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Abstract 

Policymakers regularly rely on public financial institutions and government offices to provide 
loans for clean energy projects. However, both the market failures that public loan provision 
addresses and its role in a policy strategy that also features instruments directly addressing 
environmental and innovation externalities remain unclear. Here, we develop a model of banks 
providing loans for clean energy projects that use a novel technology. This early-stage lending 
builds up banks’ financing experience, which spills over to peers and hence is undersupplied by 
the market. In addition to this cooperation problem, bankability requirements can result in a 
coordination failure whereby the banking sector remains stuck in an equilibrium with no loans for 
the novel technology even when a preferable equilibrium with loans exists. Public provision of 
early-stage loans is inferior to de-risking instruments in solving this cooperation problem because 
it crowds out private banks’ loan provision. However, public loan provision—ideally in 
combination with additional de-risking measures to support banks in internalizing learning 
spillovers—can more effectively resolve the coordination failure by pushing the banking sector 
to a better equilibrium. 
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1 Introduction

To mitigate dangerous climate change, investments in clean energy technologies must grow

considerably (IEA, 2022; IPCC, 2022; Klaaßen & Steffen, 2023). The magnitude of the

necessary investments requires the mobilization of private-sector financing, including large

amounts of debt for capital-intense technologies such as renewables (Polzin et al., 2019;

Waidelich & Steffen, 2024). To achieve clean energy investment at a societally optimal

level, economic theory suggests that research subsidies and carbon pricing be combined

such that the effect of knowledge spillovers and climate externalities are internalized

(Acemoglu et al., 2012; Borenstein, 2012). Further, technology-specific subsidies can be

an alternative if carbon pricing is not available (Abrell et al., 2019). In practice, however,

policymakers regularly opt for financial measures such as interest rate subsidies or credit

guarantees to de-risk clean energy financing and also provide debt finance directly to

projects through public financial institutions or offices.

These financial measures are typically used in addition to other policy instruments

that already address the climate externality. In the United States, for example, the

Department of Energy’s Loan Programs Office provides loans and credit guarantees to

utility-scale clean energy projects, and under the Inflation Reduction Act, the U.S. En-

vironmental Protection Agency recently awarded USD 5 billion to create a new national

green bank (Coalition for Green Capital, 2024). In Europe and other OECD countries,

state investment banks are remarkably active in renewable energy lending, particularly

for higher-risk technologies such as offshore wind, where they have featured in over 70%

of all the debt financing deals of the past two decades (Waidelich & Steffen, 2024). In

addition, an increasing number of governments around the world have created public

green banks that provide loans and de-risking measures (Whitney et al., 2020).

Despite the widespread use of public loan provision for the clean energy transition, the

economics literature rationalizing adding public loan provision to policy strategy is sparse

and provides little guidance on when to favor the direct market activity of public banks

over de-risking instruments. Previous sector-agnostic studies predominantly discuss the

two policies in light of credit rationing arising from adverse selection, screening costs,

or unconsidered social externalities (Eslava & Freixas, 2021; Hainz & Hakenes, 2012;

Williamson, 1994); moral hazard for borrowers (Arping et al., 2010) and cyclical credit

crunches (Eslava & Freixas, 2021; Mazzucato & Penna, 2016); or adverse incentives due

to legacy portfolios (Degryse et al., 2020; Minetti, 2011). Far less emphasis has been

placed on financiers learning about novel clean energy technologies through lending. By

contrast, learning-by-doing processes at the technology level are prevalent in economic

theory (Thompson, 2012) and numerical modeling (Gillingham et al., 2008). They are

typically modeled via unit costs that decrease in cumulative production experience, which

potentially spills over to competitors (Lindman & Söderholm, 2012; Schauf & Schwenen,

2021; Spence, 1981).



Empirical work has extended these concepts to clean energy financing, showing that

increases in cumulative financing and financiers’ corresponding experience have coincided

with substantial reductions in the cost of capital for solar photovoltaics and onshore

wind (Egli, 2020; Egli et al., 2018). However, we lack a theoretical understanding of

what this implies for optimal policy to mobilize financing for the clean energy transition.

In particular, the existing literature lacks clarity on the need for financial policy measures

if other policy interventions already sufficiently address technology-level and consumer-

level market failures, such as climate externalities, knowledge spillovers, or lack of demand

due to bounded rationality (Borenstein, 2012; Popp, 2019).

To address this gap, this paper investigates the potential and limitations of public

loan provision and de-risking measures by developing a model of loans for clean energy

projects using a novel technology that the banking sector is not (yet) familiar with. This

setup accurately depicts the project loan market in key sectors for the energy transi-

tion, such as offshore wind and energy storage, in many regions. In the model, risky

early-stage loans build up the banking sector’s experience with the novel technology and

thus improve future risk-adjusted returns by lowering uncertainties and transaction costs.

Hence, early-stage credit to the novel technology causes a positive externality to other

lenders, resulting in two different market failures. First, uninternalized learning spillovers

imply a cooperation problem between banks and lead to an under-supply of early-stage

credit. Here, using public loan provision to address this problem is inferior to de-risking

instruments because public loans reduce the willingness of commercial banks to incur

early-stage risk themselves and therefore crowds out private loan provision. Second, min-

imum risk–return requirements for a project to be “bankable” can result in a coordination

failure where the banking sector remains stuck in a Nash equilibrium with no loans for

the immature technology, despite the fact that a better market equilibrium in which the

novel technology receives loans is, in principle, possible. In this case, a sufficiently sized

public loan provider, such as a public green bank, can push the banking sector to a bet-

ter equilibrium, particularly if combined with additional de-risking policies to internalize

learning spillovers to other banks.

This paper extends the argument by Rodrik (1996) that “when multiple equilibria

exist, the role of government policy is to move the economy out of the bad equilibrium

into the good one” to the case of financial policies and public loan provision to novel

technologies. Importantly, our model does not require any market failures on the tech-

nology and consumer level to justify the policy intervention. The model thus clarifies the

role of public loan provision and de-risking measures in a climate policy strategy that

already features instruments such as carbon pricing and research and development subsi-

dies. Our work expands the theoretical understanding of optimal climate policy strategies

and indicates under which conditions different financial measures should be considered.

The remainder of this paper is structured as follows. Section 2 summarizes the ex-
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tant literature and clarifies the research gap we address through our model, the general

framework of which is introduced in Section 3. Section 4 compares the socially optimal

loan financing amount to the market outcome without policy intervention. Section 5 in-

troduces a de-risking instrument and public loan provision as two stylized policy options

to address potential market failures. Finally, Section 6 concludes with a discussion of the

policy implications of our findings.

2 Literature review

Clean energy technologies require substantial upfront financing due to their high capital

intensity (Borenstein, 2012). Therefore, their cost-competitiveness for large-scale deploy-

ment strongly depends on the cost of capital (Hirth & Steckel, 2016; Stocks, 1984), which

can be reduced substantially through debt financing (Schmidt et al., 2019)—particularly

if higher leverage ratios can be obtained by using project finance (Steffen, 2018). How-

ever, this requires bank loans when technologies and firms have not matured sufficiently

to tap bond markets (Berger & Udell, 1998), making accessible credit key for the ramp-up

of these technologies. However, credit may be rationed due to financial market frictions

(Stiglitz, 1993) and remaining externalities at the technology level (Popp, 2019). In-

deed, there is empirical evidence that emerging clean energy technologies face financing

constraints (cf. Haas and Kempa, 2023, for an overview).

Modern banking theory has studied the potential of credit guarantees or interest rate

subsidies to mitigate inefficient credit rationing in general (Arping et al., 2010; Hainz &

Hakenes, 2012; Janda, 2011; Minelli & Modica, 2009; Philippon & Skreta, 2012). These

insights on de-risking measures have been extended to the case of low-carbon technologies

(Haas & Kempa, 2023), but there is less theoretical clarity about which role, if any, should

be played by the public provision of loans for clean energy projects. The extant literature

centers primarily on public (green) banks—which typically engage in both loan provision

and de-risking (Eslava & Freixas, 2021; Whitney et al., 2020)—and suggests various

reasons why these institutions may limit the extent of credit rationing for low-carbon

technologies.

One suggestion is that public loan programs and development banks provide counter-

cyclical financing in times of credit crunches (Eslava & Freixas, 2021; Mazzucato &

Penna, 2016). However, this notion has not been empirically confirmed for the energy

sector specifically (Waidelich & Steffen, 2024), and the question remains why economy-

wide credit crunches should be addressed by sector-specific policy interventions instead of

general counter-cyclical fiscal and monetary policy. Studies further cite high risk premia

and discount rates at private banks as a rationale for public loan provision (Lehmann

& Söderholm, 2018; Mazzucato & Penna, 2016). From an efficiency point of view, the

preferences of market players per se cannot represent a market failure. This argument
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requires either the existence of remaining externalities at the technology level or assuming

that the optimal social discount rate is lower than the rate applied by private-sector

financiers. Furthermore, the argument abstracts from well-established reasons why banks

act in more risk-averse ways than other types of investors, such as regulatory capital

requirements or the risk of having to raise external finance due to unexpected deposit

withdrawals (Diamond & Dybvig, 1983; Froot & Stein, 1998). Banks, unlike equity

investors, cannot participate in any project upsides and hence focus on mitigating default

risks.

Another strand of literature argues that novel technologies threaten the value of banks’

legacy positions and their information stock in incumbent technologies, calling for new in-

stitutions with clean slates (Degryse et al., 2020; Minetti, 2011). This argument primarily

motivates sufficient anti-trust policies for the banking sector and underlines the potential

benefit of a new entrant bank. However, it provides little reason why the new entrant

bank should be public, particularly since dedicated green commercial banks are often

important first movers for clean energy technologies (Zhang, 2020). More sector-agnostic

studies have motivated the need for public loan provision based on two issues: first,

the existence of projects with a negative net present value that are socially desirable—

although, in the case of clean energy, this might be better addressed through first-best

policies outside the financial sector; and second, information asymmetries in the form of

inefficiently low screening efforts when borrower types are unknown to banks, screening is

costly, and project screening outcomes are observable to competitors (Eslava & Freixas,

2021; Hainz & Hakenes, 2012; Williamson, 1994).

Similar to this screening benefit argument, Geddes et al. (2018) highlight that, aside

from providing loans and de-risking investments, public green banks often educate mar-

kets on novel technologies and provide strong signals on their economic viability. This

behavior is motivated by the fact that novel technologies are not only subject to techno-

logical learning but also improve their risk–return profile as financing experience accumu-

lates. This is because an expanding credit track record reduces banks’ uncertainty about

the default probability of projects (Egli et al., 2018) and more experienced debt providers

can extract more value from pledged collateral, which reduces losses in the event that a

borrower defaults (Minetti, 2011). More experience will also enable lenders to identify

relevant loan covenants and to reduce the transaction costs per loan since application re-

views can be streamlined and contracts can be standardized (Umbeck & Chatfield, 1982).

In the case of syndicated loans in project finance, the predominant financing structure

for renewable energy technologies (IRENA, 2023; Steffen, 2018), experience further al-

lows for the standardization of deal structures, the conclusion of frame contracts, and

the emergence of proven networks of financiers and financial/technical/legal advisors,

all of which can reduce both transaction costs and necessary risk contingencies (Egli

et al., 2018; Gatti, 2013). These findings from empirical interview studies highlight the
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need for a rigorous theoretical consideration of market failures and the need for policy if

technology- and consumer-level externalities have been sufficiently priced in.

Therefore, we formalize these considerations into a model for bank loans and account

for learning spillovers by building on a recent strand of literature incorporating learning

effects into models of individual investors’ technology investment decisions. In particular,

Della Seta et al. (2012) model a novel technology whose marginal costs decrease in cumu-

lative output and find that optimal investment involves significant initial losses that are

compensated by later-stage gains, making the technology particularly prone to downside

risk. Their model is extended by Sarkar and Zhang (2020), who introduce the option of

debt-financing, which leads to more and earlier investment. They conclude that unless

there are exogenous borrowing constraints, the optimal gearing ratio is higher if costs

decrease faster in cumulative output. Moreover, Way et al. (2019) explore the optimal

portfolio allocation between investments in two technologies under stochastic learning

rates and risk aversion. Their model produces a trade-off between specializing in one

technology to drive down costs and diversifying to hedge against downsides. It requires

numerical optimization to be solved as the learning feedback introduces multiple local

optima. Finally, Lehmann and Söderholm (2018) review theoretical rationales for renew-

able energy support schemes in a partial equilibrium framework, including technological

learning where second-period costs decrease convexly in first-period output. They suggest

that a subsidy scheme can overcome financial market failures caused by inefficiently high

risk aversion and discount rates by a private investor.

