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Abstract1

Clean water has a largely unknown economic value, particularly to small communities whose agricul-
tural activities take place on river shores. In November 2015, the rupture of a mining tailings dam in the
municipality of Mariana led to a record disposal of toxic residuals in southeast Brazil. A mud avalanche
ran out for 600 km (373 miles) until it reached the Atlantic Ocean, leaving behind extreme ecological and
economic damage in the Doce River basin. This is the largest environmental disaster in Brazil to date.
We quantify the negative externalities using rich, identified, and comprehensive data from firm-to-firm
electronic payments and individual-level consumer credit usage. We find that agricultural producers in
affected municipalities received cumulatively 41% to 60% fewer inflows (income) from customer firms
outside the affected zone three years after the disaster. Effects are driven by municipalities where the
river shore is larger relative to the farming area. In these municipalities, individuals also faced an 8%
fall in their credit card and consumer finance expenditures. This result is stronger for non-formal and
high-risk workers. Thus, water contamination led to (first) production and (later) consumption decline
with real effects on municipality-level agriculture and services’ output, causing a 7% decline in local
GDP.

JEL Classification: C63, G01, G20, G21, G28, O16, O40
Keywords: Water, Environmental disaster, Agriculture, Consumer credit, Payment system

1The views expressed in this Working Paper are those of the authors and do not necessarily reflect those of the Banco Central
do Brasil. This project benefited from the support of the Inter-American Development Bank mentoring program. We greatly
thank Professor David Keiser for his comments and support. Rodrigo Barbone Gonzalez: rodrigo.gonzalez@bcb.gov.br. Jose
Renato Haas Ornelas: jrenato.ornelas@bcb.gov.br. Thiago Christiano Silva: thiago.silva@bcb.gov.br.



1 Introduction

Access to clean water is important for human well-being and economic activity, while contaminated
water has adverse effects on human health (Smith et al., 2010; Ward et al., 2018), education (Akter, 2019),
agricultural output (Khan et al., 2008; Meng et al., 2016; Sharma et al., 2006), property value (Nicholls
and Crompton, 2018) and general economic activity (Desbureaux et al., 2019). As a consequence, it is also
relevant for public policy (Carson and Mitchell, 1993; Keiser and Shapiro, 2019; Sigman, 2002).

This paper explores a catastrophic environmental disaster in Brazil—the Mariana’s mining tailing dam
collapse—using comprehensive microdata, including firm-to-firm financial transactions and individual-
level credit card consumption. We show the negative externalities introduced by water pollution disrupted
agricultural firms’ supply chain, led to consumption decline, and destroyed wealth with sizeable effects on
the GDP of more affected shore municipalities. We start by evaluating the broader real effects on affected
municipalities, particularly on agricultural activities. We then turn to microdata to quantify the negative ex-
ternalities to firms’ supply chains in the affected municipalities using comprehensive data from the Brazilian
payment system, including identified firm-to-firm electronic transfers used to settle business transactions.
Moreover, we turn to the credit registry of the Banco Central do Brasil (BCB) to explore consumer credit
expenditure, including each individual’s non-interest-bearing credit card usage. The rich dataset allows us
to disentangle some of the transmission channels and study how and to what extent water contamination
impoverished the affected riverside municipalities.

In November 2015, the rupture of a mining tailings dam in the municipality of Mariana led to a
record disposal of toxic residuals in southeast Brazil. This is the largest environmental disaster in the
country to date (Veja, 2017) and the largest of its kind (Azevedo, 2016). A mud avalanche ran out for
600 km (373 miles)—roughly the distance between San Francisco and Los Angeles, Frankfurt and Milan,
or New York and Montreal—until it reached the Atlantic Ocean, leaving behind extreme ecological and
economic damage in the shore cities of the Doce River basin. Moreover, the disaster caused 19 deaths and
is associated with increased health and mental problems in the affected region2.

This paper aims at estimating the economic effects of the contaminated water throughout the affected
municipalities focusing on the agricultural sector, by far the most directly affected by water contamination3.
A survey carried out by Greenpeace and the Federal University of Rio de Janeiro highlights the majority of
small producers did not abandon their lands but faced financial difficulties due to soil and water contami-
nation. “Indeed, 88% of interviewed producers claim to have changed their crops following the disaster.”
While 98% of agricultural producers claimed to have used water from Doce River directly for economic
activities prior to the disaster, only 36% are still using it for the same purposes. Within this group, “87% use

2Another catastrophic mining disaster happened in a nearby location, Brumadinho, in 2019. The Brumadinho disaster caused
at least 270 deaths and extensive environmental damage, but it had more limited economic externalities because the damage was
less geographically widespread. It also happened after the time span of our analysis.

3Direct effects to the mining sector are also relevant but beyond the scope of this paper. See FGV (2020) for an assessment
of these effects.
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the water for irrigation, but 60% consider it unsuitable for consumption” (Torres et al., 2017). The study
also finds evidence that not only the Doce River shore but also artesian wells were partially contaminated by
manganese (Mn) and iron (Fe) because the drying of contaminated water caused metals to infiltrate the soil.
This is corroborated by Coelho et al. (2020), which identifies soil and plant tissues had increased content of
several metals—chromium (Cr), copper (Cu), manganese (Mn), and iron (Fe)—in affected areas. Empresa
Brasileira de Pesquisa Agropecuária (Embrapa), a relevant think tank in agriculture, states in a technical
report that, beyond toxic metals in the soil, land productivity is compromised due to the lack of quality of
the mud layer now covering the soil. “Organic material in sedimentation does not present conditions for
germination of seeds or to the radicular development of plants. Beyond fertility and difficulties for (rain)
water to infiltrate the soil, the low levels of organic material needed for soil microbiotic life to develop
compromise productivity (Empresa Brasileira de Pesquisa Agropecuária - Embrapa, 2015).”

Along these lines, we explore water dependence for agriculture and related negative externalities of
water contamination to firms and individuals. We use a propensity score matching strategy to identify
control municipalities in the same affected states (Minas Gerais and Espı́rito Santo) but out of the Doce
River basin and start by evaluating the broader losses to local GDP and its main components. We find a
cumulative loss of 14% in the value-added of agriculture in the 37 affected4 municipalities. This result
is mainly led by more affected municipalities, where the freshwater area was (one standard deviation)
larger relative to the total farm area, and where agricultural value-added declined by 18%5. Results on
the value-added from industries were muted as we excluded the industrial city of Mariana (the disaster’s
epicenter) from the sample. Importantly, as a consequence of such steep losses in rural areas, services
were also affected. In the more affected municipalities, value-added from services declined by 6% in three
years. The combination of these effects led to an overall GDP decline of 7%6. As previously explained,
the transmission channel to agriculture is a consequence of two aspects: contaminated water (including
high levels of heavy metals) dried and metals infiltrated the soil; and the mud on top of the soil, which
was poor in nutrients compromising crop development. Both aspects compromised the performance of the
crops already established, leading to changes in the agricultural mix in the following years. Consistently,
we document a strong decline in the total farmed area of beans, coffee, and corn— the three most relevant
crops in the region—and an increase in sugar cane.

While these results provide a picture of the extension of losses to these communities, disentangling
the channels and properly measuring those losses requires microdata. For identification, we turn to the
payment system and the credit register of the BCB. Our first approach explores the negative production

4For identification, we exclude the industrial city of Mariana, the epicenter of the disaster.
5Distance from the epicenter is not relevant for this particular disaster. For instance, in the municipality of Colatina, 400

km away from the dam, water is found to contain 5 times the allowed amount of Mn in its dwellings. Toxic mud contaminated
the soil to the point of reaching subterranean water (Associação Brasileira de Engenharia Sanitária e Ambiental - ABES, 2017).
We take the Water/Farm area ratio, with both areas measured in ha and taken from MapBiomas, as a superior proxy of disaster
intensity because it more clearly communicates to the relative extension of exposure to water contamination.

6Using a sample of 19 countries, Desbureaux et al. (2019) find national GDP growth declines by 0.8% to 2% when rivers
become heavily polluted (i.e., with high levels of biological oxygen demand, BOD).
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shock to agriculture using a rich set of controls and fixed effects on firm-to-firm financial transactions data.
Relatively to the same consumer firm, agricultural producers in affected municipalities experienced a 41%
income loss (i.e., a fall in payment inflows from firms across the country but outside the Doce River basin)
compared to producers in unaffected municipalities in the following three years. These results are driven
by municipalities with larger river shore-to-farm area ratios.

To quantify the effects on consumption, we turn to the credit registry of the BCB and explore credit
lines directly attached to consumption, including non-interest-bearing credit card expenditures from over
seven hundred thousand individuals. We find an average consumption fall of 8% in the more affected
municipalities. Importantly, high-risk individuals without a formal job7 face a 13% consumption fall in the
same more affected municipalities with larger river shore/farm areas. Thus, non-formal workers, whose
income is directly or indirectly dependent on sowing, harvesting, transporting or selling the crops, consume
less relatively to similar individuals in unaffected cities, confirming water pollution not only impoverished
formal agricultural producers but also families, directly and indirectly, reliant on their outcomes. These
economic impacts are related and interact with other consequences of the disaster, such as adverse health
outcomes8 likely to have magnified the economic impact.

