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ABSTRACT 

EU legislators mandated the European Banking Authority to propose a 
stress scenario methodology for capitalising non-modellable risk 
factors (NMRF) as foreseen under the Basel Fundamental Review of 
the Trading Book (FRTB) rules for market risk. In this paper, we present 
the foundations of such a methodology. 

By design, it is universally applicable to all kinds of risk factors to which 
a bank may be exposed, and it caters for a wide range of data 
availability by adjusting the stress scenario for the number of returns 
observed in the calibration period. It captures non-linearities in the 
portfolio loss profile against changes in the NMRF, while reducing the 
computational effort and being simple.  

To motivate the values set for some parameters in the methodology, 
we use a set of skewed generalised ‘t’ (SGT) distributions as a generic 
tool for describing a wide universe of real historical returns from all 
asset classes.  

Finally, we extend the methodology from single risk factors to 
segments of curves or surfaces as envisaged in the FRTB. 
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1 Introduction

In January 2019, the Basel Commitee on Banking Supervision (BCBS) published the final revised global stan-

dard for banks’ minimum capital requirements for market risk, also known as the Fundamental Review of the

Trading Book (FRTB) [Bas19]. Under those standards, banks have the choice to use a so-called standardised

approach based on sensitivities and prescribed “risk weights” or, subject to supervisory approval, to devise their

own internal risk measurement model for computing capital requirements.

A key-feature of the FRTB is the classification of risk-factors that a bank has identified for their risk

measurement as ‘modellable’ or ‘non-modellable’. The risk-factor eligibility test (RFET) determines whether

a risk factor is modellable or not. To be modellable, the number of ‘real-price observations’ observed over the

last year needs to be at least 100 and be free of long streaks for no observations. Real price observations must

be a real transaction or committed quote and be representative for the risk factor, i.e. the bank must be able

to extract the value of the risk factor from the value of the real-price observations to use the observation for

the RFET of that risk factor.

Modellable risk factors are capitalised in an integrated expected shortfall measure allowing for diversification

and hedging among all modellable risk factors, with some restrictions for diversification across risk classes

(general interest rates, credit spreads, equities, FX, and commodities). The ES measure is calibrated to a

period of financial stress, i.e. a period that maximises the capital requirements for the bank’s portfolio.

Non–modellable risk factors (NMRF) are capitalised, outside and incremental to the expected shortfall

(ES) measure, under the ‘stress scenario risk measure’ (SSRM) which the FRTB does not specify in detail.

Paragraph MAR 33.16 of the FRTB only states that it should be calibrated to be at least as prudent as the

expected shortfall used for modelled risks (i.e. a loss calibrated to a 97.5% confidence level over a period of

stress). It should be determined for each risk factor or, subject to supervisory approval, for each risk factor

bucket (i.e. segments of a risk curve or surface). The risk factor (bucket) correlations are implicitly prescribed

by an aggregation formula for the total capital requirement for non-modellable risk factors.

In May 2019, the European Parliament and Council adopted amendments to the Capital Requirements

Regulation ([PC13, PC19]) implementing the FRTB standards in the European Union. In that context, the

legislators mandated the European Banking Authority (EBA) to develop a methodology for determining the

SSRM for capitalising NMRF. According to EU regulation an ‘extreme scenario of future shock’ must be

determined for each non-modellable risk factor (bucket) that leads to a loss, which is the SSRM of that NMRF.

In this paper, we present the design goals and mathematical foundations of the methodology that we designed

to deliver on that mandate. Probably due to the FRTB novelties, and except for [MBP17], we are not aware of

any prior work putting forward a methodology for capitalising NMRFs.

Banks could capitalise a non–modellable risk factor by direct historical simulation of losses per risk factor

(bucket), which we call the ‘direct method’: first, the returns observed for the NMRF in a period of financial

stress are obtained, then those returns are applied as shocks to the current value of the NMRF so as to obtain

a sample of losses. The stress scenario risk measure would be the expected shortfall of the losses at 97.5%

confidence level. However, the direct method requires a significant computational effort: for each risk factor

(bucket) the losses of the portfolio positions susceptible to this risk factor would need to be calculated for each

return in the stress period. This method is thus computationally very demanding for a trading book having

potentially thousands of NMRFs and is not suited for risk factors with sparse data. Hence, there is a need for a

much more efficient approach, which also has to be extendible to a low number of returns down to no observed

returns at all in the stress period.

A recurrent underlying theme of this work is to consider the situation of less than daily returns for non-

modellable risk factors, because NMRFs are typically less liquid and even more so in a stress period. However,

it should be noted that there are in practice daily data for some non-modellable risk factors (i.e. daily risk

factor returns can be computed), while the requirement to find real-price observations, so as to pass the RFET,

is not met.

The paper is organised as follows. In Section 2, we outline the methodology by first introducing its design
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goals and assumptions. We describe the concept of nearest to 10-(business) day returns scaled to 10 days catering

for sparse data in the stress period, we put forward the ‘asymmetrical sigma method’, a method to obtain a

robust approximation of the expected shortfall from a small sample of data, and we develop a computationally

efficient approximation of the expected shortfall of the losses due to a risk factor by the loss corresponding to

the expected shortfall of the risk factor distribution. In Section 3, we discuss corner cases under which the

methodology may not lead to appropriate results and present ad-hoc solutions to address them. In Section

4, we show how to compensate for the small sample uncertainty in the estimation of the risk measures to a

controlled target confidence level. In Section 5, we first give analytical expressions for Value-at-Risk (VaR)

VaR and ES of the skewed-generalised t (SGT) distributions. We then use the SGT distributions as a tool for

motivating the values taken by the parameters of our methodology, and in particular for investigating the small

sample uncertainty of the ES estimates by means of a quantile approximation and Monte Carlo simulations. In

Section 6, we show how the methodology is naturally extended to a bucket of risk factors in a curve or surface.

In Section 7, we recall the final aggregated capital requirements for non-modellable risks and in Section 8, we

conclude.

The building blocks of the methodology that are laid down in a detailed manner in this paper, namely,

(i) a parsimonious way to obtain a time series of 10 days returns for risk factors with non-daily data; (ii)

the asymmetrical sigma method ES estimator to robustly estimate ES measures on the basis of a volatility

measure for small samples; (iii) the efficient approximation of the ES of losses with the loss at the ES of the

risk factors’ distribution by means of a non-linearity correction coefficient; (iv) the introduction of a sampling

error compensation factor; and (v) the use, for calibration and analyses purposes, of a SGT distribution family

broadly matching a large set of historically observed risk factors, are our main contributions. Linking all pieces

together to obtain a universally applicable and efficient methodology for the SSRM that works also from a

regulatory perspective can be considered our most relevant contribution. Finally, we believe that the analysis

and results obtained for SGT distributions may also be useful in contexts other than the one discussed in this

paper.

2 The methodology and the goals that drove its design

In this section we first introduce the goals that drove the design of the methodology and a few assumptions for

it to be applied. We then present the methodology designed to overcome the drawbacks of a direct calculation

of the expected shortfall of the losses while meeting those goals.

2.1 Goals and assumptions

The methodology is designed to meet the following goals:

• G1: Be applicable to any kind of risk factor. Typically banks’ portfolios are susceptible to a vast range of

risk factors that heavily differ in their nature: equity risk factors, interest rate risk factors, parameters used

for modelling curves and surfaces. Thus, one of the goals of the methodology is its universal applicability.

• G2: Capture a wide range of different cases with respect to the number of observations available for a

given risk factor. There may be risk factors for which banks have daily data, while for some others, the

data availability is very limited. Thus, the methodology is designed to work with any data availability.

• G3: Ensure an adequate level of capitalisation for the non-modellable risk factors. In order to be in

line with the FRTB standards, the methodology should lead to a stress scenario risk measure at least as

prudent as the expected shortfall calibration used for modellable risk factors.

• G4: Be efficient and simple. The methodology should be efficient and use as few loss evaluations as

possible without compromising other goals. It should be simple and remove complexity where possible.
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• G5: Be applicable both at risk-factor level and at bucket level. The FRTB specifies that a stress scenario

has to be generated for each NMRF separately. However, the FRTB also provides for the possibility to

assess the modellability of risk factors belonging to a curve or a surface via either the own bucketing

approach or the regulatory bucketing approach. Where a bank opts to use regulatory buckets, it can

generate a stress scenario for all risk factors in the bucket, and determine the capitalisation at bucket

level. Thus, the methodology must be designed to be applicable at bucket level as well.

• G6: Capture losses accurately. The methodology must accurately capture the characteristics of the loss

functions with respect to movements in the risk factors.

• G7: Less data, more capital. The methodology should be built to obtain higher capital requirements

when less data are available so as to reflect the uncertainty that is present when obtaining figures with

few data.

When developing the methodology we assumed that:

• A1: When applying the methodology, banks have identified the portfolio the positions of which are capi-

talised in accordance with internal models approach - we refer to it as the ‘SSRM portfolio’. Specifically, in

accordance with the FRTB, only positions in trading desks meeting the backtesting and P&L attribution

requirements can be capitalised by means of internal models.

• A2: When applying the methodology, banks have a fixed set of risk factors that passed the risk factor

eligibility test and have been classified as modellable and a fixed set of risk factors that did not pass that

test and have been classified as non–modellable.

• A3: For each of the five risk classes identified in the FRTB (e.g. equity risk), the bank identified a

12-month period of financial stress S – we refer to it as ‘stress period’ – for which a sufficient amount of

data is available for calibrating shocks applicable to the NMRFs in the risk class. Paragraph 33.16 of the

FRTB sets out that a common 12-month period of stress across all NMRFs in the same risk class must be

used for obtaining the stress scenario risk measures. That prerequisite is at the basis of our assumption.

• A4: For each non–modellable risk factor j, banks can identify the loss that their SSRM portfolio would

suffer following a change in the value of the NMRF. Equivalently, banks are able for each shock x to

determine the corresponding portfolio’s loss lj(x),

lj(x) = LossD∗(r
∗
j ⊕ x) , (1)

where D∗ denotes the date for which the stress scenario risk measure is calculated - we refer to it as

‘reference date’, r∗j the value of the NMRF j at reference date, and ⊕ denotes the application of the

shock x to the risk factor value r∗j in accordance with the risk factor return modelling used (e.g. absolute

returns, logarithmic returns, etc.)1. The loss function LossD∗(rj) is defined as follows:

LossD∗(rj) = PV (r∗j )− PV (rj) , (2)

where PV (rj) denotes the present value of the portfolio as a function of rj , the value of the NMRF j.

In the paper, we will flag important cases where a design choice has been made to fulfil one of the listed

goals. We will also recall, where relevant, the assumptions made.

1The shock x can be either positive or negative. When a shock is positive, the operator ⊕ applies an upward shock to the risk

factor. Vice versa when x is negative a downward shock is applied
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2.2 The methodology

Having set the goals and laid down some basic assumptions, we are now ready to present the methodology to

determine the stress scenario risk measure for a NMRF.

In accordance with paragraph MAR 33.12 of the FRTB, each risk factor in the bank’s internal model is

mapped to a specific liquidity horizon. Following the mapping, modellable risk factors are capitalised determin-

ing an expected shortfall measure calibrated on a 10-day horizon which is then rescaled to reflect the liquidity

horizons of the modelled risks. To be consistent with the treatment envisaged for modellable risk factors, we

reduce the problem of obtaining a stress scenario risk measure already capturing the risk factor liquidity horizon

to the one of obtaining a stress scenario risk measure on a 10-day horizon, SS10d. Only at the final stage, we

will rescale SS10d to reflect the liquidity horizon of the non-modellable risk factor. Hence, the outcome of the

methodology should be the identification of a loss under a stress scenario calibrated on a 10-day horizon.

To address the drawbacks resulting from a direct calculation of the expected shortfall of the losses, i.e. via the

direct method presented in the introductory section, we propose in our methodology an approach based on the

determination of the stress scenario risk measure SS10d starting from the expected shortfall of the distribution

of the 10-days returns observed for the NMRF in the stress period. Consistently with goal G3, such an approach

should lead to:

SS10d ≈ ES(l(X), α) , (3)

having denoted with X the random 10-day return for the NMRF in the stress period, and 1−α = 97.5% being

the confidence level of the ES measure.

We summarise the methodology as follows: first, we determine a time series of 10-business-day returns for

the NMRF in the stress period and, from that time series, we estimate or approximate the left-tail and right-tail

expected shortfall of the return distribution. Subsequently, we investigate the loss profile due to a change in the

NMRF within the range identified by the two tail measures. Finally, we link that loss profile with the expected

shortfall of the losses, so as to obtain a stress scenario risk measure that attracts a sufficient level of capital as

in approximation in Eq. 3. As it will be clearer later, that link will mostly be based on the switch between the

loss function operator l(.) and the ES operator, i.e. we will link ES(l(X)) with l(ES(X)).

