4-digit level, and 80%—90% at the HS 2-digit level.6.

There are several important applications for this sort of scalable automatic product clas-

sification that uses product descriptions as inputs. First, it could help customs agencies iden-

tify patterns of intentional or fraudulent product miscategorization. Second, it would make

it easier for both policymakers and researchers to categorize product descriptions from un-

structured data sources (such as those obtained from e-commerce transactions) using estab-

lished product nomenclatures. Finally, it could be used to develop chatbots that give HS

code suggestions from simple text descriptions, which would greatly facilitate tariff line at-

tribution for firms engaged in international trade and even consumers participating in cross-

border e-commerce.

To the best of our knowledge, this study is the first to apply GPT to the WCO’s HS prod-

uct classification and, more generally, to a large multiclass classification problem in eco-

nomics. 7.

A number of previous studies have proposed alternative approaches to automatically

classify products into HS codes across a large number of tariff lines. Spichakova and Haav

(2020) use ML methods to provide 6-digit HS code predictions and recommendations using a

model trained with product descriptions from the United States Bill of Lading 2017 database.

They show that the algorithm achieves a hit rate of 80% on the test dataset. Ruder (2020) uses

a variety of ML and deep learning models to classify product descriptions from the US Bill of

Lading and reaches accuracy levels of approximately 60%. Chen et al. (2021) apply unsuper-

vised ML and an off-the-shelf embedding encoder to automatically assess whether reported

HS codes in cross-border import declarations are correct. They achieve an overall success

rate of 71% on an HS 6-digit dataset provided by Dutch customs Turhan et al. (2015) adopt a

different strategy whereby they use visual properties along with product labels and descrip-

6We also tested the performance of GPT 3.5 in mapping sector descriptions onto the North American Industry
Classification System (NAICS). To do so, we used sectors reported by firms when registering with the online
business platform ConnectAmericas. The results indicate that the GPT-3.5 model achieves an efficiency of more
than 60% at the 6-digit level. These results are available from the authors upon request.

7Kocoń et al. (2023) carries out a significantly simpler classification analysis using only a few categories.
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tions. The accuracy level they achieve is above 80% with 4-digit HS codes from a database

of 4,494 binding tariffs published by the European Union in 2014. These papers use a single

dataset, which is split into training and testing samples. Unfortunately, this approach does

not allow the accuracy of the models on external datasets to be tested. This limitation is

crucial because tariff databases often have significantly different product descriptions and

text formats. One exception in this regard is He et al. (2021), who use data gathered directly

from firms to train their models, along with a second dataset of product descriptions from a

third firm that was not in the test dataset. However, they focus on very few HS products (12

6-digit potential product classifications) and their exercise is accordingly much simpler than

product categorization across the universe of potential tariff lines.

We contribute to this literature on automatic product classification by assessing the ac-

curacy of different ML algorithms on both the test-train-split dataset and two additional

datasets for a large set of products. Our results indicate a very large decrease in the accuracy

of standard ML algorithms outside the dataset on which the models are trained.

There is also recent literature that aims to apply GPT and other LLM models to text- based

data in the social sciences. Some recent papers that use GPT include S. Hansen et al. (2023),

Lopez-Lira and Tang (2023), A. L. Hansen and Kazinnik (2023), K.-C. Yang and Menczer

(2023) and Ko and Lee (2023)8. S. Hansen et al. (2023) compare the performance of a prede-

cessor of GPT-3 to their own model, WHAM, and find that WHAM outperforms GPT-3 in

terms of the error rate at the task of classifying whether a job posting allowed the possibility

of remote work at least one day per week. The authors also discuss the potential gains of

adopting modern natural language processing (NLP) methods for text classification in eco-

nomic environments. They suggest that other prediction problems using text in economics

might similarly benefit from a large training sample combined with sequence embedding

models, such as GPT-3.

8An exhaustive analysis of the recent literature using ChatGPT (and its adjacent models) is beyond the scope
of this paper. Nevertheless, it is worth mentioning papers such as Noy and Zhang (2023) on the effects on
productivity, Biswas (2023) on its potential role in health, and Kasneci et al. (2023) on its potential impact on
education.
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Lopez-Lira and Tang (2023)examine the potential of ChatGPT in predicting stock mar-

ket returns by using analysis and the classification of news with potential impact for firms.