We make four contributions to the literature. First, the sizeable economic impact of the Mariana
disaster raises a different perspective on the problem of valuing clean water and the benefit/cost of related
public policies. Keiser and Shapiro (2019) turn to this problem by exploring the U.S. Clean Water Act, a
large and controversial program to restore river water quality, but concludes the program failed to achieve
any acceptable cost/benefit ratio9. On the other hand, Christensen et al. (2022) explores a poor public policy
introduced in the US city of Flint. To save on water treatment, Flint switched its drinking water supply from
the Detroit water system to the contaminated waters of the Flint River, exposing residents to dangerous lead
levels. Remediation measures worth 400M far exceeded the city savings with this switch (about 5M) and
caused a long-lasting fall in home prices. Similarly to the authors, we turn to the problem of assessing clean
water value, but we explore an environmental disaster with steep negative externalities to economic activity.
Importantly, looking at the economic effects raises a different but related question to policymakers: how
much is worth spending on water river surveillance?

Second, our work relates to a stream of the empirical literature assessing the propagation of shocks in
supply-chain networks (e.g. Barrot and Sauvagnat, 2016; Carvalho, 2014)10, particularly following disas-

7We define high-risk individuals as those with interest rates on their bank products above the median before the disaster. To
identify individuals with formal job relationships, we merge the credit registry data with comprehensive employer-employee data
from the Ministry of Labor and Employment.

8Matsunaga (2020) finds an increase in mental disorder hospitalizations, 2 to 4 times higher in affected municipalities in the
state of Minas Gerais. Rocha et al. (2016) reports a substantial increase in diarrhea (173%), fever (133%), and skin infection
(35%) cases in the (affected) riverside population of Colatina, state of Espı́rito Santo.

9She et al. (2020) explore government-oriented environmental regulations on water pollution in China and finds mixed results
on their effectiveness. Similarly, Greenstone et al. (2021) finds more effectiveness of regulation on air pollution than in water
pollution in China. Using cross-country data, Sigman (2002) finds river water pollution spillovers on country borders, suggesting
international environmental treaties are poorly enforced.

10See Carvalho and Tahbaz-Salehi (2019) for a comprehensive review on the topic of propagation of shocks in networks.
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ters. Boehm et al. (2018) and Carvalho et al. (2020) investigate the economic effects of the 2011 Japanese
earthquake on firms’ supply chain and document that the disruption caused by the disaster propagated up-
stream and downstream along the supply chain, affecting suppliers and customers of disaster-stricken firms.
Instead, this paper turns to an environmental disaster and a different problem, i.e., water contamination as a
production shock to agriculture, with similarly strong downstream effects on firms’ supply chains. We also
explore a richer dataset, with complete identification of firms and amounts transferred11.

Third, we explore unique, comprehensive, and identified data on individuals’ credit card and con-
sumer credit usage to quantify how disasters affect consumption. Using microdata from tax returns, Deryug-
ina et al. (2018) examine Hurricane’s Katrina long-term economic impacts on its victims and finds small and
transitory effects on individuals’ income. In contrast, the Mariana environmental disaster led to extensive
river water pollution with strong effects on individuals’ consumption, particularly from more vulnerable
citizens. This consumption decline was broad enough to reflect in the performance of the broad services
sector in more affected municipalities.

Fourth, we turn to agriculture, its dependence on clean water, soil quality, and related implications.
Xiao (2011) explores the 1993 Midwestern flood in the U.S. and finds temporary effects on municipality-
level income but persistent effects on agricultural employment and income and concludes rural areas are
less resilient to environmental shocks. Our results corroborate these findings. Effects on agriculture are
stronger, more persistent, and span to the services sector, in urban areas. On the other hand, industries more
easily turn to consumers in outer municipalities mitigating the effects of local consumption decline.

The paper proceeds as follows. Section 2 describes the mining disaster. Section 3 explores effects on
GDP, its main components, and crops. Section 4 presents the microdata, Section 5 shows the production
shock results, and Section 6 analyzes the consumption shock. Section 7 concludes.

2 The Mariana Mining Disaster

In November 2015, an iron ore tailings dam in Bento Rodrigues, a village in the municipality of
Mariana, Minas Gerais, Brazil, suffered a catastrophic failure. This dam contained waste from processing
iron ore from mines owned by Samarco, a joint venture of Vale and BHP Billiton, two of the world’s largest
mining companies. The burst of the Bento Rodrigues tailings dam has broken several negative records,
including the volume of residuals released (60 million cubic meters) and run-out12(600 km). The disaster
affected the whole Doce River basin, with 84 thousand km2 drainage area in the Brazilian States of Minas
Gerais and Espı́rito Santo. The hydrographic basin had a population of around 3.6 million inhabitants in
the 2010 census (Instituto Brasileiro de Geografia e Estatistica, 2010). This is the largest environmental
disaster in Brazil’s history and the largest accident of the kind in terms of residuals released. The second

11The aforementioned papers are constrained to the most relevant consumer/supplier or binary information about the existence
of a transaction between firms, compromising quantification of the effects.

12Run-out is the maximum distance traveled by residuals.
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largest happened on August 4, 2014, in the Canadian mine of Mount Polley, in British Columbia, and the
volume of residuals reached 17 million cubic meters (Azevedo, 2016).

The burst occurred in the afternoon of November 5, 2015. The rupture released a torrent of sludge
with waste, which flowed through three rivers—Gualaxo do Norte, do Carmo and Santarém—and their
flood plains for 77 km until it reached Doce River (Agência Nacional de Águas - ANA, 2016). From this
point, the mud avalanche stretched to an area of about 1,500 hectares and devastated the village of Bento
Rodrigues, where 207 out of 251 buildings were destroyed, and 19 people died (Instituto Brasileiro de Meio
Ambiente, 2015; Silva, 2016).

Some kilometers after reaching the Doce River, the flood wave lost part of its strength as approx-
imately 30% the residuals were retained in the Candonga reservoir, which serves the Risoleta Neves hy-
droelectric power plant, located about 120 km from the accident epicenter (Agência Nacional de Águas -
ANA, 2016). After the Candonga reservoir, the wave moved faster and with a lower sediment concentra-
tion without causing floods. However, a sediment plume with extremely high turbidity moved slower until
reaching the Atlantic Ocean mouth of the Doce River in Linhares, Espı́rito Santo (Agência Nacional de
Águas - ANA, 2016). In total, the waste residuals traveled more than 600 km from the dam to the ocean.
According to the Companhia de Pesquisa de Recursos Minerais (2015), the flood wave took 4 days to reach
the ocean, while the sediment plume took 17 days. The flood contaminated 170 km of beaches.

On the Brazilian coast, the mudslide also reached the Comboios Biological Reserve, situated between
the municipalities of Aracruz and Linhares, at Espı́rito Santo state. This reserve is a coastal conservation
biome that protects the only regular nesting site of the leatherback sea turtle on the Brazilian coast. Fur-
thermore, the mud flood has reached two other federal conservation units: the Environmental Protection
Area of Costa das Algas and the Wildlife Refuge of Santa Cruz (Miranda and Marques, 2016). On the
ocean coast, it affected beaches and, consequently, tourism (Universidade Federal do Espı́rito Santo, 2015).
Figure 1 shows satellite images before and after the disaster.

Besides dislodging numerous families, the disaster has deeply affected river fishery and compromised
access to clean water for hundreds of thousands of residents in riverside communities. The effects on
agriculture, which we explore in the following sections, are particularly severe for producers relying on
water from the Doce River basin. Water contamination infiltrated the soil, drastically reducing productivity.
Livestock breeding was also affected because the sources of livestock drinking water were contaminated.
Besides the contamination of the Doce River, there is evidence that artesian wells were also affected by
manganese (Mn) and iron (Fe), as reported in Torres et al. (2017). River water contamination lasted at least
two years, according to Queiroz et al. (2021).

The economic impact of the disaster was sizable. Using a general equilibrium model, FGV (2020)
estimates a negative effect of 6.3% of the disaster on the GDP of the affected areas. This estimation
encompasses all effects, including the interruption of mining activities. However, in our study, we are
interested in the effects that can be traced to the contaminated waters of the Doce River. While FGV
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Figure 1: Satellite Images before (left panel) and after (right panel) the Mining Disaster. Creative Commons – CC BY 3.0 –
Google Earth

(2020) quantifies the impact of the disaster with a model, we turn to comprehensive data in a difference-in-
differences strategy to identify the impacts of contaminated water through the supply chain of agriculture
and related effects on consumption. We describe our identification strategy in the following sections.

2.1 Which Municipalities Were Affected?

After the tailings dam failure, in March 2016, Samarco, its shareholders (Vale and BHP Billiton)
and 14 public authorities and agencies signed a Framework Agreement (TTAC, Termo de Transação e de

Ajustamento de Conduta in Portuguese13) in order to assure the implementation of the actions required
to treat the impacts of the disaster. To implement these compensations, Samarco created the Fundação

Renova, a not-for-profit private foundation responsible for managing and executing all of the remediation
and compensatory measures sated in the recovery plans. In 2023, the Fundação Renova is still paying
remediation and compensatory measures.

The Framework Agreement delineated the geographic scope of the socioeconomic and socioenviron-
mental remediation and compensation programs. We identify the municipalities affected by the disaster
using the “area of socioeconomic scope” defined in the Framework Agreement, which comprises localities
and communities adjacent to the channel of the rivers Doce, Carmo, Gualaxo do Norte and the Santarém
creek, in addition to estuarine, coastal and marine areas. This area includes 39 municipalities14. Because

13available at https://www.fundacaorenova.org/wp-content/uploads/2016/07/ttac-final-assinado-para-encaminhamento-e-
uso-geral.pdf

14It also includes one small district, Barra do Riacho, belonging to the municipality of Aracruz. As we cannot identify districts
in our dataset, we leave it out of our affected list.
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we are interested in the externalities of river water contamination, we exclude from this list the municipal-
ity of Mariana, the disaster’s epicenter. Mariana is an industrial city and was directly affected by the mud
avalanche and relevant economic losses related to the Samarco closure. Moreover, we also exclude from the
affected list the municipality of Linhares because it is the only coastal city in the sample and differs from
the remaining in several aspects used for matching. Therefore, we have a total of 37 treated municipalities
in our sample. Appendix A contains a list of all affected municipalities considered in this paper.