2.2.1 Building a time series of 10-business-day returns

For a risk factor with daily data, the determination of a time series of rolling 10-business-day returns is trivial

as the identification of a 10-days-rolling period is always possible. However, as mentioned in goal G2, NMRF

data may be sparse; hence, our methodology generalises the concept of a 10-business-day return to a ‘nearest’

to 10-business-day return to meet that goal. More specifically, we built up a parsimonious recipe based on the

identification of the return on the nearest to 10-business-day window, that is then rescaled to obtain a return

reflecting a 10-business-day period using the square-root-of-time rule employed in the FRTB for modellable risk

factors.

Let [D1, D2, ..., DM ] be the vector representing the dates within the stress period S for which an observation

for the NMRF j is present, and let [DM+1, ..., DM+d−1, DM+d] be the vector representing the observation dates

in the 20-business-day period following the stress period S. For each date index t ∈ [1, 2, ...,M − 1], we identify

a “nearest next to 10 days” date index tnn(t) by minimising the absolute relative deviation2:

tnn(t) = argmax
t′>t, t′∈[2,...,M+d]

∣∣∣∣
10 days

Dt′ −Dt
− 1

∣∣∣∣ . (4)

Once tnn(t) is determined, the return on the period identified by the two dates Dt and Dtnn(t) is computed.

The date index t ∈ [1, . . . ,M − 1], indexing the ‘starting observation’ used to determine a return, corresponds

always to a date in the 1-year stress period, while t′ ∈ [2, . . . ,M,M+1, . . .M+d] might correspond to an ‘ending

2As a rare special case, where an observation at both the 6th and 30th business days forward date Dt′ is available, with no

dates in between (i.e. they both minimise the relative deviation), t′ corresponding to the observation that occurred 30 business

days after Dt is to be selected as tnn(t).
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Figure 1: This figure shows a flow-chart of the various steps that banks are to perform to capitalise their

risk factors (RF) according to the currently proposed EU technical standards. First, banks assess with the

risk-factor eligibility test (RFET) whether a RF is modellable or not. Then, the nearest to 10-day returns are

computed. For the non-modellable RF the green box groups the steps of the methodology described in this

paper. Depending on the number of returns in the one year stress period, different estimation methods are

used to calibrate shocks to the left and right ES(97.5%). To cater for different signs of the sensitivity to the

shocks (long or short) the highest loss occurring in the range from down to up shock is taken as the stress

scenario risk measure basis value. Corrections for non-linearity, estimation uncertainty and a rescaling to the

applicable liquidity horizon are applied as needed. For completeness we also include the ‘direct method’, i.e.

where banks compute the losses when shocking the portfolio by the 10-day returns in the stress period from

which the expected shortfall of those losses is used directly as stress scenario risk measure on a 10-day horizon.

That method can be used only where the number of returns available ensure a robust ES estimation as in the

historical method presented in this paper, [EBA20b] limits its use to cases where N ≥ 200.

RF modellability assessment

Is the risk factor modallable?

RF integrated with all other MRFs

in the ES model

build time series of 10d returns Xj

|Xj| ≥ 200

Calibrate shocks with historical method:

CSup/down(j) = ÊSup/down(X
j, α) · UCF (Nup/down)

|Xj| ≥ 12

Calibrate shocks with asigma method:

CSup/down(j) = ÂSup/down(X
j, α) · UCF (Nup/down)

Analyse the loss profile:

identification of FSD∗(j)

FSD∗(j) at Θ’s

boundary

Obtain SSRM on a 10-days horizon

via non-linearity coefficient:

SS10d(j) = KD∗(j) · l(FSD∗(j))

Obtain SSRM on a 10-days horizon:

SS10d(j) = l(FSD∗(j))

No sufficient data:

use fallback approach

Scale to the floored liquity horizon:

SS(j) = SS10d(j) ·
√

LHfloored
j

10

SSRM for the RF aggregated with all SSRMs

via FRTB aggregation formula

Supevisors

satisfied?

SSRM to be obtained via

maximum loss approach

Direct method:

compute loss for each return,

take the ES of those losses

and multiply it by UCF (N)

Shocks obtained

via standardised table or

calibrated to a similar RF

Methodology described in this paper

YES

NO

YES

NO

YES

YES NO

NO

YES

NOYES - optional
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observation’ date in the 20-business-day period following the stress period. We extended the stress period S

with 20 business days so as to avoid that too many returns at the end of S are obtained using the observation at

DM - potentially leading the last observation in S to be overly represented. The return on the period identified

by the two dates Dt and Dtnn(t), is finally rescaled by
√

10 days
Dtnn(t)−Dt

to get a return on a 10-business-day period.

Eq. 4 for tnn(t) privileges the rescaling of a longer-than-10-day return to a 10-day return over the rescaling of

a shorter-than-10-day return to a 10-day return if compared to a formula that identifies tnn(t) by minimising

|Dt′ −Dt − 10 days| or
∣∣∣
√

10 days
Dt′−Dt

− 1
∣∣∣. In particular, dates distancing from Dt for more than 10 business days

are always preferred to dates distancing for 5 or fewer business days. Favouring longer-dated returns was done

considering that paragraph MAR 33.16 of the FRTB sets out that the liquidity horizon of a NMRF must be

greater than or equal to 20 days – thus, longer horizons will likely be closer to the final applicable liquidity

horizon. In addition, rescaling shorter returns to a longer period brings with itself the possibility of amplifying

short term movements; vice versa, rescaling longer returns to a shorter period tends to remove those short term

effects.

Other methods for constructing a 10-business-day returns time-series by imputation of data in case of missing

observations could be envisaged. However, they might require a time-series modelling (e.g. via a GARCH model

approach) and might need a fitting or regression procedure. This would increase complexity, in contrast to Goal

G4, and different kinds of risk factors might require different approaches, in contrast to Goal G1.

As a result, regardless of the amount of NMRF observations in the stress period, a time series with N = M−1

returns is obtained. We denote with Xj , the sample of returns for the NMRF j in the time series obtained as

a result of this step. From that sample, our objective is to obtain two shocks resembling the right and left-tail

expected shortfall of the return distribution, with the idea of linking them with the expected shortfall of the

losses calculated on that return distribution (i.e. linking ES(X) with ES(l(X)).

2.2.2 Calibrating extreme shocks from the sample Xj

As mentioned, we now want to calibrate an upward and downward shock for the NMRF j, respectively CSup(j)

and CSdown(j), from the sample of returns Xj . The two calibrated shocks are estimates of the right-tail and

left-tail expected shortfall of the distribution of the 10-business-day returns for the NMRF j in the stress period.

In goal G2, we stated that processing for a wide of range of cases with respect to number of returns available

in the stress period should be possible. An α-tail ES estimation from a large sample of N returns of which

[αN ] fall in the α-tail is not posing any problem. Having at least 5 observations in the tail, i.e. N ≥ 200, leads

to a sufficiently robust estimation, as we will show in Section 5.2.2. As a result, for calibrating CSup(j) and

CSdown(j), a historical estimator is used when at least Nhist = 200 10-day returns are available in the sample

of returns Xj . CSup(j) and CSdown(j) as determined by this ‘historical method’ are:

CSdown(j) = ÊSdown(Xj , α) · UCF (N) (5)

and:

CSup(j) = ÊSup(Xj , α) · UCF (N) , (6)

where ÊSdown(Xj , α) and ÊSup(Xj , α) denote respectively the left α-tail and right α-tail historical expected

shortfall estimators introduced in Eq. 7 or 8 applied to the sample Xj of returns for the NMRF j, and α = 2.5%.

UCF (N) is the uncertainty compensation factor for N returns to be introduced in Section 4 – it implements

the principle introduced in G7 that less data should lead to more capital, and reflects the error in estimating

the expected shortfall.

The following historical estimator for the expected shortfall for the left tail of the sample distribution is

used:

ÊSdown(Xj , α) =
−1

αN





[αN ]∑

i=1

Xj
(i) + (αN − [αN ])Xj

([αN ]+1)



 , (7)

where Xj
(i) is the order statistics of the sample Xj of size N , and [αN ] denotes the integer part of the product

αN . We adopt a sign convention leading to a positive number for the left (negative) tail of a distribution centred
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around zero like in [AT02]. This estimator (Eq. 23 in [NZC14]) is slightly different from the simple historical

estimator which uses only the [αN ] worst losses. It is more natural for the expected shortfall being an α-tail

mean (cf. Definition 2.6 in [AT02]), accounts for αN not being an integer and is somewhat more stable by

incorporating Xj
([αN ]+1). The historical estimator for the α ES of the right tail is:

ÊSup(Xj , α) = ÊSdown(−Xj , α) . (8)

The sign convention is also leading to a positive number for the right (positive) tail of a distribution centered

around zero. The estimators deliberately do not remove a mean (drift) in the return sample which is kept as a

feature of return shocks in a stress period. While such a ‘de-meaning’ could be appropriate e.g. for FX rates

and short liquidity horizons, where a zero-mean assumption might be warranted, we note that the risk factors

are varied as stated in goal G1 and could e.g. also be parameters of a yield curve or volatility surface where

a zero mean assumption would not apply. Furthermore, such ‘de-meaning’ would fit more for pricing purposes

rather than for the purpose of generating risk measures calibrated to a stress period, i.e. based on historically

observed data. That said, typically the means are small compared to the volatility or the ES.

If the number of returns N in the sample Xj is lower than Nhist, the robust estimation of the ES becomes

more challenging. The key idea in our methodology for this case is to approximate the expected shortfall by

rescaling a volatility measure, because the standard deviation can be estimated more robustly for a small sample

than the ES with the historical estimator. The Hürlimann bound [Hür02] states ES(α) ≤ µ+
√

1−α
α σ for any

continuous distribution on R with given mean µ and standard deviation σ and motivates that the ES can be

approximated by a (distribution dependent) multiple of σ when the mean is negligible. We will recover this

location-scale dependency explicitly for the SGT distribution family in Subsection 5.1.

Instead of rescaling the standard deviation on the sample comprising all returns in the time series, our

methodology splits the set of returns at the median into two halves, and on each half, a quantity resembling

the mean and standard deviation is estimated. This allows for capturing asymmetry in a distribution which is

often found in risk factor returns [EBA20a]. Higher than second moments are deliberately not used so as to

make the estimator more robust against outliers and more suitable for small samples. Finally, to ensure that

the standard deviations on the two halves are robustly estimated, the determination of CSdown(j) and CSup(j)

via such rescaling is limited to cases where there are at least N ≥ Nasigma = 12 returns in the sample Xj – we

motivate the value set for Nasigma in Subsection 5.2.2.

Formally, we first define the sets of returns in each half, Xj
down := {Xj ≤ med(Xj)} and Xj

up := {Xj >

med(Xj)} with med(Xj) denoting the median of the sample of returns Xj and Ndown, Nup, the cardinalities of

the two sets. The calibrated shocks of this ‘asymmetrical sigma’ method are:

CSdown(j) = ÂSdown(Xj) · UCF (Ndown) (9)

and

CSup(j) = ÂSup(Xj) · UCF (Nup) , (10)

where UCF (Ndown) and UCF (Nup) capture the uncertainty in approximating the expected shortfall measures,

and where ÂSdown(Xj) and ÂSup(Xj) are the ‘asigma’ estimators approximating the left and right tail expected

shortfalls from the set Xj :

ÂSdown = −µ̂Xjdown
+

Casigma
ES√

Ndown − 3
2

√√√√
∑

Xji∈X
j
down

(
Xj
i − µ̂Xjdown

)2

= −µ̂Xjdown
+ Casigma

ES σ̂Xjdown
, (11)

where µ̂Xjdown
and σ̂Xjdown

denote the mean and standard deviation estimators of the returns below the median.

The minus sign in front of µ̂Xjdown
leads to a positive calibrated shock for the typical case that µ̂Xjdown

< 0 when

the median is near zero.

Analogously,

ÂSup = µ̂Xjup
+

Casigma
ES√
Nup − 3

2

√√√√
∑

Xji∈X
j
down

(
Xj
i − µ̂Xjup

)2

= µ̂Xjup
+ Casigma

ES σ̂Xjdown
. (12)
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The two estimators rescale estimates of the standard deviation on the two sets by Casigma
ES . For small sample

sizes, taking the square root of the usual sample estimator for the variance as the estimator for the standard

deviation leads to a biased estimate due to Jensen’s inequality [Jen06, Ben03] and the convexity of the square

root function. We use the approximately unbiased sample estimator for the standard deviation [GT71], keeping

only the leading term N−1.5. Setting the constant Casigma
ES so as to ensure an approximation of the ES measure

that leads to an adequate level of capitalisation of NMRFs as laid down in goal G3 is key. We set it to 3 for all

risk factors - in Section 5, we motivate in detail our choice which was also confirmed by a calibration on a large

collection of risk factors’ historical data [EBA20a].