Their analysis suggests that, even though ChatGPT is not specifically trained for this task, it

produces superior results in terms of predicting stock market returns than other traditional

sentiment analysis methods commonly used in finance due to the comprehensiveness of the

model. In a similar vein, Ko and Lee (2023) show that ChatGPT effectively helps improve

portfolio management by selecting asset classes that statistically outperform random choices

in diversification and returns.

A. L. Hansen and Kazinnik (2023) use GPT-3 and GPT-4 to decipher Fedspeak, the lan-

guage used by the Federal Reserve to communicate monetary policy decisions. Their results

suggest that these models obtain the lowest numerical errors, the highest accuracy rates,

and the highest measure of agreement relative to human classification when compared to

other pretrained linguistic models and dictionary-based approaches. Finally, K.-C. Yang and

Menczer (2023) use ChatGPT to study the credibility of news and conclude that they are able

to correctly evaluate news sources by rating them.

We add to these papers by showing the usefulness of LLMs for product classification

in international trade. We find that while GPT-3.5 performs slightly worse than traditional

ML algorithms on the test-train-split dataset, it significantly outperforms these models on

external databases. The reason is that LLMs are able to go beyond the specific context of

the training dataset and thus have much higher external validity. Unlike traditional ML

algorithms, they also require no additional data-cleaning or preprocessing, making them

much simpler to use.

The rest of this paper is structured as follows. Section 2 describes the different data

sources used in our analysis. Section 3 explains the methodological approach. Section 4

discusses the results of the classification process for the different databases. Finally, Section

5 concludes with a brief discussion of our results.
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2 Data

In this paper, we used three different datasets: a database of product descriptions from

Chilean customs, a database of product descriptions from Paraguayan customs, and a database

of organic product descriptions from the USDA. The first database (Chilean customs) was

used to train and test the ML algorithms. The second database (Paraguayan customs) was

employed to test the external validity of our models. Finally, the third database (USDA) was

used to further test the models outside the context of customs product descriptions.

2.1 Train-Test-Split Dataset: Trade Transactions from the Chilean Customs

To generate and train the ML models that attempt to predict the HS nomenclator for a set

of target products, we used the universe of Chilean export and import transactions between

2009 and 2021 as our train-and-test dataset. This comprehensive dataset contains more than

104 million observations, with granular information on trade transactions, including gran-

ular HS codes and detailed product descriptions. As is usual in the literature, we split this

dataset into separate training and testing subsets. The training data set was used to develop

and refine our models, while the test dataset was used to assess their performance and accu-

racy.

We focused our analysis on the products in HS chapters 1–22, which encompasses agri-

cultural, animal, and food products. As mentioned above, our ultimate objective in this work

was to accurately classify organic product descriptions into HS product nomenclatures, and

thus we exclusively trained and tested in the categories these products are found in. To keep

the computational load manageable, we randomly selected 1 million product descriptions in

these HS chapters from the Chilean customs dataset. Following the standard practice in the

ML literature, we used 70% of this sample for training purposes and the remaining 30% for

testing purposes.

7



2.2 External Dataset 1: Trade Transactions from the Paraguayan Customs

To test our algorithms against a dataset outside the training set, we used a random sample of

product descriptions from trade transactions recorded by Paraguayan customs. As before,

we restricted the sample to agricultural, animal, and food products (HS chapters 1–22). Im-

portantly, for this dataset, we not only had the product descriptions but also the HS codes

assigned by firms, which enabled us to directly observe the accuracy of the HS codes pro-

vided by the different ML algorithms and by GPT-3.5.

2.3 External Dataset 2: USDA Organic Product Descriptions

Finally, we used information on products for which the USDA has issued organic certifi-

cation to Latin American firms (see Marra de Artiñano et al. 2023). The original dataset

comprises more than 26,000 product descriptions. These texts vary substantially in terms of

how specific and clean they are (that is, whether they use clear, easy-to-understand wording

and do not contain odd symbols and so on). Thus, these descriptions may be significantly

shorter than those usually found in customs databases (e.g., “maize” or “mangoes”), and

may be highly specific or scant (e.g., “concentrate soursop pulp” or “ungurahui”). Table A1

in the appendix shows selected descriptions for illustrative purposes.