The initial 2016 Framework Agreement was followed by further negotiations and litigation regard-
ing repairment and compensations15. To address transparency and accountability issues, in June 2018
another Framework Agreement (TTAC Governanca) was signed to set up better governance of the repara-
tions process, including greater participation by the affected population. Even after this TTAC, legal action
continued, with Public Prosecutor’s Offices and Public Defenders’ Offices questioning the amount of repa-
rations and advertising expenditures by Fundação Renova16. After this intense questioning, reparations and
compensations amounts, which had increased only slowly from 2016 to 2020, jumped in 2021 (see Figure
2).

Figure 2: Reparations and Compensation in Brazilian Reais. Source: Renova Foundation.

We were not able to obtain reparations and compensation amounts by municipality17, and we are not
able to control for this in our econometric setup. Therefore, our estimates for the effects are likely to be
downward biased. Most of our analyses is carried out until 2018, prior to the Brumadinho disaster and
before the bulk of the reparations (75%) was implemented.

15Repairment refers to the actions targeted to the directly affected actors and infrastructure. Compensation includes more
general actions to improve affected areas like road building or education programs.

16See the public civil suit: https://defensoria.mg.def.br/wp-content/uploads/2021/05/ACP-propaganda-assinada-
protocolo.pdf.

17The authors made several attempts to contact Fundação Renova and obtain the data, but without success.
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2.2 Municipality Matching Procedure

We run a propensity score matching (PSM) at the municipality level in order to build the control
group. The search for control group municipalities is performed over the two affected states, Minas Gerais
and Espı́rito Santo. We exclude from the PSM municipalities located in the 8 micro-regions where affected
municipalities are located since these adjacent municipalities are also likely to be indirectly affected through
spillovers. Moreover, we exclude one ocean coast municipality from PSM18. Thus, we load PSM with 400
municipalities to build the control group.

The variables used in the PSM are the following: population, GDP per capita, the share of agricul-
ture in GDP, water area, farming area, the share of the urban area to total municipality area, share of the
irrigated area to farming area, and the ratio of water area to farming area. These variables are devised to
produce control municipalities of similar size, similar economic dependence on agriculture, similar river
water extension, and similar farming area. In this way, our treated and control groups should be comparable
not only in terms of socioeconomic characteristics but also in terms of land usage and water landscape.

After the PSM procedure, we ended up with a sample of 190 municipalities, 37 affected and 153
control municipalities. All regressions are further estimated with the related municipality weights.

Besides affected and control groups, we have a set of outer municipalities, composed of the PSM
unmatched and municipalities in other states of Brazil19.

2.3 Municipality Summary Statistics

In Table 1, we show municipality-level summary statistics. Population and GDP-related variables are
available from the Instituto Brasileiro de Geografia e Estatı́stica (IBGE) reports of 2014, except for IDH
and Gini coefficients from the 2010 census. Variables related to land cover and usage are extracted from
MapBiomas project (collection 6.0), also from 2014. Irrigation area data come from the Atlas da Irrigação

published by Agencia Nacional de Aguas (ANA)20.

Table 1 shows the mean and standard deviation for variables in both affected and unaffected (matched)
municipalities. For all variables, the test for the difference in the mean of affected and unaffected munic-
ipalities does not reject the null hypothesis of equal means. It is important to highlight that the share of
agriculture in the GDP is similar in affected (0.133) and unaffected (0.118) municipalities. Thus, the rel-
ative economic importance of agriculture in these two groups is comparable. The municipalities are also

18Our water variables may not be representative in the case of ocean water, which is not used for farming. Our only affected
coastal city is removed for consistency.

19We use inflows from outer municipalities to proxy for income. The adjacent municipalities, in the 8 micro-regions of the
Doce River basin, are totally excluded, as well as Mariana and Linhares, the only ocean coast affected municipality.

20The irrigation “atlas” was first published in 2017 with 2015 data. Thus, data from previous years are not
available. We cannot guarantee data collection precedes November 2015 in the states of Minas Gerais and Espir-
ito Santo. This “atlas” is not periodical, but a second one was published in 2021 with 2019 data. See more in
https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search/metadata/c639ac44-8151-421d-a1ed-c333392d76a9
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comparable among other dimensions not explicitly introduced in the matching procedure, such as human
development (IDH) and income concentration (Gini coefficient). Importantly, cities are also comparable in
terms of the relative importance of their six main crops, which altogether represent over 91% of the total
farmed area in affected municipalities.

Table 1: Municipality-level Summary Statistics

Unaffected Affected

Mean Std. Dev. Mean Std. Dev.

Panel A: Economic Variables

Population 36,187 77,713 32,519 62,339

GDP Level (R$ thous.) 695,194 2,323,223 712,938 1,753,052

GDP per Capita (R$) 13,247 7,912 13,092 8,559

IDH 0.674 0.049 0.669 0.039

Gini Index 0.479 0.056 0.477 0.044

Agricultural GDP (share) 0.118 0.084 0.133 0.088

Panel B: Land Use and Cover Variables

Farming Area (ha) 35,641 41,345 39,017 40,262

Water Area (ha) 945 2,591 749 723

Water Area/Farming Area 0.028 0.062 0.029 0.031

Water Area (share) 0.016 0.037 0.017 0.010

Urban Area (share) 0.035 0.093 0.018 0.049

Irrigation Area (share) 0.023 0.059 0.029 0.068

Panel C: Land Use variables for Crops (% of total area)

Main crops (%) 86.836 23.775 91.931 12.996

Corn (%) 33.734 21.679 34.327 22.430

Coffee (%) 19.883 27.063 20.690 29.341

Beans (%) 12.475 11.522 13.532 12.095

Sugar cane (%) 10.686 15.340 13.934 22.359

Banana (%) 5.104 12.911 3.282 8.022

Manioc (%) 4.954 8.578 6.166 12.556

# Municipalities 153 37

Notes: For all variables, the test for the difference in the mean of affected and unaffected munici-
palities does not reject the null hypothesis of equal means.
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3 Aggregated Analysis

In this section, we turn to the aggregated real effects of the disaster using municipality-level data. We
estimate a standard difference-in-differences (DiD) taking as pre-period the three years before the disaster
(2013-2015) and as post-period the following three years (2016-2018). We consider a baseline specification
and an additional with the Water/Farm area interaction, which serves as a proxy for farm land exposure to
water pollution21. The more complete specification is the following:

ym,t =β Affectedm ·Postt + γ Postt ·Water/Farm Aream

+θ Affectedm ·Postt ·Water/Farm Aream +δ m +ζ t + εm,t ,
(1)

in which m is the municipality, t is a three-year time period (either 2013-2015 or 2016-2018), Affectedm

is equal to one if municipality m was affected by the disaster, and zero if it is a matched municipality, ym,t

is the three-year cumulative GDP for municipality m or related components in log format. The dependent
variables ym,t are GDP, and its three main components, the value-added from agriculture, services, and
industry. Water/Farm aream is the ex-ante ratio of freshwater to the farming area, which has been de-meaned
and standardized to facilitate interpretation. The interaction of Affectedm with Water/Farm Aream and Postt
explores real effects in municipalities more exposed to water pollution. The regressions use municipality
(δ m) and time (ζ t) fixed effects, and standard errors are clustered at the municipality level.

The baseline results are in the odd columns of Table 2. It depicts strong negative effects of −14% on
the agriculture GDP (i.e., the value-added from agriculture in log format) for affected municipalities relative
to (matched) unaffected municipalities three years after the disaster (Column 1). However, baseline coeffi-
cients are not statistically significant for industry (column 3), services (column 5), or broad municipality-
level GDP (column 7). Our empirical evidence shows that the shock directly and strongly affected the
agriculture sector.

Nonetheless, heterogeneities related to water contamination exposure are relevant. In order to ex-
plore this channel, we add interactions with Freshwater/Farm Aream to the baseline regressions to check
whether municipalities with more ex ante shore water area relative to farm area are more deeply affected.
The triple interaction coefficient θ from Affectedm * Water/Farm Aream * Postt in Table 2 shows negative
values across all sectors and is statistically significant for agriculture, services, and overall GDP. In this
way, municipalities more reliant on freshwater (with one standard deviation higher Water/Farm Area) faced
an additional 18% fall in agricultural GDP (column 2) relative to unaffected municipalities with a similar

21The ideal proxy would be the shore area effectively dedicated to farming. But Mapbiomas, our information source, provides
only municipality-level proxies of areas (in ha) estimated from satellite images. As a consequence, we take the total water area
and total farming area to create this proxy. Other water sources, such as lakes, are included, but the Doce River is the largest in
the region.
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shore to farming area22. Moreover, we find economic spillovers to the services sector on more affected
municipalities, as coefficient θ indicates a 6% relative fall in services (column 6) and a broad 7% drop
for the overall GDP (column 8). Thus, municipalities more exposed to water pollution face negative ef-
fects beyond agricultural activities, suggesting a fall in consumption that we explore with microdata in the
following sections.

