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Abstract 
 
In this paper, we examine the effects of the Covid-19 pandemic on individual aging and longevity 
with special focus on socioeconomic disparities in health outcomes. We also explore the 
individual-specific effects of Long Covid. We develop and calibrate a health economic model 
based on principles of the biology of human aging that captures the interaction between infections 
and chronic health deficits. Our analysis suggests that neglecting this interaction leads to a gross 
underestimation of the long-term health impact of the pandemic. Our model also explains large 
socioeconomic health differences that can be attributed to infection protection behavior. 
JEL-Codes: D150, I100, I120, J240, J260. 
Keywords: Covid-19, Long Covid, health behaviour, health deficits, health inequality, protection 
aversion, false beliefs, longevity. 
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1. Introduction

In this study, we investigate a hitherto unexplored topic, namely how exposure to a pandemic

and individual protection behavior affect long-term health outcomes such as the development

of chronic health deficits and death from non-communicable diseases. We develop an economic

model of biological aging and longevity that takes the interaction between infections and chronic

diseases into account and apply it to the Covid-19 pandemic. Formally, the Covid pandemic is

understood as a shock in the infectious disease environment and a temporary decline in disease

prevention technology. It induces adjustment behavior and convergence towards a state in

which Covid has become endemic. Our analysis shows how neglecting the interaction between

infections and chronic diseases leads to a gross underestimation of the long-term health impact

of the pandemic. It also explains how a pandemic affects individuals unequally, which allows

us to understand the socioeconomic differences in health outcomes associated with the lifelong

impact of infectious diseases.

Empirical evidence suggests that there are considerable socioeconomic inequalities in Covid-

related health outcomes that are not well understood (Lassale, 2020; Niedzwiedz et al. 2020;

Patel et al., 2020; for a survey see Wachtler et al., 2020). A list of possible reasons includes

socioeconomic differences in protective behavior, such as seeking vaccination (e.g. Caspi et al.,

2021; Okubo et al., 2021; Saban et al., 2021; Thakore et al., 2021; Kim, 2023; Pouliasi et al.,

2023), and in the prevalence of pre-existing non-communicable diseases like diabetes, cardiovas-

cular issues, and chronic respiratory conditions (Bambra et al. 2020). Moreover, for a significant

share of the population (estimated at or above 10 percent), a Covid infection leads to the devel-

opment of prolonged or even persistent health deficits in the aftermath of the initial infection,

the so-called Long Covid syndrome. While the causes of Long Covid are not yet fully under-

stood, it is now clear that the disease affects basically all organ systems and can be expressed

as a general increase in chronic health deficits (see Altmann et al., 2023; Davis et al., 2023, for

recent reviews).1

In our health economic model, health deficits are measured by an established methodology in

the medical sciences, the frailty index (following Dalgaard and Strulik, 2014). The frailty index

is the relative number of aging-related illnesses and functional limitations that an individual has,

given a large number of potential health deficits (Searle et al., 2008). In line with the empirical

evidence, the frailty index increases quasi-exponentially with age (e.g. Mitnitski et al., 2002a,b;

Rockwood and Mitnitski, 2006, 2016; Abeliansky and Strulik, 2018; Abeliansky et al., 2020;

Dalgaard et al., 2022). However, chronological age does not cause the deterioration of health.

The health deficit model is built on insights from the biology of human aging (Gavrilov and

1We use the term ‘Long Covid’ throughout. Alternative terms in the literature are ‘Post-acute COVID-19
syndrome’ and ‘Chronic COVID-19’. According to WHO (2021): “Post COVID-19 condition occurs in individuals
with a history of probable or confirmed SARS-CoV-2 infection, usually 3 months from the onset of COVID-19
with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis. Common
symptoms include fatigue, shortness of breath, cognitive dysfunction but also others [...] which generally have
an impact on everyday functioning.” On January 18, 2024, the United States Senate Committee on Health,
Education, Labor and Pensions discussed Long Covid for the first time as pressing health issue; see Al-Aly (2024)
for the testimony.
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Gavrilova, 1991; Rutenberg et al., 2018) and conceptualizes aging as the intrinsic, cumulative,

progressive, and deleterious loss of function (Arking, 2006). The observed quasi-exponential

accumulation of health deficits is explained by the self-productivity of health deficits, i.e. the

feature that an increase in existing health deficits leads to the faster development of new deficits

(Dalgaard and Strulik, 2014; Dragone and Vanin, 2022).

In contrast to chronological aging, biological aging is malleable. It can by slowed down by

health investments and accelerated by unhealthy behavior. Importantly, in the present appli-

cation to the Covid pandemic, health deficits are also influenced by infections and individuals

can protect themselves from infections depending on the level of medical technology. In their

behavior, individuals take into account that mortality risk from both infectious diseases and

chronic conditions depends on the amount of accumulated health deficits that evolve over the

life cycle. They also understand, at least to a certain extent, how the development of health

deficit depends on deliberate efforts to prevent and treat infectious diseases and chronic health

conditions. However, we also explore the health consequences when individuals hold decidedly

false beliefs about the severity of infections and the efficacy of protection.

The health deficit framework allows us to examine a number of previously neglected aspects of

the Covid pandemic such as how infectious disease mortality depends on pre-existing health con-

ditions (rather than chronological age) and how infections influence the development of chronic

health deficits and post-pandemic mortality. We investigate how these mechanisms, known in

medicine as immunosenescence and inflammaging, affect disease protection behavior and cura-

tive health care spending and therewith individual longevity.

The term immunosenescence refers to the aging immune system. Since aging, understood as

the progressive decline of organ reserve and function, is encompassing, it includes also the gradual

decline in functionality of the innate and adaptive immune system. According to current medical

knowledge, increasing infectious disease mortality is therefore not due to advancing chronological

age per se but rather to increasing frailty and the weakened immune system (e.g. Santoro et

al., 2021). A recent study by Cao et al. (2022) suggests that the biological age measured in

blood samples, correlates not only strongly with all-cause mortality but also with the risk of

developing severe Covid disease. Several studies showed that the frailty index is an important

determinant of the severity and mortality risk of a Covid infection (e.g. Petermann-Rocha et al.,

2020; Howlett et al., 2021).2

The term inflammaging refers to a permanent low-grade and chronic state of inflammation

that has been associated with many chronic diseases and, at the cellular level, with all of

2Aging of the innate immune system includes ineffective pathogen recognition and macrophage activation and
the decreased function of epithelial barriers of the skin, lung, and gastrointestinal tract. Aging of the adaptive
immune system is, inter alia, characterized by a decline in the number and functionality of T- and B-cells. (e.g.
Miller, 1996; Weiskopf et al., 2009).
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the nine hallmarks of aging.3 Exposure to bacteria, viruses, fungi, and parasites often causes

chronic pro-inflammatory conditions (Franceschi and Campisi, 2014; Franceschi et al., 2017).

A significant part of the declining prevalence of chronic respiratory problems, valvular heart

disease, arteriosclerosis, and joint and back problems since the early 20th century has been

attributed to reduced exposure to infectious diseases (Costa, 2000). With respect to Covid

infections, recent research suggests that SARS-CoV-2 is a reservoir of peptide fragments that

can cause enhanced pro-inflammatory responses with potentially very harmful health effects

for some patients (Zhang et al. 2024). For instance, patients with severe Covid often develop

bacterial pneumonia that exacerbate proinflammatory responses (Bartleson et al., 2021).

The more or less spontaneous deterioration in health of Long Covid patients can also be

adequately captured by the health deficit model. The first large-scale and long-term Long

Covid study by Bowe et al. (2023) documents a massive increase in the incidence of 80 chronic

health deficiencies two years after the initial infection of the Long Covid patient. We use these

data, construct a frailty index, and find that health deficits in Long Covid patients increase by

an average of 25 percent.

We examine two main research questions. First, we explore the short- and long-term health

effects of the Covid pandemic, depending on (i) the individual state of health at the onset

of the pandemic, (ii) individual aversion to protective care (e.g. disutility from wearing face

masks or getting vaccinated), (iii) earnings, (iv) age at the outbreak of the pandemic, and

(v) false beliefs about both the efficacy of disease protection and the prevalence of infectious

diseases. By comparing the calibrated average American with other model individuals with

specific characteristics, we shed light on the heterogeneity of health behavior and health outcomes

in infectious disease environments. Second, we investigate how the long-term health effects of

Long Covid depend on individual characteristics.

For the benchmark case, our model predicts that the Covid pandemic has shortened the re-

maining life expectancy of the average American at age 75 by about five months. The predicted

loss of life expectancy due to Covid is more than three times lower when inflammaging is ig-

nored. This significant underestimation of the health consequences of the Covid pandemic when

inflammaging is neglected appears to be consistent with the general view that the pandemic had

essentially no impact on the life expectancy of pandemic survivors.

Protection aversion naturally increases mortality from infectious diseases before, during and

after the pandemic. For example, for strongly protection averse individuals (who only begin

to protect themselves against infections in their late 60s), the pandemic-related increase in

chronic disease mortality is predicted to be four times greater than for the benchmark American

with modest protection aversion. The loss in life expectancy gets larger for protection-averse

individuals with low income or pre-existing health conditions. These results contribute to a

3See e.g. Furman et al. (2019), Lopez-Otin et al. (2013), and Kennedy et al. (2014). The nine hallmarks
of aging are: (1) genomic instability, (2) shortening telomere length, (3) epigenetic modifications, (4) loss of
proteostasis, (5) deregulated nutrient sensing, (6) mitochondrial dysfunction, (7) cellular senescence, (8) stem cell
exhaustion and (9) altered intracellular communication, which are all linked to sustained systemic inflammation
(Lopez-Otin al., 2013). In our companion paper (Strulik and Grossmann, 2024) we provide a more detailed
discussion of inflammaging in the context of the epidemiological transition.
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better understanding of health inequality arising from infectious diseases, as empirically the

level of protection aversion and income are negatively correlated. Interestingly, life expectancy

differences between individuals are generally higher if the onset of the pandemic is experienced

at an earlier age although its immediate impact on mortality risk is then considerably lower.