3 Methodology

Classification algorithms play a vital role in a wide range of ML applications (Sarker, 2021).9

Multiclass classification, a particularly challenging task, is one of the most widespread uses

for classification algorithms. In this case, the objective is to categorize the data into three

or more different and mutually exclusive categories (Aly, 2005), in such a way that what is

sought is to train one or several models that can correctly assign a set of uncategorized data

9They have been used extensively in areas such as NLP (Otter et al., 2020), image recognition (Fujiyoshi et al.,
2019; Lai, 2019), and sentiment analysis Mitra (2020), among others domains. In recent years, breakthroughs in
NLP and text mining have propelled the adoption of these algorithms in real-world applications (Kowsari et
al., 2019).
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to the correct categories. Formally, given a training dataset of the form (xi, yi) where xi is

the ith input and yi is the ith class label that belongs to the set {3, . . . , N} we want to find a

model H such that H(xi) = yi for new, uncategorized data.

The process of automatic product classification using ML models consists of several steps.

First, the train-and-test data (in our case, the product descriptions in trade transactions from

Chilean customs) needs to be preprocessed, which involves preliminary cleaning of the data,

splitting it, tokenizing it, and extracting features. Second, the data must be divided into the

training and testing sets. Third, a series of different ML algorithms are applied to the training

set.

After performing these steps, we also tested the models on two alternative external

databases (product descriptions in trade transactions from Paraguayan customs and the

USDA organic product database). We used OpenAI’s GPT-3.5 API to classify the differ-

ent products through direct prompts and benchmark its performance against that of the ML

models.

Our analysis was entirely conducted using Jupyter notebooks and Python open-source

libraries such as NLTK, scikit-learn, spaCy, AST, and other commonly used libraries, along

with the OpenAI library to conduct the GPT prompt requests.

3.1 Data Processing

As mentioned above, the Chilean customs dataset covers 2009–2021, contains more than 104

million observations, and lists 12,934 different products at the HS 8-digit level. We processed

this dataset by first restricting the product descriptions to those in chapters 1–22 of the HS

schedule, which correspond to animal, vegetable, and food manufacturing products. This

first filter reduced the total number of observations to approximately 12 million and the

total number of unique 8-digit HS codes to 2,866.10 We then proceeded to randomly select 1

million product descriptions in an effort to reduce the computational burden of the exercise.

10In addition, we filter out 469,435 observations that do not correspond to any known product according to the
standard HS nomenclature (e.g., 16.00.00).
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To preprocess the product descriptions, we performed a series of tasks that are summa-

rized in table 1:

Table 1: Preprocessing of product descriptions

Step Description

Text preparation We imported the Natural Language Toolkit (NLTK) library and
apply the “word tokenize” function to break the text into individual
words (tokens). This was crucial, as it made postprocessing of text
and feature extraction easier.

Lowercase We converted all words to lowercase using a lowercase function.
This helped to ensure that words are treated consistently in
subsequent steps and to reduce data complexity.

Removal of
non-ASCII
characters

We applied a function to remove non-ASCII characters, except for
the letter "ñ". This allows us to standardize and simplify the text,
thus facilitating subsequent analysis.

Converting
numbers written
in words to digits

We used a function from the NLTK package to convert numbers
written in words to digits. This helped reduce the complexity of the
text and made it easier to extract relevant features.

Stop-word
removal

We used a function to remove stop-words that do not provide
relevant information for analysis, such as prepositions and
conjunctions. This helped reduce the complexity of the text and
allowed us to work on the most significant words.

Lemmatization The lemmatize functions were used to transform words into their
base or lemma form. This helped reduce the complexity of the text
by grouping similar words together and made it easier to identify
patterns in the data. 11

Removing words
that are not in
English or
Spanish

We applied a function to remove words that are not in English or
Spanish. This helped focus the analysis on the relevant languages
and reduced noise in the data.

English and
Spanish noise
removal

We applied some functions to remove irrelevant, noisy words in
English and Spanish. This helped reduce noise in the data and
allowed the most relevant words to be used for analysis.