We have covered N ≥ 200 with the historical method and N ≥ 12 with the asymmetrical sigma method.

Below Nasigma = 12 returns, there are insufficient data to robustly approximate an ES with reasonable accuracy.

In this case, Assumption A3 is considered to not be met in practice, hence, we do not address it in this section.

However, we will briefly discuss this case in Section 7 where a fallback method is sketched.

As a result, for any N , the methodology yields a downward shock CSdown(j) and an upward shock CSup(j).

The large upward and downward shock span the shock range [−CSdown(j), CSup(j)]. We now aim to identify

the shock from this interval which leads to the highest portfolio loss in order to have a sufficient understanding

of the loss profile to infer information about ES(l(x)) – in particular, we are chiefly interested to determine

whether the worst loss in the range occurs at its boundaries. This shock will be called the extreme scenario of

future shock FSD∗(j).

2.2.3 Analysing the loss profile in the range [−CSdown(j), CSup(j)]

The loss function lj(x) describes the loss of a whole SSRM portfolio under variation of the single risk factor

j. In the most typical situation, lj(x) is not available in analytical form and no shape properties, e.g. neither

monotonicity nor extremal values, are known a priori. Therefore, the only way to understand the loss profile is

to explicitly calculate lj(x) for various shocks x.

A natural and simple approach to finding the highest loss is to cover the range [−CSdown(j), CSup(j)] with

a finite grid of points, evaluate lj(x) for every vertex and pick the largest value. Clearly, the finer the grid is

chosen, the more precisely the maximum can be determined. However, each calculation of lj(x) amounts to a

portfolio revaluation, which is computationally costly given that in that portfolio many instruments dependent

on the NMRF j may be present. Moreover, the procedure has to be repeated for each NMRF and computation

results cannot be reused over several reference dates as every change in the portfolio composition potentially

changes the loss profiles with respect to all NMRFs. Scanning the shock range with a very granular grid would

therefore entail a very large overall computational cost, in conflict with goal G4.

As a pragmatic solution, the methodology requires the evaluation of lj(x) on a grid Θ of only four points,

comprising the two boundary and two inner points:

Θ = {−CSdown(j), CSup(j)}︸ ︷︷ ︸
boundary points

∪{−0.8CSdown(j), 0.8CSup(j)}︸ ︷︷ ︸
inner points

. (13)

The extreme scenario of future shock FSD∗(j) is given by the shock that leads to the highest portfolio loss:

FSD∗(j) = argmax
x∈Θ

lj(x) . (14)

With such a coarse-grained scanning grid, the methodology cannot be expected to identify the highest loss

in the range under all circumstances. Importantly, though, it yields the correct outcome in the most common

case. When the portfolio has a directional exposure to the NMRF j and hence lj(x) is monotonic, the worst loss

in the range occurs for one of the boundary points. Concretely, for a net long position in j, the methodology

correctly identifies −CSdown(j), for a net short position, it yields CSup(j). Adding the loss evaluations at the

80% grid points makes the methodology more robust when extreme tail hedges are in place3. In theory, lj(x)

3The choice of including the point 0.8CSup(j) was also done with a view to the non-linearity correction introduced in Subsection

2.2.4 and is further motivated in 5.2.3
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can be an arbitrarily complicated function with maxima well inside the interval, which will not be picked up

by the methodology. However, given that portfolios tend to be fairly well hedged against small risk factor

fluctuations, focusing exclusively on large returns yields adequate results in most practical cases [EBA20a] –

hence, our choice to limit the loss evaluation to those four points only.

Consistently with goal G3, the methodology aims at estimating the expected shortfall of losses. We therefore

have to link the loss lj(FSD∗(j)) to ES(lj(X)). By definition, the expected shortfall is the average of the worst

2.5% losses and hence depends on both the return distribution and the shape of the loss function lj(x) in a

potentially non-trivial manner4. As said, we cannot use detailed information on lj(x) as this would increase

the computational footprint. Instead, we rely on further assumptions, dependent on whether the scenario

corresponds to a shock from the inside or the boundary of the shock range. For the time being, let us assume

that at least one of the four points from Θ actually leads to a loss so that lj(FSD∗(j)) > 0. We distinguish

the case where FSD∗(j) is at the boundaries of Θ from the case where it is in the inner point. We will briefly

discuss corner cases, e.g. cases where lj(FSD∗(j)) ≤ 0, in Section 3.

2.2.4 Obtaining SS10d when FSD∗(j) is at the boundaries of Θ via a non-linearity correction

We expect in the vast majority of cases the extreme scenario of future shock FSD∗(j) to be at the boundaries

of Θ, given that trading portfolios tend to be fairly well hedged against small risk factor fluctuations, and that,

typically, for large shocks – like those included in Θ – the losses are monotonic.

Therefore, where FSD∗(j) is at the boundaries of Θ, we assume that the worst 2.5% losses are due to tail

events of the return distribution. Concretely, where CSup(j) leads to the highest loss, we assume that the

2.5% worst losses come from the 2.5% largest returns. Analogously, where the highest loss is associated with

−CSdown(j), we assume that the 2.5% worst losses come from the 2.5% smallest (or most negative) returns. As

part of a data collection exercise [EBA19], data on portfolio loss functions upon change in single risk factors were

collected both for standardised portfolios (the EBA Supervisory benchmarking exercise portfolios [EBA21]) and

some banks’ real trading portfolios which included also structured products. Those data backed the presumption

that banks portfolios are in general directional, i.e. that in the vast majority of cases the extreme shocks will

be at the boundaries of Θ, and that the losses are in general monotonic for large shocks.

We formally investigate the case where CSup(j) is the extreme scenario of future shock. The analysis for

−CSdown(j) is fully analogous and differs only in signs. In Figure 2, we show the various elements that are

discussed in this subsection.

Let q97.5%(lj(X)) and q97.5%(X) denote the 97.5th percentile of the loss and the return distribution, respec-

tively. As stated above, we assume that {x|lj(x) > q97.5%(lj(X))} = {x|x > q97.5%(X)}. Using the equality of

these two sets, the expected shortfall of losses can be calculated as

ES(lj(X)) =
1

2.5%
E
(
lj(X) · IX>q97.5%(X)

)
, (15)

where I(·) denotes the indicator function. In other words, the expected shortfall is the average loss over tail

events of X. To make this explicit, let XT be a new random variable, distributed like X but conditional on

X being larger than q97.5%(X), i.e. XT := X · IX>q97.5%(X). Note that E(XT) = ES(X) by definition of the

expected shortfall of X. We have:

ES(lj(X)) = E(lj(XT)) . (16)

If lj(x) was a linear function one could exchange it with the integral to find the equality ES(lj(X)) =

lj(ES(X)). However, depending on whether lj(x) is convex or concave, Jensen’s inequality for expected val-

ues [Jen06, Ben03] applies and the left-hand side can be significantly larger or smaller than the right-hand side,

respectively. We capture this non-linearity effect by an analytical approximation.

4Different from our definition, the mathematics literature typically defines expected shortfall as an average of quantiles. However,

the two definitions are equivalent for continuous distributions and hence for all practical purposes. Moreover, our definition coincides

with the one given in paragraph MAR 10.18 of the FRTB.
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To this end, we use a second-order Taylor expansion of lj(x) around ES(X):

E (lj(XT)) = E

(
lj(ES(X)) +

∂lj
∂x

∣∣∣∣
x=ES(X)

(XT − ES(X)) +
1

2

∂2lj
∂x2

∣∣∣∣
x=ES(X)

(XT − ES(X))
2

)
(17)

and by noting that E(XT) = ES(X), the linear term drops out from Eq. 17 and we find:

E (lj(XT)) ≈ lj(ES(X)) +
1

2

∂2lj
∂x2

∣∣∣∣
x=ES(X)

(
E
(
X2

T

)
− ES(X)2

)
. (18)

After reorganising terms and going back from XT to X, the approximate expected shortfall of losses can be

written as

ES(lj(X)) ≈ lj(ES(X)) +
1

2
Γ (φ− 1) ES(X)2 = lj(ES(X)) ·K , (19)

where we have introduced the quantities

Γ :=
∂2lj
∂x2

∣∣∣∣
x=ES(X)

, φ :=
E
(
X2

T

)

ES(X)2
=

E
(
X2 · IX>q97.5%(X)

)

E
(
X · IX>q97.5%(X)

)2 ≥ 1 , (20)

remembering that ES(X) = E(XT). The fact that φ ≥ 1 can be proved by applying Jensen’s inequality with

the convex function f(x) = x2. With those quantities we define

K := 1 +
1

2

Γ

lj (ES(X))
(φ− 1) ES(X)2 . (21)

This is our analytical approximation and we call K the ‘non-linearity correction’. The formula for K nicely

disentangles the two components that drive ES(lj(X)): Γ, the curvature of the loss function, and φ, which

is a tail shape measure for how heavy the tails of the return distribution are. Both super-linear loss profiles

and heavy-tailed return distributions are common features in financial markets, so arguably such non-linearity

corrections can be non-negligible for real-world portfolios.

While the Taylor polynomial is a local approximation of lj(x) around ES(X), we use it as an approximation

of lj(x) for all x > q97.5%(X). The quality of the approximation can therefore vary substantially, depending on

the global shape of lj(x). Later in this section we account for this by capping and flooring the non-linearity

correction leading to Eq. 26.

Γ is the second derivative of lj(x) with respect to the return x around ES(X). We note that it can be

non-zero even for portfolios consisting exclusively of linear products in the risk factor. This is the case when

returns are applied non-linearly to a risk factor, i.e. when r∗j ⊕ x is a non-linear function of x. The typical

example are log returns for which lj(x) = LossD∗(r
∗
j ⊕ x) = LossD∗(r

∗
j · ex).

We determine the derivative numerically using a second-order finite central differences formula [Far93].

Setting h = 0.2 ES(X), we have:

Γ ≈ lj (ES(X)− h)− 2 lj (ES(X)) + lj (ES(X) + h)

h2
. (22)

The relatively large step width parameter h limits the dependence on local peculiarities of lj(x) around

ES(X). Instead, the derivative based on these three points can rather be thought of as a global indicator of

the curvature of lj(x) in the tail regime for the purpose of integration from VaR(X) to ∞. In Section 5.2.3

we motivate the value for h by showing that for a wide range of risk factors, q97.5%(X) = VaR(X, 97.5%) ≈
4
5ES(X, 97.5%), so that h = 0.2 means to take the inner point of the Γ computation approximately as the lower

bound of the integration for the non-linearity correction.

An alternative interpretation is the following: rather than replacing the loss profile by the tangential Taylor

parabola, we effectively replace lj(x) by the single parabola that goes through the three points defining the

derivative. To see this, note that linear terms drop out in the calculation above so that one can, without

changing the result, tilt the Taylor parabola around ES(X) until it hits all three points.

The quantity φ characterises the heaviness of the tails of the return distribution, i.e. the dispersion of the

returns in the tail around the ES value. Being a tail property, a sufficiently large sample of returns is required
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to estimate φ. Where we have recorded at least N ≥ Nhist = 200 returns, we determine φ using the statistical

estimator ÊSup(Xj , α) introduced in Eq. 8 combined with Eq. 20. We define the following estimator:

φ̂up(Xj , α) =

1
αN

{∑
i=1 [αN ](−Xj)2

(i) + (αN − [αN ]) (−Xj)2
([αN ]+1)

}

ÊS
2

up(Xj , α)
. (23)

where as in Eq. 7, the index (i) is used to indicate the order statistics. If less than Nhist = 200 returns are

available, we do not rely on an estimator - hence, where the asigma method is used to determine the calibrated

shocks, we use a flat value of φasigma = 1.04. In Section 5.2.1 we motivate this constant which corresponds to

the assumption that the return distribution has moderately heavy tails and was also confirmed by historical

data [EBA20a].

We now combine these components to arrive at a concrete formula for the non-linearity correction coefficient

KD∗(j). Where the scenario of future shock is associated with −CSdown(j), all occurrences of the right-tail

expected shortfall ES(X) have to be replaced by its left-tail counterpart. Moreover, the calculations in φ must

refer to the left rather than the right tail of the distribution of X. Overall, we obtain:

K̃D∗(j) = 1 +
25

2

lj(0.8FSD∗(j))− 2 lj(FSD∗(j)) + lj(1.2FSD∗(j))

lj(FSD∗(j))

(
φ̂− 1

)
, (24)

where we set ES(X) equal to FSD∗(j) in Eqs. 20 and 22 given that the latter is the estimation or approximation

of the former, and where:

φ̂ =





φ̂up if N ≥ Nhist and FSD∗(j) = CSup(j);

φ̂down = φ̂up(−Xj , α) if N ≥ Nhist and FSD∗(j) = −CSdown(j);

φasigma = 1.04 if 12 ≤ N < Nhist.