While these previous modeling studies of technology investment decisions take the

perspective of a single equity investor, we study the interplay between multiple debt

providers and include learning spillovers. In doing so, our paper suggests another impor-

tant reason for credit rationing: coordination failure between borrowers to gain sufficient

experience with a novel clean energy technology. In this regard, our work is related

to Haas and Kempa (2023), who explain credit rationing for clean energy technology

firms with information asymmetries and unobservable project characteristics that can be

addressed via de-risking. However, their model does not endogenize risks or financing

experience. Therefore, neither their model nor, to the best of our knowledge, any other

paper formally assesses public loan provision as a policy instrument and its role relative

to de-risking measures in the context of learning effects.

3 General framework

We consider a two-period financial sector model populated by a discrete number N of

banks. Banks are homogeneous and, in each period, face loan applications by projects

using a novel clean energy technology. Here, li,t represents the overall amount of loan

financing granted by bank i in period t, which is financed via deposits. We assume that
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the desired capacity expansion for the new (low-carbon) technology, and hence the total

demand for loans, denoted as D for the first period, is determined exogenously by policy

interventions in the energy sector (e.g., renewable portfolio standards, renewable energy

auctions, or carbon prices). In the second period, the demand for loans increases by an

exogenous factor ψ > 1. To abstract from the issue of banking sector concentration, which

has been studied extensively elsewhere (cf. Freixas and Rochet, 2023, for an overview),

demand is allocated symmetrically across banks, such that

li,1 ∈ [0,
D

N
], li,2 ∈ [0,

ψD

N
] ∀ i = 1, ..., N. (1)

The two-period setup is motivated by two factors: first, the common bifurcation in

financial markets, whereby technologies either are too novel (and hence risky) to attract

debt finance or are already mature enough to attract debt finance (i.e., “bankable”);

second, the fact that deployment in novel technologies, particularly under continued

policy support, can ramp up considerably, which we represent here with the ψ parameter.

In our model, each period should be considered as representing multiple years such that

loans are paid out at the beginning of each period and paid back with interest by its end.

In the first, “early-stage” period, the novel clean energy technology is still financially

immature and hence risky, while its risk–return structure can improve in the second,

“later-stage” period. Therefore, on every unit of early-stage loans li,1, bank i earns the

following risk-adjusted net return

r − c̄− rD (2)

where r denotes the risk-adjusted return that banks can earn on loans at full financial

maturity.1 The primary source of risk is each project’s probability of default, which we do

not model explicitly. Instead, we assume that the risk-adjusted return r is monotonically

increasing in the expected return and monotonically decreasing in the return variance and

the banks’ degree of risk aversion. c̄ represents a strictly positive, constant penalty on

the risk-adjusted return due to financial immaturity, comprised of the risk premium for

the novel technology and the higher screening costs due to a lack of experience assessing

credit applications. rD denotes the rate paid out to compensate deposit holders.

On every unit of later-stage loans li,2, bank i earns the following return

r − c
(
L̃i,1

)
− rD (3)

1Here, we assume that there is no price feedback between the aggregate loan supply and the interest
rate paid by projects. Relaxing this assumption for, as one example, a linear demand curve would
effectively turn our model into a symmetric two-stage Cournot game, where, if N is finite, interest rate
concerns further depress the number of loans that each bank is willing to supply.
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where

L̃i,1 := li,1 + γ
∑
j ̸=i

lj,1 (4)

denotes the financing experience gained by bank i through their own first-period loan

financing and the financing provided by their peers.2 Therefore, early-stage loans for

the novel technology at t = 1 impose a positive experience externality on other banks

by improving their later-stage risk-adjusted return at t = 2. Without early-stage loan

financing by any bank, no learning gains are realized, i.e., c(0) = c̄. Because of diminishing

returns to experience, we further assume that c decreases convexly in L̃i,1 but remains

nonnegative.3 Learning spillovers between banks are imperfect, which is represented by

γ ∈ (0, 1). A higher value of γ can denote that banks are more transparent about their

financing experience, that their absorptive capacity is higher, or that they regard their

peers as more competent and, hence, the financing decisions made by other banks as

more instructive.

In this paper, we investigate market failures and policy interventions for novel clean

energy technologies that have sufficient potential to become profitable from a lender’s

perspective at a later stage but are not immediately attractive at an early stage due to

lack of experience. Therefore, we assume a negative spread between the risk-adjusted

return on loans at full financial immaturity and the deposit rate:

r < c̄+ rD. (5)

By contrast, if all banks provide the full amount of early-stage financing, the spread

would turn positive such that

r > c

(
D
Ñ

N

)
+ rD (6)

where

Ñ := 1 + γ(N − 1) < N. (7)

The term Ñ
N
< 1 accounts for the loss of financing experience due to imperfect spillovers.

The risk-adjusted return in the second, later-stage period r−c(L̃i,1) is concavely increasing
in L̃i,1 and bounded between r − c̄ and r, as displayed in Figure 1.

2Note that we use capitalized L for aggregates of loan amounts across banks and lowercase l for loan
amounts of individual banks.

3Our restrictions that c ≥ 0, c′ < 0, c′′ > 0 nest the most common functional forms for technological
and financial learning curves in the literature (Della Seta et al., 2012; Egli et al., 2018; Samadi, 2018;
Thompson, 2012). There are at least two potential microfoundations for this functional form of c: first,
decreasing transaction costs of credit screening due to the banking sector’s learning-by-doing; second,
Bayesian updating about a novel technology’s unknown default rate with every loan-financed project,
assuming that banks are risk-averse and hence apply a risk premium that scales with the uncertainty
about the true default rate.
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Figure 1: Risk-adjusted return on loans in t = 2.

Combining the considerations above, the risk-adjusted profits of bank i discounted to

t = 1 can be written as

πi(li,1, li,2, L̃i,1) = (r − c̄− rD) li,1︸ ︷︷ ︸
Early-stage losses

+ β
(
r − c(L̃i,1)− rD

)
li,2︸ ︷︷ ︸

Potential later-stage gains

(8)

where β ∈ (0, 1) is the discount factor common to all banks. To strike a profit, early-stage

losses must be compensated by later-stage gains. Therefore, bank i will only provide loans

for the novel technology at t = 2 if the financing experience from the first period L̃i,1 is

sufficiently high to push the risk-adjusted return above rD. If this is the case, we will

refer to the novel technology as being “bankable” at t = 2. The lending decision of bank

i at t = 2 only depends on whether the financing experience gained at t = 1 renders the

novel technology bankable and causes no further externalities to other banks. To avoid

situations where banks are indifferent between outcomes, we assume that if two outcomes

yield the same risk-adjusted return or profits, banks strictly prefer the one with less loan

financing. This gives us the following simple rule for the later-stage loan financing at

t = 2:

Lemma 1. Let (li,1, li,2) be the loan financing amounts for any bank i. Then

li,2 =

0 if r − c(L̃i,1) ≤ rD

ψD
N

otherwise.
(9)

Proof. See Appendix B.1.

Hence, in the later-stage period, banks either finance the technology’s entire loan
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demand if the early-stage financing experience provides a positive return spread or refrain

from any loan financing at t = 2.

Notably, our model is populated by banks only and hence does not feature any exter-

nalities at the technology or the consumer levels. This serves to clarify if and why market

failures in the banking sector can arise even if other market failures are already addressed.

However, the model can be easily extended to incorporate additional externalities that

bank financing might face if project sponsors are unwilling to move forward without bank

loans.

4 Social optimum and market outcome

In our model, the socially optimal solution maximizes the sum of present-value profits

over all banks:

max
{li,1,li,2}Ni=1

∑
i

πi(li,1, li,2, L̃i,1) s.t. li,1 ∈ [0,
D

N
], li,2 ∈ [0, ψ

D

N
]. (10)

The full Karush-Kuhn-Tucker conditions are provided in Appendix B and reflect that,

in the unconstrained optimum, li,1 should be chosen to equate the return spread at t = 1

and the marginal learning gain such that

−β(c′(L̃SOi,1 )lSOi,2︸ ︷︷ ︸
Learning gain

to bank i

+ γ
∑
j ̸=i

c′(L̃SOj,1 )l
SO
j,2︸ ︷︷ ︸

Learning gain to peers

) = c̄+ rD − r︸ ︷︷ ︸
Initial return spread

(= loss)

, (11)

which might not hold in the constrained optimum if the demand or nonnegativity con-

straint on li,1 bind. Note that the left-hand side of Equation 11 is positive since c′ < 0.

An asymmetric solution to the optimization problem in Equation 10 cannot be ruled

out entirely but significantly limits the analytic tractability of our model. Therefore,

we impose symmetry on the social optimum, as is common in the literature (Eslava &

Freixas, 2021). This means that

lSOi,t = lSOt ∀ i = 1, ..., N (12)

which by Lemma 1 also implies symmetry in the later-stage loan financing. This is a mild

assumption because banks are homogeneous and because the profit of each bank πi(·)
is strictly concave in L̃i,1. For this reason, allocating early-stage loan financing amounts

asymmetrically between firms (which leads to a heterogeneous financing experience L̃i,1

as γ < 1) is typically dominated by a symmetric allocation. Combining Lemma 1 with

the first- and second-order conditions results in the following proposition:
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Proposition 1. Let l∗1 := Ñ−1(c′)−1

(
− c̄+rD−r

β Ñ
N
ψD

)
denote the unconstrained symmetric

solution to the first-order condition in Equation 11, and let (c′)−1(·) denote the inverse

function of c′.4 Then, the unique symmetric social optimum (lSO1 , lSO2 ) is either

• an immediate financing scenario in which every bank provides the full loan financing

amount in the first and second period (D
N

and ψD
N
, respectively), or

• a gradual financing scenario in which each bank provides l∗1 <
D
N

at t = 1 before

providing full loan financing at t = 2, or

• a no-financing scenario in which banks do not provide any loan financing in either

period.

For the gradual or immediate financing scenario to exist, each bank must strike strictly

positive present-value profits.

Proof. See Appendix B.

Here, l∗1 denotes the loan financing amount for which the marginal learning gains and

the initial return spread balance (prior to any demand or nonnegativity constraints). At

the technology level, comparative statics (see Appendix B) reveal that a more favorable

risk–return profile (i.e., a higher risk-adjusted return at full maturity r and a lower initial

immaturity penalty c̄) make a no-financing optimum less likely and increase the socially

optimal early-stage financing lSO1 . At the financier level, the same holds if the initial loan

demand by projects using the novel technology is higher (D ↑) and grows more strongly

in the second period (ψ ↑), which increases the scope for learning effects, or if deposits

are cheaper (rD ↓). The socially optimal lSO1 is also higher if banks are more patient

(β ↑). However, a less concentrated banking sector (N ↑) will decrease the loan financing

in the optimum because, ceteris paribus, this implies more spillover losses of financing

experience as long as γ < 1.

Since the social optimum is symmetric and, by Lemma 1, li,2 is a binary function of

li,1, we can plot total profits
∑

i πi(·) as a function of the first-period financing experience

L̃1 = Ñ l1. In the left panel of Figure 2, we show this for the gradual-financing optimum

(i.e., for a scenario under which total profits peak above zero for some L̃1 <
Ñ
N
D). For

very low amounts of financing at t = 1, the risk-adjusted return on loans at t = 2 remains

below rD such that, by Lemma 1, banks do not grant any loans and hence make zero

profits from the new technology in the second period. At the same time, profits at t = 1

decrease linearly since, for every unit of l1, each bank loses the initial return spread

rD + c̄ − r. Therefore, small values of early-stage loan financing that are insufficient to

render loans bankable at a later stage reduce overall profits below zero.

4Note that c′ is monotonically increasing, and hence (c′)−1 exists and is monotonically increasing.
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If l1 increases further, the risk-adjusted return at t = 2 at some point equals the

deposit rate rD (blue line). Beyond this point, loans become profitable at t = 2, and

hence banks will meet the entire loan demand such that l2 = ψD
N
. Note that profits

increase concavely because returns on financing experience are diminishing as c is convex.