Source: Authors’ own elaboration.
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By cleaning and preprocessing the text in the product descriptions as described in these

steps, we got the data ready to be used properly with ML models and ensured that the mod-

els generated were accurate and efficient at estimating HS codes. Table A2 in the appendix

illustrates the application of this procedure to a selected product description and shows the

results thereof. This example provides a clear idea of the complexity of dealing with cer-

tain descriptions and demonstrates the importance of simplification if they are to be uses as

inputs for traditional ML algorithms.

3.2 Traditional ML Algorithms

We used several different ML models for our multiclass classification problem. While offer-

ing an extensive explanation of such models is beyond the scope of this paper, this section

contains a brief review of some of their characteristics, based primarily on Kowsari et al.

(2019) and Aggarwal and Zhai (2012):

1. Support Vector Machine (SVM): one of the most efficient ML algorithms since its in-

troduction in the 1990s. SVM is a supervised learning algorithm that identifies the

optimal hyperplane that separates data points into their respective classes and maxi-

mizes the margin between the classes. The key in this classifier is to “determine the

optimal boundaries between the different classes and use them for the purposes of

classification” (Aggarwal & Zhai, 2012).

2. Rocchio: a traditional and efficient method for text categorization. The algorithm rep-

resents documents as vectors in a high-dimensional space and calculates the centroid

for each category. To classify a new product description, the algorithm measures the

similarity of each to the centroids and assigns it to the closest category.

3. Logistic Regression: a linear model for binary classification, which can be extended to

multiclass classification problems like categorizing product descriptions. Using a lo-

gistic function, the model estimates the probability of a product description belonging

11



to a specific class. The class with the highest probability is then assigned to the product

description.

4. k-Nearest Neighbors (k-NN): searches for the k most similar or closest items to the

new object we want to classify, and then decides which category it belongs to, based

on the most common category among its nearest neighbors.

5. Random Forest: an ensemble learning method that constructs multiple decision trees

during training and combines their predictions to improve classification accuracy. This

method can handle large datasets and effectively classify product descriptions into var-

ious HS chapters, despite the fact that it is quite slow to create predictions once trained.

6. Naive Bayes: a probabilistic classifier based on Bayes’ theorem, which assumes inde-

pendence between features. Although this assumption is often not valid in real-world

applications, Naive Bayes classifiers still perform well in many cases. The classifier is

particularly effective for text categorization tasks.

7. Decision Tree: a flowchart-like structure that can be used for classification tasks. The

tree is built by recursively splitting the dataset based on the feature that provides the

best separation into classes.

3.3 LLMs: GPT-3.5

GPT-3.5 is an advanced large-scale language, deep learning model.12 It uses transformer

architecture to understand and generate human-like text. With billions of parameters and

the ability to learn from vast amounts of text data, it has been fine-tuned to excel in a wide

range of NLP tasks.

Some of the notable properties of GPT-3.5include its autoregressive nature, which allows

it to generate contextually relevant and coherent text by predicting the next word in a se-

12GPT-3.5 was developed by OpenAI. In our analysis, we use the GPT-3.5 version (internally called "gpt-3.5-
turbo"), which powers the publicly available version of the ChatGPT chatbot. A more recent and powerful
model, GPT-4, became available on March 14, 2023
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quence given the previous words. The model is trained using unsupervised learning with

a vast dataset that includes websites, books, and articles. Although the knowledge cut-off

point for GPT-3.5 is September 2021, it is still be a powerful tool for various NLP tasks and

can be adapted for specific use cases, such as assigning HS product nomenclature codes, in

this instance.

We applied the model by asking it to assign an HS category based on the product de-

scription we provide. For that purpose, we gave it a system command to act as a wizard that

assigns 6-digit HS codes and then asked it to do so for a given product description. In this

regard, it is worth mentioning that we asked it not only to assign each product an HS code

but also to provide its best estimate if the product description was not clear enough, thereby

“forcing” it to make a guess.

Preparing datasets for use with the model (that is, the data processing described in sec-

tion 3.1) was not essential. When working with LLMs, which are trained on a diverse range

of text typologies, preprocessing data may not be needed and may even be disadvantageous

as it might obscure valuable contextual information. We therefore merely input orders one

at a time, allowing GPT-3.5 to categorize products individually. The prompt used and the

completion request associated with it are presented in the appendix (section 3).