(25)

Finally, we apply a cap and a floor,

KD∗(j) = max
(
Kmin,min

(
K̃D∗(j),Kmax

))
, (26)

where Kmin = 0.9 and Kmax = 5. The floor at Kmin limits unintended consequences of our approximation

approach when the second derivative Γ at FSD∗(j) is negative. Typically, this is indicative of a flattening

loss profile for large returns, which justifies KD∗(j) < 1. However, recall that in this case, our methodology

replaces the loss function lj(x) with a downward opening parabola. That is, the approximate loss profile does

not only flatten, but actually bends and eventually turns negative (i.e. turns from losses into gains) for very

large returns, which is highly unrealistic. It can be shown that under optimistic assumptions a maximum benefit

of KD∗(j) = 0.9 can be expected; this can be seen by considering a hypothetical loss profile that grows linearly

from zero, reaches the value lj(ES(X)) at x = ES(X) and then stays constant for all larger returns, which serves

as our optimistic benchmark (cf. Figure 2). Γ can be calculated explicitly, and using φ = φasigma = 1.04 we

find that KD∗(j) = 0.9 in this case. Therefore, where the formula for KD∗(j) yields values smaller than 0.9,

this is considered a relic of the approximation and the floor applies. The large cap at Kmax corresponds to a

very steep loss profile and is merely a precaution to prevent implausibly large results that could be triggered

e.g. by numerical issues in approximating the second order derivative.

We also note that for 0.8FSD∗(j), we have already evaluated the loss function when searching the highest

loss in Θ. Hence, in line with goal G4, only one additional loss function evaluation at 1.2FSD∗(j) is necessary

to calculate K̃D∗(j).

This marks the end of our discussion and we can finally calculate the 10-day SSRM for the case where the

scenario of future shock is one of the boundary points of the shock range:

SS10d(j) = KD∗(j) · l(FSD∗(j)) if FSD∗(j) ∈ {−CSdown(j);CSup(j)} . (27)

As part of the data collection exercise [EBA19], the stress scenario risk measures resulting from the appli-

cation of our methodology were provided. In a few cases, banks even reported the stress scenario risk measure
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Figure 2: We show in an example how the worst loss is determined for a loss profile and the computation of

the non-linearity correction KD∗(j). The risk factor values of the grid Θ for which the loss must be evaluated

are indicated on the x-axis. With the continuous red line, we depict the loss profile. In this example, the worst

loss in the grid Θ occurs at CSup. Hence, CSup is the extreme scenario of future shock FSD∗(j). The three

points to calculate the non-linearity coefficient KD∗(j) are identified with a red circle on the loss profile. We

derived the parabola passing through the three points in the return space, and applied the operator ⊕ to that

parabola, obtaining the corresponding curve in the risk factor space represented with a dotted red line. We

also obtained a numerical value for the non-linearity correction KD∗(j) = 1.33 for the represented loss function

assuming φasigma = 1.04. Assuming φasigma = 1.04, we also show with a purple dashed line a loss profile that

would lead to reaching floor 0.9 for KD∗(j).

L
os
s D

∗(
r j
)

rj

KD∗(j) = 1.33

LossD∗(r∗ ⊕ FSD∗(j))

boundary points
{r∗ ⊖ CSdown, r

∗ ⊕ CSup}

inner points
{r∗ ⊖ 0.8 · CSdown, r

∗ ⊕ 0.8 · CSup}

r∗j r∗ ⊕ 1.2CSupr∗ ⊕ CSup

r∗ ⊕ FSD∗(j)
=

KD∗(j) = 0.9

r∗ ⊕ VaR(rj)

by directly computing the expected shortfall of the losses, i.e. via the direct method. For risk factors with

more than 200 returns in the stress period, results showed that our methodology ensures a level of capitalisation

comparable to the one resulting from the direct method. For example, one bank participating in the data col-

lection exercise which made its results public [Int20], obtained a total stress scenario risk measure by applying

the historical method (with a grid for Θ also having 20%, 40% and 60% of the boundaries) which was only 1%

higher than when calculating the expected shortfall of the losses with the direct method, for both linear and

structured interest rate strategies.

2.2.5 Obtaining SS10d when FSD∗(j) is at the inner points of Θ

Where the extreme scenario of future shock corresponds to one of the inner points, we are left with no clear

guess how lj(x) might possibly look, apart from the indication that the worst losses presumably do not occur

for the most extreme returns of the NMRF. Possible refinements of our strategy could require the evaluation of

lj(x) at further grid points at this stage to get a clearer picture, but to keep the methodology light and simple

in line with the goals, our approach refrains from such extensions. This choice has been made also considering

that, as mentioned, losses are in general directional in the risk factors - hence, FSD∗(j) is rarely expected to be

in the inner points of Θ. Instead, we make the blunt assumption that the scenario of future shock at the inner

points of Θ is representative for the worst 2.5% losses and set the 10-day SSRM to the corresponding loss,

SS10d(j) = lj(FSD∗(j)) if FSD∗(j) ∈ {−0.8CSdown(j), 0.8CSup(j)} , (28)

accepting that this could underestimate, or overestimate, ES(lj(X)) slightly.
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3 Corner cases and maximum loss approach

As mentioned before, the methodology is expected to work reasonably well in the vast majority of cases.

However, special cases could also occur. For example, a very rare case would occur when all four points from

the grid Θ lead to zero or negative losses, i.e. actual gains. In this rare situation, we set the 10-day SSRM for

the risk factor j to zero:

SS10d(j) = 0 if lj(FSD∗(j)) ≤ 0 . (29)

In addition, when putting forward our methodology, we introduced some assumptions. Assumption A1 and

A2, i.e. the identification of the SSRM portfolio and of the NMRFs via the RFET, are prerequisites envisaged

in the FRTB. Unlike A1 and A2, A3 and A4 are assumptions that may not be met in practice; for example,

there could be shocks for which the pricers of a bank are not able to calculate the corresponding loss, and there

could be NMRFs with less than 12 observations in the stress period. [EBA20b] covers those cases by means of

additional provisions making our methodology even more complete. To address cases where the pricers cannot

determine the loss corresponding to a shock, [EBA20b] set out that banks are to use sensitivity based pricing

methods. However, a sensitivity based loss can be computed only in relation to those instruments for which

the pricers do not work - this to reflect cases where for the same shock, the pricers of some instruments provide

the loss results, while for others they do not, as that shock would lead to arbitrage conditions in the context of

those instruments (e.g. because only the NMRF is shocked, and all other risk factors are held constant). For

NMRFs with less than 12 returns in the stress period, [EBA20b] envisages a fallback approach which relies on

our methodology. Depending on the nature of the risk factor, CSup and CSdown under such a fallback approach

are either based on the FRTB standardised approach pre-defined shocks or on the shocks calibrated on the

returns of a ‘similar risk factor’ for which at least 12 returns are available. Once those shocks are identified,

our methodology is applied in the same way as for risk factors for which more than 12 returns in the stress

period are available. Considering that the assumption A4 addresses a problem that may also occur in the ES

for modellable risk factors, and that the fallback approach leads back to our methodology, we decided this paper

need not be focused on those ad-hoc solutions.

More generally, to address rare cases where supervisors are not satisfied, paragraph 33.16(3) of the FRTB

foresees the possibility for supervisors to require a bank to set the stress scenario risk measure to the maximum

loss that can occur due to a NMRF. This may happen e.g. when the worst loss for a change in an NMRF occurs

as a result of a small change to its current value, far below the 80% of the calibrated shock, or when the SSRM

portfolio composition is such that the loss profile for a NMRF cannot be duly captured by the methodology as

it could be for very exotic options. Whenever there is a need to, the supervisor could revert to the maximum

loss. However, the maximum possible loss could be infinite and a sensible finite replacement is needed. To

this end [EBA20b] stipulates that where the maximum loss is infinite, banks are to identify a VaR(99.95) of

the losses that may occur due to the NMRF on the 10-business-day horizon rescaled to the NMRF’s liquidity

horizon. In Table 2 in Section 5, we show how the ES(97.5%) compares to the VaR(99.95%) for a set of SGT

distributions.

4 Uncertainty compensation factor

In order to achieve goals G2 and G7, our methodology incorporates in Eqs. 5, 6, 9, and 10, an ‘uncertainty

compensation factor’ UCF (Neff) which is greater than 1 and increases when the number of effective returns

Neff decreases – where Neff = N in the historical method, while Neff = Nup/down under the asymmetrical sigma

method. We keep denoting with N the number of returns in Xj .

In this section, we derive a general approximative formula for the uncertainty compensation factor to com-

pensate the sampling error in obtaining the shocks CSdown(j) and CSup(j), while it also implicitly covers the

generally lower market observability of non-modellable risk factors and approximations in the methodology

(such as those introduced to derive the non-linearity coefficient KD∗(j)).
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The sampling error is the difference of an estimator for a sample metric M̂ and the true but unknown value

M∗. For our methodology, M̂ is an estimator for the ES given the 10-business day returns, i.e. ÊSdown,up or

ÂSdown,up, and M∗ is the true (but unknown) ES for the (unknown) 10-day return parent distribution X.

M̂(N,X) is called a consistent estimator, if the infinite sample size value converges in probability to the true

value, limN→∞ M̂(N,X)
prob
= M∗. The historical ES estimators are consistent. On the contrary, the asigma

estimator is in general not consistent5.

M̂(N,X) is a (mean) unbiased estimator of M∗, if its expectation (for a certain N) is the true value, i.e.

E
(
M̂(N,X)

)
= M∗. Both the historical and asigma estimators are somewhat biased for finite N , in particular,

the historical ES estimators are biased towards zero.

We start with the general uncertainty compensation factor UαUC

(
M̂(N,X)

)
, which ensures that when

multiplying the sampling metric M̂(N,X) calculated from N independent and identically distributed (i.i.d.)

samples of a parent distribution X with it, a certain target confidence level CLUC = 1 − αUC for not under-

estimating the true value M∗(X) is achieved. For the asigma method, N = Ndown,up can be as low as six and

UαUC becomes substantial. For ease of notation, the dependence on N of M̂ is not always written out.

We set:

UαUC

(
M̂
)

:=
M∗

qαUC

(
M̂
) , (30)

which ensures

P
(
UαUC M̂ ≤M∗

)
= P

(
M̂ ≤ qαUC

(
M̂
))

= αUC , (31)

the last equation being the definition of the quantile for a continuous probability distribution.

UαUC

(
M̂(N,X)

)
depends on the tail probability αUC and via the quantile qαUC

(
M̂
)

on the estimator

M̂(N,X) and thus, on the number of samples N for the estimation and the properties of X.

The quantile qαUC can be approximated with the Cornish-Fisher expansion [CF38, FC60] in the moments

of M̂ :

qαUC

(
M̂
)

= E
(
M̂
)

+ σ
(
M̂
) [
zαUC +H

(
zαUC , M̂

)]
, (32)

where σ is the standard deviation and zαUC = Φ−1(αUC) denotes the standard normal quantile for tail probability

αUC. The terms capturing adjustments to the normal quantile are summarised in

H
(
zαUC , M̂

)
:=

1

6

(
(zαUC)

2 − 1
)
s
(
M̂
)

+
1

24

(
(zαUC)

3 − 3zαUC

)
k
(
M̂
)

+
1

36

(
2 (zαUC)

3 − 5zαUC

)
s
(
M̂
)2

+ H̃n>4 (zαUC ,Kn>4) , (33)

where s
(
M̂
)

denotes the normalised skewness and k
(
M̂
)

the excess normalised kurtosis of the distribution

of M̂ . Eq. 33 is a commonly used expression of the Cornish-Fisher expansion with the terms of the first

four cumulants written out explicitly (adjustments I and II on p. 214 of [FC60]), while the contributions from

cumulants of fifth and higher order are denoted by H̃n>4 (zαUC ,Kn>4).

If M̂ was normally distributed there were no adjustments to the normal quantile, H
(
zαUC , M̂

)
= 0, and

s
(
M̂
)

= 0 and all higher moments were zero.

For the sampling distribution of the historical ES estimator ÊSdown,up(Xj , α) one can find results for the

asymptotic large N behaviour in the literature. For continuous distributions and finite variance, the historical

ES estimator approaches the normal distribution in the large sample limit [MH05, BJPZ08] and asymptotic

approximations for the sample variance and confidence intervals are known [MH05, BJPZ08]. Note that because

the order statistics X(i) in the tail are highly dependent, this convergence does not follow immediately from the

central limit theorem. In [BS08] empirical confidence regions for VaR and ES were investigated for N ≥ 500.