However, the positive profits at t = 2 do not immediately offset the incurred losses at

t = 1. It takes some additional increase in l1 (i.e., further learning gains) until banks

break even in present-value terms (grey line). As long as the marginal return on l1 (i.e.,

the marginal learning gain to all banks plus r − c̄) exceeds rD, a higher l1 increases

profits further until the marginal return and deposit rate equal in the social optimum

(green line). Beyond this point, the marginal learning gain no longer compensates for the

early-stage losses, and profits again fall.

Long-run
bankability

Break-even

Social optimum

To
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l p
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�t
s

0

“Gradual �nancing”

Maximum experience
possible

Symmetric �rst-period �nancing experience

“No �nancing”

“Immediate �nancing”

Figure 2: Aggregate bank profits over early-stage loan financing.

Visually speaking, the gradual-financing optimum displayed in Figure 2 exists if the

concave section of
∑

i πi(·) peaks within the banking sector’s available resources (for

some L̃1 <
Ñ
N
D) and above zero. The other two potential optima in Proposition 1 have

equally straightforward interpretations and are displayed in the right panel of Figure 2.

The no-financing scenario is optimal if the concave section does not exceed zero for any

L̃1 ∈ [0, Ñ
N
D]. The immediate-financing optimum requires that the concave section only

peaks after Ñ
N
D, but that total profits at this point already exceed zero.

By contrast, in a market outcome, each individually rational bank carries out the

following profit maximization:

max
li,1,li,2

πi(li,1, li,2, L̃i,1) s.t. li,1 ∈ [0,
D

N
], li,2 ∈ [0, ψ

D

N
]. (13)

The first-order conditions, given in Appendix C.1, are similar to those given in Equation
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11, except that banks do not take into account how their own early-stage financing

improves the later-stage risk-adjusted return for their peers.

However, the solution to the maximization problem of bank i still depends on their

peers’ behavior. For a fully fragmented banking sector (i.e., if N → ∞), it is trivial

to show that bank i’s contribution to its own financing experience stock L̃i,1 becomes

negligible unless γ → 0. Note that early-stage loans in the model come at a loss in

t = 1 and can only be profitable through their impact on L̃i,1 and thus profits in t = 2.

For N → ∞ where li,1 has no meaningful impact on L̃i,1, the only possible market

outcome is (li,1, li,2) = (0, 0) ∀ i = 1, ..., N . However, banking sectors typically do not

exhibit this perfect degree of competition (Freixas & Rochet, 2023; Stiglitz, 1993). We

instead consider a finite number of N , solve for possible Nash equilibria, and arrive at

the following result:

Proposition 2. The set of Nash equilibria under the market outcome can be characterized

as follows:

• The possible Nash equilibria are all symmetric and feature a no-financing equilib-

rium, a gradual-financing equilibrium where each bank provides

l∗NE1 := Ñ−1(c′)−1
(
− c̄+rD−r

βψD
N

)
< D

N
at t = 1, and an immediate-financing equilib-

rium.

• If the gradual-financing equilibrium exists, the immediate-financing equilibrium does

not exist, and vice-versa. Both require strictly positive profits for each bank to exist.

• Both the gradual-financing and the immediate-financing equilibria can co-exist with

the no-financing equilibrium.

• The early-stage loan provision in any Nash equilibrium is strictly lower than the

social optimum, except for the trivial case, in which both the social optimum and

the Nash equilibrium are immediate financing or no financing.

Proof. See Appendix C.

The intuition for the symmetry of the Nash equilibrium can be illustrated as follows:

consider the simplified case of only two banks i and j and an interior solution, and assume

for contradiction that a Nash equilibrium with lj,1 > li,1 exists. This implies that bank

j’s learning experience (lj,1 + γli,1) is greater than bank i’s by exactly (1− γ)(lj,1 − li,1).

However, note that i’s and j’s marginal learning gains must be equal in the optimum

because both banks are homogeneous and face the same marginal first-period losses.

Since marginal learning gains are strictly decreasing, both banks’ first-period learning

experience must be identical, which requires that lj,1 = li,1 since γ < 1 (i.e., we have

imperfect spillovers).

Page 12



Notably, the closed-form expressions for the potential gradual-financing social opti-

mum l∗1 and the gradual-financing Nash equilibrium l∗NE1 are almost identical. However,

the latter features only the individual loan amount at t = 2 (i.e., ψD
N
) and not the over-

all loan amount net of spillover losses (i.e., ψ Ñ
N
D). As a result, lNE1 is weakly but not

strictly lower than lSO1 because if no financing is socially optimal, this is the outcome the

market will provide. In addition, it could theoretically be that the risk–return structure

is so beneficial that immediate financing is not only the social optimum but also a Nash

equilibrium. However, the policy implications of such a setting extrapolate well from the

more relevant setting in which only a gradual financing equilibrium exists, with the main

exception that there is less of a rationale for de-risking measures. For this reason, we place

less emphasis on the case where immediate financing is both the social optimum and a

market equilibrium in the following discussion of market failures and policy instruments.

Since the market outcome must be symmetric, the conditions in Proposition 2 under

which the different Nash equilibria exist have straightforward visual interpretations. We

display the possible market outcomes as well as bank i’s best response function under a

gradual-financing social optimum in Figure 3. The no-financing equilibrium (left yellow

ring) exists unless a single bank i can push beyond the “no-financing valley” and obtain

positive profits by unilaterally providing loans for the novel technology at t = 1.5 The

best response for bank i, if no other bank provides early-stage loans, is to forego loan

financing as well, as illustrated by the best response function in the lower panel. Even

if no financing is a possible Nash equilibrium, there might exist another equilibrium at

L̃i,1 = Ñ l∗NE1 if and only if this point falls beyond the no-financing valley and provides

above-zero profits. Once above-zero profits are in reach for bank i given the behavior

of the other banks, the best response switches to providing early-stage loans until the

(cumulative) learning experience reaches L̃i,1 = Ñ l∗NE1 . Beyond that point, the deposit

rate exceeds the marginal return on l at t = 1, excluding learning spillovers. As a result,

bank i will no longer provide any early-stage loan financing, but it will still free-ride

the other banks’ financing experience by financing li,2 = ψD
N

in the second period. If

the point L̃i,1 = Ñ l∗NE1 falls within the no-financing valley or violates the nonnegativity

constraint on l, then the gradual-financing Nash equilibrium does not exist because every

bank would be better off by switching to the no-financing equilibrium instead.

5Note that Figure 3 rests on the assumption that all banks behave symmetrically, so the valley for such
a unilateral financing provision is somewhat shorter as, in this case, there would be no spillover losses
of financing experience. In addition, the valley displayed here refers to bank financing for (large-scale)
deployment and hence does not represent the conventional “valley of death” for the transition between
laboratory and commercialization (Popp, 2019).
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Figure 3: Possible Nash equilibria and best response function.

Proposition 2 has several important implications regarding market failures in our

model. First, if no financing is socially optimal, then there is no market failure. If

gradual financing is optimal, then we can have two separate elements of market failures:

first, a cooperation problem because banks ignore positive learning spillovers to their peers

and hence choose a sub-optimally low amount of early-stage loan financing (as visualized

in Figure 3 above); and second, a potential coordination failure because even if a gradual-

financing market outcome exists (which by definition must be profitable for every bank),

the banking sector might remain stuck in the inferior no-financing equilibrium.

From an equilibrium selection perspective, there are at least two arguments for why

the no-financing equilibrium might be more likely. First, providing no financing to a novel

technology is a natural Schelling focal point (Mehta et al., 1994; Schelling, 1997) because

it continues banks’ past behavior (before the technology reached the deployment stage),

is more straightforward, and resonates with the banking sector’s general risk aversion.

Second, providing no loans guarantees each bank nonnegative profits in the spirit of the

risk dominance criterion used by Harsanyi (1995).6 For these reasons, this equilibrium

6To see this, consider the simplified case of only two banks that choose between the two potential
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and the associated coordination failure warrant particular attention, although another

market outcome is, of course, also possible.

Since the closed-form expression for l∗NE1 is very similar to that of the socially optimal

l∗1, the comparative statics for the gradual-financing social optimum similarly apply to

the early-stage financing under the market outcome. More favorable conditions at the

technology (r ↑, c̄ ↓) and financier level (D ↑, ψ ↑, N ↓, rD ↓, β ↑) make it more likely

that a gradual-financing Nash equilibrium exists and increase the financing amount in

such a market outcome. Regarding the potential early-stage financing gap between the

social optimum and the market outcome, we conclude as follows:

Lemma 2. Let the social optimum be 0 < lSO1 < D
N

(gradual financing). Then, the

minimum early financing gap between the market outcome and the social optimum is as

follows:

lSO1
l∗NE1

=
(c′)−1

(
− c̄+rD−r

βψD
N
Ñ

)
(c′)−1

(
− c̄+rD−r

βψD
N

) . (14)

Ceteris paribus, the minimum early financing gap increases monotonically in γ.

Proof. Combine the expressions from Propositions 1–2 and take the partial derivative,

keeping in mind that (c′)−1 is monotonically increasing and Ñ := 1 + γ(N − 1).

Therefore, the gap between the market outcome and the gradual-financing optimum

is higher if more of a bank’s learning gains spill over to competitors or if competitors are

more capable of absorbing these spillovers (γ ↑). In addition, if the marginal learning

gain c′ decreases more steeply in the cumulative financing experience, this reduces the

financing gap. This is because if rapidly diminishing returns to experience mean that

taking learning spillovers into account (or not) makes less of a difference.7 However,

these comparative statics only hold locally for limited changes in the given parameters

since larger changes could also render the gradual-financing outcome sub-optimal from a

societal point of view.

As discussed in Section 2, some papers have suggested that (inefficiently) high dis-

count rates of private actors might prevent clean energy technologies from being financed

(Lehmann & Söderholm, 2018; Mazzucato & Penna, 2016). While we focus on financing

experience and the resulting coordination and cooperation problems here, such discount

rate considerations are easily integrated into our framework by assuming that banks use

a discount factor ϕβ where ϕ ∈ (0, 1) and β denotes the social discount factor. This

equilibrium strategies. The no-financing option minimizes the downside if one bank picks one equilibrium
and the other banks opt for the other, compared to the gradual-financing option. By contrast, opting
for the gradual-financing equilibrium strategy leaves a bank vulnerable to potential losses.

7The financing gap also decreases for a more concentrated market (N ↓) because the positive exter-
nality is lower when fewer peers benefit from spillovers. However, this obviously increases the scope for
competition-related market failures, from which our model set-up abstracts.
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would alter Equation 14 as follows:

lSO1
l∗NE1

=
(c′)−1

(
− c̄+rD−r

βψD
N
Ñ

)
(c′)−1

(
− c̄+rD−r

ϕβψD
N

) . (15)

This expression shows that the minimum early financing gap between market outcome and

social outcome increases in the time preference discrepancy between banks and society

overall (ϕ ↓).

5 Policy interventions

The previous section has established that if the social optimum is a gradual-financing

(immediate-financing) outcome, the market outcome will (can) feature an inefficiently

low provision of loan financing at t = 1 and might even fail to provide any loan financing.

We consider two different policy interventions within the framework of our model to

address this market failure. First, the government can improve the risk-adjusted return

for banks, either by increasing the expected return on loans or by reducing the volatility

of returns (Polzin et al., 2019). Two of the most commonly discussed instruments to do so

in the literature are interest rate subsidies and credit guarantees (Haas & Kempa, 2023).

Due to our framework of risk-adjusted returns, we can represent both of these options as

stylized state-financed additive premia on the risk-adjusted return of all private banks in

both periods denoted by s1, s2 ≥ 0.8

Second, the government can provide loans directly to projects that use the novel

technology in both periods, with loan amounts denoted by g1, g2 ≥ 0. Importantly,

public loan provision generates financial experience at t = 1 that partially spills over to

the private banks at a rate γg > 0. Public green banks can be mandated to actively

share their expertise with the private sector (Geddes et al., 2018), which would imply

γg > γ. However, γg might be lower than γ if the public loan provider is perceived as less

competent than a commercial bank, thus making banks hesitant to learn from the public

sector’s lending track record. In addition, public loan provision can reduce the demand

for loans faced by each bank since the overall demand for loans by projects using the

novel technology is policy-induced and hence fixed.9

Subject to the policy interventions, each bank i then carries out the following maxi-

mization problem:

8In addition, the government could also adjust capital requirements for banks through a green-
supporting factor (Campiglio et al., 2018), which in our framework would have the same effect (r ↑).