This perhaps surprising outcome is a direct consequence of the self-productive nature of health

deficits.

The Covid pandemic has shown that some people have persistent misconceptions about the

mortality risk of a new virus (e.g. van Mulukom et al., 2022) and the efficacy of vaccines (e.g.

Baeza-Rivera, 2021; Lazarus et al., 2022). We show that false beliefs do not only lead to an

alleviated increase in infectious disease mortality but also to substantially faster aging and

premature death from chronic diseases. For example, an individual aged 60 at the onset of the

pandemic, who believes that infections are (almost) harmless and protection (almost) useless,

is predicted to have 19 percent more chronic health deficits at age 70 and to die more than 6

years earlier, compared to the benchmark American with correct beliefs, all other things being

equal. The life expectancy difference can be much higher, if the individual has, in addition, low

income or more initial health deficits.

In addition, our analysis suggests a rather bleak outlook for Long Covid patients. The self-

productivity of health deficits implies that the health gap between Long Covid patients and

the calibrated benchmark American widens with advancing age. Related to that, Long Covid

causes a greater loss in life expectancy if it occurs at young age. Our model predicts that the

benchmark American will lose 4 years of life if getting Long Covid at age 75 and 6.6 years if it

happens at age 45.

The Covid pandemic has triggered countless studies in medicine, but also a large body of

research in economics. First, there is an important economic literature that focuses on how

the spread of the disease is influenced by policy measures like testing or confinement. The-

oretical approaches typically use epidemiological models to capture the infection dynamics of

the pandemic (e.g. Acemoglu et al., 2021; Donsimoni et al., 2020), sometimes enriched with

health behavior and its externalities (Brotherhood et al., 2020). Moreover, there is a growing

literature on macroeconomic effects of the pandemic. For instance, Chetty et al. (2023) show

that spending fell more in counties with higher rates of Covid infection, largely to avoid catching

the disease rather than concerns to lose income. Goolsbee and Syverson (2021) and Chetty et

al. (2023) find modest macroeconomic effects of government-imposed restrictions to contain the

spread of the virus. Guerrieri et al. (2022) argue that standard fiscal stimulus policies may

be quite ineffective in a pandemic. Second, there is a literature on how to optimally prioritize

vaccines (e.g. Akbarpour et al., 2024; Bubar et al., 2021; Gans, 2022). For instance, Akbarpour

et al. (2024) models vaccination behavior and shows that pricing of vaccines can be optimal in

the presence of asymmetric information about the private willingness to pay. However, none of

the previous studies has examined long-term health consequences of the pandemic.

The health-deficit framework of Dalgaard and Strulik (2014) has been applied to various

contexts, but typically abstained to model infectious diseases. An exception is our accompanying

paper (Strulik and Grossmann, 2024), where we examined health behavior of men and women
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when infectious diseases are endemic, investigating the role of income, initial health status, and

other individual characteristics. We analyzed how human aging and life expectancy during the

epidemiological transition from 1860 to 2010 can be explained by the feedback effects between

infections and chronic diseases. Using counterfactual historical experiments, we assessed the

impact of medical technology on mortality from infectious diseases, all-cause mortality, life

expectancy, and the value of life. However, we did not explore how the outbreak of a new

disease (i.e. a pandemic) or an individual health shock (like Long Covid) affects health behavior

and long-term health outcomes. In contrast to the present study, we have also abstracted from

misconceptions about the mortality risk of infections.

The remainder of the paper is organized as follows. In section 2, we introduce the model and

discuss the comparative statics of protection and treatment of infectious diseases. In section 3,

we calibrate the model for an average male American before the pandemic and in Section 4 we

calibrated the Covid pandemic. The results are presented in Section 5. We examine the role of

initial health deficits, earnings, preferences (protection aversion), and age for short- and long-

term health outcomes. We then explore the effects of false beliefs on health outcomes. Finally,

we implement the Long Covid syndrome and discuss its impact on future health outcomes.

Section 6 concludes the paper.

2. Model

2.1. Individual Welfare. Individuals live in an environment with uncertain survival and max-

imize their expected lifetime utility. Let S(t) denote the probability of being alive at age t

(survival function). As usual, we normalize the utility of being dead to zero. Individuals derive

utility from consumption of a numeraire good, c. Since we are particularly interested in dis-

ease protection behavior, we additionally implement the feature that individuals may experience

disutility from disease protection effort, p. Instantaneous utility is given by v(c, p) = u(c)− ωp,

where the utility weight of diseases protection ω > 0 is called protection aversion and we focus

on an iso-elastic utility function u(c) = (c1−σ − 1)/(1 − σ), with σ > 0 (and u(c) = log c for

σ = 1). Future payoffs are discounted at the time preference rate ρ > 0. Thus, expected lifetime

utility at age τ is given by

V (τ) =

∫ T

τ
S(t) · [u(c(t))− ωp(t)] · e−ρ(t−τ)dt, (1)

where lifespan T , i.e. the maximum length of life, is an endogenous variable, as explained below.

All parameters are individual-specific. We are particularly interested in the role of protection

aversion parameter ω, which governs the age at which individuals start protection (p > 0). By

protection aversion we capture, for instance, concerns about the safety of vaccines, which have

been shown to be a major reason for Covid vaccine hesitancy (Lazarus et al., 2022).4 Empirical

evidence suggests that vaccine hesitancy and vaccination rates strongly depend on socioeconomic

4The WHO defines vaccine hesitancy as “the delay in acceptance or refusal of vaccination despite availability
of vaccination services” (MacDonald et al., 2015).
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status, with protection aversion being higher for individuals with lower educational attainment

and lower income (Pouliasi et al., 2023).5

2.2. Survival, Mortality, and Health Deficits. The mortality rate at age t is defined as

the negative survival rate, Ṡ(t)/S(t) = −m(t), implying that the probability of being alive at

age t is given by S(t) = S(0)e−
∫ t
0 m(t)dτ . Because of our particular focus on the interaction

between death from chronic diseases and from infections we decompose the mortality rate as

m(t) = mC(t) +mI(t), in which mC is the mortality rate from chronic diseases and mI is the

mortality rate from infections. We explicitly implement the basic insight from gerontology that

death is not explained by chronological age but by the state of health (Arking, 2006). The state

of health is measured by the frailty index D, which is is relative number of health deficits that

are present in a person, given a long list of potential health deficits. The health deficit index

has been developed by Mitnitski et al. (2001) and has used in countless studies in the medical

science due to its simplicity, comparability, and excellent predictive power for health related

events, such as death or entry into long-term care. See Searle et al. (2008) for details of index

construction and Howlett et al. (2021) for a recent review of the literature. For the mortality rate

from chronic disease, we write mC = m̃C(D). Aside from health deficits, the mortality rate from

infections additionally depends on the protective measures against infections, mI = m̃I(D, p).

Summarizing, individual survival is described by the law of motion

Ṡ(t) = − [m̃C(D(t)) + m̃I(D(t), p(t))] · S(t). (2)

For the sake of simplicity, we henceforth omit the age index of the variables unless it is needed

for clarity.

2.2.1. Chronic Disease Mortality. In advanced countries, the vast majority of people die from

chronic (non-communicable) diseases. For example, in the U.S. in 2019, 89.6 percent of deaths

were caused by chronic diseases, 4.3 percent by infections, and 6.1 percent by injuries (Vos et

al., 2020). The effect of health deficits on death is well described by a power law:

m̃C(D) = ξDψ, for D < D̄, (3)

where ξ > 0 and ψ > 0. The parameters of this log-linear relationship have been estimated with

great precision, with the coefficient of determination, R2, being above 0.98 in the raw correlation.

The value of ψ has been estimated around 3.0, implying that a one percent increase in health

deficits increases the mortality rate by about 3 percent (Mitnitski et al., 2002a,b; Dalgaard et al.,

2022, Krenz and Strulik, 2023). Consistent with the literature in gerontology, there is an upper

limit to health deficits beyond which survival is impossible, m̃C(D̄) = 1, such that D(T ) = D̄

determines the endogenous lifespan (Rockwood and Mitnitski, 2006).

2.2.2. Infectious Diseases: Protection and Mortality. Humans are constantly exposed to patho-

genic shocks. However, these shocks lead to perceptible illness only if sufficiently severe, with

5Earlier evidence on A(H1N1) vaccines (against the influenza virus) confirms this pattern. According to
Galarce et al. (2011, p. 5286), “those with a bachelor’s or higher degree were 69 percent more likely to perceive
the vaccine as safe than those with less than a high school degree.”
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the threshold shock level depending on the state of health. As in Strulik and Grossmann (2024),

we assume that the probability of infection shocks of size s is Pareto-distributed and given by

f(s) = νb1/νs−(ν+1), with s ∈ {1,∞} and cumulative distribution function F (s) = 1 − b/sν ,

where ν > 0 and b > 0. Only shocks of strength greater than s̄ result in a potentially lethal

infection. The threshold level s̄ is inversely proportional to the frailty of the body, capturing the

gradual decline in functionality of the innate and adaptive immune system (immunosenescence).