We are not aware of comparable results for the asigma estimator ÂSdown,up, while our simulations show

convergence to the normal distribution (cf. Figure 3). Its first term µ̂Xjdown,up
is the ES at the 50% tail

5For example, in light of the results provided in Section 5, where the return distribution X is set to an SGT distribution and

the constant Casigma
ES in the asigma method is not matching the value such that for that distribution ÂS(X,N)

prob→ ES(X).
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Figure 3: Sampling distributions for the asigma method, i.e. using the estimator M̂ = ÂSdown for different

number N of returns X drawn from an SGT distribution, sampled 2 ·105 times. The convergence to the normal

distribution is apparent for the largest N . The long dashed black vertical line is the true value M∗, the short

dashed grey vertical line is the large N limit M̂(N = ∞) (exhibiting a bias due to the choice of Casigma
ES = 3),

and the vertical dotted lines indicate the median values med
(
M̂
)

of the sampling distributions for the different

N .
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probability. For the second term σ̂Xjdown
we can argue that the returns below resp. above the median are

identical and only weakly dependent when N gets larger. For i.i.d. normal returns σ̂Xjdown
would follow a χ

distribution which in turn converges to a normal distribution. For non-normal i.i.d. distributions, the sampling

distribution of the variance cannot be described simply [Dou09]. Proposition 5.7 of [Dou09] gives a general

formula for the skewness of the sample variance which implies it is always positive. As we will see, the most

relevant effects for our purposes involve the skewness s
(
M̂
)

of the sample distribution, which we also find to

be always positive.

For a finite number of returns with 12 ≤ N ≤ 255 the large N limit is not reached in any case. Thus,

M̂(N,X) is not normally distributed and H
(
zαUC , M̂

)
is not zero even for parent distributions X close to the

normal distribution. H
(
zαUC , M̂

)
gets smaller for larger N , concomitantly with σ

(
M̂
)

, s
(
M̂
)

, and k
(
M̂
)

all getting smaller, cf. Figure 3.

Figure 3 illustrates the sample distributions M̂(N,X) for some N in the asigma method, i.e. M̂ = ÂSdown,

when the returns X follow a typical skewed and moderately fat-tailed SGT distribution (cf. Section 5). One can

see the convergence to the Gaussian distribution. U50%

(
M̂
)

= M∗

med(M̂)
can be read off as the true value M∗

(dashed) divided by the median values med
(
M̂
)

(dotted), as the median is the 50% quantile. Qualitatively,

for all M̂(N,X), i.e. the asigma (Figure 3) and the historical method (not shown) and for both downward

and upward shocks, the sample distributions look similar. One can see that the sampling uncertainty increases

strongly as N decreases. Yet, even for N = 12, the asigma method still delivers acceptable results (using only

six values below or above the median!).

We checked with numerical simulations using SGT distributions (cf. Section 5) for X and values 12 ≤ N ≤
255 that the forth order Cornish-Fisher approximation for the quantile qαUC

(
M̂
)

works generally well for

M̂ = ÊSdown,up and M̂ = ÂSdown,up. Deviations from large N simulated quantile values above 10% occurred

only for N . 40 (i.e. where the convergence in N to the normal distribution is still far) together with high

skewness and kurtosis of X, which leads to high skewness and kurtosis in M̂ , as seen in Figure 3, which in turn
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causes a deterioration of the Cornish-Fisher approximation, cf. [Mai18]).

Inserting Eq. 32 in Eq. 30 leads to

UαUC(M̂) =
M∗

E
(
M̂
)

+ σ
(
M̂
) [
zαUC +H

(
zαUC , M̂

)] . (34)

Reducing by M∗ and rearranging gives UαUC(M̂) =

(
1 +

E(M̂)−M∗

M∗ +
σ(M̂)
M∗

[
zαUC +H

(
zαUC , M̂

)])−1

.

For moving from this general expression towards an approximative simpler expression we investigate the

individual terms.

The term
E(M̂)−M∗

M∗ corrects a bias in the estimator, and is small for the historical method as well as in the

asigma method with a suitable constant Casigma
ES . However, the estimator of the asigma method is somewhat

conservative for near Gaussian returns X as discussed in Section 5, so that we need to keep the bias term,

which is also dependent on N (cf. Figure 3).

Due to the convergence to the normal distribution and the central limit theorem the term σ
(
M̂
)

will

lead to an Neff dependency σ
(
M̂
)
∝ 1√

Neff−1.5
– where we are using the approximately unbiased sample

estimator [GT71] for the standard deviation with Neff − 1.5 instead of Neff − 1 in the denominator.

In our methodology we target confidence levels CLUC = 1−αUC ≈ 50% that M̂ does not underestimate the

true value, in order to achieve the accuracy goal G6. The normal quantile is small in this case, zαUC≈50% ≈ 0.

The adjustment to the normal quantile H
(
zαUC , M̂

)
decreases in N when converging to the normal distribution.

However, M̂ is not truly normal for finite N , thus H
(
zαUC , M̂

)
is not vanishing completely.

Smallness of the terms described allows using the first order approximation 1
1+ε ≈ 1− ε for ε � 1, and we

arrive at the following approximation for the uncertainty compensation:

UαUC(M̂) ≈ 1 +
M∗ − E

(
M̂
)

M∗
−
σ
(
M̂
)

M∗

[
zαUC +H

(
zαUC , M̂

)]
. (35)

For confidence levels around 50%, skewness remains as the main driver of H
(
zαUC≈50%, M̂

)
when ignoring

higher corrections: H
(
zαUC≈50%, M̂

)
≈ −s(M̂)

6 < 0, as all sampling distributions M̂ have positive skewness (cf.

Figure 3). We get

UαUC≈50%

(
M̂
)
≈ 1 +

M∗ − E
(
M̂
)

M∗
+
σ
(
M̂
)

M∗

s
(
M̂
)

6
. (36)

We found from numerical simulations of a wide range of standardised SGT distributions (cf. Section 5) that

in the range 12 ≤ N ≤ 255 the sampling standard deviation σ̂
(
M̂
)
∝ (Neff − 1.5)−ξσ with (0.45 ≤ ξES

σ ≤ 0.5)

for the historical method and (0.35 ≤ ξasigma
σ ≤ 0.5) for the asigma method, as shown in Figure 4. The stronger

the non-normality of the returns X, the larger the deviation from the asymptotic normal distribution exponent
1
2 .

For the sampling skewness we find similarly ŝ
(
M̂
)
∝ (Neff − 1.5)−ξs with the exponent ξs with (0.45 ≤

ξES
s ≤ 0.5) for the ES and (0.1 ≤ ξasigma

s ≤ 0.5) for the asigma method, as shown in Figure 5. There are different

sampling skewness (and kurtosis) estimators as discussed in [JG98], which yield almost the same numbers for

the high number of samples analysed here (2 ·105). The stronger the non- normality of the returns X, the larger

the deviation from the asymptotic normal distribution exponent 1
2 as well.

As shown above, for confidence levels CLUC ≈ 50%, the Neff -dependence of UαUC is driven by the product

σ
(
M̂
)
s
(
M̂
)
∝ (Neff − 1.5)−(ξσ+ξs) with 0.45 . ξσ + ξs ≤ 1. For other confidence levels, zαUC gets larger

and the Neff dependence of UαUC is therefore not mostly dependent on the skewness, but also on the standard

deviation and higher moments, cf. Eq. 33.

To simplify our methodology in line with goal G2 we universally use the Neff dependence (Neff − 1.5)−
1
2 for

both the historical and asigma method and attaining goal G7. This choice is better in line with the exponent

found for the asigma method, in which the uncertainty compensation factor is more relevant, as Neff is smaller.
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Figure 4: Sampling standard deviation of the sampling distribution for the estimator M̂ = ÊSdown used in the

historical method (top) and M̂ = ÂSdown in the asigma method (bottom) versus number of returns N . 2 · 105

samples of size N were drawn for each N from various SGT distributions (coloured dots) including a Gaussian

(grey dots) - on both axes logarithmic scales are used. The squares indicate fixed exponents ξES
σ = {0.45, 0.5}

(top) and ξasigma
σ = {0.35, 0.5} (bottom). In both cases, the sampled σ̂

(
M̂
)
∝ (Neff − 1.5)−ξσ describe the

variation of the sampling standard deviation well. For a Gaussian distribution, the exponent for both estimators

is very close to 1
2 .
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Figure 5: Sampling skewness of the sampling distribution, ŝ
(
M̂
)

, for the estimator M̂ = ÊSdown used in the

historical method (top) and M̂ = ÂSdown in the asigma method (bottom) versus number of returns N - on both

axes logarithmic scales are used. 2 ·105 samples of size N were drawn for each N from various SGT distributions

(coloured dots) including a Gaussian (grey dots). The squares indicate fixed exponents ξES
s = {0.45, 0.5} (top)

and ξasigma
s = {0.1, 0.5} (bottom). In both cases, the sampled ŝ

(
M̂
)
∝ (Neff − 1.5)−ξs describe the variation of

the skewness overall well. For very non-Gaussian and skewed SGT distributions, sampling noise and deviations

are visible. For a Gaussian distribution, the exponent for both estimators is close to 1
2 .
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For the historical method, the exponent could be chosen higher. Overall, it is a prudent choice covering both

methods and non-normal returns well.

Based on these considerations, we make the following ansatz for the general approximative expression for

the uncertainty compensation factor in our methodology:

UαUC

(
M̂
)
≈ CUC

A

(
CLUC, M̂

)
+
CUC

B

(
CLUC, M̂

)

√
Neff − 1.5

. (37)

with positive calibration constants CUC
A

(
CLUC, M̂

)
and CUC

B

(
CLUC, M̂

)
.

To define the uncertainty compensation factor UCF (Neff) that is finally used in Eqs. 5, 6, 11, and 12, we

decided to further simplify Eq. 37 by setting single calibration constants for CLUC ≈ 50% and all M̂(N,X) in

accordance with Goals G1 and G2:

UCF (Neff) = CUC
A +

CUC
B√

Neff − 1.5
, (38)

with CUC
A = 0.95 and CUC

B = 1. In Section 5 we motivate the choice of the two constants and check that the

confidence level CLUC ≈ 50% is indeed obtained.

5 Motivating the methodology constants using SGT distributions

The methodology and the uncertainty compensation factor depend on some parameters. Those parameters

should be set so as to meet our goals. In this section, we discuss and motivate the values at which they were

set by investigating SGT distributions. In Annex A, the definition of the density of the SGT distributions is

provided in a parametrisation which is suitable for the R language [R C19]. It also provides explicit expressions

for the first four moments, VaR, and ES.

It is a well known stylised fact that return distributions of financial risk factors are often strongly non-normal.

A generalisation of the Student-t distribution are the skewed generalised t (SGT) distributions, which describe

strongly skewed and heavy tailed financial returns well [The98, HMN10, KM13, AMLSG16, MM17]. While the

SGT family is perhaps the most used, there are several other generalisations of the Student-t distribution [LN20].

Studies of SGT distributions for financial risk factors typically use stock market data (e.g. [The98, HMN10,

AMLSG16, MM17]), probably because of their good availability. However, goal G1 states that the methodology

should be universal. [EBA19, EBA20a] analysed a wide variety of risk factors (almost 50,000 in total) across

all risk classes (foreign exchange, interest rates, equity and commodities) used in the regulatory capital market

risk models in some of the largest European banks. The analysis in [EBA20a] showed that risk factor returns

on the 10-business-day horizon are often strongly skewed and leptokurtic and that the SGT distributions can

be used to describe the 10-day returns well.

Accordingly, aiming at setting the methodology’s parameters, we first provide explicit expressions for the

VaR and ES of SGT distributions. Making use of those analytical results, and leveraging on the historical risk

factor data analysed in [EBA20a], we motivate the choices made on the values set for Casigma
ES in Eqs. 11 and

12, φasigma in Eq. 25, CUC
A and CUC

B in Eq. 38. We also back our choice on the step width h employed to derive

the coefficient Γ in Eq. 22, and assess the confidence level prescribed in [EBA20b] for calculating a maximum

possible loss when such loss is infinite as described in subsection 3.