Table 2: GDP Effects

Dependent Variable:
Agric. Agric Indust. Indust. Serv. Serv. Overall Overall
GDP GDP GDP GDP GDP GDP GDP GDP

Specification: (I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Variables
Affectedm × Post -0.14∗∗ -0.06 -0.04 -0.06 0.00 0.03 -0.02 0.00

(0.068) (0.101) (0.057) (0.057) (0.017) (0.023) (0.015) (0.019)

Post × 0.05∗ -0.01 0.00 0.02∗∗

Water/Farm area (0.031) (0.029) (0.007) (0.011)

Affectedm × Post × -0.18∗ -0.04 -0.06∗∗ -0.07∗∗∗

Water/Farm area (0.101) (0.118) (0.026) (0.025)

Fixed effects
Municipality Yes Yes Yes Yes Yes Yes Yes Yes
Post Yes Yes Yes Yes Yes Yes Yes Yes

Statistics
# Observations 380 380 380 380 380 380 380 380
R-squared 0.951 0.953 0.985 0.985 0.998 0.999 0.998 0.998
# Municipalities 190 190 190 190 190 190 190 190
# Affected Muni 37 37 37 37 37 37 37 37

Note: This table reports results for specification (1) at the municipality level. The dependent variable is the cumulative 3-year municipality GDP and its main
components. Standard errors in parentheses are clustered at the municipality level. ∗, ∗∗, ∗∗∗ denote statistical significance of 10%, 5%, and 1%, respectively.

To consider possible pre-trends in agriculture GDP, we run an econometric specification with dynamic
coefficients for Affectedm, i.e., we interact Affectedm with each year dummy from 2010 to 2018. The year
2014 is the base-case year. Figure 3 shows that there is no pre-trend and that the intensity of the relative
negative effects is growing over time.

These negative effects are even more pronounced when we analyze the land area used for agriculture.
Figure 4 depicts the dynamic coefficients using the agricultural land area as the dependent variable. We see
a sharp decline in the area used for agriculture in the affected municipalities. Importantly, the steep decline
in land usage for farming (Figure 4) in affected municipalities suggests the fall in Agriculture GDP is more
related to quantity than to price (Figure 3).

The planted areas dedicated to the main three crops in affected municipalities—corn, coffee, and

22Water/Farm Aream has been de-meaned and standardized to facilitate interpretation of the real effects in all Tables.
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Figure 3: This figure shows the effects on the Agriculture GDP of the Mariana disaster. The horizontal axis indicates the year,
and the vertical axis encodes the coefficient estimates of Affectedm interacted with the respective year(solid blue points) and the
associated 95% confidence interval (vertical red bars), all relative to the observed value in 2014 (reference).

beans—declined drastically in the years following the disaster (Figure 5), but compositional changes across
crops are relevant. As we can see in the lower right graph of Figure 5, sugarcane had a steep increase in
2017 and 2018. There are two important reasons for the sugar cane increase. First, in Brazil, sugar cane
is used for ethanol production, and most automobiles can run on ethanol fuel. Heavy metal contamination
becomes negligible if production is to be fermented into ethanol rather than consumed as sugar (Wang et al.,
2017a). Second, sugar cane crops can be used for phytoremediation23 of the soil. Empirical evidence by
Wang et al. (2017b) shows that heavy metal soil concentration declines with sugarcane phytoremediation
as compared to areas without sugarcane treatment.

One important issue in agricultural area usage is the timing of changes. The accident happened in
November 2015, compromising mostly future outputs. Perennial crops like coffee—the most important in
the region—take time, effort and resources to be first removed and then replaced, which helps explain the
strong reduction of coffee planted areas only in 2017 and 2018, as shown in Figure 5.

Overall, this section suggests the disaster directly affected agriculture, with stronger effects on more
exposed municipalities (i.e., with more freshwater-to-farm area ratio). There are also implications for con-
sumption reflected in the services sector. In the following sections, we turn to microdata for clearer identi-
fication of these effects.

23Phytoremediation is a technique that uses plants to clean up contaminated environments. Certain crops can help clean up
many types of contaminants, including metals, pesticides, explosives, and oil.

13



Figure 4: This figure shows the effects on the Land area used for agriculture. The horizontal axis indicates the year, and
the vertical axis encodes the coefficient estimates of Affectedm interacted with the respective year(solid blue points), and the
associated 95% confidence interval (vertical red bars), all relative to the observed value in 2014 (reference).
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Figure 5: This Figure shows the effects of the Mariana disaster on the planted area for the six main crops. The horizontal axis
indicates the year, and the vertical axis encodes the coefficient estimates of Affectedm interacted with the respective year(solid
blue points), and the associated 95% confidence interval (vertical red bars), all relative to the observed value in 2014 (reference).
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4 Microdata Description

To explore the externalities of the disaster to the real economy, we combine two micro-data sources:
the payment system and the credit registry augmented with employer-employee data. The aforementioned
municipality-level controls from IBGE and Census are also introduced. We explore these data and related
identification strategies in the two following subsections: (4.1) Payment System and (4.2) Credit Registry.

4.1 Payment System

The Brazilian Payment System, more specifically the Sistema de Transferência de Reservas (STR)
and Sistema de Transferência de Fundos (CIP-Sitraf), are our main datasets. Both STR and CIP-Sitraf
are real-time gross settlement payment systems that record all electronic interbank transactions in Brazil
above a certain limit (set to 1 cent in 2016). The data contain information on the date of the transaction and
identifiers for “creditors” and “debtors,” i.e., the tax id of cash receivers and payers, respectively. We use
these transaction-level data to measure cash inflows and outflows across identified firm pairs, which proxies
for amounts received and paid by each firm due to ordinary business.

For identification, we focus on transactions between firms in the affected or unaffected control mu-
nicipalities against those outside these areas (the outer group described in section 2.2), thus eliminating
transactions between and inside affected and control groups. We also eliminate all transactions with the
public sector, the financial sector, NGOs, and firms related to mining activities. Including those does not
change our main results.

Following the direction of money transfers, we are able to classify firms as suppliers or customers and
navigate their supply chains. Suppliers are receivers of money and therefore are on the creditor side of the
monetary transaction in the payment system. Customers are those transferring money, thus on the debtor
side of the transaction.

We navigate downstream in the supply chain to identify firm income focusing on transactions be-
tween suppliers in affected/unaffected municipalities and its customers in outer municipalities (i.e., “local”
exports). A rich set of customer fixed effects captures all remaining firm-level demand shocks, sharpening
the identification of the production shock to firms in the affected/unaffected area24.

4.2 Credit Registry data

For identification of the consumption shocks, we turn to the Brazilian Credit Registry, Sistema de

Informações de Crédito (SCR), which tracks credit operations in Brazil. SCR is provided and managed
by the Central Bank of Brazil in its role as bank supervisor, and records identified loan-level transac-
tions between firms or individuals and all financial intermediaries in Brazil. Each financial intermediary

24The identification strategy follows Khwaja and Mian (2008) but applied to payment data instead of loan-level data.
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reports monthly all credit exposures above a certain threshold to SCR25. The data include bank and indi-
viduals’ tax ID numbers and loan-level characteristics, such as credit type, interest rates charged, limits,
and drawn/undrawn credit amounts. We take data on drawn consumer credit (including from non-interest-
bearing credit card expenditures)26 to proxy individual-level consumption. Finally, we augment the dataset
with employer-employee information from Relação Anual de Informações Sociais (RAIS), containing de-
tailed information on formal job relationships including income, sex, type of job contract, and occupation,
all matched by the tax ID of both employer and employee. This registry is available from the Ministry of
Labor and Employment in its role as labor supervisor. Because providing information to RAIS once a year
is mandatory for all firms27, we take all individuals not matched as non-formally employed.

5 The Production Shock

This section analyzes the effects of the mining disaster on supply chains, i.e., the negative production
shock on suppliers in affected areas. We resort to transaction-level (firm-to-firm) payment data, observing
bilateral monetary flows between economic agents: the customer, the transaction payer/debtor (who pays
money and receives products), and the supplier, the transaction receiver/creditor (who receives money and
provides products).

We focus on transactions between supplier firms either in the affected (treatment group) or unaffected
(control group) municipalities with customer firms in the outer area, i.e., located in municipalities other
than those in our treatment or control group. Thus, our empirical strategy eliminates transactions between
customer and supplier firms within affected and unaffected groups for clear identification of the mining
disaster as a production shock on local producers selling to outside customers (not affected by disaster-
related demand contraction). To ensure that electronic transfers primarily reflect the flow of goods and
services, we exclude firms from the public administration and financial sectors. Additionally, we eliminate
firms from the mining sector28 to capture the water value to local riverside economies and not direct effects
of the dam collapse, which also halted municipalities such as Mariana, very dependent on the performance
of the mining industry.

Since the mining disaster deeply affected the agricultural sector, we first focus on the affected agri-
cultural producers. We build the following event study to examine affected agri-firms (suppliers located in
municipalities bordering the Doce River) and unaffected agri-firms (suppliers located in matched unaffected

25Up to June 30, 2016, this threshold limit was BRL 1,000 (USD 300), and after it became BRL 200 (USD 300) or more.
Therefore, most of the data we assess have been retrieved under this rule.

26We do not observe credit card transactions, only end-of-month total drawn amounts from each individual credit card account.
This information is available only for credit cards issued by financial institutions under the supervision of the Central Bank of
Brazil.

27RAIS is an end-of-year picture of all formal job relationships in the country but contains detailed information on job changes
across the year, including dates of job creation and termination. We use these data to create the picture of September 2015 and
merge it with the credit registry. Thus, having a formal job relationship is measured at this point.