By setting s̄ = 1/D, we obtain the probability of severe infection as bDν . A higher value of

b implies that more individuals at all states of health become severely sick, i.e. it characterizes

a higher prevalence of infectious diseases. The term Dν captures immunosenescence, i.e. the

influence of the individual state of health (pre-conditions) on the severity of infections. The

compound term bDν is equal to the mortality rate from infections in absence of preventive

measures or treatment. As outlined in the Introduction, an aged and increasingly dysfunctional

immune system is characterized by a reduced immune response. Moreover, it can cause some cell

subsets to become hyperresponsive to infections. A particularly severe variant of dysregulated

immune function drew broader attention in the course of the Covid pandemic. In a so-called

cytokine storm, an infection causes a rapid and uncontrolled release of inflammatory signaling

molecules that leads to inflammation of major organs such as the lungs, kidneys, and heart

and may eventually cause organ failure and death (see Bartleson et al., 2021 and Merad et

al., 2022, for reviews of the immunology of Covid-19). Several studies showed that the frailty

index is an important determinant of the severity and mortality risk of a Covid infection (e.g.

Petermann-Rocha et al., 2020; Howlett et al., 2021).

The probability of a lethal infection can be reduced by measures of disease prevention and

treatment, which we label as infectious disease protection. The efficacy of protection depends on

the state of medical technology, a, and protection effort, p, such that infectious disease mortality

is given by

m̃I(D, p) = [1− af(p)] · bDν , (4)

where a > 0. More effort reduces the probability of severe infection with decreasing returns,

f ′(p) > 0 and f ′′(p) < 0. For given level of medical technology there are steeply decreasing

returns in protection effort. For example, the return of wearing two face masks instead of one

or getting two vaccinations instead of one is very small. This means that protection production

function f(p) is bounded from above, limp→∞ f(p) = 1, such that a is the maximum reduction

of the probability of severe infection that can be achieved with the available medical technology.

These features are implemented with the protection function f(p) = 1− e−p. Figure 1 shows

the degree of protection for alternative levels of protection effort and a = 0.85 (maximum

protection 85 percent, solid blue lines) and a = 0.25 (dashed red lines). For example, a = 0.25

may represent a technology level where face masks are available and a = 0.85 a technology

level where vaccines are available. With the specified protection function, when a = 0.25, the

individual has almost reached the maximum possible protection for p = 2 (wearing two masks

instead of one does not increase protection by much). For a = 0.85 the maximum possible

protection is almost reached for p = 4.
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Figure 1. Infectious Disease Protection
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The figure shows the protection achieved for alternative levels of protection
effort and two levels of medical technology a = 0.85 (blue solid lines) and a =
0.25 (red dashed lines). Protection is obtained as af(p) with f(p) = 1−exp(−p).
Protection is defined as the percentage reduction of the probability of severe
infection.

2.3. Health Deficit Accumulation. On average, humans accumulate health deficits in quasi-

exponential fashion at a rate of about 3 to 4 percent additional health deficits per year of age (e.g.

Mitnitski et al., 2002a,b; Rockwood and Mitnitski, 2016; Abeliansky et al., 2020; Dalgaard et al.,

2022). However, the development of new health deficits is not caused by chronological age but by

the already existing health deficits. This notion of aging as the intrinsic, cumulative, progressive,

and deleterious loss of function (Arking, 2006) has been introduced in health economics by

Dalgaard and Strulik (2014) as a law of motion for health deficits. For our application we

augment the law of motion for health deficits and write it as

Ḋ = µ ·
[
D −A · (1 + ηD)δ · hγ + β · m̃I(D, p) + ϵ

]
, (5)

in which µ > 0 is the (natural) rate of aging and ϵ is a (possibly negative) residual capturing

health relevant aspects that are not explicitly modeled. The initial level D(0) = D0 > 0 is given.

It is useful to first consider (5) without the A-term and the β-term and without the residual

ϵ. The equation becomes Ḋ = µD and describes the self-productive nature of health deficit

accumulation. A micro-foundation of this aging process has been provided in reliability theory

(Gavrilov and Gavrilova, 1991) and in the network theory of aging (Rutenberg et al., 2018). The

solution of the differential equation, D(t) = D(0)eµt, implies the exponential growth of health

deficits with age. When D(t) is inserted in (3) we obtain the exponential growth of the mortality

rate with age, mC = ξ̃eµψt with ξ̃ ≡ ξ · (D0)
ψ. The model thus explains in its reduced form

Gompertz law, i.e. an exponential increase in death rates with age (Gompertz, 1825). Since µ

is estimated at about 3 percent and ψ at about 3, the model explains why the mortality rate

increases by about 9 to 10 percent per year of life, which is a stylized fact of human aging

(Arking, 2006). The predicted increase of mortality with chronological age, however, is not

causal. Mortality is caused by health deficit accumulation.

While chronological age increases relentlessly and inevitably, the accumulation of health

deficits is malleable. As in Dalgaard and Strulik (2014), we assume that individuals can slow

down the accumulation of health deficits by health investments h, i.e. health care for prevention

8



and repair of chronic diseases. The parameter A in (5) measures the general efficacy of medi-

cal technology while parameter γ ∈ (0, 1) measures decreasing returns in medical expenditure.

The term (1 + ηD)δ implements the notion that the efficacy of curative care increases with the

prevalence of health deficits, parameterized by η > 0 and δ > 0 (see Strulik and Werner, 2021).

Since many health deficits are related (e.g. Rutenberg et al., 2018), the treatment of one deficit

also slows down the development of other deficits. For example, a treatment that targets hyper-

tension reduces also the risk of stroke, heart diseases, kidney diseases, dementia, and problems

of walking fast or sleeping well.

The β-term in (5) measures the influence of severe infections on the development of new

chronic diseases. It captures inflammaging due to exposure to pathogenes and a resulting chronic

inflammatory state (e.g. Franceschi and Campisi, 2014; Franceschi et al., 2017). Consequently,

the individual history of infections contributes to the development of chronic health deficits

(Finch and Crimmins, 2004; Finch, 2010; Santoro et al., 2021). Sayed et al. (2021) developed an

inflammatory clock of aging from biomarkers of the immune system and found it to be highly

predictive of the frailty index, greater than chronological age. Recent evidence not only suggests

that biological aging is associated with the risk of severe Covid infection but also that Covid may

affect the epigenetic clock and telomere attrition (Cao et al., 2022). In our model, the severity

of infection is naturally captured by the mortality risk from infection, mI . Inflammaging thus

means that the development of new health deficits, Ḋ, is proportional tomI with proportionality

factor µβ and inflammaging coefficient β.

2.4. Budget Constraint. Individuals earn a given flow of earned income w, which consists of

net wage income before retirement and pension income thereafter. Individuals face a given return

on their savings and a fraction θ of their assets k is annuitized. The annuity provider cannot

observe the frailty status of the individual and sets an interest rate depending on the age-specific

mortality rate in the population. This means that for saving in annuities the mortality rate m

is a direct function of age rather than a function of individual health measure D. Summarizing,

financial income from private wealth is given by (r + θm)k.

Income is spent on consumption c, savings k̇, and health care. Let πh and πp denote the price

of health care aimed at the treatment and prevention of chronic and infectious diseases and ϕh

and ϕp the associated out-of-pocket (or coinsurance) rates. The individual budget constraint is

then given by

k̇ = (r + θm)k + w − c− ϕhπhh− ϕpπpp. (6)

2.5. Optimal Life Cycle Behavior. Individuals maximize expected lifetime utility (1) by

controlling the paths of consumption (c) and health care inputs (h, p), subject to the law of

motion for survival (2), health deficit accumulation (5), and wealth accumulation (6), given

the functional forms for mortality rates from chronic and infectious diseases (3) and (4), the

initial endowments k(0) and D(0), and the terminal conditions k(T ) = k̄ ≥ 0 and D(T ) = D̄.

The solution of this free-terminal time problem of optimal control involves the transversality

conditions that the current-value Hamiltonian H(T ) = 0 and the shadow price of an increase in

survival probability S (co-state variable of condition (2)) λS(T ) = 0.
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Lemma 1. Individual life cycle behavior is described by the solution for infectious disease

protection (7) and the equations of motion for consumption (8), health investments (9), the

shadow price of health deficits λD (10, and the shadow price of survival λS (11):

p = max {0,− log(z)} , with z ≡ ω + ϕpπpc
−σ

abDν
[
λS + βϕhπhc−σ

A(1+ηD)δγhγ−1

] (7)

ċ

c
=
r + (θ − 1)m− ρ

σ
(8)

ḣ

h
=

1

1− γ

[
r + θm− ρ+

δηḊ

1 + ηD
+
λ̇D
λD

]
(9)

λ̇D
λD

= ρ− µ+ µηδ(1 + ηD)δ−1Ahγ − µβ(1− af(p))bνDν−1−

λSµA(1 + ηD)δγ

c−σϕhπhh1−γ

[
ξψDψ−1 + (1− af(p))bνDν−1

]
(10)

λ̇S =
[
ρ+ ξDψ + (1− af(p))bDν

]
λS − [u(c)− ωp] . (11)

Proof. See Appendix A. □

Equation (8) is the familiar Euler equation for optimal life cycle consumption. Equation (9) is

the health-Euler equation for optimal investments in prevention and repair of chronic diseases.6

The solution for optimal disease prevention (7) takes into account a potential corner solution

of no prevention when prevention aversion ω is sufficiently high. When the solution is interior,

we have in the numerator of z the utility cost of disease prevention plus the monetary cost of

disease prevention evaluated at the marginal utility of consumption. The term abDν measures

the reduction in infectious disease mortality caused by the first unit of protection effort. The

denominator of z therefore reflects the saved health care effort (evaluated at the marginal utility

from consumption) and the gain from increased survival (evaluated at the shadow price λS) that

is caused by the first unit of protection effort.

In order to understand the individual response in infectious disease protection to the outbreak

of a pandemic, we next prove the following corollary.

Corollary 1. Optimal behavior implies that the co-state variable λS is positive throughout

life, λS(t) > 0 for all t < T .