5.1 VaR and ES of SGT distributions

SGT distributions form a location-scale family that encompasses many other distributions e.g. the normal

distribution and Student’s t distribution. In this paper (see Annex A for more details), we use the notation in

the following independent parameters: µ, σ, λ, p, and q. µ and σ are the mean and standard deviation, λ with

−1 < λ < 1 is the skewness parameter, p > 0 is the peakedness, and q > 0 the tail thickness parameter. In

Annex A, we show (Eqs. 64 and 65) that the ES and VaR for SGT distributions can be expressed as:
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ESSGT(α;µ, σ, λ, p, q) = −µ+ CSGT
ES (α;λ, p, q)σ , (39)

and

VaRSGT(α;µ, σ, λ, p, q) = −µ+ CSGT
VaR (α;λ, p, q)σ . (40)

with explicit constants CSGT
ES and CSGT

VaR in Eqs. 39 and 40 capturing the terms depending on the shape of the

normalised distribution and the tail probability α.

The SGT distributions split at the median have the same location and volatility scale properties and thus,

the same ansatz of the ES being a linear function of mean and standard deviation on the support below or

above the median med is used for the asigma method, while we do not have analytical expressions. We thus

write for the asigma method:

ESSGT(α;µ, σ, λ, p, q) = −µasigma
down/up:X>/≤med + CSGT,asigma

ES (α;λ, p, q)σasigma
down/up:X>/≤med , (41)

We recall that the analogue of the mean µasigma
down/up:X>/≤med and the analogue of the standard deviation

σasigma
down/up:X>/≤med are computed on the arguments below or above the median in the asigma method.

When making the simplification that the constant CSGT,asigma
ES (α;λ, p, q) can be set to a single constant

Casigma
ES , we get the expression for the asigma method estimator in Eqs. 11 and 12. We show detailed numerical

results in Subsection 5.2.1.

5.2 Motivating the constants of the methodology

As mentioned, the analysis in [EBA20a] showed that SGT distributions describe well the features observed in

risk factor returns on the 10-business-day horizon. Instances of risk factors close to the theoretical Klaassen

bound for unimodal distributions [KMv00] in the skewness-kurtosis space were observed. The SGT parameter

ranges which overall describe the 10-business-day risk factors returns well [EBA20a] are stated in Table 1, where

we also list the parameter sets we analyse concretely. These were compared to the empirical values observed for

real financial risk factor data in [EBA20a], to ensure that the SGT distributions we use in our analyses broadly

match the third and fourth moments observed in market data. Only parameter combinations leading to finite

first four moments, i. e. pq > 4 were considered and without loss of generality the standardised distributions,

i.e. µ = 0 and σ = 1, were used.

In other words, we employ the SGT distributions with the set of parameter values shown in Table 1 as a

first four moments matched surrogate of all 10-business-day risk factor returns in all risk categories collected

in [EBA19, EBA20a] in Pillar 1 market risk models. Together with the explicit expressions for the moments,

ES and VaR, we believe that this is an efficient tool-set to assess questions in risk modelling across all risk

categories under the FRTB in general.

The set of SGT distributions are used for the following: (i) The asigma method’s constants CSGT,asigma
ES and

φasigma motivating the value chosen in the SSRM methodology (additionally, [EBA20a] checked the historical

values); (ii) the ratio of VaR(α) over ES(α) which motivates 0.8 used for the inner points in Θ (Eq. 13) and

the step width h = 0.2 (Eq. 22); (iii) simulation analysis of the probability of underestimating the exact ES or

asigma method approximation of it when calculating them from a sample of size N in order to determine the

constants in the uncertainty compensation factor formula; (iv) ratio of VaR(1 − 99.95%) over ES(α = 2.5%).

The VaR(99.95%) is used as the finite value replacement in case a maximum loss incurring on shocking a risk

factor would be infinite theoretically, cf. Subsection 5.2.4.

Table 2 shows the SGT parameter sets of Table 1 with finite first four moments along with the corresponding

normalised skewness, excess kurtosis, VaR(α), ES(α), CSGT,asigma
ES , the tail shape parameter φ (cf. Eq. 20), and

VaR(1−99.95%)
ES(α) for the standardised distributions for tail probability α = 2.5%. The value q =∞ was numerically

approximated by q = 105. For standardised SGT distributions ES(α) = CSGT
ES (α;λ, p, q) (cf. Eq. 64). Only the

values for the left tail are reported, because the right tail values are the ones for −λ. Results were obtained

using the analytical expressions of Subsection 5.1 or numerically from large samples of size N = 107.
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Table 1: Standardised SGT distribution parameters ranges which overall describe the 10-business-day risk

factors returns for all risk factors, and lists of the parameter sets that we analyse in detail if the kurtosis is

finite (i.e. pq > 4).

Parameter Lower Upper Values analysed

λ (skew) -0.4 0.4 { -0.4, -0.1, 0, 0.1, 0.4 }
q (tail thickness) 2.1 ∞ { 2.1, 5, 15, ∞ }
p (peakedness) 0.65 2 { 0.65, 1.1, 1.55, 2 }

We observe in Table 2 that the ES varies significantly depending on λ and to a lesser extent on p and q, it

stays well below the Hürlimann bound [Hür02] which implies ES(2.5%) ≤ 6.245 in our case.

5.2.1 Constants Casigma
ES and φasigma for the asigma method

While the historical method is parameter free except for the loss evaluation grid and the non-linearity correction

specification, the constant Casigma
ES is the main parameter in the asigma method. The key idea for the asigma

method was that even for few returns, a mean and standard deviation can still be estimated below and above

the median, when an estimate of the ES becomes infeasible. But then those quantities need to be converted

according to Eq. 41 to an approximation of the ES, which varies strongly depending on the distributional

properties.

Why this works well in practice using a single constant can be inferred from Figure 6, where the components

of the calibrated shock according to the asigma method of Eg. 41 for the set of SGT distribution is plotted

along with ES(α).

Because only the relevant half of the distribution is considered to cater for asymmetry, σasigma
down:X≤med picks

up a lot of the variation for different SGT parameters, while the variation of CSGT,asigma
ES (α;λ, p, q) in λ for fixed

p, q is small. µasigma
down:X≤med in turn does not depend much on λ and picks up some variation for different p, q,

albeit to a lesser degree. The effect of the variations in σasigma
down:X≤med and µasigma

down:X≤med lead to a more stable

value CSGT,asigma
ES (α;λ, p, q), which exhibits much less variation than ES(α) = CSGT

ES (α;λ, p, q). The values

for CSGT,asigma
ES (α;λ, p, q) are indeed around 3 for many SGT distributions. Somewhat lower for near normal

distributions (p = 2, q =∞) and somewhat higher for strongly non-Gaussian cases.

Considering the relatively modest variation of CSGT,asigma
ES ≈ 3, for the sake of universality of goal G1 and

simplicity of goal G4 of the methodology, a single calibration constant Casigma
ES = 3 was considered overall

appropriate for all risk factors. A calibration based on historical risk factor data confirms this choice [EBA20a].

The tail shape parameter φ (cf. Eq. 20) can vary very strongly, mainly driven by excess kurtosis. The non-

linearity correction, where φ enters, can go in both directions, as the loss function could be convex or concave

at the outer points of Θ. Therefore, the constant φasigma approximating φ in the asigma method for all risk

factors should be targeting a typical value as no conservative choice can be made. The value φasigma = 1.04 in

the asigma method captures typical moderately non-normal distributions well and has the practical advantage

that the term φasigma−1
h2 in the non-linearity correction becomes unity for the loss grid step width h = 0.2 (cf.

Subsection 2.2.4). To conclude the discussion of constants for the asigma method, we note that our analysis

based on the SGT distributions is showing a qualitatively similar picture to the historical return data analysis

in [EBA20a]. The SGT based analysis captures very well the ranges of the metrics in which we are interested,

while the historical data adds information on the frequency of the occurrence of certain distributional features

like skewness. For a particular portfolio of financial instruments, only few risk factors might be driving the

losses. Therefore, it is important for reaching goal G1 to ensure that the methodology works well for all sets of

risk factors, as opposed to on average only.

23



Table 2: SGT parameters, skewness, excess kurtosis, VaR(α), ES(α), VaR(α)
ES(α) , ES(α) = CSGT

ES , CSGT,asigma
ES , tail

shape parameter φ, and VaR(1−99.95%)
ES(α) for standardised SGT distributions (µ = 0, σ = 1) with α = 2.5%.

λ p q skew. ex. kurt. VaR(α) ES(α)
VaR(α)
ES(α)

CSGT,asigma
ES φ

VaR(1−99.95%)
ES(α)

-0.4 2 2.1 -2.18 58.27 2.34 3.50 0.67 3.05 1.188 2.24

-0.1 2 2.1 -0.61 32.16 2.09 3.01 0.69 3.00 1.165 2.15

0 2 2.1 0 30.00 1.97 2.80 0.70 2.99 1.146 2.10

0.1 2 2.1 0.61 32.16 1.85 2.57 0.72 2.96 1.134 2.05

0.4 2 2.1 2.18 58.27 1.45 1.87 0.77 2.78 1.084 1.83

-0.4 1.1 5 -2.77 27.25 2.49 3.86 0.65 3.16 1.189 2.28

-0.1 1.1 5 -0.83 17.78 2.19 3.31 0.66 3.15 1.175 2.22

0 1.1 5 0 16.89 2.04 3.05 0.67 3.15 1.165 2.20

0.1 1.1 5 0.83 17.78 1.87 2.76 0.68 3.15 1.159 2.16

0.4 1.1 5 2.77 27.25 1.35 1.86 0.73 3.09 1.112 1.98

-0.4 1.55 5 -1.37 5.16 2.42 3.36 0.72 2.99 1.096 1.90

-0.1 1.55 5 -0.39 3.35 2.16 2.93 0.74 2.96 1.083 1.85

0 1.55 5 0 3.20 2.04 2.74 0.75 2.95 1.078 1.82

0.1 1.55 5 0.39 3.35 1.92 2.54 0.76 2.93 1.072 1.79

0.4 1.55 5 1.37 5.16 1.51 1.89 0.80 2.78 1.047 1.64

-0.4 2 5 -0.88 1.78 2.31 3.02 0.77 2.84 1.060 1.71

-0.1 2 5 -0.24 1.06 2.09 2.67 0.78 2.78 1.050 1.65

0 2 5 0 1.00 1.99 2.52 0.79 2.76 1.047 1.63

0.1 2 5 0.24 1.06 1.89 2.37 0.80 2.72 1.042 1.60

0.4 2 5 0.88 1.78 1.58 1.88 0.84 2.54 1.027 1.47

-0.4 0.65 15 -3.79 40.08 2.54 4.18 0.61 3.25 1.229 2.42

-0.1 0.65 15 -1.21 28.24 2.20 3.58 0.62 3.26 1.225 2.40

0 0.65 15 0 26.96 2.03 3.26 0.62 3.27 1.215 2.39

0.1 0.65 15 1.21 28.24 1.83 2.91 0.63 3.27 1.214 2.37

0.4 0.65 15 3.79 40.08 1.22 1.81 0.67 3.27 1.167 2.22

-0.4 1.1 15 -1.57 5.82 2.52 3.52 0.72 3.04 1.088 1.88

-0.1 1.1 15 -0.46 4.02 2.24 3.07 0.73 3.03 1.081 1.84

0 1.1 15 0 3.85 2.10 2.86 0.73 3.03 1.078 1.82

0.1 1.1 15 0.46 4.02 1.95 2.63 0.74 3.02 1.072 1.79

0.4 1.1 15 1.57 5.82 1.48 1.90 0.78 2.94 1.052 1.67

-0.4 1.55 15 -0.95 1.86 2.38 3.09 0.77 2.84 1.051 1.65

-0.1 1.55 15 -0.27 1.20 2.14 2.73 0.78 2.81 1.045 1.61

0 1.55 15 0 1.14 2.04 2.58 0.79 2.80 1.042 1.59

0.1 1.55 15 0.27 1.20 1.93 2.41 0.80 2.78 1.039 1.57

0.4 1.55 15 0.95 1.86 1.57 1.89 0.83 2.63 1.026 1.47

-0.4 2 15 -0.66 0.59 2.25 2.81 0.80 2.70 1.035 1.53

-0.1 2 15 -0.18 0.26 2.05 2.51 0.82 2.65 1.030 1.49

0 2 15 0 0.23 1.97 2.40 0.82 2.62 1.028 1.47

0.1 2 15 0.18 0.26 1.89 2.27 0.83 2.59 1.025 1.45

0.4 2 15 0.66 0.59 1.61 1.86 0.86 2.42 1.016 1.36

-0.4 0.65 ∞ -2.51 14.43 2.64 3.97 0.66 3.20 1.134 2.09

-0.1 0.65 ∞ -0.78 10.37 2.30 3.43 0.67 3.22 1.129 2.08

0 0.65 ∞ 0 9.96 2.13 3.16 0.67 3.23 1.128 2.06

0.1 0.65 ∞ 0.78 10.37 1.94 2.85 0.68 3.24 1.123 2.04

0.4 0.65 ∞ 2.51 14.43 1.35 1.87 0.72 3.24 1.097 1.93

-0.4 1.1 ∞ -1.27 3.40 2.50 3.34 0.75 2.95 1.061 1.72

-0.1 1.1 ∞ -0.37 2.37 2.23 2.94 0.76 2.94 1.056 1.69

0 1.1 ∞ 0 2.28 2.10 2.75 0.76 2.94 1.054 1.67

0.1 1.1 ∞ 0.37 2.37 1.96 2.55 0.77 2.93 1.051 1.65

0.4 1.1 ∞ 1.27 3.40 1.53 1.90 0.81 2.85 1.036 1.55

-0.4 1.55 ∞ -0.82 1.13 2.34 2.96 0.79 2.76 1.038 1.55

-0.1 1.55 ∞ -0.23 0.69 2.12 2.64 0.80 2.73 1.033 1.52

0 1.55 ∞ 0 0.65 2.02 2.50 0.81 2.72 1.032 1.50

0.1 1.55 ∞ 0.23 0.69 1.92 2.35 0.82 2.70 1.029 1.48

0.4 1.55 ∞ 0.82 1.13 1.59 1.88 0.85 2.56 1.020 1.40

-0.4 2 ∞ -0.58 0.25 2.22 2.71 0.82 2.63 1.027 1.46

-0.1 2 ∞ -0.16 0.02 2.04 2.45 0.83 2.58 1.023 1.42

0 2 ∞ 0 0.00 1.96 2.34 0.84 2.55 1.021 1.41

0.1 2 ∞ 0.16 0.02 1.88 2.22 0.85 2.52 1.019 1.39

0.4 2 ∞ 0.58 0.25 1.62 1.85 0.87 2.36 1.013 1.31
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Figure 6: Asigma method components µasigma
down:X≤med σ