28This includes firms directly affected by the disaster, such as Samarco and its controllers, Vale and BHP Billiton, as well as
all firms in the mining sector.
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but similar municipalities, i.e., the downstream effects)29:

ln(yc,s,m,t) = ζ Affecteds +∑
k∈T

k ̸=2015Q3

βk 1{k=t}Affecteds +σ Controlss,m +ηsec(c),muni(c)+ γt + εc,s,m,t , (2)

in which c indexes the outside customer firm (located in outer municipalities, of any economic sector),
s the inside agricultural supplier in affected or unaffected (matched) municipalities m, and t time (quar-
ters). 1{argument} is the indicator function that yields one when the argument is true, and zero otherwise.
T = {2013Q1,2013Q2, . . . ,2018Q4}. The dependent variable is the volume of payments from the out-
side customer firm c to the inside agricultural supplier s during the year-quarter t. The binary dummy
variable Affecteds is equal to one when the supplier s’s municipality borders the Doce River in the path
of the mudwave caused by the Mariana dam collapse and zero when the supplier s is in a matched unaf-
fected municipality. The vector Controlss,m includes the following set of control variables with values fixed
before the mining disaster: supplier s’s number of inflow transactions (which serves as a proxy of size);
and supplier’s municipality-level controls: population (in log), GDP per capita, freshwater to farming area
ratio, urban and farming areas as a share of the total municipality’s area, value-added in agriculture as a
share of GDP, and irrigated area as a share of farm area εc,s,t is the error term. Standard errors are clustered
at the municipality and time dimension. The fixed effects customer sector × municipality ηsec(c),muni(c)

serve as demand controls (in the spirit of Degryse et al., 2019) and proxy for differential local demand for
agricultural outputs in outer cities.

We also introduce a set of pulse time dummies βk from 2013Q1 to 2018Q4 in equation (2) to examine
how payments from outside customers to inside producers behave before and after the dam collapse. We
take as reference the year-quarter 2015Q3, which is the quarter before the disaster of November 5th, 2015.
A necessary and testable condition is that these payments should trend similarly before the disaster, i.e.,
βk = 0 before the disaster. Our identification hypothesis is that such a variable would have trended similarly
between affected and unaffected supplier agri-firms ex-post in the absence of the mining disaster (non-
testable).

Figure 6 displays βk. Electronic transfers from outside customers to affected agri-firms are not sta-
tistically different from those of unaffected municipalities in the quarters preceding the mining disaster.
However, βk reduced steeply following the dam collapse, confirming the income of the agricultural sector
in affected municipalities was deeply affected.

We extend the downstream analyses with a difference-in-differences (DiD) approach concentrating
on the three years before and after Mariana’s dam collapse. We aggregate three-year payments of every
pair of ⟨customer,supplier⟩ before and after the dam collapse, resulting in two observations for each pair

29See more on Boehm et al. (2018) and Carvalho et al. (2020).
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Figure 6: Event study on electronic transfers from outside customers to inside agri-firms in affected and (matched) unaffected
municipalities before and after Mariana’s dam collapse in 2015Q4. The horizontal axis indicates year-quarter, and the vertical
axis encodes the coefficient estimates of βk in Specification (2) (solid blue points), the associated 95% confidence interval
(vertical red bars), all relative to the reference value of 2015Q3 (yellow bar).

(ex-ante and ex-post the event). Thus, this setup reduces to a traditional two-period DiD analysis, which we
operationalize with the following econometric specification:

ln(yc,s,m,t) = ζ Affecteds +λPostt +β Postt ·Affecteds +σ Controlsc,s,m +κc + εc,s,m,t , (3)

in which c, s, m, and t index the outside customer firm (located in outer municipalities, from any eco-
nomic sector), the inside supplier firm (affected or matched municipalities, from any economic sector), the
affected/unaffected municipality and time (two periods: before and after the dam collapse), respectively.
The binary dummy variable Postt equals one when t is after the dam collapse (2016Q1–2018Q4), and zero
otherwise (2013Q1–2015Q4). As we expect water-dependent sectors to be hit harder by water contami-
nation, we start by analyzing agriculture and then industry and services. We provide summary statistics
for the sub-sample of firms in the agricultural sector in Table 3. Our coefficient of interest in equation (3)
is β , which captures the effect on suppliers’ cash inflows (income) from outside customers to agricultural
producers in affected relatively to unaffected municipalities after the shock.

Columns (I) to (IV) of Table 4 show coefficient estimates for variations of the baseline downstream
regression (3) in the agricultural sector. Column (I) shows a baseline regression without controls or fixed
effects. Column (II) introduces municipality-level controls, and Columns (III) and (IV) demand controls
(customer sector × municipality fixed effects). In Column (V), we introduce customer fixed effects, i.e.,
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Table 3: Summary Statistics: Payment Transactions

P1 P10 P50 Mean P90 P99 Std. Dev.

Dependent variable
ln(inflows) 5.93 8.41 11.41 11.36 14.31 16.27 2.30

Main independent variable
Affected Municipality 0.00 0.00 0.00 0.28 1.00 1.00 0.45

Control variables
Water/Farm area 0.00 0.00 0.01 0.04 0.07 0.32 0.07
Irrigation area (Share) 0.00 0.00 0.01 0.03 0.05 0.12 0.07
Population (ln) 8.30 8.87 10.94 10.70 12.53 12.87 1.28
GDP per capita 5779.16 8227.43 15821.78 16635.31 28448.78 40871.77 7578.34
Agriculture GDP (share) 0.00 0.01 0.08 0.10 0.26 0.29 0.09
Farm/Municipality area (share) 0.15 0.35 0.68 0.62 0.80 0.89 0.18
Urban/Municipality area (share) 0.00 0.00 0.01 0.03 0.04 0.27 0.06
Number of transactions 1.00 1.17 2.48 3.77 6.79 19.35 4.87

Observations 2,263

Notes: This downstream summary represents the sample of consumer firms in outer municipalities that buy simultaneously from at least two agricultural
producers in affected/unaffected municipalities. On downstream regressions, we explore the effects of the Mariana disaster on supplying firms (producers).
Hence, the dependent variable, Log(Inflowss,c,m,t ), is the natural logarithm of total payment inflows to each supplying firm s in an affected or unaffected
municipality m from an outer consumer firm c, i.e. it proxies for firm s local exports. For identification, we consider only consumer firms outside the Doce
River. We accumulate the inflows of 2016, 2017 and 2018 in the post period and the inflows of 2013, 2014 and 2015 in the pre-period. N transactions is the
average number of electronic transfers a producer used to receive up to 2015, which serves as a proxy of producer size. The municipality-level controls are
taken from December 2014 except for irrigation, which is from 2015.

one fixed effect for each consumer firm, which fully controls for demand at the firm level (in the spirit of
Khwaja and Mian, 2008). It should be noted that the number of customers falls by half after this additional
layer of demand controls is imposed.

Our results show that agriculture suppliers in affected municipalities received on average 40 to 64%
less payments from outside customers than agriculture suppliers in (matched) unaffected areas in the three
years following the dam collapse.

Even among riverside municipalities impacted by the mud wave, the damage caused by water con-
tamination may vary depending on the shore extension. We explore this heterogeneity again by using the
municipality’s ratio of freshwater area to the farming area. The higher this value, the (likely) greater the
dependence of local agricultural activities on the river freshwaters30. We use the following empirical spec-
ification to characterize this heterogeneity:

30Strictly speaking, the freshwater area may also include other local river systems that traverse the areas of the affected
municipalities. However, the Doce River basin is the largest in the region. Moreover, we exclude municipalities with ocean
coasts, and our proxy effectively measures the dependency of the municipality’s agricultural activities on the Doce River water.
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Table 4: Payment Transaction Data: Effects of the Mining Disaster on Agriculture

Dependent variable: ln
(

Outside Customerc
$−−−→

flows
Inside Suppliers

)
Specification: (I) (II) (III) (IV) (V)

Variables
Affecteds 0.12 0.25 0.51∗ 0.46 0.42

(0.240) (0.317) (0.282) (0.277) (0.269)

Postt -0.27∗∗ -0.24∗∗ -0.11 -0.10 -0.06
(0.114) (0.106) (0.091) (0.088) (0.092)

Postt × Affecteds -0.64∗ -0.61∗ -0.41∗ -0.28 -0.03
(0.358) (0.341) (0.224) (0.229) (0.174)

Postt × Affecteds × Water/Farm areas -0.26∗ -0.32∗∗

(0.152) (0.133)

Affecteds × Water/Farm areas 0.05 0.08
(0.135) (0.121)

Postt × Water/Farm areas -0.07 -0.07
(0.081) (0.082)

Fixed effects and controls
Controls No Yes Yes Yes Yes
Demand Controls No No Yes Yes —
Customer Firm FE No No No No Yes

Statistics
Observations 2,899 2,899 2,899 2,899 2,263
R-squared 0.02 0.17 0.59 0.59 0.67
N suppliers 486 486 486 486 443
N customers 1,321 1,321 1,321 1,321 685
N cities 108 108 108 108 101
N affected cities 20 20 20 20 20