Proof. For the proof, notice that both terms in square brackets in (11) are strictly positive.

Therefore, to reach λS = 0 at the end of life, i.e. for t = T , λS needs to be positive (and

declining) throughout life. □

Noticing that λS is the shadow price of a marginal increase in survival (Ṡ) the result is

intuitively plausible: the value of living longer is positive throughout life, largest in young age,

and zero at the maximum lifespan T .

6For the special case of no infections (b = 0), age-independent health technology (δ = 0), no annuity savings
(θ = 0), and certain survival (λS = 0), the equation collapses to the familiar health-Euler equation of the

deterministic model in Dalgaard and Strulik (2014), ḣ/h = (1− γ)−1(r − µ).
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Proposition 1. For given levels of consumption c and health input h, optimal behavior implies

that individuals increase prevention effort p when protection aversion ω or the price of protection

ϕpπp declines or when the product a · b between infectious disease technology (a) and infectious

disease prevalence (b) increases.

Proof. Follows from the derivatives of the interior solution in (7) and Lemma 1. □

The first two results are intuitively obvious. Regarding the last result, consider a pandemic

characterized by an increase of infectious disease prevalence b combined with a decline in the

efficacy of protection a (as vaccines may not be readily available). Individuals respond to the

pandemic by calculating the trade-off between increased prevalence (incentivizing more pre-

vention effort) and declining efficacy of protection (incentivizing less prevention effort). When

the disease prevalence increases by more than protection efficacy declines, they increase their

protection effort.

The optimal lifetime trajectory is characterized by the path that fulfills the initial conditions

and terminal conditions, the laws of motion (2), (5), and (6), the solution (7)–(11), and the

transversality conditions H(T ) = 0 and λS(T ) = 0. We next explore the numerical solution

of the calibrated model. We study the effects of the Covid pandemic and the socioeconomic

health gradient in the pandemic by capturing the convergence to an endemic state via changes

in disease protection technology and disease prevalence.

3. Calibration

3.1. Calibration of the Pre-Covid Era. For evaluating the effects of a pandemic, we first

need to calibrate the model for the time before the Covid pandemic. We consider an average

male U.S. American who starts life in the year 2010 at model-age 0 when being 20 years old. The

force of aging µ is set to 0.0337, as estimated by Abeliansky et al (2020) for Caucasian American

men. We set the interest rate to r = 0.06. Taking the estimates by Jorda et al. (2017), this

value corresponds to the long-run real return when wealth consists of 70 percent housing and

30 percent bonds. These values imply an annuity rate r +m of about 7 percent at age 65 and

12 percent at age 85, which is well in line with actual annuity returns (New York Life, 2023).

We set ρ = 0.06 such that, according to the Euler equation (8), consumption is almost constant

over the life cycle (as observed for childless households; Browning and Ejrnæs, 2009) except for

high mortality risk m where it is considerably decreasing towards the end of life.

We normalize the total price of health care for chronic diseases, ϕhπh, to unity and then

calibrate ϕh as one minus the government share of health expenditure, which is set to 0.47,

according to the numbers provided in Getzen (2019, Table 8). We set ϕp = ϕh and calibrate πp

using the information that, in 2010, 4.0 percent of health expenditure was spent on infectious

diseases (BEA, 2022).

Based on the estimates in Dalgaard et al. (2022), we set ψ = 2.8. The retirement age is set to

65.5 (CRR, 2018). Johnson et al. (2004) showed that about 10 percent of non-social-security-

based wealth is held in form of annuities and hence we set θ = 0.1. We set earnings (w before

retirement) to $ 27,928, according to the earnings of single men in 2010 (BLS, 2012). In real

terms, labor income of single men in 2019 were only insignificantly higher (BLS, 2020) and also
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life expectancy of men remained virtually the same in 2019 (NVSS, 2022). The replacement

rate (pension income divided by labor income) is set to 0.47 (OECD, 2013).

A potentially important factor in individual aversion to infectious disease prevention is vac-

cination. Vaccinations against influenza increase with age, but are generally less common than

vaccinations against Covid. In the 2010–2020 period, coverage was around 35 percent in the

18–49 years group, around 50 percent in the 50-64 years age group, and around 70 percent in

the 65+ age group (CDC, 2023a). We capture this behavior by setting a value of the ω such

that the benchmark American does not protect against infections in young adulthood, chooses

around 50 percent protection in middle age and reaches almost full protection after age 65.

We calibrate the parameters A and β with historical data, as explained in detail in the

Appendix. The third phase of the U.S. epidemiological transition reached asymptotically its

end around the year 1960 and the treatment of chronic diseases took off with the Cardiovascular

Revolution in the 1960s. We therefore assume a level of A close to zero in 1940 and obtain the

value of A(2010) that explains the increase of life expectancy at age 20 from 1950 to 2010 (of

about 5 years). The parameter β is set such that the epidemiological transition, i.e. the decline

of infectious disease mortality from 1850 to 1960 explains the increase of life expectancy at 20

from 1850 to 1950 (of about ten years). For these calculations, we also feed the historical series

for wage growth and public health spending into the model. The model thus fully explains the

historical path of adult life expectancy.

In addition, we also target the following stylized facts: (a) The accumulation health deficits

over a lifetime for American men (as estimated by Abeliansky et al., 2020). (b) The actual

survival curve for American men (obtained from estimates in Strulik and Vollmer, 2013), im-

plying a life expectancy at 20 of 57.1 years (expected death at 77.1 years), which was the life

expectancy of a 20-year-old American male in 2010 (NVSS, 2014). (c) The health care expen-

diture of American men in 2010 at the age of 30, 50, and 70 (data from MEPS, 2010) and

age 85 (data from De Nardi et al., 2016). (d) The age profile for deaths from lower respiratory

infection for U.S. males, as obtained from the Global Burden of Disease Study (Vos et al., 2020).

This calibration target takes into account that even before Covid lower respiratory infections

(including pneumonia, bronchitis, and influenza) were by far the most common cause of death

from infectious diseases in the U.S. (Armstrong et al., 1999).

Table A.1 in the Appendix shows the calibrated parameter values. The estimated value of

ν = 3.2 implies that infectious diseases mortality increases with increasing frailty somewhat

steeper than chronic disease mortality (ψ = 2.8). The estimated value of σ = 1.01 implies that

the intertemporal elasticity of substitution is close to unity (the utility function is close to log-

form), a usual assumption in economics that is also supported in quantitative studies (Chetty,

2006; Layard et al., 2008).

The predicted life cycle trajectories for the benchmark American are shown by blue (solid)

lines in Figure 2 and circles show the targeted data. The upper left panel shows the evolution

of health deficits, the upper right panel shows the infectious disease mortality in percent, the

lower left panel shows the survival probability and the lower right panel shows the evolution of

total health expenditure, H ≡ πhh+ πpp. In line with the evidence compiled in De Nardi et al.
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Figure 2. Calibrated Model Pre-Covid: Health Outcomes
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Blue (solid) lines: model prediction for benchmark individual (ω = 0.03; circles: targeted data. See text for
details. Green (dash-dotted) lines: individual with no protection aversion (ω = 0). Red (dashed) lines: individual
with strong protection aversion (ω = 2.0).

(2016), health care expenditure (net of expenditure for long-term care) reaches a plateau around

age 85.

The predicted protection from infectious diseases is shown by the blue (solid) line in Figure

3. There is no protection until age 27, after which protection increases with age (that is with

vulnerability to severe infections) and almost full protection is reached after age 65. The health

outcomes for an individual with no protection aversion is shown by green (dash-dotted) line in

Figure 2 and 3. Although the individual shows significantly more protective efforts at a young

age, the health outcomes differ only slightly from the benchmark case. This is so because at

young ages the probability of severe infection is very low irrespective of protection effort. This

feature changes for the elderly. Red lines in Figure 2 and 3 show health outcomes and protection

for an individual with strong protection aversion (ω = 2). The individual starts protecting only

at age 70 when there is already a significant probability of severe infection. As a result, infectious

disease mortality is much higher, implying faster aging and earlier death.

4. Calibration of the Covid-19 Pandemic

In contrast to endemic diseases, pandemics are characterized by a high and unstable number

of infected individuals and are therefore best conceptualized as shocks in the life cycle model.

Eventually, when infections converge to a low trendless value, the disease becomes endemic or

disappears. With respect to Covid, there seems to be widespread agreement among scientists

that the disease will not disappear (Phillips, 2021). Instead, it converges to an endemic state in

which it continues to contribute to deaths from infections.
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Figure 3. Calibrated Model Pre-Covid: Endogenous Protection Effort by Age
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Blue (solid) line: model prediction for benchmark (ω = 0.03). Green (dash-dotted) line: individual with no
protection aversion (ω = 0). Red (dashed) line: individual with strong protection aversion (ω = 2.0). Protection
is obtained as af(p) with f(p) = 1− exp(−p).

We begin the calibration of the Covid pandemic by considering its end. We assume that

at the endemic state protection against Covid is as good as it is against influenza. Formally,

denoting by a(x) the state of the protection technology x years since the onset of the pandemic,

we assume a(∞) = 0.85, which equals the previously calibrated value. Moreover, we assume

that the long-run Covid death rate equals the death rate from influenza, i.e. 0.0002 percent

(American Lung Association, 2015). The targeted mortality rate from infections in our model,

mI , thus increases minimally from 0.078 percent, as implied by the benchmark calibration in

Section 3, to 0.0782 percent at the new steady state. This basically means that disease severity

b converges from above to reach almost its pre-pandemic value (of 2.2).