9Such a “crowding-out” effect rests on the model’s assumption that financing terms of public loan
provision are usually concessional and hence out-compete the market rates charged by the banks.
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max
li,1,li,2

πi = (r − c̄− rD + s1)li,1+ (16)

β

(
r − c(γ

∑
j ̸=i

lj,1 + γgg1 + li,1)− rD + s2

)
li,2

s.t. li,1 ∈ [0,
D − g1
N

], li,2 ∈ [0, ψ
D − g2
N

].

A direct takeaway from Equation 16 is that public loan provision at t = 2 (i.e., once

no further learning gains are possible) factors into banks’ decisions only by reducing

the loan demand in t = 2 that they can serve if they do not opt for a no-financing

strategy. Furthermore, we note that neither the de-risking instrument nor public loan

provision moderate our previous findings with respect to either the deterministic rule of

behavior for banks at t = 2 or the symmetric behavior of private banks in any possible

Nash equilibrium. Therefore, Lemma 1 and the symmetry of the market outcome by

Proposition 2 continue to hold (see Appendix D).

We first turn to the de-risking subsidy. Economic theory suggests that a subsidy

should be calibrated to the magnitude of the unaccounted positive externality at the

social optimum (Pigou, 1932), which in our model only exists in t = 1. By incorporating

such a well-calibrated de-risking subsidy into the first- and second-order conditions of

individually rational banks, we arrive at the following proposition:

Proposition 3. Let the social optimum be 0 < lSO1 < D
N

(gradual financing) and let

s∗1 := −βγ(N − 1)ψD
N
c′(Ñ lSO1 ) > 0 be the optimally calibrated de-risking subsidy. Then,

under s1 = s∗1 and for any s2 ≥ 0, the set of Nash equilibria can be characterized as

follows:

• A symmetric Nash equilibrium exists in which banks behave as in the social optimum.

• Another Nash equilibrium with no financing by any bank exists if and only if no

single bank can unilaterally break even by providing loans. If such an equilibrium

exists for s1 = s2 = 0 (i.e., without policy intervention), it also exists for s1 =

s∗1, s2 = 0.

• A sufficient condition for the no-financing equilibrium not to exist is s2 > c̄+ rD −
r.10

Proof. See Appendix D.

Notably, under the optimal de-risking subsidy s∗1 (which is positive since c′ < 0), there

exists a gradual-financing or immediate-financing Nash equilibrium that coincides with

10Note that this sufficient condition for s2 is not a necessary one to rule out the no-financing equilib-
rium. However, as it is more tractable mathematically, it better facilitates policy comparisons.
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the social optimum. This is true even if prior to the policy intervention the only possible

Nash equilibrium featured no financing. However, such a well-calibrated subsidy does

not necessarily rule out the coordination failure. Even for s1 = s∗1, the return spread

in the first period rD − (r − c̄ + s∗1) remains strictly positive.11 Hence, early-stage loans

still come at a loss, albeit a smaller one. If bank i cannot ensure bankability at t = 2

unilaterally, it cannot make a profit at t = 2 and no financing remains the best response.

Visually speaking, a reduced initial return spread makes the no-financing valley in Figure

3 less deep without entirely removing it. Hence, if no bank is large enough to reach the

tipping point unilaterally without any policy intervention, then introducing s1 = s∗1 will

not remove the no-financing equilibrium. Furthermore, if the government were to set

s1 > s∗1 to resolve the coordination problem, this subsidy would lead to an oversupply of

early-stage loans unless the social optimum is an immediate-financing outcome.

However, Proposition 3 states that the existence of the no-financing Nash equilibrium

can always be ruled out via a sufficiently high de-risking subsidy at t = 2. The logic

behind this is simple: If there is a profitable gradual-financing equilibrium (which is

ensured by s1 = s∗1), the coordination failure only arises because, for low amounts of

early-stage loan financing, banks are not fully committed to providing loans at a later

stage and, therefore, withdraw to the nonfinancing Nash equilibrium to avoid losses.

This no-financing equilibrium collapses once the de-risking measures at t = 2 improve

the risk–return structure of loans such that unilateral financing of li,2 = ψD
N

suffices for

bank i to make a profit in t = 2—even if all other banks do not grant any loans. A

sufficient condition to ensure this is to set s2 marginally above rD− (r− c̄), i.e., above the
return spread at t = 2 if no bank provided any loan financing. Then, loans will always

be profitable at t = 2. Hence, banks commit to loan financing at t = 2 and always prefer

the gradual-financing Nash equilibrium, which, due to the internalization of spillovers via

s1 = s∗1, coincides with the social optimum.

Turning to a policy intervention in which the government provides loans directly

instead of using the de-risking subsidy, the respective first- and second-order conditions

lead us to the following proposition:

Proposition 4. Let the social optimum be 0 < lSO1 < D
N

(gradual financing), let l∗NE1 |g :=

(c′)−1

(
− c̄+rD−r
βψ

D−g2
N

)
− γg

Ñ
g1, and let g∗1 := 1

γg
c−1(r − rD). Under public loan provision in

the absence of any de-risking subsidy (i.e., s1 = s2 = 0), the set of Nash equilibria can be

characterized as follows:

• Both a zero-financing Nash equilibrium and a symmetric equilibrium where each

bank provides max{0, l∗NE1 |g} in t = 1 and ψD−g2
N

in t = 2 can exist.

11To show this, recall that in the social optimum, this expression equates the marginal learning gain
of bank i, excluding spillovers, which is strictly positive.
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• The higher g2, the lower l∗NE1 |g, and the less likely it becomes that the Nash equi-

librium with nonzero financing by each bank exists.

• The zero-financing Nash equilibrium cannot exist if g1 exceeds g∗1 (marginally) as

long as g2 ∈ [0, ψD).

Proof. See Appendix D.3.

Hence, under public loan provision in t = 1, each bank provides only max{0, l∗NE1 −
γg

Ñ
g1} in t = 1 in the gradual-financing equilibrium, instead of l∗NE1 in the equilibrium

without policy intervention. This is because public loan provision does not alter the best

response function of each bank. If the government provides early-stage loans on top of

the gradual-financing Nash equilibrium, then for every unit of g1, each bank reduces their

own early-stage financing by γg

Ñ
and instead benefits from the credit track record created

by the public sector. The higher the spillover rate γg, the better that public loan provision

substitutes banks’ own financing experience, exacerbating this crowding-out dynamic. If
γg

Ñ
g1 ≥ l∗NE1 , then the best response function of private banks flatlines at zero (see Figure

3) and private loan financing only occurs in t = 2. As a result, public loan provision

is an inept policy instrument to close the gap between a market outcome with nonzero

loan financing and the social optimum. Furthermore, public loan provision in t = 2 can

only exacerbate the existing market failure. Reducing how much banks can lend at a

later stage lowers the value of early-stage learning and hence the amount that banks are

willing to lend (l∗NE1 |g)—and might even undermine the existence of a gradual-financing

Nash equilibrium altogether.

The last part of Proposition 4, however, demonstrates that a certain minimum amount

of public loan provision at t = 1 can overcome the coordination failure by ensuring

that the no-financing equilibrium no longer exists. Note that for g1 = g∗1, the financing

experience that spills over to banks is exactly the threshold for later-stage bankability

since r− c(γgg∗1) = rD. Therefore, any g1 > g∗1 ensures that each bank provides ψD−g2
N

of

loan financing at t = 2. Importantly, the required g∗1 decreases the more the public loan

provider can diffuse its own financing experience to market players and the more willing

private banks are to learn from the public sector (γg ↑). However, under g1 > g∗1 the

cooperation problem not only continues to exist, such that the gradual-financing Nash

equilibrium still falls short of the social optimum, but also the market outcome then

features a strictly lower early-stage contribution by private banks due to free-riding.

By Proposition 3, however, a sufficient de-risking subsidy at t = 2 could reach a

similar outcome—which poses the question of which of the two policy measures is more

cost-effective in our model. A key difference between the two policies is that, unlike for

the de-risking subsidy, the money spent on public loan provision is (at least partially)

recovered once loans are paid back. The accumulated financing experience might be

turned into further profits at t = 2, albeit at the cost of crowding out loans by commercial

Page 19



banks. To assess this, we define the costs of public loan provision as follows:

PC(g1, g2, l1) := (rgD + c̄− rg)g1 − βg (rg − c(g1 + γNl1)− rgD) g2 (17)

where the parameters rg, rgD > 0, βg ∈ (0, 1) have the same meaning as for private banks.

Policy costs can be understood as the negative of the public loan provider’s profits. Note

that here we allow for model parameters to vary between private banks and the public

sector. For instance, the public loan provider might have a lower discount rate (such that

βg > β), a higher risk appetite (such that rg > r), or access to capital at better rates

than the private sector (rgD < rD). By contrast, the opportunity cost of public money

could also be higher since funds for public loan provision could otherwise be invested

in core public responsibilities, such as military defense or education, with high, albeit

nonfinancial returns (which could be reflected by rgD > rD).

Furthermore, the cost of the de-risking subsidy paid at t = 2 in the absence of public

loan provision is defined as follows:

PC(s2) := s2 β
gψD rgD. (18)

This reflects that resolving the coordination problem will lead to a policy-induced Nash

equilibrium where lNE2 = ψD
N
, and where the subsidy must be paid on all loans (ψD).

Similarly to the funds for public loans, the money for de-risking subsidies must be raised

from somewhere and comes at a cost rgD. Since policy costs only occur at t = 2, they are

discounted at βg.

We first compare the costs of the minimum public loan provision or second-period

de-risking that necessarily rule out the coordination failure if the government parameters

mirror the private sector’s characteristics. Then we consider how deviations from this

starting point change results, which results in the following finding:

Lemma 3. Let ϵ > 0, g1 = g∗1 + ϵ, and s2 = rD + c̄− r + ϵ. Then, it holds that:

• If g∗1 < βgrgDψD, the costs of the policy intervention g1 are lower than the costs

of the policy intervention s2 if the costs of raising funds (rgD) and risk-adjusted

loan return (rg) for the public loan provision are identical to the rates faced by the

banking sector.

• A higher rgD increases the policy costs of both measures, while the costs of providing

g1 also decrease in rg and γg.

• If the return spread for public loan provision in t = 2, i.e., rg − c(g1 + γNl1)− rgD,

is positive (negative), the costs of this policy intervention decrease (increase) in g2.

Proof. See Appendix E.1. Comparative statics can be derived directly from the definitions

above.
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Even if the public loan provider does not differ systematically from commercial banks,

public loan provision will be the cheaper policy instrument unless the public loan financ-

ing required to resolve the coordination problem exceeds βgrgDψD (i.e., the entirety of

available loan demand at t = 2 plus financing costs discounted by one period). However,

suppose the Nash equilibrium induced via public loan provision suffices to make loans at

t = 2 profitable for the public sector. In that case, continued public loan provision in the

second period can reduce policy costs, particularly if the public loan provider has lower

risk aversion than private banks (rg ↑). However, such later-stage loan provision would

come at the cost of exacerbating the market failure. The more the public sector’s learning

gains spill over to private banks (γg ↑), the lower the amount of public loan provision

required to resolve the coordination problem and, hence, the policy costs.

In conclusion, unlike de-risking subsidies, public loan provision cannot address the

cooperation problem in our model, and later-stage loan provision even exacerbates market

failures. However, early-stage loan provision can be used to overcome the coordination

problem (i.e., to rule out the existence of an inferior no-financing Nash equilibrium) and

is a more cost-effective measure to do so. This is true unless the required loan financing

amounts are excessively large, such as if spillovers to private banks are limited. Therefore,

the case for this policy tool strongly depends on which Nash equilibrium policymakers

consider as more likely to be realized without any intervention, particularly since public

loan provision will induce free-riding behavior by private banks to some degree. This

free-riding would be exacerbated by including price feedback if the additional supply of

loans reduces market rates.