Note: This table reports coefficient estimates for variations of the baseline downstream specification in (3) (Columns (I)–(III)) and (4) (Columns (IV)–(V))
at the electronic transaction level. The dependent variable is the sum of all electronic transfers observed between each customer c outside the affected
(treatment group) and the matched unaffected municipalities (control group) to inside agri-firm suppliers s. We aggregate payments in two periods t: the ex-
ante period (2013Q1–2015Q3) and the post period (2016Q1–2018Q4). The binary dummy variable Affecteds is equal to one when supplier s’s municipality
borders the Doce River in the downstream path of the mudwave caused by the Mariana dam collapse and zero when the supplier s is in a matched unaffected
municipality. The vector Controlsc,s,m includes the following set of control variables with values fixed before the mining disaster, the number of electronic
transactions received by the supplier s, and the following supplier’s municipality controls: population (in log), GDP per capita, freshwater as a share of the
total farm area, urban and farming areas as a share of the total municipality’s area, value-added in agriculture as a share of GDP, and irrigated area as a share
of the farm area. Demand controls represent customer’s industry × municipality fixed effects. All controls are winsorized at the 1% level and Water/Farm
area is de-meaned and standardized to facilitate interpretation of the real effects. Standard errors are three-way cluster to accommodate possible demand
shocks from the consumer, thus we use the supplier’s municipality and sector as well as the consumer’s municipality. ∗, ∗∗, ∗∗∗ denote statistical significance
of 10%, 5%, and 1%, respectively.

ln(yc,s,m,t) = ζ Affecteds +λPostt +β Postt ·Affecteds+

+δ Postt ·Water/Farm areas + γ Affecteds ·Water/Farm areas+

+θ Postt ·Affecteds ·Water/Farm areas +σ Controlss,m +κc + εc,s,t ,

(4)
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in which c, s, m, and t index the outside customer firm, the inside supplier firm, the supplier´s municipality,
and time, respectively. Our prediction is that θ is negative, meaning that the municipality’s dependency
on freshwater acts as an amplifying transmission channel of the water contamination to firms located in
affected municipalities.

Columns (IV) and (V) of Table 4 show the coefficient estimates of equation (4). These results are
statistically and economically significant. Freshwater/farm area has been de-meaned and standardized to
facilitate the interpretation of results. Agricultural producers (suppliers) in more affected municipalities
(one standard deviation higher water/farm area ratio) experience an additional reduction in their cash inflows
(income) from outer customers of 26% to 32% compared to suppliers equally dependent on river freshwater
in unaffected municipalities. In column (V), we introduce customer fixed effects, thus relative to the same
consumer firm, agricultural producers in more affected cities and similarly dependent on river water face
32% fall in cash inflows.

We highlight that the DiD coefficient Postt× Affecteds becomes insignificant once the freshwater
heterogeneity is introduced, indicating that the extension of freshwater contamination on the soil used for
agriculture is the main driver of the production shock to agriculture. The abrupt inflow reduction to affected
suppliers reveals the devastating impact of water contamination on water-dependent agricultural activities.

Importantly, agriculture, particularly in this region, is largely informal. Although we find data on
agricultural GDP and crops in all affected and unaffected cities from IBGE, we could find formal agricul-
tural producers in only 20 of our affected municipalities (Table 4). In Appendix B1, we provide robustness
tests running Column (V) in different windows of DiD, i.e., using not only a three-year window but also
one, two, and four years before and after the disaster. The results are in line.

We also provide empirical evidence of the effects of water contamination on other economic sectors
in Table 5. Again, our focus is on “local exports,” as all customers are outside the affected areas and not
affected by the disaster. We should not find any negative spillover effects, because the production shock
does not directly affect industries (other than mining) and services (typically non-tradable and driven by
local demand).

Columns (I) and (III) of Table 5 show coefficient estimates of equation (3) for supplier firms in the
industry (I) and services (III) sectors. There is no effect on services but a positive economically and statis-
tically significant effect of 13% on industries as the tradable sector more easily shifts production to outer
municipalities. We also explore the municipality’s dependence on freshwater as a source of heterogeneity in
Columns (II) and (IV). Again, positive effects measured by θ in equation (4) are stronger in more affected
municipalities (those with one standard deviation higher freshwater/farm area ratio) but only in the industry.
After the disaster, the average industrial firm in more affected municipalities exports 15% more (Column
II). This result helps explain why the aggregated effects in the industry are more muted in Table 2.
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Table 5: Payment Transaction Data: Effects of the Mining Disaster on Industry and Services

Dependent variable: ln
(

Outside Customerc
$−−−→

flows
Inside Suppliers

)
Sample: Industry Services
Specification: (I) (II) (III) (IV)

Variables
Affecteds -0.05 -0.06 -0.04∗ -0.07∗∗∗

(0.045) (0.047) (0.027) (0.024)

Postt -0.40∗∗∗ -0.40∗∗∗ -0.54∗∗∗ -0.54∗∗∗

(0.043) (0.034) (0.035) (0.036)

Postt × Affecteds 0.13∗∗ 0.13∗∗ -0.00 0.00
(0.061) (0.055) (0.027) (0.030)

Postt × Affecteds × Water/Farm areas 0.15∗∗∗ 0.03
(0.028) (0.032)

Affecteds × Water/Farm areas -0.10∗ -0.09∗∗∗

(0.057) (0.033)

Postt × Water/Farm areas -0.07∗∗∗ -0.00
(0.012) (0.010)

Fixed effects and controls
Controls Yes Yes Yes Yes
Customer Firm FE Yes Yes Yes Yes

Statistics
Observations 170,444 170,444 475,952 475,952
R-squared 0.53 0.53 0.45 0.45
N suppliers 14,431 14,431 54,670 54,670
N customers 34,791 34,791 65,552 65,552
N cities 174 174 190 190
N affected cities 34 34 37 37

Note: This table reports coefficient estimates for variations of the baseline downstream specification in equation (3) (Columns (I) and (III)) and equation
(4) (Columns (II) and (IV)) at the electronic transaction level. The dependent variable is the sum of all electronic transfers observed between each outer
customer c and supplier s of the industry and services sectors in either affected or (matched) unaffected municipalities. We aggregate payments in two
periods t: the ex-ante period (2013Q1–2015Q4) and the ex-post period (2016Q1–2018Q4). The binary dummy variable Affecteds is equal to one when the
supplier s’s municipality borders the Doce River in the downstream path of the mudwave caused by the Mariana dam collapse and zero when the supplier
s is in a matched unaffected municipality following the methodology in Section 2.2. The vector Controlss,m includes the following set of control variables
with values fixed before the mining disaster, the number of electronic transactions received by the supplier s as well as the following supplier’s municipality
controls: population (in log), GDP per capita, freshwater as a share of the total farm area, urban and farming areas as a share of the total municipality’s
area, value-added in agriculture as a share of GDP, and irrigated area as a share of the farm area. All regressions have customer fixed effects. All controls
are winsorized at the 1% level and de-meaned and standardized to facilitate interpretation of the reall effects. Standard errors are three-way cluster to
accommodate possible demand shocks from the consumer, thus we use supplier’s municipality and sector as well as consumer’s municipality. ∗, ∗∗, ∗∗∗

denote statistical significance of 10%, 5%, and 1%, respectively.
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6 The Consumption Shock

In this section, we explore the effects on households’ consumption. Results of Section 3 show more
affected municipalities faced an average aggregate decline in the services sector of 6% (Table 2). These
firms were also unable to compensate the lack of income with exports, possibly due to its non-tradable
nature (Table 5). If individuals consume less in more affected municipalities, with consequences for their
broad services’ performance, it should be possible to find these effects turning to consumer credit data from
individuals located in affected and unaffected municipalities.

We start by analyzing an event study of the consumption effects on affected municipalities quarter by
quarter using the following econometric specification:

ln(yi,m,t) = ζ Affectedi +∑
k∈T

k ̸=2015Q3

βk 1{k=t}Affectedi +σ Controlsm + εi,m,t , (5)

in which i indexes the individual, m the affected or unaffected municipality in which i has a bank account
and t the quarter. yi,m,t represents the log of quarterly consumption proxied by the drawn amounts from non-
interest-bearing credit cards and consumer credit lines directly associated with consumption31. Affectedi

takes the value of 1 if the consumer is in an affected municipality m and 0 if the consumer is in an unaffected
municipality. 1{argument} is the indicator function that yields one when the argument is true, and zero
otherwise. T = {2013Q1,2013Q2, . . . ,2018Q4}. Controlsm is a vector of control variables used in the
previous regressions.

We run this regression in four subsets, splitting individuals by formal/non-formal worker and high-
risk/low-risk. We match the credit register to employer-employee data containing all formal employees
as of September 2015. They represented 47% of our consumer finance sample (Table 6). The remaining
group (non-formal) includes informal workers, unemployed, self-employed, or retirees with active credit
card or consumer finance accounts. As we know nothing about these individuals, we use data provided by
banks on interest rates available for each individual before the disaster to split them into two groups, high-
risk (interest rates above median) and low-risk (interest rates below median). Because informal workers
are commonly engaged in agriculture, and this particular labor force is less educated and poor, we expect
stronger effects among the risky and non-formal.

Results for the dynamic coefficients βk are shown in Figure 7. The upper left presents the consumption
trend for high-risk and non-formal individuals, and we can see a statistically significant negative effect on
the consumption levels of this group after the shock. Importantly, consumption decline seems to follow the

31The ideal consumption data would relate to consumption expenditures and possibly include related cash, credit and debit
card usage. Yet, we only observe drawn amounts from individuals credit cards at end-of-month and do not observe individuals’
transactions. We also do not observe cash or debit card usage. To proxy for consumption with means of payment other than
credit cards, we add drawn amounts from a consumer credit line typically offered in Brazil, “consignado”.
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production shock, with stronger effects starting in mid-2017. In the remaining three plots, coefficients are
negative but not statistically significant. In this way, the disaster seems to affect disproportionately more
vulnerable individuals in affected municipalities, likely directly or indirectly more dependent on agricultural
performance to complement income.