4 Classification Results

4.1 Results on the Train-Test-Split Dataset: Trade Transactions from the Chilean Cus-

toms

Figure 1 shows the accuracy of the different models on the Chilean customs data. It is im-

portant to stress that this is the dataset on which the ML algorithms are trained. Note that

GPT-3.5 is not “trained” using any of the datasets, since the outcomes are obtained from di-

rect prompts to the model through the API. The trained algorithms had very high accuracy

levels on the test dataset, especially in the case of the Decision Tree, Logistic Regression, and

SVM algorithms. The results of this test are typically used to assess the predictive capability
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of an algorithm.

As expected, the accuracy levels were higher when less granular product categories were

used (see figures 1b and 1c). However, this increase in success rates is uneven. For example,

the hit rate of the GPT-3.5 model increased by 15 percentage points (from 62% to 77%) when

moving from HS 6-digit codes to HS 4-digit codes and by an additional 9 percentage points

(from 77% to 86%) when HS 2-digit codes were used. These findings indicate that GPT-3.5

predicts the broad category of products very well.

Figure 1: Algorithm’s Accuracy in the Test-Train-Split Dataset: Chilean Customs.

(a) HS-6 digit level
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(b) HS-4 digit level

(c) HS-2 digit level

Source: Authors’ calculations based on Chilean customs data.

In this and the following subsection, we tested the ML algorithms outside the dataset on

which they were trained. This was very important because the usefulness of such algorithms

in real-world applications depends on their external validity. Real data imposes a clear chal-
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lenge in this regard. It features a variety of product descriptions, including different formats.

Hence, a model performing well on the training dataset may not be indicative of how well

it will accomplish other classification tasks. To explore this, we compared the models using

data that was not part of the test dataset. Specifically, we selected a random sample of 10,000

product descriptions from Paraguayan customs records. This allows for a fairer comparison

of ML models and GPT-3.5, since it confronts both models with data on which neither was

explicitly trained. The results are presented in figure 2.

Traditional ML algorithms did not perform well when tested using real-world data on

which they were not trained. Their accuracy rates dropped below 30% for 6-digit HS codes.

In contrast, the GPT-3.5 algorithm performed much better, correctly assigning around 60%

of the product codes. These results are similar to those obtained on the Chilean dataset.

This points to the consistency of GPT-3.5 in automatic product classification across customs

datasets.13

Next, we proceeded to check how the different algorithms performed at more aggregate

levels. This allowed us to better understand how these algorithms work and where the high-

est rates of success/failure occur. Figure 2b shows the accuracy of the different algorithms

when using 4-digit HS codes. Once again, conventional ML algorithms achieved a maxi-

mum accuracy level of 37%, while GPT-3.5 reached 77%, a 17-percentage-point increase in

its hit rate compared with 6-digit codes.

Figure 2c reports the results for the more aggregated 2-digit classification. In this case,

the GPT-3.5 algorithm achieved more than 90% accuracy. However, it should be noted that

the performance of the conventional ML algorithms also improved significantly, with the

Decision Tree reaching 73%. This indicates that all algorithms can predict the HS chapter

that a product belongs to relatively well.14

13In the appendix, we show GPT-3.5’s accuracy at the HS 6-digit level for each broad HS 2-digit category. We
failed to find any pattern, which suggests a high level of consistency in its average performance

14In addition, a comparison of Figures 2a, 2b and 2c reveals differences in terms of the best-performing conven-
tional ML algorithm. While at the HS 6-digit level SVM has the highest accuracy rate, Decision Trees seem to
outperform other methodologies at a less disaggregated level.
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Figure 2: Algorithm’s Accuracy in the First External Dataset: Paraguayan Customs.

(a) HS-6 digit level

(b) HS-4 digit level

17



(c) HS-2 digit level

Source: Authors’ calculations based on Paraguayan customs data.

Despite the relative ease of predicting product chapters, GPT-3.5 performed consistently

better than the other models. In the appendix, we show that GPT-3.5 performed well across

all HS chapters included in our analysis (section 4).

4.2 Results on the External Dataset 2: USDA Organic Product Descriptions

Finally, we assessed the ability of conventional ML algorithms and GPT-3.5 to accurately pre-

dict HS codes using text formats that differ from those traditionally used in customs. To do

this, we used a set of descriptions of products for which Latin American firms are certified

as organic producers and sellers by the USDA. As mentioned above, these product descrip-

tions have different formats and vary significantly in terms of depth and specificity, which

makes them potentially harder to categorize than the average customs product description.