These potential limitations of public loan provision as a stand-alone measure stem

from banks’ unaffected response function as they continue disregarding learning spillovers

to peers. This can be addressed by combining public loan provision to rule out the zero-

financing Nash equilibrium with the optimally calibrated de-risking subsidy at t = 1 in a

policy mix:

Lemma 4. Let ϵ > 0 and the social optimum be 0 < lSO1 < D
N
, and consider the following

policy mix: g1 = g∗1 + ϵ, s1 = s∗1, g2 = s2 = 0. Then, it holds that:

• The unique Nash equilibrium is one where each bank provides lSO1 − γg

Ñ
g1 in t = 1

(i.e., less than in the social optimum) and ψD
N

in t = 2.

• The loan financing amount provided by each bank in the policy-mix equilibrium is

higher than in the Nash equilibrium resulting from the same public loan provision

g1 = g∗1 + ϵ without the de-risking subsidy (s1 = 0).

Proof. See Appendix E.2.

Such a policy mix, therefore, removes the risk of any no-financing Nash equilibrium

and ensures a gradual-financing Nash equilibrium. From a private bank’s perspective,
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this policy mix provides the same financing experience as in the social optimum, al-

though some of the financing burden shifts from commercial banks to the public sector

to avoid the coordination failure. How this affects overall profits and efficiency strongly

depends on how the public loan provider and private banks differ in terms of their risk

appetite, discount rate, and financing or opportunity costs. However, the loan financing

amount provided by private banks under the policy mix of public loan provision and the

optimally calibrated first-period de-risking subsidy is strictly higher compared to public

loan provision as a stand-alone measure and is, therefore, more effective.

In our model framework, the relative merits of later-stage de-risking subsidies to ad-

dress the coordination failure are primarily that more financing experience is generated

directly within the private sector. This is because no crowding-out occurs and the pol-

icy instrument induces no free-riding behavior. Therefore, the social optimum can be

obtained, albeit at a relatively high policy cost, if the policy is successful.

Beyond policy costs, direct loan provision has at least two distinctive advantages.

First, an institutionalized public loan provider can easily be re-directed to other novel

technologies as they emerge and pose new coordination problems for the financial sector.

By doing so, institutions can leverage their previous financing experience even if high

opportunity costs and crowding-out risks should force them to withdraw from matured

technologies. If new technologies emerge and the institution’s mandate is sufficiently

flexible, then private debt markets for these technologies can be kickstarted without the

need for introducing additional policies, which can accelerate the ramp-up of deployment.

If no such technologies emerge, then selling the public loan provider to the private sector,

as the UK did with its UK Green Investment Bank in 2017 (Whitney et al., 2020), can

further provide an exit strategy to (partially) recover policy costs by monetizing the

accumulated in-house experience.

Second, addressing the coordination failure through early-stage loan provision avoids

the issue of time inconsistency on the government’s side. By Proposition 3, a sufficiently

high de-risking subsidy at t = 2 suffices to avoid an inferior no-financing equilibrium.

However, once the second period begins, banks have already provided the required early-

stage loan financing. Therefore, merely the anticipation of the support policy at t = 2

rules out the no-financing equilibrium. The actual payment of s2 does not affect total

profits and instead simply redistributes money from the public to the private sector. As

a result, policymakers could be tempted to go back on their promises, which in turn

will reduce policy effectiveness if banks assign a nonzero probability to such an outcome

ex ante. Similar concerns exist with respect to public loan provision at t = 2. A gov-

ernment that initially promised to phase out loan provision once the novel technology

becomes bankable might be tempted to keep providing loans in t = 2 when they become

profitable. These considerations seem particularly relevant for countries with lower insti-

tutional quality and low trust in the public sector or with highly bipartisan politics on
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climate change, such that elections pose severe risks of policy reversal. It also matters

for countries with lower creditworthiness that might be forced by adverse macroeconomic

shocks to revoke expensive support policies —as happened to renewable energy subsidies

in Spain and Italy following the Euro crisis (Karneyeva & Wüstenhagen, 2017)—and for

technologies with a lower later-stage demand potential ψ where public loan volumes can

account for high market shares.

6 Conclusion

With ambitious policy targets for renewable energy deployment, direct loan provision

to clean energy projects via government bodies and public investment banks has become

increasingly popular. However, the theoretical rationale behind this policy tool is not fully

understood and lacks a coherent microeconomic framework. By analyzing bank loans for a

novel clean energy technology in a model where cumulative financing experience improves

risk-adjusted returns over time and spills over between banks, we show that the banking

sector will not provide the socially optimal amount of risky early-stage financing due to

two issues.

First, the positive learning externality leads to an undersupply of risky early-stage

credit. This cooperation problem cannot be mitigated through public loan provision be-

cause public loans crowd out private investment and create no additional incentive for

banks to provide risky early-stage loans. By contrast, introducing de-risking instruments,

such as interest rate subsidies or credit guarantees, at an early stage can close the gap be-

tween the social optimum and a market equilibrium that involves some, albeit insufficient,

early-stage loan financing. Second, the banking sector can remain stuck in an inferior

Nash equilibrium featuring no loan financing due to a coordination failure. In this case,

public loan provision serves to push the market to the preferable market equilibrium,

which can be more cost-effective than resolving the coordination problem by using de-

risking measures. However, public loan provision should always be paired with de-risking

measures to minimize the gap between the market outcome and the social optimum and

should be phased out at a later stage when the novel technology has become bankable to

avoid exacerbating the market failures through crowding-out.

Since the findings presented here do not rely on market failures at the technology or

consumer level, such as greenhouse gas emissions and research and development spillovers,

they motivate financial policy intervention even if other first-best instruments, such as

carbon pricing or renewable energy support schemes, are already in place. They can

therefore guide policymakers in shaping the rules and mandates for public loan programs

and state investment banks that are targeting clean energy projects, such as the clean

finance initiatives established under the Inflation Reduction Act’s National Clean Invest-

ment Fund in the United States.
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While our model provides a clear framework to conceptualize the role of public loan

provision for clean energy technologies, its simplicity also comes with limitations. First,

by abstracting from externalities at the technology and consumer level, we risk painting a

pessimistic picture of public loan provision as a policy instrument if first-best instruments

cannot be easily implemented due to political constraints. Similarly, assuming a perfectly

inelastic loan demand exacerbates crowding-out issues in our model, which would decrease

in demand elasticity. We instead abstract away from how supply-demand dynamics

might impact risk-adjusted returns, whereas public loan provision could also address an

undersupply of credit due to market power for a decreasing demand curve and a finite

N . Lastly, while our model features a risk-adjusted return motivated by default risks and

risk aversion, we do not account for within-portfolio correlations, uncertainties about key

parameters (such as the learning rate or the growth potential of the novel technology,

ψ), or for systemic risks and bank heterogeneity, which matter particularly for banking

regulation (Freixas & Rochet, 2023).

Future research can address these limitations by extending our framework to multiple

assets, explicitly incorporating uncertainties about c and ψ, and exploring how a falling

loan demand curve and bank heterogeneity might moderate our findings presented. Given

the signaling role of public green banks suggested by qualitative studies (Geddes et al.,

2018; OECD, 2016), scholars could also model borrower projects explicitly to explore

how co-investing with commercial banks can increase the policy impact of public loan

providers or how incorporating herding dynamics can affect the conclusions presented

here. Nevertheless, the market failures arising in our simple framework already provide a

clear rationale for financial measures in addition to other policy instruments that address

the externality of emissions, which can explain the popularity of de-risking and public

loan provision among policymakers.
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Karneyeva, Y., & Wüstenhagen, R. (2017). Solar feed-in tariffs in a post-grid parity world:

The role of risk, investor diversity and business models. Energy Policy, 106, 445–

456. https://doi.org/10.1016/j.enpol.2017.04.005

Klaaßen, L., & Steffen, B. (2023). Meta-analysis on necessary investment shifts to reach

net zero pathways in Europe. Nature Climate Change, 13, 58–66. https://doi.org/

10.1038/s41558-022-01549-5
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Appendices

A Additional definitions

We introduce further definitions and conventions to make the subsequent proofs more

concise:

• L̄t :=
∑N

i=1 li,t.

• (l1, l2)
N
i=1 denotes any kind of symmetric outcome where each bank provides l1 in

t = 1 and l2 in t = 2.

• L denotes the N × 2 matrix with elements li,t in its i-th row and t-th column.

• L−i and L̄−i,t denote the corresponding matrix and sum, respectively, excluding

bank i.

• LNE denotes the set of existing Nash equilibria under the market outcome, given

model parameters.

• The notation |g, |s, and |gs after a variable denote the respective variable’s value

in the presence of a policy intervention (direct loan provision, de-risking subsidy,

or a combination of the two, respectively). For instance, lNE1 |g denotes the sym-

metric Nash equilibrium with loan financing in t = 1 that results under direct loan

provision.

As laid out in the main text, throughout the paper we assume that the initial return

spread over the deposit rate and transaction cost is negative. For a full provision of

early-stage financing, the return spread in t = 2 can become positive:

Assumption 1. r > rD, r− c̄ < rD and r−c
(
Ñ
N
D
)
> rD, where Ñ := 1+γ(N−1) < N .

B Proofs for Proposition 1 (social optimum)

Using a more formal notation, Proposition 1 can be stated as

Proposition 1. Let l∗1 := Ñ−1(c′)−1

(
− c̄+rD−r

βψ Ñ
N
D

)
where (c′)−1(·) denotes the inverse func-

tion of c′.12 Then

(lSO1 , lSO2 ) =


(D
N
, ψD

N
) if l∗1 ≥ D

N
∧ β

(
r − c(Ñ D

N
)− rD

)
> c̄+ rD − r

(l∗1, ψ
D
N
) if l∗1 <

D
N
∧ β

(
r − c(Ñ l∗1)− rD

)
ψD
N
> (c̄+ rD − r) l∗1

(0, 0) otherwise

12Note that c′ is monotonically increasing, and hence (c′)−1 exists and is monotonically increasing.
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Ceteris paribus, both l∗1 and the likelihood of the condition for lSO1 , lSO2 > 0 being

satisfied increase monotonically in r, β, D, and ψ, and decrease monotonically c̄ and N .

For γ, the sign depends on the exact functional form of c(·) and the specific parameters.

Proof. See Appendices B.1 and B.2.

B.1 First- and second-order conditions

The Lagrangian of the social maximization problem stated in Equation 10 is as follows:

max
l1,1,...lN,2

Z =
N∑
i=1

(r − c̄− rD)li,1 + β
(
r − c(γL̄−i,1 + li,1)− rD

)
li,2

+ µi,1

(
D

N
− li,1

)
+ µi,2

(
ψ
D

N
− li,2

)
+ µi,3li,1 + µi,4li,2.

Note that here we redefine the Lagrangian multipliers applying to t = 2 as the original

multiplier divided by β. This does not affect results since β ∈ (0, 1) but does simplify

the first-order conditions (FOCs).

The resulting Karush-Kuhn-Tucker conditions tell us that, for each bank i, the fol-

lowing conditions have to hold in the social optimum:

−rD + r − c̄− β

(
c′(L̃SOi,1 )l

SO
i,2 + γ

∑
j ̸=i

c′(L̃SOj,1 )l
SO
j,2

)
− µi,1 + µi,3 = 0 (19)

−rD + r − c(L̃SOi,1 )− µi,2 + µi,4 = 0 (20)

µi,1(
D

N
− lSOi,1 ) = µi,2(ψ

D

N
− lSOi,2 ) = µi,3l

SO
i,1 = µi,4l

SO
i,2 = 0 (21)

µi,1, µi,2, µi,3, µi,4 ≥ 0. (22)

Obviously, the upper and lower bound restrictions on lSOi,1 and lSOi,2 are mutually ex-

clusive. Hence, the complementary slackness conditions expressed by Equation 21 imply

that:

µi,u > 0 → µi,v = 0 ∀ (u, v) ∈ {(1, 3), (3, 1), (2, 4), (4, 2)}.

Keeping in mind that banks prefer no loan financing if the return spread is exactly

zero, by Equation 20 we can rule out any scenario where µi,2 = µi,4 = 0. This gives us a

simple rule for lSOi,2 given the optimal solution for all banks other than i, as expressed in

Lemma 1 (see Section 3).