Figure 4. Infectious Disease Mortality
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The figure shows the age-specific male mortality rates for lower respiratory diseases 2019 (blue)
and for Covid-19 and lower respiratory diseases combined in 2020 (red). Circles show the targeted
data (from Vos et al., 2020, and CDC, 2023b) and solid lines the prediction of the calibrated
model. Stars show the combined mortality rate in 2022 and the dashed line shows the model
prediction under the benchmark speed of the pandemic (halftime of 2.5 years).

At the beginning of the pandemic, however, the disease environment was much more infectious

and the protection technology was substantially weaker. We calibrate the values of a(0) and

b(0) such that the model prediction fits the age-specific Covid mortality rates for men in 2020.
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The CDC (2023b) reports age-specific mortality rates for the U.S. population as well as gender-

specific mortality rates. To obtain our calibration targets, we multiply the age-specific mortality

rates with the average ratio of the Covid mortality rate of males (which was 1.25). In Figure 4,

the blue line shows the calibrated pre-Covid mortality rate and the blue circles show the pre-

Covid mortality rate from lower respiratory infections (from Vos et al., 2020). The red circles

show the aggregate infectious disease mortality rate in 2020 (Covid + lower respiratory). The

solid red line shows the model prediction for 2020. Notice that the introduction of the new

disease shifts the mortality rate upwards but leaves the gradient with respect to age unchanged.

Infectious disease mortality increases at a rate of νµ = 12 percent per year of age, meaning

that it is increasing slightly faster than all-cause mortality, consistent with the observations of

Goldstein and Lee (2020).

For simplicity, we assume a smooth path of the transition to the endemic state. This means

that we abstract from the cyclical pattern of the disease caused by the season and the arrival

of new mutants of the virus (these features could be added without providing further insights).

We calibrate the path of protection and treatment technology using the logistic function

a(x) = a(0) + [a(∞)− a(0)]
[
1− exp(−x/ζ)2

]
(12)

where x is the number of years since the onset of the pandemic. We assume that the disease

environment evolves inversely proportional to medical technology b(x) = b1(1 − a(x)) + b2.

The parameter ζ determines the half-life of the pandemic (i.e. the time at which half of the

transition to the endemic state is reached). The parameters b1 and b2 are then determined

by the targeted initial and final state of the transition, b1 ≡ (b(0) − b(∞)/(a(∞) − a(0)) and

b2 = b(0)−b1(1−a(0)). We calibrate ζ such that the model prediction for the year 2022 provides

the best fit of the actual infectious disease mortality rates in 2022. This leads to the estimate

ζ = 3.0, which implies a half-life of the pandemic of 2.5 years. The calibrated course of the

pandemic is shown by blue solid lines in Figure 5. Red dashed lines show an alternative scenario

with a half-life of the pandemic of 4 years, which we use for sensitivity analysis.

The model’s prediction of age-specific mortality rates for 2022 is shown by the dashed line in

Figure 4 and the underlying data for 2022 are shown by stars. The Covid mortality rate is again

taken from CDC (2023b) and computed as described above. A halftime of 2.5 years seems to

capture the actual age distribution of infectious disease mortality in 2022 quite well.

5. Results

5.1. Basic Model. Figure 6 shows the health outcomes of the benchmark person without the

pandemic (blue lines) and in the event that the pandemic occurs unexpectedly at the age of

75 (red lines). At this age, the individual has already developed many health deficits (pre-

conditions) such that the probability of severe infection and the infectious mortality increases

markedly. Although the individual increases protective efforts in response to the disease, ac-

tual protection decreases due to initially low protective technology. Also health expenditure

rises above benchmark level due to the higher incentive to stay in good health during the pan-

demic. Figure 6 also shows a small increase of chronic diseases due to the feedback effect from

inflammaging.
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Figure 5. Course of the Pandemic

0 2 4 6 8

years since onset of pandemic

0.55

0.6

0.65

0.7

0.75

0.8

0.85

e
ff
ic

a
c
y
 o

f 
p
ro

te
c
ti
o
n
/t
re

a
tm

e
n
t 
(a

)

0 2 4 6 8

years since onset of pandemic

2

2.5

3

3.5

d
is

e
a
s
e
 e

n
v
ir
o
n
m

e
n
t 
(b

)

The figure shows the calibrated transitional dynamics of infectious disease protection technology
a and the disease environment b during the Covid-19 pandemic. Solid blue lines: benchmark run
(halftime of 2.5 years). Red dashed lines: alternative scenario: 4 years halftime of the pandemic.

Figure 6. Predictions without Covid-19 and with Covid-Shock at Age 75
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Blue solid lines: model predictions without Covid-19 pandemic). Red dashed lines: predictions when Covid-
19 pandemic starts at age 75; halftime 2.5 years. H = πpp+ πhh.

The main results from comparative dynamic analysis are reported in Table 1 in form of simple

summary statistics. For each case we show results when the considered individual that has been

hit by the unanticipated pandemic is compared with (i) the own self without the pandemic

and (ii) the benchmark American experiencing in the pandemic at the same age. ∆LE shows

the difference in remaining life expectancy from the moment when the pandemic shock occurs.

∆ms+1
I is the percentage point deviation of the infectious disease mortality rate one year after

onset of the pandemic and ∆ms+10
C is the percentage point deviation of the chronic disease
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mortality rate ten years after onset of the pandemic, i.e. at the new endemic state of the disease

environment. (∆D/D)+10 is the relative change of chronic health deficits ten years after the

onset of the pandemic; ∆h̃/h̃ is the relative change in remaining lifetime health expenditure

h̃(τ) ≡
∫ T
τ S(t)H(t)dt (with H = πhh+ πpp), when the pandemic hits at age τ .

Case 1 of Table 1 shows health statistics for the benchmark individual considered in Figure

6. According to the first line, the pandemic is predicted to increase the mortality rate from

infections one year after its outbreak at age 75 by 0.52 percentage points, i.e. mI increases

more than fourfold compared to the pre-Covid year (see Figure 6). The increased exposure to

infections leads to faster aging. Ten years later, the individual has developed 2 percent more

health deficits and chronic disease mortality rate is 0.55 percentage points higher than without

the pandemic. The pandemic reduces life expectancy by about 5 months (0.38 years) for the

benchmark individual. Given the sharp increase in infectious disease mortality, the change in

life expectancy may seem small in absolute terms. It reflects the easily underestimated fact that

even in a pandemic the vast majority of older people die from chronic diseases (see Goldstein and

Lee, 2020, for an extensive discussion of this feature). Expected health investments h̃ decline

somewhat after the pandemic. Since we have already seen in Figure 6 that health investments

H by age increase in response to the pandemic, the result implies that decreasing survival

probability (S) dominates increasing expenditure (H) in their contribution to the aggregate

outcome. Naturally, the summary statistics are all zero when the benchmark individual is

compared with itself (second line of case 1).

With cases 2 and 3 we explore the role of initial health deficits that develop over time until

the pandemic hits (pre-existing conditions). Again, the first lines of each case show the isolated

effect of the pandemic. Individuals endowed with 25 percent more initial health deficits are less

healthy when the pandemic arrives and thus suffer an increase of infectious disease mortality

that is about twice as high as for the benchmark individual. Compared to their own non-

pandemic selves, the life expectancy loss is only slightly higher than in the benchmark case

(∆LE = −0.47 vs. −0.38 years) due to the anyway shorter life expectancy. Cross-individual

comparisons of lifetime outcomes, shown in the second line, however, reveal that chronic health

deficits ten years after the pandemic shock are 35 percent higher and the loss of life expectancy

is 4 years greater. These outcomes are a manifestation of the self-productivity of health deficits

and the interaction between health deficits and the severity of infectious diseases. In case 3, we

consider individuals who are endowed with 25 percent fewer initial health deficits, thus being

substantially healthier when the pandemic arrives at age 75. The pandemic causes infectious

disease mortality to increase by less than for the benchmark individual such that the increase

in chronic disease mortality ten years later is considerably lower. Good health conditions have

protected the individual not only from the direct effect of the Covid pandemic on infectious

disease mortality but also from its indirect effects through inflammaging. Life expectancy is

almost 5 years higher than for the benchmark American.

Case 4 examines the role of strong protection aversion by setting ω = 2 (cf. the red lines

in Figure 2). This individual experiences a considerably higher increase of infectious disease

mortality by 0.9 percentage points due to the pandemic one year after its onset and consequently
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Table 1: Health and Longevity with Covid-19 Pandemic: Comparative Dynamics

case parameter change remark comparison ∆LE ∆ms+1
I ∆ms+10

C (∆D/D)s+10 ∆h̃/h̃

pandemic onset at age 75

1) benchmark own without pan. -0.38 0.52 0.55 2.00 -1.31
bench with pan. 0.00 0.00 0.00 0.00 0.00

2) D0 = 1.25D0,b 25% less healthy own without pan. -0.47 1.18 1.76 2.85 -2.71
bench with pan. -3.93 0.90 13.20 34.70 -33.16

3) D0 = D0,b/1.25 25% healthier own without pan. -0.28 0.24 0.09 0.67 -0.67
bench with pan. 4.84 -0.39 -5.40 -23.81 14.23

4) ω = 2.0 more protection averse own without pan. -0.36 0.89 2.15 3.25 -2.16
bench with pan. -4.08 1.47 14.99 38.31 -72.22

5) w = 1/2wb 50% poorer own without pan. -0.40 0.64 0.69 2.05 -1.54
bench with pan. -1.11 0.16 2.33 7.67 -63.52

6) w = 1/2wb, ω = 2.0 poorer and 4) own without pan. -0.37 1.19 3.75 4.09 -2.70
bench with pan. -5.02 2.04 25.24 56.29 -90.84

7) w = 2wb 100% richer own without pan. -0.35 0.36 0.20 0.93 -1.10
bench with pan. 1.80 -0.20 -2.22 -8.44 199.50