asigma
down:X≤med C

SGT,asigma
ES to obtain the expected shortfall

for SGT distributions. σasigma
down:X≤med explains a large part of the variation of the ES. Thus, CSGT,asigma

ES (black

squares) shows much less variation than the ES. Finally, CSGT,asigma
ES ≈ 3 for many SGT distributions, while

being conservative for near normal distributions (p = 2, q =∞).

−
1

0
1

2
3

4
5

asigma components µdown:R≤med
asigma , σdown:R≤med

asigma , CES
SGT,asigma, and ES  for SGT returns

µ d
ow

n:
R

≤m
ed

as
ig

m
a

, σ
do

w
n:

R
≤m

ed
as

ig
m

a
, C

E
S

S
G

T
,a

si
gm

a , E
S

λ
=

−
0.

4,
 p

=
2,

 q
=

2.
1

λ
=

−
0.

1,
 p

=
2,

 q
=

2.
1

λ
=

0,
 p

=
2,

 q
=

2.
1

λ
=

0.
1,

 p
=

2,
 q

=
2.

1
λ

=
0.

4,
 p

=
2,

 q
=

2.
1

λ
=

−
0.

4,
 p

=
1.

1,
 q

=
5

λ
=

−
0.

1,
 p

=
1.

1,
 q

=
5

λ
=

0,
 p

=
1.

1,
 q

=
5

λ
=

0.
1,

 p
=

1.
1,

 q
=

5
λ

=
0.

4,
 p

=
1.

1,
 q

=
5

λ
=

−
0.

4,
 p

=
1.

55
, q

=
5

λ
=

−
0.

1,
 p

=
1.

55
, q

=
5

λ
=

0,
 p

=
1.

55
, q

=
5

λ
=

0.
1,

 p
=

1.
55

, q
=

5
λ

=
0.

4,
 p

=
1.

55
, q

=
5

λ
=

−
0.

4,
 p

=
2,

 q
=

5
λ

=
−

0.
1,

 p
=

2,
 q

=
5

λ
=

0,
 p

=
2,

 q
=

5
λ

=
0.

1,
 p

=
2,

 q
=

5
λ

=
0.

4,
 p

=
2,

 q
=

5
λ

=
−

0.
4,

 p
=

0.
65

, q
=

15
λ

=
−

0.
1,

 p
=

0.
65

, q
=

15
λ

=
0,

 p
=

0.
65

, q
=

15
λ

=
0.

1,
 p

=
0.

65
, q

=
15

λ
=

0.
4,

 p
=

0.
65

, q
=

15
λ

=
−

0.
4,

 p
=

1.
1,

 q
=

15
λ

=
−

0.
1,

 p
=

1.
1,

 q
=

15
λ

=
0,

 p
=

1.
1,

 q
=

15
λ

=
0.

1,
 p

=
1.

1,
 q

=
15

λ
=

0.
4,

 p
=

1.
1,

 q
=

15
λ

=
−

0.
4,

 p
=

1.
55

, q
=

15
λ

=
−

0.
1,

 p
=

1.
55

, q
=

15
λ

=
0,

 p
=

1.
55

, q
=

15
λ

=
0.

1,
 p

=
1.

55
, q

=
15

λ
=

0.
4,

 p
=

1.
55

, q
=

15
λ

=
−

0.
4,

 p
=

2,
 q

=
15

λ
=

−
0.

1,
 p

=
2,

 q
=

15
λ

=
0,

 p
=

2,
 q

=
15

λ
=

0.
1,

 p
=

2,
 q

=
15

λ
=

0.
4,

 p
=

2,
 q

=
15

λ
=

−
0.

4,
 p

=
0.

65
, q

=
∞

λ
=

−
0.

1,
 p

=
0.

65
, q

=
∞

λ
=

0,
 p

=
0.

65
, q

=
∞

λ
=

0.
1,

 p
=

0.
65

, q
=

∞
λ

=
0.

4,
 p

=
0.

65
, q

=
∞

λ
=

−
0.

4,
 p

=
1.

1,
 q

=
∞

λ
=

−
0.

1,
 p

=
1.

1,
 q

=
∞

λ
=

0,
 p

=
1.

1,
 q

=
∞

λ
=

0.
1,

 p
=

1.
1,

 q
=

∞
λ

=
0.

4,
 p

=
1.

1,
 q

=
∞

λ
=

−
0.

4,
 p

=
1.

55
, q

=
∞

λ
=

−
0.

1,
 p

=
1.

55
, q

=
∞

λ
=

0,
 p

=
1.

55
, q

=
∞

λ
=

0.
1,

 p
=

1.
55

, q
=

∞
λ

=
0.

4,
 p

=
1.

55
, q

=
∞

λ
=

−
0.

4,
 p

=
2,

 q
=

∞
λ

=
−

0.
1,

 p
=

2,
 q

=
∞

λ
=

0,
 p

=
2,

 q
=

∞
λ

=
0.

1,
 p

=
2,

 q
=

∞
λ

=
0.

4,
 p

=
2,

 q
=

∞

µdown:R≤med
asigma

σdown:R≤med
asigma

CES
SGT,asigma

ES

25



5.2.2 Constants for the uncertainty compensation factor

To fulfil goals G1 and G4 for a universally applicable yet simple methodology, we want to further simplify Eq. 35

by choosing universal constants CUC
A and CUC

B for all risk factors:

UαUC

(
M̂(N,X)

)
≈ CUC

A

(
M̂,X

)
+
CUC

B

(
CLUC, M̂(N,X)

)

√
Neff − 1.5

= CUC
A +

CUC
B√

Neff − 1.5
. (42)

where we recall that Neff = N for N ≥ Nhist = 200, and Neff = Nup/down for 12 = Nasigma ≤ N ≤ Nhist.

We start with the large N limit and CUC
A . The TARGET2 real-time gross settlement system owned and

operated by the Eurosystem has typically at least 255 operating days per calendar year, so that M = 256

observations and N = 255 returns is a reasonable choice for the largest number of returns in a year. In line

with the calibration goal G3, the uncertainty compensation for daily data should be close to one, while a bit

higher to cater for non-sampling related uncertainty stemming from the lower observability of NMRF,

UαUC

(
M̂(N = 255)

)
≈ 1 . (43)

Consequently, the constant CUC
A needs to be smaller than one and is connected with CUC

B .

We set the constants CUC
A = 0.95 and CUC

B = 1 in Eq. 42 for both estimators M̂ = ÊSleft,right and

M̂ = ÂSdown,up used for determining the calibrated shocks. For ensuring that UαUC actually provides the desired

level of uncertainty compensation, we use the ansatz in Eq. 42 and simulate the probability of underestimation

P
(
M̂UαUC ≤M∗ = ESαUC (SGT (λ, p, q))

)
(44)

by drawing from the set of SGT distributions with the parameters of Table 1 which mimic the universe of risk

factors. Overall, the target was to ensure the probability of underestimation is generally lower or around 50%,

i.e. the median of the sampled calibrated shocks is higher or close to the true value. Annex 1 of [EBA20b]

shows details of those simulations performed, which we summarise here.

With CUC
A = 0.95 and CUC

B = 1 for the historical method where N ≥ 200, P
(
M̂UαUC ≤M∗

)
. 60% and

for the asigma method where N ≥ 12, P
(
M̂UαUC ≤M∗

)
. 70%. The highest probabilities of underestimation

occur for strongly non-Gaussian distributions for which H
(
zαUC , M̂

)
is more material due to high skewness

and/or kurtosis, requiring a higher value for UαUC .

Since the asigma method uses a single constant Casigma
ES = 3, the bias term of Eq. 35 which is implicit in CUC

A

cannot be equally matched for all SGT distributions. Thus, where the correct value for Casigma
ES is markedly

different, the bias term in Eq. 34 leads to stronger deviation of the probability of underestimation from the

target level.

At the same time, the values Nhist = 200 and Nasigma = 12 were considered to be appropriate in combination

with the uncertainty compensation factor and the chosen constants CUC
A and CUC

B . Nhist = 200 was also

motivated from the notion that in a year having about 255 business days, 55 business days correspond roughly

to the Christmas and year-end period plus the northern hemisphere summer holiday period with reduced trading

activity.

5.2.3 Step width h

The non-linearity correction described in Subsection 2.2.4 is applied in order to approximate the ES of the tail

losses, which implies an integration from the VaR(97.5%) to infinity. Table 2 indicates that VaR(97.5%)
ES(97.5%) ≈ 0.8,

so that the step width h = 0.2 in Eq. 22 approximates VaR(97.5%) overall well.

5.2.4 Confidence level for the maximum loss

For the ratio VaR(1−99.95%)
ES(α) we can infer from Table 2 that it is about 1.4 for the normal distribution, while

growing for non-Gaussian parameter choices up to 2.4. Thus, the approach laid down in Section 3 setting

26



SS10d(j) to a VaR measure with a 99.95% confidence level targets a level of conservatism that is set to be 1.4 to

2.4 times higher than the one which would result from the application of the historical calibration of the stress

scenario risk measure, ignoring the small uncertainty compensation factor.

6 The methodology at bucket level

The regulatory bucketing approach in paragraph MAR 31.16(2) of the FRTB introduces a set of regulatory

buckets that a bank can use for proving the modellability of risk factors belonging to curves or surfaces. Where

banks apply that approach, they are allowed to determine a single stress scenario for all risk factors in the

regulatory bucket. The methodology presented at risk factor level is applicable at bucket level with minimal

and natural extensions in line with goal G5.

Assumptions A1, A2 and A3 are still valid. Assumption A4 is slightly revised for the regulatory bucket case

by assuming that the bank is able to determine the loss that would suffer due to changes in the values of all

the MB risk factors within the bucket:

l(x) = l(x1, x2, ..., xMB
) = LossD∗(r

∗
1 ⊕ x1, r

∗
2 ⊕ x2, ..., r

∗
MB
⊕ xMB

) , (45)

where x is the vector of shocks (x1, x2, ..., xMB
) applied to the risk factors r1, r2, .., rMB

in the bucket B. The

application of those shocks leads to the loss l(x).

The steps of the methodology applicable at single risk factor level are adapted as follows to be applicable

at bucket level. Analogously to the single risk factor case, a time series of nearest to 10-business-day returns is

determined for each of the MB risk factors in the bucket B. We denote withNj , the number of returns in the time

series for the risk factor j in the bucket B, and with NB = min(N1, N2, ..., NMB
). Where NB ≥ Nhist = 200,

a downward calibrated shock CSdown(j) and an upward calibrated shock CSup(j) are determined with the

historical method separately for each of the MB risk factors in the bucket B. Where 200 = Nhist > NB ≥
Nasigma = 12, those shocks are determined with the asymmetrical sigma method.