Furthermore, although this type of text contains descriptions of products, it does not specify

the respective HS codes for each. Consequently, it cannot be used to train ML models to

predict these. Similar cases can be found in many other data sources, such as cross-border

e-commerce shipments, bank transactions, and survey-based descriptions.
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To conduct this exercise, we selected a random sample of 1,000 descriptions of USDA

certified organic products and classified these by hand into 6-digit HS tariff lines. The results

are fully in line with those based on the Paraguayan customs external dataset: the standard

ML algorithms performed significantly worse than GPT-3.5.15

Figure 3a shows the accuracy at the HS 6-digit level. The GPT-3.5 model achieved a suc-

cess rate of 74.1%, while the traditional ML models scored 15% at most (Rocchio model). The

differences were similar when HS 4-digit codes were used: the accuracy of GPT-3.5 was over

80%, an improvement of 6 percentage points on the HS 6-digit level. Among the traditional

ML algorithms, the maximum hit rate increased to 26% (again, the Rocchio model). Finally,

at the HS 2-digit level, GPT-3.5 classified almost 88% of the product chapters correctly (i.e.,

a 7-percentage-point improvement on the 4-digit classification). It is noteworthy that this

further widened the performance gap between GPT-3.5 and traditional ML models, whose

success rate remained low even at these broader aggregation levels.

15To test the difference in performance from an increase of one order of magnitude in the number of products
classified, we conducted a sensitivity analysis, in which we randomly divided the sample into 10 groups of 100
product descriptions and examined their accuracy. We found that GPT performed very similarly across the 10
groups, with a standard deviation of just 0.0136. We also did this for the other datasets (see appendix, section
5).
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Figure 3: Algorithm’s Accuracy in the Second External Dataset: USDA Organic Classifica-
tion.

(a) HS-6 level

(b) HS-4 level
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(c) HS-2 level

Source: Authors’ calculations based on USDA data.

5 Discussion and Conclusions

The GPT-3.5 model showed high accuracy rates when classifying products according to the

HS nomenclature. Traditional ML algorithms performed very well on their training dataset

but their performance dropped dramatically when they were tested on external data. In

such external validity tests, GPT-3.5 significantly outperformed these algorithms. Impor-

tantly, this was the case even when the ML models were trained with 1 million observations

of high-quality customs product descriptions and then subsequently tested on high-quality

descriptions from a different customs agency from the same region.

Another major advantage of GPT-3.5 is its ability to work with product descriptions in

different languages. Throughout our analysis, we used data in English and Spanish, but

GPT-3.5 is likely to perform very well across many other languages in which large amounts

of data are publicly available (e.g., Chinese, French, German, etc.). Importantly, it is also

able to successfully handle regional variants of the same language. One interesting example

from our study was Physalis peruviana, a fruit, typically known as “goldenberry” in English.
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Our Chilean training data refers to them as “uchuva,” but the fruit goes by other names in

different countries: “aguaymanto” in Peru, “uvilla” in Ecuador, and “fisalis” in Spain. ML

algorithms trained on the Chilean data failed to identify these regional variations and thus

misclassified the product, whereas GPT-3.5, trained on a much wider set of texts, recognized

the fruit and classified it properly. This is an example of how the wide training dataset of

LLMs allow them to outperform standard ML algorithms.

LLMs with chat interfaces are also significantly simpler since they do not require data-

cleaning and preprocessing routines. Performing these tasks with traditional ML algorithms

can be rather time-consuming and resource-intensive, especially those related to feature ex-

traction. 16 While the API is necessary to work with GPT-3.5 at scale, the standard interface

enables the classification functionality to be integrated easily into existing systems or appli-

cations. In our analysis, we worked with the base model, without making further adjust-

ments, but GPT-3.5 could also be adapted for use with specific data through its fine-tuning

mechanism.