8) w = 2wb, ω = 2.0 richer and 4) own without pan. -0.33 0.65 1.12 2.54 -1.67
bench with pan. -2.53 0.93 6.39 19.09 9.78

9) β = 0 no inflammaging own without pan. -0.12 0.42 0.00 0.00 0.03
bench with pan. 1.67 -0.09 -2.26 -8.63 45.96

10) ζ = 4.9 pandemic half-life 4 years own without pan. -0.67 0.55 0.95 3.39 -2.15
bench with pan. 0.00 0.00 0.00 0.00 0.00

pandemic onset at age 60

11) benchmark own without pan. -0.20 0.11 0.03 0.44 -0.39
bench with pan. 0.00 0.00 0.00 0.00 0.00

12) D0 = 1.25D0,b 25% less healthy own without pan. -0.28 0.19 0.09 0.64 -0.77
bench with pan. -5.44 0.13 2.45 27.98 -27.56

13) ω = 2.0 more protection averse own without pan. -0.21 0.15 0.05 0.57 -0.66
bench with pan. -4.61 0.30 0.89 11.69 -49.49

14) D0 = 1.25D0,b, ω = 2.0 25% less healthy and 13) own without pan. -0.25 0.29 0.37 1.55 -1.20
bench with pan. -9.81 0.90 6.30 57.35 -63.93

15) w = 1/2wb, ω = 2.0 poorer and 13) own without pan. -0.23 0.17 0.07 0.63 -0.74
bench with pan. -5.91 0.38 1.56 19.20 -82.12

The table shows the predicted deviations of health behavior and health outcomes from (i) the outcomes for the
same individual without pandemic shock and (ii) the benchmark individual with pandemic shock. All entries
are measured from shock-age onwards; wb is wage income of the benchmark individual; D0,b is the initial health
deficit state (at age 20) of the benchmark individual; ∆LE is the change in life expectancy at shock age; ∆ms+1

I

is the percentage point deviation of the infectious disease mortality rate one year after onset of the pandemic;
∆ms+10

C is the percentage point deviation of the chronic disease mortality rate ten years after onset of the
pandemic; (∆D/D)+10 is the relative change of chronic health deficits ten years after the onset of the pandemic;

∆h̃/h̃ is the relative change in expected lifetime health expenditure. Relative deviations are shown in percent.

a large increase of chronic disease mortality rate ten years later (more than 2 percentage points).

The loss in life expectancy, however, is similar to the benchmark American. This perhaps

surprising outcome is explained by the fact that the protection-averse individual has anyway

a considerably shorter life expectancy. Compared to the benchmark individual who has low

protection aversion (second line of case 4), however, the protection-averse individual is predicted

to lose about 4 more years of life. At age 85, the individual has accumulated 38 percent more

health deficits and faces a 15 percentage point higher mortality rate. In other words, the vast

majority of protection averse individuals is already dead before age 85.

Cases 5 and 6 show that poor individuals, when compared to their non-pandemic selves, are

similarly affected by the pandemic as the benchmark individual in terms of life expectancy and

health deficits ten years after the pandemic shock. In cross-comparison with the benchmark
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(second lines), however, their life expectancy is about one year shorter. The differential effect

is explained by lower health investments of poorer individuals (last column in Table 1). An

important conclusion is that, with and without pandemics, the socioeconomic health gradient

is particularly high if earnings are negatively correlated with the extent of protection aversion.

Cases 7 and 8 again suggest that income does not play a major role in the direct health impact

of the pandemic, but is generally important for mortality risk and morbidity through its impact

on health care spending. A person with twice as much income as the reference person can

expect to live almost two years longer (second line of case 7). Compared to a person with half

the median earnings (case 5), life expectancy is almost 6 years longer. Protection aversion has

less severe consequences for rich people because they can partly compensate for this through

higher health care spending. A strongly protection averse individual with twice the median

earnings is expected to live “only” 2.5 years shorter than the benchmark individual.

With case 9 in Table 1, we eliminate inflammaging (β = 0) in order to understand the impor-

tance of the feedback channel from infectious diseases to chronic health deficits. In this coun-

terfactual experiment, there is by design no effect of the pandemic on ∆ms+10
C and (∆D/D)s+10

(first line). As a result, the pandemic has a much smaller effect on life expectancy (loss of about

six weeks). This means that inflammaging more than triples the impact of the pandemic on

health outcomes. The second line of case 9 measures the lifetime effects of inflammaging. If

there were no inflammaging, the benchmark individual would have 8 percent less health deficits

at age 85 and die 1.6 years later. These results highlight the detrimental health effects of chronic

inflammation that develops from infections.

Case 10 shows that all health outcomes are more severely affected when the pandemic half-

life is 4 years (instead of 2.5). Since the elevated disease mortality is experienced for longer,

the inflammaging effect is stronger and chronic disease mortality ten years later is higher. The

pandemic shortens life expectancy for the benchmark American by 8 months (0.67 instead of

0.38 years).

The second part of Table 1 considers individuals experiencing the pandemic at age 60. While

the qualitative results are the same as before, the short- and long-term effects of the pandemic

are more muted due to the generally better health (compared to health at age 75); e.g. compare

the first line of case 11 with case 1 (∆LE = −0.2 years instead −0.38).

A comparison of case 12 with case 3 highlights that the impact of the pandemic depends on

pre-pandemic health status rather than chronological age. The initially less healthy individual in

case 12 has accumulated about the same level of health deficits by age 60 as the initially healthier

individual in case 3 by age 75. Consequently, both suffer the same loss of life expectancy due to

the pandemic (∆LE = −0.28 years), which is explained by about the same increase of chronic

health deficits ten years later. Interestingly, looking at the second line, we see that the loss in

life expectancy is larger when the pandemic hits at age 60 (∆LE = −5.44 years in case 12)

than when its hits at age 75 (∆LE = −3.93 years in case 3). Also protection aversion has

a larger effect if the individual experiences the pandemic earlier in life (compare case 13 with

case 4) despite the considerably smaller effect of protection aversion on infection mortality in
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younger people. These results reflect the interaction between infections and the self-productive

development of chronic health deficits.

Cases 13 and 14 show that strongly protection averse individuals display considerably higher

infectious disease mortality one year after onset of the pandemic and considerably higher chronic

disease mortality ten years after the onset of the pandemic. Compared to their non-pandemic

selves, the pandemic does not seem to play a major role in life expectancy, an outcome which

is again explained by the anyway unhealthier and shorter life of protection averse individuals.

We also see that protection aversion is particularly health-damaging for individuals with pre-

conditions. Bad luck and bad behavior are almost additive in their impact on life expectancy.

As discussed in case 12 the individual loses 5.4 years due to poorer initial health. According to

cases 13 and 14 the individual loses 4.6 years due to poorer protection and 9.8 years when both

risk factors are combined.

Finally, case 15 sheds further light on the socioeconomic health gradient. Whereas the loss in

life expectancy is similar to that of benchmark individual when compared to their non-pandemic

selves, poor persons with protection aversion lose almost 6 years of life expectancy. Moreover, a

comparison with case 6 shows that almost an additional year of life is lost if the pandemic occurs

at age 60 instead of age 75. Again, the self-productive accumulation of chronic health deficits

explains why relatively young individuals suffer more from the pandemic in terms of long-term

health, especially when they are poor and protection averse.

5.2. False Beliefs. The outbreak of the Covid pandemic has confronted humanity with a new

disease and it may seem implausible to assume that everyone was fully informed about the

severity of the pandemic and the medical protection measures. In addition, a significant fraction

of the population held beliefs that were very different from those of official health organizations.

Empirical evidence suggests that such divergent beliefs are related to socioeconomic status. For

instance, van Mulukom et al. (2022) provide a systematic literature review suggesting that

“individuals with lower income tend to hold stronger beliefs in COVID-19 conspiracy theories”

(p. 5). This has greatly affected protection behavior. Similarly, vaccine hesitancy strongly

correlates with beliefs about vaccine efficacy (e.g. Baeza-Rivera, 2021; Lazarus et al., 2022).

Formally, individuals believe that the disease environment is bB and the medical technology is

aB. Replacing, a and b in the first-order and co-state equations (Lemma 1) leads to the solution:

p = max {0,− log(z)} , with z ≡ ω + ϕpπpc
−σ

aBbBDν
[
λS + βϕhπhc−σ

A(1+ηD)δγhγ−1

] (13)

ḣ

h
=

1

1− γ

[
r + θm− ρ+

δηḊ

1 + ηD
+
λ̇D
λD

]
with (14)

λ̇D
λD

= µ− ρ− λS
µA(1 + ηD)δγcσ

ϕhπhh1−γ

[
ξψDψ−1 + (1− aBf(p))bBνD

ν−1
]

+ µηδA(1 + ηD)δ−1hγ − µβ(1− aBf(p))bBνD
ν−1 (15)

λ̇S = λS

[
ρ+ ξDψ + (1− aBf(p))bBD

ν
]
− [u(c)− ωp] . (16)
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The rest of the model remains as specified above. Importantly, the actual law of motion for

survival probability (2) and health deficits (5) are still based on the actual values of a and b.