B.2 Social optimum under symmetry

For the reasons laid out in Section 4 and in line with the literature (Eslava & Freixas,

2021), we impose symmetry on the social optimum:

Page 30



Assumption 2. Let (lSOi,1 , l
SO
i,2 ) be the solution to the maximization problem in Equation

10 for any bank i. Then

lSOi,t = lSOt ∀ i = 1, ..., N, t = 1, 2.

Based on Lemma 1, there are only six different ways that a given bank i can behave:

1. lSOi,1 = lSOi,2 = 0;

2. lSOi,1 = D
N
, lSOi,2 = ψD

N
;

3. lSOi,1 ∈
(
0, D

N

)
, lSOi,2 = ψD

N
;

4. lSOi,1 ∈
(
0, D

N

)
, lSOi,2 = 0;

5. lSOi,1 = D
N
, lSOi,2 = 0;

6. lSOi,1 = 0, lSOi,2 = ψD
N
.

Under symmetry, we can rule out the two cases involving li,1 > 0, li,2 = 0 because

there is no point in providing early-stage financing if no one benefits from it in t = 2.

Similarly, if all banks behave symmetrically, then li,1 = 0, li,2 = ψD
N

cannot be optimal.

This is because the absence of learning effects from t = 1 mean that financing provision in

t = 2 results in negative profits. Therefore, one of the three following cases must apply:

• “Immediate financing”: (lSOi,1 , l
SO
i,2 ) = (D

N
, ψD

N
) ∀ i = 1, ..., N ;

• “Gradual financing”: (lSOi,1 , l
SO
i,2 ) = (lSO1 , ψD

N
) ∀ i = 1, ..., N with lSO1 ∈ (0, D

N
);

• “No financing”: (lSOi,1 , l
SO
i,2 ) = (0, 0) ∀ i = 1, ..., N .

Furthermore, we can show that “immediate financing” and “gradual financing” are

mutually exclusive as critical points of the Lagrangian:

Lemma 5. Let L∗ be the set of critical points satisfying the FOCs of the maximization

problem in Equation 10. Under Assumption 2, it holds that

• (l1, ψ
D
N
) ∈ L∗ for l1 ∈ (0, D

N
) =⇒ (D

N
, ψD

N
) /∈ L∗

• (D
N
, ψD

N
) ∈ L∗ =⇒ (l1, ψ

D
N
) /∈ L∗ for l1 ∈ (0, D

N
)

Proof. Due to symmetry, the FOCs in Equations 19-20 simplify to:

−rD + r − c̄− βÑlSO2

(
c′(Ñ lSO1 )

)
− µi,1 + µi,3 = 0 (23)

−rD + r − c(Ñ lSO1 )− µi,2 + µi,4 = 0. (24)
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Note that c′ < 0 such that −βÑlSO2
(
c′(Ñ lSO1 )

)
is nonnegative both under “immediate

financing” and “gradual financing”, lSO2 = ψD
N
. Equation 23 therefore only differs in lSO1

(and correspondingly µi,1 and µi,3) between the two outcomes. But if

∃l1 ∈ (0,
D

N
) : −βÑ D

N

(
c′(Ñ l1)

)
= rD − (r − c̄)

then

−βÑ D

N

(
c′(Ñ

D

N
)

)
< rD − (r − c̄)

as c′ < 0 and c′′ > 0. This is because l1 <
D
N
and hence the absolute value of c′(Ñ D

N
) must

be smaller than the absolute value of c′(Ñ l1) as the marginal learning gain decreases. By

the same logic, Equation 23 cannot hold for lSO1 ∈ (0, D
N
) if it holds for lSO1 = D

N
.

If Equation 23 holds for µi,1 = µi,3 = 0, this gives the following solution:

l∗1 := Ñ−1(c′)−1

(
−rD − r + c̄

βÑψD
N

)
.

By Lemma 5 and Assumption 2, there can be at most two critical points of the

Lagrangian: one at (0, 0)Ni=1 and one at either (l∗1, ψ
D
N
)Ni=1 or (D

N
, ψD

N
)Ni=1. Given the

second-order condition (SOC) for an optimum at (l1, ψ
D
N
)Ni=1 where l1 ∈ {l∗1, DN }, it suffices

to show that the objective function’s value at this point exceeds the value at (0, 0)Ni=1.

Since π̄i(L = (0, 0)Ni=1) = 0, then the SOC simply requires profits above zero:

N

(
(r − c̄− rD)l1 + β(r − c(Ñ l1)− rD)ψ

D

N

)
> 0. (25)

Dividing by N and rearranging gives the condition in the Appendix version of Proposition

1.

Since r− c̄−rD < 0 by Assumption 1, this requires r−c(Ñ l1)−rD > 0, which directly

implies that (l1, ψ
D
N
)Ni=1 also satisfies the FOC with respect to li,2:

Lemma 6. Let l1 ∈ {l∗1, DN }. If Equation 25 holds for l1, then Equation 24 holds for

lSO1 = l1, µi,2 > 0.

Proof. For Equation 25 to hold, it must be that r − c(Ñ l1) − rD > 0. Hence, Equation

24 can only hold if µi,2 > 0.

Therefore, the conditions for a social optimum at l1 ∈ {l∗1, DN } given in the Appendix

version of Proposition 1 only include the FOC with respect to li,1 and the SOC (which

implies the FOC with respect to li,2). Taking partial derivatives of l∗1 and the respective

SOC yields the comparative statics. For γ, there are two opposing effects since Ñ features

in two different locations in the definition of l∗1. On the one hand, γ ↑ implies more learning

for the other banks (i.e., (c′)−1 ↑). On the other hand, more spillovers also imply that
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each individual bank has to provide fewer loans to achieve the same amount of overall

experience Ñ lSO1 (as γ ↑ implies Ñ−1 ↓).

C Proofs for Proposition 2 (market outcome)

Using formal notation, Proposition 2 can be stated as

Proposition 2. Let l∗NE1 := Ñ−1(c′)−1
(
− rD+c̄−r

βψD
N

)
, let LNE be the set of possible Nash

equilibria, and let l̄1 := min{l∗NE1 , D
N
}. Then

• LNE = {(0, 0)Ni=1} if l̄1 ≤ 0 and otherwise LNE ∈ P
(
{(l̄1, DN )

N
i=1, (0, 0)

N
i=1}

)
\ ∅;

• (0, 0)Ni=1 ∈ LNE if and only if

∄ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β(r − c(li,1)− rD)ψ

D

N
> (rD + c̄− r)li,1; (26)

• (l̄1, ψ
D
N
)Ni=1 ∈ LNE if and only if

l̄1 > 0 ∧ β(r − c(Ñ l̄1)− rD)ψ
D

N
> (rD + c̄− r)l̄1. (27)

Furthermore, for any (l1, l2)
N
i=1 ∈ LNE, it must hold that l1 ≤ lSO1 , with l1 = lSO1 if

and only if

lSO1 = 0 ∨
(
lSO1 =

D

N
= l1 = l̄1

)
. (28)

Proof. See Appendices C.2, C.3, C.4 and C.5.

C.1 First-order conditions

The Lagrangian of the individual maximization problem of bank i stated in Equation 13

is as follows:

max
li,1,li,2

Z =(r − c̄− rD)li,1 + β
(
r − c(γL̄−i,1 + li,1)− rD

)
li,2

+ µi,1

(
D

N
− li,1

)
+ µi,2

(
ψ
D

N
− li,2

)
+ µi,3li,1 + µi,4li,2.

Again, we simplify by redefining the Lagrangian multipliers applying to t = 2 as the

original multipliers divided by β.

The resulting Karush-Kuhn-Tucker conditions that any Nash equilibrium must satisfy

are as follows:

Page 33



−rD + r − c̄− βc′(L̃NEi,1 )lNEi,2 − µi,1 + µi,3 = 0 (29)

−rD + r − c(L̃NEi,1 )− µi,2 + µi,4 = 0 (30)

µi,1(
D

N
− lNEi,1 ) = µi,2(ψ

D

N
− lNEi,2 ) = µi,3l

NE
i,1 = µi,4l

NE
i,2 = 0 (31)

µi,1, µi,2, µi,3, µi,4 ≥ 0. (32)

C.2 Best response function

Lemma 7. Let li,1 ∈
(
0, D

N

]
. Then,

(li,1, 0) ̸∈ arg max
li,1,li,2

πi(L−i, (li,1, li,2)).

Proof. It cannot be individually optimal to play li,1 > 0 without profiting from learning

effects at t = 2 since, by Assumption 1, li,1 > 0 implies losses at t = 1.

Lemma 8. The individually profit-maximising amount l∗i,2 = argmaxli,2 πi(L−i, (li,1, li,2))

follows a deterministic rule:

l∗i,2 =

0, if r − c(L̃i,1) ≤ rD

ψD
N
, otherwise.

Proof. This follows directly from Equation 30 once we assume that banks prefer no loan

financing if the return spread is exactly zero.

Depending on the behavior of the other banks L−i, we can then show that the best

response of bank i can fall into four different categories:

1. “Immediate financing” (IF): bank i finances the full amount of projects in both

periods subject to its demand constraint.

2. “Gradual financing” (GF): bank i finances some but not all available projects at

t = 1 and all projects at t = 2.

3. “Free-riding” (FR): bank i invests nothing at t = 1 but finances all available projects

at t = 2.

4. “No financing” (NF): bank i does not invest in either period.
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Lemma 9. Bank i’s best response function BRi : L−i 7→ argmaxli,1,li,2 πi(L−i, li) is given

by:

BRi(L−i) =



(
D
N
, ψD

N

)
if r − c̄− βc′(L̃−i,1 +

D
N
)ψD

N
> rD ∧

πi(L−i, (
D
N
, ψD

N
)) > 0(

l∗i,1, ψ
D
N

)
if ∃li,1 ∈ [0, D

N
) :

r − c̄− βc′(L̃−i,1 + li,1)ψ
D
N

= rD,

πi(L−i, (li,1, ψ
D
N
)) > 0(

0, ψD
N

)
if the prior conditions are not satisfied and in addition,

r − c(L̃−i,1) > rD

(0, 0) otherwise

with

l∗i,1 = (c′)−1

(
−rD − r + c̄

βψD
N

)
− L̃−i,1.

Proof. This follows directly from the FOC in Equation 29 and Lemmas 7 and 8.

C.3 Symmetry of Nash equilibrium

We can show that any Nash equilibrium must be symmetric:

Lemma 10. In any Nash equilibrium, it holds that

∄i ∈ {1, ..., N} : li,1 = 0 ∧ li,2 > 0.

Proof. Let li,1 = 0 in a Nash equilibrium. Assume for contradiction that li,2 > 0. By

Lemma 8, this implies that li,2 = ψD
N
. Then, one of the following cases must hold:

• L̃−i,1 = 0. But by Assumption 1, this would imply that r−c(L̃−i,1+li,1) = r−c̄ < rD.

Then, it is trivial to see that

πi((L−i, (0, 0))) > πi((L−i, (0, li,2))).

Hence, (0, li,2) cannot be a best response to L−i for bank i, and therefore this

strategy cannot be part of a Nash equilibrium.

• L̃−i,1 > 0. This implies that there is another bank j with lj,1 > 0 and, concomitantly,

lj,2 = ψD
N

and

L̃−j,1 = γL̄−i,−j,1 < γL̄−i,−j,1 + γlj,1 = L̃−i,1

where L̄−i,−j,1 denotes the sum of first-period loans by all banks except i and j. It

follows immediately that L̃j,1 − L̃i,1 = (1− γ)lj,1 > 0. Note that lj,1 > 0 requires by
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j’s best response function that

r − c̄− βc′(L̃j,1)ψ
D

N
≥ rD,

while li,1 = 0 requires by i’s best response function that

r − c̄− βc′(L̃i,1)ψ
D

N
< rD.

But since −βc′(·)ψD
N

is strictly decreasing, L̃i,1 < L̃j,1 implies that

r − c̄− βc′(L̃i,1)ψ
D

N
> r − c̄− βc′(L̃j,1)ψ

D

N
≥ rD,

which is a contradiction.

Lemma 11. In any Nash equilibrium with L̄1 ∈ (0, D], it holds that

li,1 ̸= 0 ∀ i = 1, ..., N.