LLMs can therefore be especially useful in comprehensive unilateral, regional, and mul-

tilateral trade policy initiatives involving product classifications over time and across coun-

tries (e.g., trade facilitation)

In terms of costs, the LLM we used (GPT-3.5) is relatively inexpensive, except at a very

large scale.17. Importantly, open-source LLMs are becoming increasingly competitive, and

we expect them to be able to perform at a high level in product classification tasks in the

16We also assessed the model against a manual classification carried out by a research assistant (RA) using a
sample of 100 observations. The results indicate that, while the RA’s accuracy was slightly above that of
GPT-3.5 at the 6-digit level, the difference fades when more aggregate classification levels are considered. At
the 2-digit HS level, GPT-3.5 performed slightly better than the RA. It is worth stressing that while the RA
needed four hours to accomplish the task, GPT 3.5 completed it in just one minute. This suggests that there
is potentially a tradeoff between accuracy and time for highly disaggregated classifications in small samples.
The terms of this tradeoff are highly likely to change as the number of observations increases, with GPT-3.5
clearly emerging as the better approach for large samples, especially given that human working time increases
at a nonlinear rate due to marginal decreasing returns.

17In our work, we used the latest, least expensive version of the GPT-3.5 model, “gpt-3.5-turbo”. Without going
into the billing system works in detail, our estimate is that the total cost of classifying a dataset of 10,000
standard customs product descriptions is approximately $3.20. (see the pricing)
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short term.18 Benchmarking automatic product classification across different LLMs (includ-

ing open-source models) and different fine-tuning methods remains an important avenue

for future research.

18See, for instance, Falcon and LLaMA.
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Appendix

1 Organic Descriptions

Table A1: Sample of 10 randomly chosen organic product descriptions

Original Product

Ungurahui (Oenocarpus Bataua)
soy beans
Plátanos/Bananos - 1 Traboar_Finca Genoveva (F)
Banana puree acidulated deep frozen
Organic aseptic concentrate soursop pulp
Organic white corn powder
Banana puree without seeds
Organic coco
Safflawer
Maca flour - pre cooked

Source: Own elaboration based on USDA
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2 Preparation Steps of Descriptions

Table A2: Preparation steps of a random selected description

Step Result

Initial
description

FROZEN DOUGHS EUROPASTRY-F CODE-81299 BERLIDOTS
BOMBOM FOOD PREPARATION BASED ON WHEAT FLOUR
AND WATER IN BOXES OF 36 UNITS FOR HUMAN
CONSUMPTION

Text preparation [’FROZEN’, ’DOUGHS’, ’EUROPASTRY-F’, ’CODE-81299’,
’BERLIDOTS’, ’BOMBOM’, ’FOOD’, ’PREPARATION’, ’BASED’,
’ON’, ’WHEAT’, ’FLOUR’, ’AND’, ’WATER’, ’IN’, ’BOXES’, ’OF’,
’36’, ’UNITS’, ’FOR’, ’HUMAN’, ’CONSUMPTION’]

Lowercase [’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’,
’bombom’, ’food’, ’preparation’, ’based’, ’on’, ’wheat’, ’flour’, ’and’,
’water’, ’in’, ’boxes’, ’of’, ’36’, ’units’, ’for’, ’human’, ’consumption’]

Removal of
non-ASCII
characters

[’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’,
’bombom’, ’food’, ’preparation’, ’based’, ’on’, ’wheat’, ’flour’, ’and’,
’water’, ’in’, ’boxes’, ’of’, ’36’, ’units’, ’for’, ’human’, ’consumption’]

Converting
numbers written
in words to digits

[’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’,
’bombom’, ’food’, ’preparation’, ’based’, ’on’, ’wheat’, ’flour’, ’and’,
’water’, ’in’, ’boxes’, ’of’, ’36’, ’units’, ’for’, ’human’, ’consumption’]

Stop-word
removal

[’frozen’, ’doughs’, ’europastery-f’, ’code-81299’, ’berlidots’,
’bombom’, ’food’, ’preparation’, ’based’, ’wheat’, ’flour’, ’water’,
’boxes’, ’36’, ’units’, ’human’, ’consumption’]

Lemmatization [’frozen’, ’dough’, ’europastery-f’, ’code-81299’, ’berlidot’,
’bombom’, ’food’, ’preparation’, ’base’, ’wheat’, ’flour’, ’water’,
’box’, ’36’, ’unit’, ’human’, ’consumption’]