In the experiments reported in Table 2 we focus on permanently false beliefs (e.g. capturing

the convinced Covid denier).7 Table 2 has a similar structure to Table 1, whereby we focus on a

pandemic shock at the age of 60. In all cases, the individual believes that infections are almost

harmless (bB = 0.05) and protection almost useless (aB = 0.05).8

Case 1 of Table 2 considers the benchmark individual with false beliefs. We see that such

individuals experience a substantially higher infectious disease mortality at the onset of the

pandemic (∆mI = 0.95 compared to ∆mI = 0.11 in case 11 of Table 1). However, compared

to their non-pandemic selves, they do not seem to suffer much from the pandemic in terms

of long-term health outcomes. This observation, which also holds for the other cases (first

lines in Table 2) is again explained by the fact that the pandemic is only a short episode in

the lifetime of individuals and individuals with false beliefs are not protecting themselves from

infections over the whole life cycle. The second lines in Table 2 reveal that false beliefs have

a quite dramatic impact on 60-year olds when we compare the life outcomes with those of the

benchmark person with correct beliefs. For case 1, we find that false beliefs lead to a 6.3 years

shorter life expectancy and 19 percent more health deficits by age 70.

Case 2 shows that more than an additional year is lost if individuals with false beliefs have

only half of benchmark income (∆LE=-7.55). The socioeconomic health gradient is therefore

particularly large if low earnings are correlated with false beliefs.

According to cases 3 and 4, protection aversion increases health disparities, albeit its differ-

ential effect is small compared to Table 1. The reason for this is that false beliefs alone already

reduce protection efforts to a large extent.

Cases 5 and 6 demonstrate that the health impacts of false beliefs are particularly strong

for unhealthy individuals. The interaction of anyway bad initial health and inflammaging is

amplified by insufficient protection. Consequently, in case 5, the frailty index at age 70 is

83 percent above benchmark and life is more than twelve years shorter. If, in addition, the

unhealthier individual has also half of benchmark income, the life expectancy difference to the

benchmark individual rises to 13.2 years (case 6).

5.3. Long Covid. So far, our analysis assumed that the Covid pandemic influenced individual

health solely through an increase in the disease environment and a temporary reduction in

protection efficacy. In other words, for most people the Covid pandemic operated mainly as ‘just

7Effects would be less pronounced if initially ill-informed rational individuals updated beliefs. They would be
more pronounced if individuals assumed that also parameter β (measuring the inflammaging effect of infectious
diseases) is lower than the actual value, in addition to false beliefs about of a and b.

8We omit the cases of belief in absolutely harmless infections (bB = 0) and absolutely useless protection
(aB = 0) for computational reasons. We also abstain analyzing the effects of false beliefs of a and b separately,
as beliefs in inferior protection technology and harmless infections are correlated. We checked though, that the
magnitude of the effects on e.g. life expectancy in Table 2 are mainly driven by the false belief bB = 0 < b.
Noteworthy, a false belief aB = 0 < a in isolation gives an incentive to invest in health (i.e. health input h is
decreasing in aB while protection effort p is decreasing). This is because the perceived effect of higher frailty on
infectious disease mortality risk is higher, the lower the perceived efficacy of the protection technology, according
to eq. (4).
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Table 2: False Beliefs: Comparative Dynamics

case parameter change remark comparison ∆LE ∆ms+1
I ∆ms+10

C (∆D/D)s+10 ∆h̃/h̃

pandemic onset at age 60

1) own without pan. -0.20 0.95 0.06 0.54 -0.85
bench with pan. -6.29 0.85 1.54 18.89 -82.45

2) w = 1/2wb poor individual own without pan. -0.22 1.06 0.08 0.60 -1.09
bench with pan. -7.55 0.96 2.28 26.34 -94.16

3) ω = 2.0 protection averse own without pan. -0.20 0.95 0.06 0.54 -0.85
bench with pan. -6.57 0.85 1.51 18.52 -83.85

4) ω = 2.0, w = 1/2wb prot. averse and poor own without pan. -0.22 1.06 0.08 0.60 -1.09
bench with pan. -7.83 0.97 2.26 25.95 -94.62

5) D0 = 1.25D0,b less healthy own without pan. -0.30 2.49 0.68 1.88 -1.78
bench with pan. -12.30 2.40 10.95 82.71 -90.23

6) D0 = 1.25D0,b, w = 1/2wb less healthy and poor own without pan. -0.31 2.88 1.34 3.00 -2.34
bench with pan. -13.19 2.80 14.43 98.36 -96.85

The table shows results for individuals believing that infections are almost harmless (bB = 0.05) and protection is
almost useless (aB = 0.05). Predicted deviations of health behavior and health outcomes are shown in comparison
to (i) the outcomes for the same individual without pandemic shock and (ii) the benchmark individual with correct
believes under the pandemic shock. All entries are measured from shock-age onwards; wb is the wage income of
the benchmark individual; D0,b is the initial health deficit state (at age 20) of the benchmark individual; ∆LE
is the change in life expectancy at shock age; ∆ms+1

I is the percentage point deviation of the infectious disease

mortality rate one year after onset of the pandemic; ∆ms+10
C is the percentage point deviation of the chronic disease

mortality rate ten years after onset of the pandemic; (∆D/D)s+10 is the relative change of chronic health deficits

ten years after the onset of the pandemic; ∆h̃/h̃ is the relative change in expected lifetime health expenditure.
Relative deviations are shown in percent.

as another influenza’. A sizable minority of the population, however, responded to infections

with a previously unseen severe accumulation of chronic health deficits. This response is best

known as Long Covid syndrome rather than under its medical term post-acute sequelae of

Covid-19 (PASC).

Long Covid is characterized by a large number of symptoms such as extreme fatigue, mem-

ory problems, headaches, sleep problems, depression, digestive symptoms, and a long list of

pulmonary, cardiovascular, and musculoskeletal illnesses. A recent cohort study considering

80 potential health deficits found that Long Covid affected basically all human organ systems

(Bowe et al., 2023). While hospitalized patients faced a substantially higher risk of Long Covid,

it was shown that the disease affected also about 7 percent of the non-hospitalized population.

The study by Bowe et al. is the first large-scale cohort study to follow individuals for two

years post-infection. It demonstrated a high persistence of the Long Covid attributed health

deficits. Although a two-year observation period is too short to draw firm conclusions, we take

the available evidence of persistence as motivation to model Long Covid as a permanent, lifelong

deterioration in chronic health caused by Covid infection.9

The health deficit model is ideally suited to implement Long Covid in health economic theory.

Specifically, we assume that for Long Covid patients, a Covid infection triggered a spontaneous

9A limitation of the study is that it focuses on a population of elderly men (U.S. veterans of average age 61,
standard deviation 16 years). We are not aware of other long-run cohort studies that report the universe of health
deficits from Covid infections for other population groups.
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and permanent increase of the health deficits index in the year after the infection. This black-

box treatment of Long Covid seems appropriate as long as the actual causes of the disease are

not fully understood. We used the data provided in Bowe et al. (2023, Figure 1 and Supplement

Table 12), constructed a frailty index of 80 health deficits, and computed the relative increase

frailty index of the infected group vs. the non-infected control group. We found that for [0.5, 1,

1.5, 2 ] years after infection the frailty is by factor [1.62, 1.29, 1.23, 1.25 ] higher in the infected

group. After an initial decline, the frailty index is thus permanently around 25 percent above

the non-pandemic level.

Figure 7. Long-Covid-Shock at Age 60
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Blue solid lines: benchmark model predictions (no Covid pandemic). Red dashed lines: Long
Covid; pandemic starts at age 60; halftime 2.5 years.

The red (dashed) lines in Figure 7 show the life cycle trajectories when getting Long Covid

(i.e. health deficits increase by 25 percent) at age 60 at the onset of the pandemic with a half-life

of 2.5 years. Blue lines show the unshocked benchmark case. The most remarkable result is

the prediction that the deviation of health deficits from benchmark widens after the end of the

pandemic. This sad result is an expression of the self-productivity of health deficits implied by

the deficit-accumulation process (5) discussed in sections 1 and 2. Applied to Long Covid, health

deficits that have emerged as symptoms of Long Covid (e.g. fatigue, headaches, stomach and

muscle pain or shortness of breath) lead to the earlier onset of other age-related health deficits

(cardiovascular or cognitive diseases) via direct biological pathways or through the inability to

exercise or cognitive activity.

The results of our comparative dynamics analysis are shown in Table 3, which is again con-

structed as Table 1 and 2 with the difference that the second line of each case now compares

with a benchmark individual who is also suffering from Long Covid (LC). When getting Long

Covid at age 75, the benchmark individual can expect a 4 years shorter life (case 1 of Table

3, first line). The life expectancy loss caused by the pandemic is 10 times higher than without
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Table 3: Health and Longevity with Long Covid: Comparative Dynamics

case parameter remark comparison ∆LE ∆ms+1
I ∆ms+10

C (∆D/D)s+10 ∆h̃/h̃

Long Covid at Age 75

1) benchmark own without LC -4.00 1.19 11.51 32.31 -22.41
bench with LC -0.00 0.00 -0.00 -0.00 -0.00

2) ω = 2.0 protection aversion own without LC -2.82 2.65 10.52 14.41 -28.24
bench with LC -3.00 2.55 12.30 17.77 -69.73

Long Covid at Age 60

3) benchmark own without LC -5.53 0.27 2.35 27.32 -14.79
bench with LC. -0.00 0.00 -0.00 -0.00 -0.00

4) ω = 2.0 protection aversion own without LC -4.57 0.64 3.57 29.93 -18.69
bench with LC -3.53 0.63 2.09 13.79 -47.07

Long Covid at Age 45

5) benchmark own without LC -6.58 0.05 0.58 25.28 -9.10
bench with LC. -0.00 0.00 -0.00 -0.00 -0.00

6) ω = 2.0 protection aversion own without LC -6.26 0.12 0.70 28.78 -13.42
bench with LC -4.62 0.12 0.14 3.98 -33.99

7) w|age>45 = wR LC-induced retirement own without LC -6.92 0.05 0.58 25.39 -52.09
bench with LC -0.34 0.00 0.00 0.09 -47.29

The table shows the predicted deviations of health behavior and health outcomes from (i) the outcomes for the
same individual without pandemic shock and (ii) the benchmark individual with pandemic shock. All entries are
measured from shock-age onwards. The index bench identifies the calibrated benchmark value of initial health
deficits; ∆LE is the change in life expectancy at shock age; ∆ms+1

I is the percentage point deviation of the

infectious disease mortality rate one year after onset of the pandemic; ∆ms+10
C is the percentage point deviation

of the chronic disease mortality rate ten years after onset of the pandemic; (∆D/D)+10 is the relative change of

chronic health deficits ten years after the onset of the pandemic; ∆h̃/h̃ is the relative change in expected lifetime
health expenditure. Relative deviations are shown in percent.

getting Long Covid and the increase in infectious disease mortality at the onset of the pandemic

is more than twice as high (cf. case 1 of Table 1). Ten years later, the initially 25 percent

increase of health deficits has widened to 32 percent, leading to an increase in mortality from

chronic diseases that is 11 percentage points higher.