Proof. L̄1 ∈ (0, D] implies that there must be another bank j such that lj,1 > 0.

Assume for contradiction that there is a bank i such that li,1 = 0. By Lemma 10, this

implies that li,2 = 0, which means that

πi(L−i, (0, 0)) = 0.

Note that lj,1 > 0 implies that lj,2 > 0 by the contrapositive of Lemma 7, which implies

by Lemma 8 that lj,2 = ψD
N
. Hence, bank j’s profits must be

πj(L−j, (lj,1, ψ
D

N
)) = (r − c̄− rD)lj,1 + β

(
r − c(L̃−j,1 + lj,1)− rD

)
ψ
D

N
.

If the outcome is a Nash equilibrium, it has to hold by j’s best response function that

this yields positive profits.

Also, note that

L̃−j,1 − L̃−i,1 = γL̄−i,−j,1 − (γL̄−i,−j,1 + γlj,1) = −γlj,1 < 0,

which means that L̃−j,1 < L̃−i,1. But since πi(·) is weakly increasing in L̃−i,1, this means

that if bank i were to switch from (0, 0) to adopting bank j’s strategy (lj,1, ψ
D
N
), then it

must be the case that

πi(L−i, (lj,1, ψ
D

N
)) ≥ πj(L−j, (lj,1, ψ

D

N
)) > πi(L−i, (0, 0)).
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By symmetry, (lj,1, ψ
D
N
) must be feasible for bank i since it is feasible for bank j.

Therefore, (0, 0) cannot be a best response of bank i to L−i, and the outcome cannot be

a Nash equilibrium.

Lemma 12. In any Nash equilibrium with L̄1 ∈ (0, D] there is a l∗1 ∈
(
0, D

N

]
such that

lk,1 = l∗1 ∀ k = 1, ..., N.

Proof. In a Nash equilibrium with L̄1 ∈ (0, D], it holds by Lemma 11 that li,1 > 0 ∀ i.
Take any i ̸= j and assume for contradiction that lj,1 > li,1.

This implies that L̃j,1 = γL̄−i,−j,1+γli,1+ lj,1 and L̃j,1 = γL̄−i,−j,1+γlj,1+ li,1. Hence,

L̃j,1 − L̃i,1 = (1− γ)(lj,1 − li,1) > 0.

Note that li,1, lj,1 > 0 implies by Lemma 7 that li,2 = lj,2 = ψD
N
. Furthermore,

lj,1 > li,1 implies that li,1 <
D
N
. Since the outcome is a Nash equilibrium, i’s best response

function requires that

rD = r − c̄− βc′(L̃i,1)ψ
D

N
.

At the same time, lj,1 > 0 implies by j’s best response function that

rD ≤ r − c̄− βc′(L̃j,1)ψ
D

N
.

Combining both expressions yields the requirement that

−c′(L̃j,1) ≥ −c′(L̃i,1).

However, since −c′(·) is strictly decreasing and L̃j,1 > L̃i,1, this cannot hold.

Lemma 13. In any Nash equilibrium, it holds that

li,t = l∗t ∀ i, t.

Proof. Simply note that L̄1 ∈ [0, D], which means that one of the following cases has to

hold:

• L̄1 = 0. Then, trivially, li,1 = 0 ∀ i;

• L̄1 ∈ (0, D]. Then, by Lemma 12, li,1 = l∗1 ∀ i.

Since this implies that L̃i,1 = (1 + γ(N − 1))l∗1 ∀ i, Lemma 8 tells us that li,2 = l∗2 for

some l∗2 ∈
{
0, ψD

N

}
for all i.
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C.4 Existence of Nash equilibria

Lemma 14. Let l∗NE1 := Ñ−1(c′)−1(− rD−r+c̄
βψD

N

). Then the symmetric no-financing Nash

equilibrium li,t = 0 ∀ i, t exists if and only if

∄ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1.

Proof. Only if

By Assumption 1, the FOCs in Equation 29 and 30 hold for li,t = 0 ∀ i, t and µi,3, µi,4 > 0.

In other words, the symmetric no-financing outcome is always a critical point of the

Lagrangian since both FOCs, in this case, reduce to r − c̄ < rD.

By Lemma 9, (li,1, li,2) = (0, ψD
N
) cannot be a best response of bank i given L̄−i,1 = 0.

Therefore, by Lemma 9 the only possible best-response deviations for bank i from the

symmetric no-financing outcome are

(li,1, li,2) = (
D

N
,ψ
D

N
)

or

(li,1, li,2) =

(
(c′)−1

(
−rD − r + c̄

βψD
N

)
− L̃−i,1, ψ

D

N

)
which, given L̄−i,1 = 0, can be rewritten as

(li,1, li,2) =

(
Ñ l∗NE1 , ψ

D

N

)
.

Assume that the symmetric no-financing outcome is not a Nash equilibrium. Then,

one of these two possible deviations must be optimal for bank i given L̄−i = 0, which by

the SOC requires that

∃ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : πi

(
L̄−i,1 = 0, (li,1, ψ

D

N
)

)
> πi

(
L̄−i,1 = 0, (0, 0)

)
= 0.

Inserting the expression for πi
(
L̄−i,1 = 0, (li,1, ψ

D
N
)
)
and rearranging gives us

∃ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (r − c̄− rD)li,1.

If

If

∄ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1

holds, then the SOC is violated for any (li,1, li,2) ̸= (0, 0) that satisfies the best response

function given by Lemma 9. Hence, the best response of bank i given L̄−i,1 = 0 must be

(0, 0).
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Lemma 15. Let l∗NE1 := Ñ−1(c′)−1
(
− rD−r+c̄

βψD
N

)
. Then the Nash equilibrium (l∗NE1 , ψD

N
)Ni=1

exists if and only if

l∗NE1 ∈ (0,
D

N
] ∧ β

(
r − c(Ñ l∗NE1 )− rD

)
ψ
D

N
> (rD − r + c̄) l∗NE1 . (33)

Proof. If

First, we must show that (l∗NE1 , ψD
N
)Ni=1 satisfies the FOC for each bank i. Plugging

this into Equation 29 yields

−rD + r − c̄− βc′(Ñ l∗NE1 )ψ
D

N
− µi,1 + µi,3 = 0.

Assuming l∗NE1 ∈ (0, D
N
) =⇒ µi,3 = µi,1 = 0 and given the definition of l∗NE1 , this

reduces to

0 = 0.

Assuming l∗NE1 = D
N

=⇒ µi,3 = 0, µi,1 ≥ 0, the Equation still holds for µi,1 = 0, which

does not violate the complementary slackness conditions. Hence, in both cases, the FOC

is satisfied.

By Lemma 9, the only possible deviations for bank i from (l∗NE1 , ψD
N
)Ni=1 are (0, 0),

(0, ψD
N
), and (D

N
, ψD

N
). Then, the SOC requires that profits under these deviations are

dominated by (l∗NE1 , ψD
N
).

First, note that

β
(
r − c(Ñ l∗NE1 )− rD

)
ψ
D

N
> (rD − r + c̄) l∗NE1

implies that bank i makes an above-zero profit in the potential Nash equilibrium. Hence

(0, 0), which yields zero profits, cannot be an individually rational deviation from the

potential Nash equilibrium.

For the other two deviations, it suffices to show that if li,2 = ψD
N
, then for a given

L−i,1

πi

(
L̄−i,1, (li,1,

D

N
)

)
= (r − c̄− rD)li,1 + β

(
r − c(li,1 + L̃−i,1)− rD

)
ψ
D

N

is strictly concave in li,1 since the first term is linear, hence weakly concave, in li,1 and

−c(·) is strictly concave by the strict convexity of c. Therefore, any deviation from the

critical point (l∗NE1 , ψD
N
) that still features li,2 = ψD

N
must result in strictly lower profits

and cannot be a best response.

Only if

Assume that the Nash equilibrium (l∗NE1 , ψD
N
)Ni=1 exists. By Lemma 7, this then
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implies that

l∗NE1 ̸= 0

and, given the demand constraint and the nonnegativity condition,

l∗NE1 ∈ (0,
D

N
].

However, if the Nash equilibrium (l∗NE1 , ψD
N
)Ni=1 exists, then by Lemma 9 this implies

above-zero profits.

Lemma 16. The Nash equilibrium (D
N
, ψD

N
)Ni=1 exists if and only if

r − c̄− βψ
D

N
c′(Ñ

D

N
) ≥ rD ∧ βψ

(
r − c(

Ñ

N
D)− rD

)
≥ rD − r + c̄.

Proof. If

For this part of the proof, we follow the same steps as above for Lemma 15: For

r − c̄− βψ
D

N
c′
(
Ñ
D

N

)
≥ rD

the FOC with respect to li,1 is satisfied and l∗NE1 ≥ D
N
. In other words, a deviation from

the potential Nash equilibrium to li,1 = l∗NE1 would violate the demand constraint. By

the strict concavity of profits given li,2 = ψD
N
, deviating from the critical point l∗NE1 to

li,1 = 0 must yield strictly lower profits. By Lemma 9, the only remaining best response

is (0, 0), which cannot be optimal since

βψ(r − c

(
Ñ

N
D

)
− rD) ≥ rD − r + c̄

implies profits above zero under the potential Nash equilibrium. Hence, the Nash equi-

librium exists.

Only if

First, assume that profits of bank i under (D
N
, ψD

N
)Ni=1 are nonpositive. Since we assume

that (0, 0) is preferred for zero profits, this directly implies that the best response must

be (0, 0).

Alternatively, assume that

r − c̄− βψ
D

N
c′
(
Ñ
D

N

)
< rD.

By Lemma 9, this implies that the best response cannot be (li,1, li,2) = (D
N
, ψD

N
).
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Lemma 17. Let LNE be the set of Nash equilibria and let l∗NE1 < D
N
. Then (D

N
, ψD

N
)Ni=1 /∈

LNE if (l∗NE1 , ψD
N
)Ni=1 ∈ LNE and vice-versa.

Proof. By Lemma 16, (D
N
, ψD

N
)Ni=1 /∈ LNE requires that

r − c̄− βψ
D

N
c′
(
Ñ
D

N

)
≥ rD,

whereas, by Lemma 15, (l∗NE1 , ψD
N
)Ni=1 ∈ LNE requires that

r − c̄− βψ
D

N
c′
(
Ñ l∗NE1

)
= rD.

As l∗NE1 < D
N

and c′′ > 0, these conditions are mutually exclusive as

−βψD
N
c′
(
Ñ
D

N

)
< −βψD

N
c′(Ñ l∗NE1 ).

Lemma 18. Let LNE be the set of Nash equilibria. Then if (0, 0)Ni=1 /∈ LNE, it holds that

(l∗NE1 , ψ
D

N
)Ni=1 ∈ LNE ∨ (

D

N
,ψ
D

N
)Ni=1 ∈ LNE.

Proof. By Lemma 14, (0, 0)Ni=1 /∈ LNE requires that

∃ li,1 ∈ {Ñ l∗NE1 ,
D

N
} ∩ (0,

D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1.

This condition holds under two cases:

Case 1:

∃ li,1 = Ñ l∗NE1 ∈ (0,
D

N
] : β (r − c(li,1)− rD)ψ

D

N
> (rD − r + c̄) li,1.

Since this implies that l∗NE1 ∈ (0, D
N
), both conditions in Lemma 15 are satisfied such that

(l∗NE1 , ψD
N
)Ni=1 ∈ LNE.

Case 2:

Ñ l∗NE1 /∈ (0,
D

N
] ∧ βψ

(
r − c(

D

N
)− rD

)
D

N
> (rD − r + c̄)

D

N
.

By Lemma 9, the latter expression (i.e., that bank i can obtain positive profits uni-

laterally) requires that

r − c̄− βψ
D

N
c′(
D

N
) > rD.
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Since Ñ l∗NE1 is implicitly defined by

r − c̄− βψ
D

N
c′(Ñ l∗NE1 ) = rD

and c′′ > 0, this implies that Ñ l∗NE1 > D
N
.

Now, we need to distinguish two further cases:

Case 2a: l∗NE1 ≤ D
N
.