Our methodology finds the extreme scenario of future shocks, among the shifts following the contour of the

calibrated shocks of the bucket’s risk factors. We define the β downward contoured shift

ζdown(β) = (−β CSdown(1),−β CSdown(2), ....,−β CSdown(MB)) and the β upward contoured shift ζup(β) =

(β CSup(1), β CSup(2), ...., β CSup(MB)) and we obtain a set of scenarios Z by spanning β in the interval [0, 1]:

Z =
⋃

β∈[0,1]

ζdown(β) ∪
⋃

β∈[0,1]

ζup(β) . (46)

We decided to focus our search of the extreme scenario of future shocks among the contoured shifts to reflect

that in reality, shifts for risk factors may be larger, for example, in the short end of the bucket (along the

maturity dimension) rather than at its long end. Along the same lines of the reasoning presented for the single

risk factor case, it would be desirable to know the behaviour of the loss l(ζ) for each ζ ∈ Z; however, mindful

of the computational effort, the methodology requires the valuation of the loss only for those scenarios in ZΘ:

ZΘ =
⋃

β∈{0.8,1}

ζdown(β) ∪
⋃

β∈{0.8,1}

ζup(β) . (47)

FSD∗(B), the extreme scenario of future shocks for the bucket B, is the scenario ζ in the set ZΘ leading to

the worst loss:

FSD∗(B) = argmax
ζ∈ZΘ

l(ζ) . (48)

Analogously to the determination of the stress scenario risk measure for a single NMRF, for a bucket B:

SS10d(B) =

{
KD∗(B) · l(FSD∗(B)) FSD∗(B) ∈ {ζdown(1); ζup(1)}
l(FSD∗(B)) FSD∗(B) ∈ {ζdown(0.8); ζup(0.8)}

(49)

where KD∗(B) is the non–linearity coefficient applicable at bucket level analogously to Eq. 26:

KD∗(B) = max
(
Kmin,min

(
K̃D∗(B),Kmax

))
, (50)
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with Kmin = 0.9, Kmax = 5 and:

K̃D∗(B) = 1 +
25

2

l(0.8FSD∗(B))− 2 l(FSD∗(B)) + l(1.2FSD∗(B))

l(FSD∗(B))

(
φ̂B − 1

)
, (51)

where for simplicity and robustness the tail-parameter at bucket level φ̂B is the median of the tail parameters

(φ̂1, φ̂2, ..., φ̂MB
) of the MB risk factors in bucket B. Also in this case, SS10d(B) is floored to zero in the rare case

that l(FSD∗(B)) ≤ 0, and the maximum loss approach described in Subsection 5.2.4 can be used by supervisors

to address specific cases.

7 Aggregated capital requirements for non-modelled risks

To finally determine the capital charge associated with non-modellable risk factors, SS10d(j) is rescaled to

reflect the NMRF’s liquidity horizon LHj . We obtain the final stress scenario risk measure SS(j) by employing

the FRTB square-root-of-time rule used for the liquidity horizon scaling for modellable risk factors:

SS(j) = SS10d(j)

√
LHfloored

j

10
, (52)

where LHfloored
j = max(LHj , 20) is the liquidity horizon of the risk factor floored at 20 business days in

accordance with paragraph MAR 33.16(1) of the FRTB standards. All risk factors within a bucket have the

same liquidity horizon; thus, Eq. 52 is equivalently applicable at bucket level.

The capital requirements corresponding to all non-modellable risks are finally obtained by aggregating the

stress scenario risk measure for each risk factor or bucket, as set out in paragraph MAR 33.17 of the FRTB:

SES =

√ ∑

i∈ICSR

SS(i)
2

+

√ ∑

j∈IER

SS(j)
2

+

√√√√
(
ρ
∑

k∈OR

SS(k)

)2

+ (1− ρ2)
∑

k∈OR

SS(k)
2
, (53)

where ρ = 0.6, ICSR and IER are respectively the sets of risk factors reflecting idiosyncratic credit spread risk

and idiosyncratic equity risk only, and for which the bank is able to demonstrate that a zero correlation is

appropriate. OR is the set of all other risk factors.

8 Summary and conclusions

In this paper, we design a methodology for capitalising the risk of non-modellable risk factors under the FRTB

framework. We built it (i) to be applicable to any kind of risk factor by ensuring that its building blocks

are not risk-factor dependent; (ii) to capture for a wide range of different cases with respect to the number

of observations available for a given risk factor by generalising the concept of 10-business-day return and by

introducing the asigma method under which an expected shortfall measure is approximated by rescaling a

volatility measure of the returns; (iii) to target a level of capitalisation in line with the FRTB standards by

setting the constants of the methodology consistently with the level of capital targeted in the standards; (iv) to

capture the portfolio losses susceptible to a risk factor accurately while; (v) being efficient by evaluating only a

few selected risk factor shocks and capturing non-linear behaviours of losses with only one additional portfolio

loss evaluation.

Our methodology reduces the computational effort stemming from a näıve straightforward application of the

FRTB standards, i.e. from a direct computation of the expected shortfall of the losses for each non-modellable

risk factor, by a factor of around 50 (∼ 250 business days per year compared to 5 selected shocks, including

approximating non-linearity in the tails). Furthermore, it provides for a reasonably accurate ES calculation

even where few data are available making the methodology universal, not only because it is applicable to any

kind of risk factor, but also because it provides results in line with the FRTB standards even when few data
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are available. While the methodology is applicable in most cases, we outline measures for supervisors to take

in cases the methodology may not work well.

As a tool to analyse the statistical properties of risk factors, we use a family of SGT distributions with

moments matched to a large set of historical risk factor data [EBA19, EBA20a, EBA20b]. Analysing the

values taken by the relevant measures for those SGT distributions, we motivate the values of the methodology’s

parameters.

We study the sampling error in estimating the expected shortfall with different estimators by simulation of

the family of SGT distributions, and design a simple uncertainty compensation factor to capture that uncertainty

and reflect it in the capital requirements.

We finally show that the methodology can be naturally extended from the single risk factor level and be

applied at the level of a segment of a risk factor curve or surface (the so-called ‘regulatory buckets’ described

in the FRTB).

The methodology with minor differences has been successfully field tested by some of the largest banks in Eu-

rope on standardised and real trading portfolios [EBA19]. To our knowledge it is the first universal methodology

with approximately controlled accuracy for the capitalisation of non-modellable risk factors publicly described

in detail. More results will be available when banks use it to perform capital calculations under the FRTB

internal model approach.
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A Annex

This Annex defines the SGT distribution [The98] in the notation used in this paper and provides explitit

expressions for value-at-risk and expected shortfall. For SGT distributions there are several parametrisations in

literature. For our analyses using the R language [R C19] with the R package ”sgt” [Dav15], we use the notation

in the following independent parameters: µ, σ, λ, p, and q. µ and σ are the mean and standard deviation, λ

with −1 < λ < 1 is the skewness parameter, p > 0 is the peakedness, and q > 0 the tail thickness parameter.

The SGT distribution family encompasses many other distributions, cf. e.g. [HMN10], the most simple one

being the standard normal distribution obtained for µ = 0, σ = 1, λ = 0 (no skew), p = 2, and q = ∞. The

same parameter values with a finite q lead to a Student’s t distribution with ν = 2q degrees of freedom.

In this notation, the SGT distribution probability density is

fSGT(x;µ, σ, λ, p, q) =
p

2vσq
1
pB( 1

p , q)
(

|x−µ+m|p
q(vσ)p(λ sign(x−µ+m)+1)p + 1

) 1
p+q

, (54)

and where for pq > 1, the helper variables m and v which are not parameters themselves, are defined as

m(σ, λ, p, q) :=
2v(λ, p, q)σλq

1
pB( 2

p , q − 1
p )

B( 1
p , q)

= m̃(λ, p, q)v(λ, p, q)σ , (55)

and

v(λ, p, q) := q−
1
p

[
(3λ2 + 1)

B( 3
p , q − 2

p )

B( 1
p , q)

− 4λ2
B( 2

p , q − 1
p )2

B( 1
p , q)

2

]− 1
2

. (56)

B denotes the beta function. m is a location shift variable, such that we can express the mode as mode = µ−m.

With m(σ, λ, p, q) = m̃(λ, p, q)v(λ, p, q)σ we separate the dependency on the rescaled standard deviation vσ,

where v is a scaling variable for σ.

We first give the explicit expressions for the first four moments of the SGT distributions [TS16, MM17,

The18b] (in different parametrizations) in our chosen parametrisation.

The ith centralized moment µi := E[(R − E(R))i] is finite for pq > i only. Mean µ1 = µ and variance

µ2 = σ2 are distribution parameters, the third centralized moment is

µ3 =
2q

3
pλ(vσ)3

B
(

1
p , q
)3

[
8λ2B

(
2

p
, q − 1

p

)3

− 3(1 + 3λ2)B

(
1

p
, q

)
B

(
2

p
, q − 1

p

)
B

(
3

p
, q − 2

p

)

+2
(
1 + λ2

)
B

(
1

p
, q

)2

B

(
4

p
, q − 3

p

)]
,

(57)

and the forth centralized moment is

µ4 =
q

4
p (vσ)4

B
(

1
p , q
)4

[
−48λ4B

(
2

p
, q − 1

p

)4

+ 24λ2
(
1 + 3λ2

)
B

(
1

p
, q

)
B

(
2

p
, q − 1

p

)2

B

(
3

p
, q − 2

p

)

−32λ2
(
1 + λ2

)
B

(
1

p
, q

)2

B

(
2

p
, q − 1

p

)
B

(
4

p
, q − 3

p

)

+
(
1 + 10λ2 + 5λ4

)
B

(
1

p
, q

)3

B

(
5

p
, q − 4

p

)]
.

(58)

The ES and VaR are key quantities in our analysis and can be expressed analytically for the SGT distribution

by adding tail probability and shape dependent summands to the mode [The18a](in another parametrization).

We give explicit formulae for the ES and VaR in our parametrization considering them useful for other studies.

The correspondence of the variables kTh, nTh, mTh, φTh, and qTh in [The18a] is as follows: kTh = p,

nTh = pq, mTh = mode, φTh = (vσ)/p
1
p and qTh = α = 2.5% in our notation.

We define t∗(α) (Eq. (8) of [The18a]) which is controlled by the tail probability α:

t∗(α;λ) :=
2
∣∣α− 1−λ

2

∣∣
1 + sign

(
α− 1−λ

2

)
λ
, (59)

30



Like in the R language, let pbeta(x, a, b) = Ix(a, b) denote the incomplete beta function (definition 8.17.2

in [DLMF], sometimes also called incomplete beta function ratio [DJ66, DM92]), and qbeta(x, a, b) = I−1
x (a, b)

denote the inverse of the incomplete beta function.

After setting

W̃ (α;λ, p, q) :=
(1− λ)2

2α
q

1
p

B
(

2
p , q − 1

p

)

B
(

1
p , q
)

{
1− pbeta

[
qbeta

(
t∗(α;λ),

1

p
, q

)
,

2

p
, q − 1

p

]}
, (60)

Eq. 31 of [The18a] for the expected shortfall (same sign convention as our convention with a positive left tail

ES of a distribution centred around zero) becomes

ESSGT(α) = −mode+ W̃ (α;λ, p, q) vσ . (61)

After dividing by p
1
p , Eq. 7 of [The18a] becomes:

w̃(α;λ, p, q) = sign

(
α− 1− λ

2

)
q

1
p

(
qbeta(t∗(α;λ), 1

p , q)

1− qbeta(t∗(α;λ), 1
p , q)

) 1
p

(62)

and the α-quantile in Eq. 6 of [The18a] is the negative value-at-risk (in our sign convention):

VaRSGT(α) = −mode− (1 + sign(w̃(α;λ, p, q))λ) w̃(α;λ, p, q) v(λ, p, q)σ . (63)

Hence, the ES and VaR are the mode plus the rescaled sigma times a pre-factor depending on the shape of the

distribution and the tail probability. Recalling that mode = µ−m = µ−m̃(λ, p, q)v(λ, p, q)σ is a linear function

of v(λ, p, q)σ, too, we see that both risk measures are indeed a linear function of the standard deviation, as it

should be for a location-scale family of distributions:

ESSGT(α;µ, σ, λ, p, q) = −µ+ m̃vσ + W̃ (α;λ, p, q) vσ = −µ+ CSGT
ES (α;λ, p, q)σ , (64)

and

VaRSGT(α;µ, σ, λ, p, q) = −µ+ m̃vσ− (1 + sign(w̃(α;λ, p, q))λ) w̃(α;λ, p, q) vσ = −µ+CSGT
VaR (α;λ, p, q)σ . (65)

The variables CSGT
ES and CSGT

VaR formally capture the terms depending on the shape of the normalized distribution

and the tail probability α.

The analytical expressions for ES and VaR were checked against large sample simulated values, which were

used in the investigation of the sampling distributions for the uncertainly compensation factor.
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