Protection-averse individuals lose “only” 2.8 years of life due to Long Covid compared to

their non-pandemic selves (case 2, first line). Again, the result is explained by the fact that

life expectancy at 75 is anyway short with protection aversion. Cross-comparison with the

benchmark individual shows that protection-averse individuals lose 3 years (case 2, second line).

Recalling from case 4 of Table 1 that the protection-averse individual without Long Covid can

expect to live 4 years less in a pandemic, the combined loss of life expectancy from protection

aversion and Long Covid is therefore 7 years.

The most remarkable result in Table 3 is that, in contrast to the ‘normal’ Covid infection

from Table 1, the impact of the pandemic is greater when it occurs at younger age. The reason

is again the cumulative and progressive nature of health deficit accumulation. If Long Covid

occurs at a young age, the self-productive nature of health deficit accumulation has more time

to unfold. The life expectancy loss for the only mildly protection averse benchmark individual

caused by the pandemic is 5.5 years when getting Long Covid at age 60 (case 3, first line),

compared to 4 years when the pandemic starts at age 75, and 6.6 years when it occurs at age 45

(case 5, first line). Protection aversion of Long Covid patients leads to a 6 months higher loss

in life expectancy when the pandemic starts at age 60 rather than age 75 (3.5 vs. 3.0 years; see
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case 4, second line) and the loss is 1.6 years higher when the individual gets Long Covid already

at age 45 (case 6, second line).

Finally, in case 7, we assume that getting Long Covid causes early retirement (w declines

to wR at age 45 when the pandemic shock occurs, i.e. 47 percent of earnings during work life).

The income loss reduces health expenditures. Consequently, the pandemic causes for individuals

getting Long Covid at age 45 a loss in life expectancy of 6.9 years rather than 6.6 years without

early retirement (first line of case 7). The income loss also causes an about 50 percent decline

of health investments for Long Covid patients, which leads to a further longevity loss of about

4 months (second line).

6. Conclusion

In this paper, we have examined short-run and long-term consequences of the Covid pan-

demic for biological aging and infectious and all-cause mortality. Additionally, we highlighted

socioeconomic disparities in health outcomes associated with health behaviors and initial health

conditions. Our calibrated model is empirically founded in modern medical research and reflects

(i) the self-productive nature of health deficit accumulation and (ii) the interaction between

infections and chronic health deficits.

We have produced two sets of results. First, we compared individuals of different types with

their own non-pandemic selves. These counterfactual computational experiments identified the

individual health impact of the pandemic. Second, we computed the lifelong health effects

relative to the benchmark individual, conditional on income, initial health deficits, protection

aversion, and beliefs.

We have shown that the interaction of infections and chronic diseases implies that the pre-

dicted long-term health consequences of the pandemic for the average American are about three

times larger than the direct health effects (that ignore the inflammaging channel). While the

within-individual effects of the pandemic are relatively similar for all considered individuals we

found large differences in lifetime health outcome across individuals. We have shown that so-

cioeconomic differences in morbidity and life expectancy are strongly influenced by attitudes

and misconceptions that lead to differential disease protection behavior. Protection aversion

and false beliefs about the health risks of infection or the usefulness of protective measures are

particularly harmful to low-income individuals because they have fewer resources to counteract

the consequences of their behavior through increased investments in chronic disease preven-

tion and repair. Because lower-income individuals have been shown to be, on average, more

protection-averse and prone to false beliefs, our results suggest that the pandemic has caused

and will continue to cause major socioeconomic disparities in chronic health conditions.

Furthermore, and somewhat surprisingly at first glance, we found that the health inequalities

explained by the model between people with different levels of protection aversion, initial health

deficits or income are more pronounced in middle-aged people at the time of the pandemic shock

than in older people. Likewise, we have shown that the loss of health and life expectancy due

to Long Covid, which is significant in all age groups, is even greater if the disease has occurred

at a relatively young age. The reason for these results is the self-productivity of health deficits,
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which means that a health shock entails a greater accumulation of further health deficits when

it is experienced earlier in life.

Finally, our analysis suggests that the pandemic-induced recession of 2020-2021 was likely not

the greatest economic cost of the Covid pandemic. The greatest cost may be experienced in the

long-run through the permanent loss of productivity induced by the premature withdrawal of

the Long Covid patients from the labor market and the future challenges to health insurance

systems due to the faster development of chronic health deficits in the general population.

However, it should be noted that the future outlook could be less bleak for several reasons.

The sample population of the currently available long-term studies of Long Covid was exposed

to infection until the end of the year 2020, i.e. before vaccination became widely available.

Other recent studies found that vaccination significantly reduces the risk of developing Long

Covid (Byambasuren et al., 2023) as well as the average frailty increase in Long Covid patients

(Al-Aly et al., 2022). Furthermore, the future may bring effective treatment for Long Covid

patients, or some manifestations of Long Covid symptoms may prove to be less persistent than

thought today.
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Appendix A: Proof of Lemma 1

To prove Lemma 1, i.e. the solution of the life cycle problem, we first use (1)–(6) to write the

current-value Hamiltonian as:

H = S [u(c)− ωp] + λk [w + (r + θm)k − c− ϕhπhh− ϕpπpp]

+ λDµ
[
D −A(1 + ηD)δhγ + β(1− af(p))bDν − ϵ

]
− λSS

[
ξDψ + (1− af(p))bDν

]
, (A.1)

where λS , λD, and λk are co-state variables associated with differential equations (2), (5), and

(6), respectively.

Using u(c) = c1−σ−1
1−σ and f(p) = 1 − e−p, the first-order conditions for controls c, h, p and

co-state equations for state variables k, D, S are:[
∂H
∂c

= 0 ⇔
]
Sc−σ = λk (A.2)[

∂H
∂h

= 0 ⇔
]
− λkϕhπh = λDµA(1 + ηD)δγhγ−1 ⇔ −λD =

ϕhπh
µγ

λkh
1−γ

A(1 + ηD)δ
> 0 (A.3)[

∂H
∂p

=

]
− Sω − λkπpϕp − λDµβabD

νe−p + λSSabD
νe−p ≤ 0 with = for p > 0 (A.4)[

∂H
∂k

=

]
λk(r + θm) = λkρ− λ̇k ⇔ − λ̇k

λk
= r + θm− ρ (A.5)[

∂H
∂D

=

]
λDµ− λDµηδ(1 + ηD)δ−1Ahγ + λDµβ(1− af(p))bνDν−1−

λSS
[
ξψDψ−1 + (1− af(p))bνDν−1

]
= λDρ− λ̇D (A.6)[

∂H
∂S

=

]
u(c)− ωp− λS

[
ξDψ + (1− af(p))bDν

]
= λSρ− λ̇S . (A.7)

Inserting (A.2) and (A.3) in (A.4) we obtain the solution for infectious disease protection (7).

From log-differentiating (A.2), substituting Ṡ/S = −m and using (A.5), we obtain the Euler

equation (8). Log-differentiating (A.3) by noting that −λD > 0 and substituting (A.5) confirms

the equation of motion for health investments to prevent and treat chronic diseases (9). Sorting

terms in (A.6) implies

λ̇D
λD

= ρ− µ+
µηδAhγ

(1 + ηD)1−δ
− µβ(1− af(p))bνDν−1 +

λSS
[
ξψDψ−1 + (1− af(p))bνDν−1

]
λD

.

(A.8)

Substituting λD from (A.3) and λk from (A.2) confirms the equation of motion for the shadow

price of health deficits (10). Finally, sorting terms in (A.7) we obtain the law of motion for the

shadow price of survival (11). This concludes the proof of Lemma 1.

Appendix B: Calibrating the Epidemiological Transition

Figures 2 and 3 replicate our calibration of the epidemiological transition (Strulik and Gross-

mann, 2024) for the model structure of the present paper. The results are very similar.
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Figure A.1 The Epidemiological Transition
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Table A.1: Parameter Values

Parameter Meaning Value

µ natural rate of aging 0.034
A medical technology (scale) 0.0008
γ medical technology (curvature) 0.25
δ medical technology (curvature) 1.6
η medical technology (curvature) 5.1
β inflammaging coefficient 7.5
ν immunosenescence coefficient 3.2
b infectious disease prevalence 2.2
a infectious disease technology 0.85
ϵ aging residual -0.0004
ω disutility from protection 0.03
σ inverse of the IES 1.01
ρ time preference rate 0.06
r interest rate 0.06
w wage income 27,928
ϕh,ϕp coinsurance ratio 0.53
πh unit price health care (chronic) 1.88
πp unit price health care (infection) 115
ψ survival function (chronic) 2.8
ξ survival function (chronic) 3.8
θ share annuitized wealth 1.0
D(0) initial health deficits 0.036
D(T ) final health deficits 0.55
k(0) = k(T ) initial and final wealth 0.0
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