Figure 7: Event study on credit card consumption from customers from affected and matched unaffected municipalities in the
surroundings of Mariana’s dam collapse, which occurred in 2015Q4. The horizontal axis indicates the year-quarter and the
vertical axis encodes the coefficient estimates of βk in Specification (5) (solid blue points), and the associated 95% confidence
interval (vertical red bars) are all relative to the observed values of 2015Q3 (reference). Standard errors are two-way clustered
at the municipality and quarter dimensions.

As in the previous sections, we extend our consumption analysis with a difference-in-differences
(DiD) strategy concentrating on the three years before and after Mariana’s disaster. We aggregate every
individual’s three-year consumer credit usage before and after the dam collapse, resulting in two observa-
tions for each. This setup reduces to a traditional two-period DiD analysis, which we operationalize with
the following two equations:

ln(yi,m,t) = ζ Affectedi +λPostt +β Postt ·Affectedi +σ Controlsm + εi,m,t , (6)
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ln(yi,m,t) = ζ Affectedi +λPostt +β Postt ·Affectedi+

+δ Postt ·Water/Farm areai + γ Affectedi ·Water/Farm aream+

+θ Postt ·Affectedi ·Water/Farm areai +σ Controlsm,i + εi,m,t ,

(7)

where yi,m,t represents the log of individual i’s (located at affected/unaffected municipality m) consumption
during the two periods t (i.e., three years before and after the disaster), which is proxied by his drawn
amounts from consumer credit lines. Controlsm,i is a vector including all municipality-level controls from
the previous regressions, the number of credit products each individual used in the three years before the
disaster and the ln of its ex-ante debt commitments. We provide all summary statistics in Table 6.

Our coefficient of interest in equation (6) is β , which captures the average individual consumption
effects in affected relatively to unaffected municipalities after the shock. In equation (7), we are interested
in the parameter θ , which depicts the effects on the more affected municipalities.

Table 6: Summary Statistics: Consumption

p1 p10 p50 mean p90 p99 sd

Dependent variable
Consumption (ln) 1.96 6.07 8.52 8.30 10.41 11.89 1.91

Main independent variable
Affected Municipality 0.00 0.00 0.00 0.48 1.00 1.00 0.50

Control variables
Water/Farm area 0.00 0.00 0.02 0.03 0.06 0.10 0.03
Irrigation area (share) 0.00 0.00 0.01 0.03 0.09 0.12 0.04
Population (ln) 8.36 9.79 12.05 11.72 12.87 13.37 1.23
GDP per capita 6312.14 10701.91 20091.64 22254.81 36040.84 40871.77 9975.59
Agriculture GDP (share) 0.00 0.00 0.01 0.03 0.12 0.27 0.06
Farm/Municipality Area (share) 0.21 0.23 0.50 0.52 0.77 0.87 0.22
Urban/Municipality area (share) 0.00 0.00 0.03 0.14 0.40 0.52 0.17
High risk (1/0) 0.00 0.00 1.00 0.53 1.00 1.00 0.50
Formal (1/0) 0.00 0.00 0.00 0.47 1.00 1.00 0.50
Number of products 2.00 3.00 14.00 21.17 48.00 95.00 20.36
Debt commitments (ln) 0.00 5.72 8.70 8.39 10.81 12.43 2.26

Observations 1,270,483

Notes: This summary table shows the mains statistics for the consumption sample. The dependent variable Consumption is the natural logarithm of drawn
consumption credit in affected and unaffected municipalities. The post period is 2016 to 2018 and the pre period from 2013 to 2015. The municipality-level
controls are taken from December 2014 except for irrigation, which is only available in 2015. The individual controls, Number of products and Debt
Commitments are from September 2015. One-way (Municipality) standard errors in parentheses with ∗, ∗∗, ∗∗∗ denoting statistical significance of 10%, 5%,
and 1%, respectively.

Table 7 presents results for the consumption regressions. Columns I and II show the overall effects
on consumption across all individuals. While β is negative but not statistically significant, introducing the
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triple interaction coefficient θ on Column II shows a positive coefficient for β and a negative θ , suggesting
the average consumption fall is led by municipalities (one standard deviation) more dependent on river
freshwater for farming. Individuals in these cities face an average consumption decline of 8%32. β is
statistically significant and strong only among the risky and non-formal. This group faces an average 5%
consumption fall across all affected municipalities (Column III). Even in this sub-sample, the result is led
by the triple interaction θ (Column IV). In municipalities likely more affected by water contamination,
consumption declined by 13% (Column IV). In this sub-sample of vulnerable individuals, we are likely to
find the very informal workers whose income is directly and indirectly dependent on sowing, harvesting,
transporting and selling crops. In Appendix B2, we present a robustness exercise reproducing Table 7 with
non-interest-bearing credit cards alone. Results are qualitatively and quantitatively similar and consumption
among the risky and non-formal declined by 11%, although the number of individuals in the sample declines
from 773 thousand to 568 thousand.

The results of this section provide evidence of a local consumption shock, confirming that water
pollution not only impoverished formal agricultural producers, but also families directly and indirectly
reliant on agricultural outputs.

32Water/Farm area is de-meaned and standardized to facilitate direct interpretation of the results
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Table 7: Consumption

Dependent Variable: Consumptioni,t

Sample: Overall Overall
Risky & Risky & Non-Risky & Non-Risky & Risky & Risky & Non-Risky & Non-Risky &

Non-Formal Non-Formal Non-Formal Non-Formal Formal Formal Formal Formal
Specification: (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Variables
Affectedi -0.08∗∗∗ -0.16∗∗∗ -0.13∗∗∗ -0.24∗∗∗ -0.10∗∗∗ -0.19∗∗∗ -0.00 -0.05 -0.07∗∗∗ -0.14∗∗∗

(0.024) (0.026) (0.036) (0.032) (0.035) (0.029) (0.031) (0.038) (0.024) (0.027)

Postt 0.08 0.07 -0.11 -0.12 0.01 0.02 0.23∗∗ 0.17∗∗ 0.24∗∗ 0.23∗∗

(0.094) (0.087) (0.093) (0.086) (0.081) (0.079) (0.099) (0.086) (0.100) (0.094)

Postt × Affectedi -0.01 0.05∗∗ -0.05∗∗ 0.03 -0.04 0.01 -0.06∗∗ 0.04 0.04∗ 0.11∗∗∗

(0.016) (0.019) (0.021) (0.021) (0.023) (0.019) (0.025) (0.028) (0.023) (0.017)

Water/Farm areai 0.03∗∗∗ 0.03∗∗ 0.03 0.02 0.05∗∗ 0.06∗∗ 0.03∗∗ 0.02 0.02∗∗ 0.02∗∗

(0.012) (0.016) (0.020) (0.023) (0.024) (0.026) (0.013) (0.020) (0.009) (0.012)

Postt × -0.03∗∗ -0.01 -0.05∗∗∗ -0.05 -0.04∗∗∗

Water/Farm areai (0.013) (0.012) (0.014) (0.028) (0.012)

Affectedi × 0.03 0.02 0.02 0.03 0.06
Water/Farm areai (0.049) (0.063) (0.058) (0.064) (0.070)

Postt × Affectedi -0.08∗∗ -0.13∗∗∗ -0.07 0.01 -0.12
× Water/Farm areai (0.031) (0.033) (0.059) (0.055) (0.078)

Fixed effects and controls
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
All control interactions No Yes No Yes No Yes No Yes No Yes

Statistics
Observations 1,270,483 1,270,483 353,197 353,197 319,192 319,192 318,069 318,069 280,021 280,021
R-squared 0.20 0.20 0.18 0.18 0.19 0.20 0.21 0.21 0.26 0.26
N individuals 772,842 772,842 222,499 222,499 193,689 193,689 189,854 189,854 166,796 166,796
N cities 190 190 190 190 190 190 190 190 190 190
N affected cities 37 37 37 37 37 37 37 37 37 37

Note: This table reports coefficient estimates of equation (6) (Columns I, III, V, VII and IX) and equation (7) (Columns II, IV, VI, VIII and X) at the consumer
i level. The dependent variable is the sum of drawn amounts of non-interest-bearing credit card and consumer credit lines in log format. We aggregate those
in two periods t: the ex-ante period (2013Q1–2015Q4) and the ex-post period (2016Q1–2018Q4). The binary dummy variable Affectedi is equal to one
when consumer i is in an affected municipality and zero when i is in a matched unaffected municipality following the methodology in Section 2.2. The
vector Controlsm,i includes the following set of control variables with values fixed before the mining disaster, municipality controls: population (in log),
GDP per capita, freshwater as a share of the total farm area, urban and farming areas as a share of the total municipality’s area, value-added in agriculture
as a share of GDP, and irrigated area as a share of the farm area, and individual controls: Number of ex ante credit products and Debt commitments from
September 2015. All controls are winsorized at the 1% level and de-meaned and standardized to facilitate interpretation of the real effects. Standard errors
are two-way cluster to accommodate differential wealth from the consumer, thus we use Number of products, consumer’s municipality. ∗, ∗∗, ∗∗∗ denote
statistical significance of 10%, 5%, and 1%, respectively.
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7 Final Remarks

Water pollution is detrimental to economic activity through several channels that we explore in this
paper. In November 2015, the rupture of a mining tailings dam in the municipality of Mariana led to a
record disposal of toxic residuals in southeast Brazil, leaving behind ecological and economic damage in
the affected municipalities of the Doce River basin. We start by showing Agricultural GDP in affected
municipalities declined by 14% in the following three years, which can be traced to a fall in planted area,
particularly for the three main regional crops: beans, coffee, and corn. The technical literature details the
channel: soil contamination follows water contamination, and the mud covering the soil in farms along
the shore is poor in nutrients, affecting productivity. Second-order effects also follow, with a decline in
consumption among individuals in the more affected municipalities, leading to a decline in services GDP
and municipality-level GDP.