Removing words
that are not in
English or
Spanish

[’frozen’, ’dough’, ’code’, ’berlidot’, ’bombom’, ’food’, ’preparation’,
’base’, ’wheat’, ’flour’, ’water’, ’box’, ’36’, ’unit’, ’human’,
’consumption’]

English and
Spanish noise
removal

[’frozen’, ’dough’, ’berlidot’, ’bombom’, ’food’, ’preparation’, ’base’,
’wheat’, ’flour’, ’water’, ’box’, ’36’, ’unit’, ’human’, ’consumption’]

Source: Authors’ calculations based on Chilean customs data.
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3 GPT-3.5 Prompt

1 @backoff.on_exception(backoff.expo, openai.error.RateLimitError, max_time=60)
2 def assign_code_forced(row, column):
3 text = row[column]
4 modelo = "gpt-3.5-turbo"
5 try:
6 response = openai.ChatCompletion.create(
7 model=modelo,
8 messages=[
9 {"role": "system", "content": You are a helpful assistant that

assigns product codes in the HS6 product nomenclature
categorization."},

10 {"role": "user", "content": f'Please assign the harmonized system
code number in the HS6 for the following description:"{texto}"
. Return "Code: number here". If you are unsure of the
classification, provide your best possible option'}],

11 temperature=0.1)
12 assigned_code = response['choices'][0]['message']['content']
13 return assigned_code
14 except json.JSONDecodeError:
15 print(f"JSON Decode Error in text: {text}")
16 return None
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4 Accuracy in Specific HS Chapters

In this appendix, we show the results for the different product categories, showing where

the GPT-3.5 model is most efficient. In both figure A4a and figure A4b, the data is shown

up HS chapters 1–22, which are our target chapters, as we explained in the methodological

section.

Figure A4a: Algorithm’s accuracy in different HS chapters. Chilean dataset

Source: Authors’ calculations based on Chilean customs data.

In figure A4a which shows the Chilean data we used in the training set for the algorithms,

we see that the chapters with the lowest hit levels are 4, 9, and 20, which refer to “Dairy

produce; birds’ eggs; natural honey; edible products of animal origin,” “Coffee, tea, mate

and spices” and “Preparations of vegetables, fruit, nuts or other parts of plants,” respectively.

However, despite being relatively low in the chart, their accuracy scores are 0.70, 0.80, and

0.66, which are still good metrics.
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Figure A4b: Algorithm’s accuracy in different HS chapters. Paraguayan dataset

Source: Authors’ calculations based on Paraguayan customs data.

Using the Paraguayan data, we found that the efficiency was low in two categories: “Veg-

etable plaiting materials; vegetable products not elsewhere specified or included” (HS chap-

ter 14), with 25% accuracy, and “Preparation of meat, of fish or of crustaceans, molluscs or

other aquatic invertebrates” (HS chapter 16), with 10% accuracy. Other categories with rela-

tively low accuracy levels are “Preparations of vegetables, fruit, nuts or other parts of plants”

(HS chapter 20) and “Coffee, tea, mate and spices” (HS chapter 9).

A deep analysis of why the model fails most in these particular chapters goes beyond

the scope of this paper. However, it may be strongly related to the quality of the data we

are asking the algorithm to classify, that is, the product description shown by customs. The

quality of the data and product descriptions might be significant factors affecting the model’s

performance, and it would be worth investigating this further. Improving data quality could

lead to better results and greater accuracy across all chapters.
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5 Subsample Accuracy

In this appendix, we report the results of the efficiency point estimators by decreasing the

order of magnitude of the sample and show that these results are not affected when reduc-

ing the number of observations classified using the algorithm. Figure A5a shows the point

estimates after dividing the sample of observations from Chile into 10 groups. In this case,

the observations have a standard deviation of 0.0034. Figure A5b does the same for the

Paraguayan dataset. In this case, the standard deviation is very similar, at 0.0048. Finally,

figure A5c does the same for the 1,000 classified observations from the USDA organic prod-

uct database, for which the standard deviation is slightly larger, at 0.0136.

Figure A5: Algorithm’s accuracy in the test dataset

(a) Chilean dataset at HS 6-digit level
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(b) Paraguayan dataset at HS 6-digit level

(c) USDA organic product dataset at HS 6-digit level

Source: Authors’ calculations based on data from Chilean customs, Paraguayn customs, and USDA.
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