We turn to microdata to disentangle and explore the related transmission channels. Formal agricultural
producers selling to outer municipalities saw a 41% to 64% decline in cash inflows (income) in the three
following years. These results are led by agricultural producers in municipalities where the river shore was
larger relative to the farming area, supporting the identification of a production shock in agriculture caused
by water pollution and related impoverishing of the soil. Whereas industries and services in more affected
municipalities do not face a production shock, industries increase their exports to outer municipalities,
alleviating the effects of local consumption decline.

To shed more light on the consumption shock, we turn to credit card and consumer finance usage and
find an average contraction of 5% among riskier and not formally employed individuals. In more affected
municipalities, this effect is larger, 13%. These results confirm a consumption shock follows a production
shock, particularly among municipalities where Water/Farm area ratio is larger. In these municipalities, the
average consumption across all individuals declined by 8%.
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Appendix A List of treated municipalities

We list the treated municipalities employed in this work, which comprises all municipalities within
the area of socioeconomic scope in the Framework Agreement, except for the Mariana municipality:

• Aimorés

• Alpercata

• Baixo Guandu

• Barra Longa

• Belo Oriente

• Bom Jesus do Galho

• Bugre

• Caratinga

• Colatina

• Conselheiro Pena

• Córrego Novo

• Dionı́sio

• Fernandes Tourinho

• Galiléia

• Governador Valadares

• Iapu

• Ipaba

• Ipatinga

• Itueta

• Marilândia

• Marliéria

• Naque

• Periquito

• Pingo-d’Água

• Raul Soares

• Resplendor

• Rio Casca

• Rio Doce

• Santa Cruz do Escalvado

• Santana do Paraı́so

• São Domingos do Prata

• São José do Goiabal

• São Pedro dos Ferros

• Sem-Peixe

• Sobrália

• Timóteo

• Tumiritinga
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Appendix B Robustness Exercises

In Table B1, we present results for the production shock in agricultural firms, using alternative es-
timating windows, from one year before and after the mining disaster to four years before and after. The
baseline is a three-year window in Table 4. We replicate the last and most saturated regression specification
from equation (4). In Table B2, we reproduce Table 7, which represents the consumption shock, but using
only credit card transactions at the individual level.
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Table B1: Robustness Test: Downstream Propagation on Agri-firms (multiple years).

Dependent variable: ln
(

Outside Customerc
$−−−→

flows
Inside Suppliers

)
Time Window: ± 1 year ± 2 years ± 3 years ± 4 years
Specification: (I) (II) (III) (IV)

Variables
Affecteds 0.64 0.49 0.42 0.37

(0.564) (0.402) (0.269) (0.320)

Postt -0.11 -0.08 -0.06 -0.01
(0.081) (0.081) (0.092) (0.103)

Postt × Affecteds 0.02 0.11 -0.03 -0.15
(0.172) (0.187) (0.174) (0.223)

Postt × Affecteds × Water/Farm areas -0.24∗ -0.31∗∗ -0.32∗∗ -0.32∗∗

(0.140) (0.129) (0.133) (0.131)

Affecteds × Water/Farm areas 0.13 0.01 0.08 0.04
(0.167) (0.168) (0.121) (0.131)

Postt × Water/Farm areas -0.05 -0.09 -0.07 -0.07
(0.055) (0.068) (0.082) (0.078)

Fixed effects and controls
Controls Yes Yes Yes Yes
Customer Firm FE Yes Yes Yes Yes

Statistics
Observations 1,159 1,698 2,263 2,737
R-squared 0.79 0.72 0.67 0.64
N suppliers 292 374 443 511
N customers 394 537 685 802
N cities 86 95 101 110
N affected cities 18 20 20 22

Note: This table reports coefficient estimates for the downstream specification in (4) at the electronic transaction level for different time windows centered
at 2015: ± 1 year (Column I), ± 2 years (Column II), ± 3 years (Column III), ± 4 years (Spec IV). The dependent variable is the sum of all electronic
transfers observed between each customer c outside the affected (treatment group) and the matched unaffected municipalities (control group) to inside
agri-firm suppliers s. We aggregate payments in two periods t: the ex-ante period and the post period, following the size of the analyzed time window. The
binary dummy variable Affecteds is equal to one when supplier s’s municipality borders the Doce River in the downstream path of the mudwave caused
by the Mariana dam collapse, and zero when supplier s is in a matched unaffected municipality. The vector Controlsc,s,m includes the following set of
control variables with values fixed before the mining disaster, the number of electronic transactions received by the supplier s and the following supplier’s
municipality controls: population (in log), GDP per capita, freshwater as a share of the total farm area, urban and farming areas as a share of the total
municipality’s area, value-added in agriculture as a share of GDP, and irrigated area as a share of the farm area. Demand controls represent customer’s
industry × municipality fixed effects. Standard errors are three-way cluster to accommodate possible demand shocks from the consumer, thus we use
supplier’s municipality and sector as well as consumer’s municipality). ∗, ∗∗, ∗∗∗ denote statistical significance of 10%, 5%, and 1%, respectively.
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Table B2: Robustness Test: Credit Card Consumption

Dependent Variable: Consumptioni,t

Sample: Overall Overall
Risky & Risky & Non-Risky & Non-Risky & Risky & Risky & Non-Risky & Non-Risky &

Non-Formal Non-Formal Non-Formal Non-Formal Formal Formal Formal Formal
Specification: (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Variables
Affectedi -0.12∗∗∗ -0.14∗∗∗ -0.17∗∗∗ -0.22∗∗∗ -0.15∗∗∗ -0.17∗∗∗ -0.01 -0.01 -0.04∗∗ -0.06∗∗∗

(0.028) (0.028) (0.032) (0.031) (0.034) (0.029) (0.050) (0.053) (0.017) (0.020)

Postt 0.21 0.20 0.00 -0.04 0.17 0.17 0.43 0.41 0.35 0.34
(0.284) (0.281) (0.258) (0.259) (0.243) (0.244) (0.390) (0.373) (0.279) (0.270)

Postt × Affectedi -0.02 0.02 -0.10∗∗∗ 0.01 -0.06 -0.03 -0.03 -0.00 0.01 0.05∗∗∗

(0.024) (0.025) (0.033) (0.025) (0.040) (0.035) (0.082) (0.065) (0.016) (0.013)

Water/Farm areai 0.04∗∗ 0.04∗∗ 0.04 0.03 0.07∗∗ 0.06∗∗ 0.01 0.01 0.01 0.02∗∗

(0.017) (0.017) (0.025) (0.019) (0.032) (0.025) (0.013) (0.014) (0.005) (0.011)

Postt × Water/Farm areai -0.05∗∗∗ 0.01 -0.02 -0.08∗∗∗ -0.08∗∗∗

(0.018) (0.014) (0.021) (0.019) (0.025)

Affectedi × Water/Farm areai 0.01 0.05 -0.00 0.05 -0.06
(0.060) (0.068) (0.049) (0.068) (0.072)

Postt × Affectedi × -0.01 -0.11∗∗ -0.04 0.12∗∗ 0.03
× Water/Farm areai (0.048) (0.054) (0.043) (0.047) (0.038)

Fixed effects and controls
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
All control interactions No Yes No Yes No Yes No Yes No Yes

Statistics
Observations 910,963 910,963 269,208 269,208 222,562 222,562 209,875 209,875 209,317 209,317
R-squared 0.40 0.40 0.34 0.34 0.31 0.31 0.51 0.51 0.43 0.44
N individuals 568,498 568,498 170,541 170,541 137,703 137,703 130,368 130,368 129,885 129,885
N cities 190 190 190 190 190 190 190 190 190 190
N affected cities 37 37 37 37 37 37 37 37 37 37

Note: This table reports coefficient estimates of equation (6) (Columns I, III, V, VII and IX) and equation (7) (Columns II, IV, VI, VIII and X) at the
consumer i level. The dependent variable is the sum of drawn amounts of non-interest-bearing credit card in log format. We aggregate those in two periods
t: the ex-ante period (2013Q1–2015Q4) and the ex-post period (2016Q1–2018Q4). The binary dummy variable Affectedi is equal to one when consumer
i is in an affected municipality and zero when i is in a matched unaffected municipality following the methodology in Section 2.2. The vector Controlsm,i
includes the following set of control variables with values fixed before the mining disaster, municipality controls: population (in log), GDP per capita,
freshwater as a share of the total farm area, urban and farming areas as a share of the total municipality’s area, value-added in agriculture as a share of GDP,
and irrigated area as a share of the farm area, and individual controls: Number of ex-ante credit products and Debt commitments from September 2015. All
controls are winsorized at the 1% level and de-meaned and standardized to facilitate interpretation of the real effects. Standard errors are two-way cluster to
accommodate differential wealth from the consumer, thus we use Number of products, consumer’s municipality. ∗, ∗∗, ∗∗∗ denote statistical significance of
10%, 5%, and 1%, respectively.
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