We know that

β

(
r − c(

D

N
)− rD

)
ψ
D

N
> (rD − r + c̄)

D

N

and that l∗NE1 ≤ D
N

while Ñ l∗NE1 > D
N
. Then it directly follows that

β
(
r − c(Ñ l∗NE1 )− rD

)
ψ
D

N
> (rD − r + c̄) l∗NE1

since c′ < 0 and by Assumption 1, rD − r + c̄ > 0. Hence, both conditions in Lemma 15

are satisfied such that (l∗NE1 , ψD
N
)Ni=1 ∈ LNE.

Case 2b: l∗NE1 > D
N
.

Again, we can directly conclude that

β

(
r − c(Ñ

D

N
)− rD

)
ψ
D

N
> (rD − r + c̄)

D

N
.

Hence, both conditions in Lemma 16 are satisfied such that (D
N
, ψD

N
)Ni=1 ∈ LNE.

C.5 Early financing gap

Lemma 19. Let LSO be the set of socially optimal solutions and LNE be the set of Nash

equilibrium solutions. Then, if (0, 0)Ni=1 ∈ LSO, then LNE = {(0, 0)Ni=1}.

Proof. By the social planner’s SOC, (0, 0)Ni=1 ∈ LSO implies that, for any L̄1 ∈ [0, D], L̃1 ∈[
0, Ñ

N
D
]
,

0 ≥ (r − c̄− rD)L̄1 + β(r − c(L̃1)− rD)ψD.

Dividing both sides of this inequality by N , it is immediately clear that this is equivalent

to

0 ≥ (r − c̄− rD)l1 + β(r − c(L̃1)− rD)ψ
D

N
(34)

for any l1 ∈
[
0, D

N

]
, L̃1 ∈

[
0, Ñ

N
D
]
.

Now, assume for contradiction that there is a different Nash equilibrium. This implies
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that there is at least one bank i for which li,1 ∈
(
0, D

N

]
and L̃−i,1 ∈

[
0, Ñ−1

N
D
]
. However,

by bank i’s best response function, this would require that

0 < (r − c̄− rD)li,1 + β
(
r − c(L̃−i,1 + li,1)− rD

)
ψ
D

N
.

Since L−i,1 + li,1 ∈
[
0, Ñ

N
D
]
, this would contradict the condition in Equation 34.

Lemma 20. Let the unique socially optimal solution be such that L̄SO1 ∈ (0, D). Let LNE

be the set of Nash equilibrium solutions. Then, for any L ∈ LNE and N > 1, it must

hold that L̄1 < L̄SO1 .

Proof. Assume for contradiction that L̄1 ≥ L̄SO1 . By Lemma 13 (symmetry of the Nash

equilibrium), this implies that li,1 = l1 = L̄1

N
∈
(
0, D

N

]
∀ i. It also requires that there is

at least one bank i with lSOi,1 ≤ l1 and L̄−i,1 = L̄1 − l1 ∈
[
0, N−1

N
D
]
. Let i be this bank.

The bank’s best response function implies that

−c′(γL̄−i,1 + l1) ≥
rD − r + c̄

β

N

ψD
,

where the condition holds with strict inequality if and only if l1 =
D
N
. On the other hand,

the FOCs for bank i in the social planner’s problem tell us that

−c′(γL̄SO−i,1 + lSOi,1 ) ≤
rD − r + c̄

β

N

ψD

1

Ñ
,

where the condition holds with strict inequality if and only if lSOi,1 = 0.

As N > 1, we know that

rD − r + c̄

β

N

ψD
>
rD − r + c̄

β

N

ψD

1

Ñ
,

and hence that

−c′(γL̄−i,1 + l1) > −c′(γL̄SO−i,1 + lSOi,1 ).

Since c(·) is strictly decreasing and convex, −c′(·) is strictly decreasing. This implies that

γL̄−i,1 + l1 < γL̄SO−i,1 + lSOi,1 . Rearranging yields

L̄1 +
1

γ
(l1 − lSOi,1 ) < L̄SO1 .

Since l1 − lSOi,1 ≥ 0, this implies that L̄1 < L̄SO1 , which contradicts L̄1 ≥ L̄SO1 .

Lemma 21. Let (D
N
, ψD

N
)Ni=1 be the unique socially optimal solution. Let LNE be the set
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of Nash equilibrium solutions. Then, (D
N
, ψD

N
)Ni=1 ∈ LNE if and only if

−c′(Ñ
N
D) ≥ rD − r + c̄

β

N

ψD
. (35)

Proof. If (D
N
, ψD

N
)Ni=1 is the solution to the social maximization problem, the SOC implies

that total profits exceed zero, i.e.,

β

(
r − c(Ñ

D

N
)− rD

)
ψ
D

N
> (r − c̄− rD)

D

N

which satisfies the second condition in Lemma 16. The condition stated above is then

simply the first condition in Lemma 16 restated.

D Proofs for Propositions 3 and 4 (stand-alone pol-

icy interventions)

Using a more formal notation, Propositions 3 and 4 can be stated as follows:

Proposition 3. Let lSO1 ∈ (0, D
N
), let s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0, and let LNE|s

be the set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, it holds

that

• (lSO1 , lSO2 )Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 ≥ 0;

• (0, 0)Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 ≥ 0 if and only if

∄ li,1 ∈ {Ñ lSO1 ,
D

N
} ∩ (0,

D

N
] : (36)

β (r − c(li,1)− rD + s2)ψ
D

N
≥ (c̄+ rD − r − s∗1) li,1;

• (0, 0)Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 = 0 if

(0, 0) ∈ LNE|s for s1, s2 = 0 ∧ r − rD ≤ c(
D

N
); (37)

• LNE|s = {(lSO1 , lSO2 )Ni=1} ∀ s1 = s∗1, s2 > c̄+ rD − r.

Proof. See Appendix D.2.

Proposition 4. Let lSO1 ∈ (0, D
N
), and let LNE|g be the set of possible Nash equilibria

for a given g1, g2 ≥ 0 and s1, s2 = 0. Let l∗NE1 |g := (c′)−1

(
− c̄+rD−r
βψ

D−g2
N

)
− γg

Ñ
g1, and let

g∗1 := 1
γg
c−1(r − rD). Then, it holds that
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• LNE|g ∈ P
({(

max{0,min{l∗NE1 |g, D−g1
N

}}, ψD−g2
N

)N
i=1

, (0, 0)Ni=1

})
\ ∅;

• (0, 0)Ni=1 /∈ LNE|g ∀ g1 ∈ (g∗1, D), g2 ∈ [0, ψD);

• l∗NE1 |g decreases in g2;

• The parameter space for which
(
max{0,min{l∗NE1 |g, D−g1

N
}}, ψD−g2

N

)N
i=1

∈ LNE|g
decreases in g2.

Proof. See Appendix D.3. The comparative statics for l∗NE1 |g follow directly from its

definition, keeping in mind that (c′)−1 is monotonically increasing.

D.1 First-order conditions

The first-order conditions for the maximization problem by bank i given in Equation 16

are as follows:

r − c̄− rD + s1 − βc′

(
γ
∑
j ̸=i

lNEj,1 + γgg1 + lNEi,1

)
lNEi,2 − µi,1 + µi,3 = 0 (38)

r − c

(
γ
∑
j ̸=i

lNEj,1 + γgg1 + lNEi,1

)
− rD + s2 − µi,2 + µi,4 = 0 (39)

µi,1(
D

N
− lNEi,1 − g1

N
) = µi,2(ψ

D

N
− lNEi,2 − g2

N
) = µi,3l

NE
i,1 = µi,4l

NE
i,2 = 0 (40)

µi,1, µi,2, µi,3, µi,4 ≥ 0. (41)

Considering Equations 38-39, ∀s1, s1, g1, g2 ≥ 0, we could simply redefine r∗ := r+ s2,

r∗D := rD − s1 + s2, and c̄∗ := c(γgg1) and c∗(x) = c(x + γgg1). We would then face

the same maximization problem as before and follow the steps in Appendix C.3 to derive

that any resulting Nash equilibrium under the policy intervention must be symmetric and

take the shape of a no-financing, gradual-financing, or immediate-financing equilibrium.

In addition, it is now also possible that (0, ψD−g2
N

)Ni=1 is a Nash equilibrium if the policy

intervention alone suffices to ensure bankability at t = 2. Nevertheless, the existence of

this additional outcome does not affect the logical steps that underlie the symmetry of

the Nash equilibrium:

Lemma 22. Let LNE|gs be the set of possible Nash equilibria for a given s1, s2, g1, g2 ≥ 0.

Then for any (lNE1 , lNE2 ) ∈ LNE|gs it holds that

lNEi,t = lNEt ∀ i = 1, ..., N, t ∈ {1, 2}.

Proof. Analogous to Lemma 13 with the redefined maximization problem.
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D.2 De-risking subsidy

Lemma 23. Let lSO1 ∈ (0, D
N
). Then, s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) < rD − r + c̄.

Proof. If lSO1 ∈ (0, D
N
), then by Equation 19 it holds that:

r − rD − c̄− βc′(Ñ lSO1 )ψ
Ñ

N
D = 0.

Recalling that Ñ := 1 + γ(N − 1), we can rewrite this as

−βc′(Ñ lSO1 )ψ
D

N
− βc′(Ñ lSO1 )γ(N − 1)ψ

D

N
= rD − r + c̄.

As c′ < 0, both terms on the left-hand side are strictly positive. The second term on the

left-hand side is equal to s∗1. Therefore, s
∗
1 < rD − r + c̄.

Lemma 24. Let lSO1 ∈ (0, D
N
), s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0, and LNE|s be the

set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, (lSO1 , lSO2 ) ∈
LNE|s ∀ s1 = s∗1, s2 ≥ 0.

Proof. Imposing symmetry by Lemma 22 and inserting s1 = s∗1, g1 = g2 = 0 into Equation

38 yields:

r − c̄− rD − βγ(N − 1)lNE2 c′(Ñ lNE1 )− βc′(Ñ lNE1 )lNE2 − µi,1 + µi,3 = 0.

Note that this equals the FOC for the social optimum, such that we can replace (lNE1 , lNE2 )

with (lSO1 , lSO2 ). We can further set lSO2 = ψD
N
, which directly follows from lSO1 ∈ (0, D

N
):

r − c̄− rD − βÑψ
D

N
c′(Ñ lSO1 )− µi,1 + µi,3 = 0.

Note that this is identical to Equation 19 at lSO2 = ψD
N
. By the Appendix version

of Proposition 1, lSO1 ∈ (0, D
N
) then implies that this satisfies the FOCs of banks. By

the Appendix version of Proposition 1, the SOC of above-zero profits (Equation 25)

must hold, which by symmetry implies above-zero profits for each bank i. Hence, both

conditions in Lemma 15 are met and (lSO1 , lSO2 ) ∈ LNE|s.

Lemma 25. Let lSO1 ∈ (0, D
N
), s∗1 := −βγ(N−1)ψD

N
c′(Ñ lSO1 ) > 0, and LNE|s be the set of

possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, (0, 0) ∈ LNE|s ∀ s1 =
s∗1, s2 ≥ 0 if and only if

∄ li,1 ∈ {Ñ lSO1 ,
D

N
} ∩ (0,

D

N
] : (42)

β (r − c(li,1)− rD + s2)ψ
D

N
> (rD − r + c̄− s∗1) li,1. (43)
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Proof. This simply reflects the condition in the Appendix version of Proposition 2 for the

adjusted maximization problem allowing for s1, s2 ≥ 0. Note that under s1 = s∗1 and for

lj,1 = 0 ∀ j ̸= i, the loan financing amount, for which bank i’s FOC with respect to li,1

holds with equality, is Ñ lSO1 . In other words, this is the amount of loan financing (net of

spillover losses) in the social optimum. Then, the remaining proof can be derived by the

same steps as for Lemma 14.

Lemma 26. Let lSO1 ∈ (0, D
N
), s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0, and LNE|s be the

set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, it holds that

(0, 0) ∈ LNE|s ∀ s1 = s∗1, s2 = 0 if

r − c(
D

N
) ≤ rD.

Proof. Inserting s2 = 0 into the condition in Lemma 25 for the existence of a zero-

financing Nash equilibrium yields

β (r − c(li,1)− rD)ψ
D

N
> (rD − r + c̄− s∗1) li,1.

By Lemma 23, the right-hand side is positive if li,1 > 0. But by r − c(D
N
) ≤ rD, the

left-hand side is nonpositive for all li,1 ∈ [0, D
N
]. Hence, the condition in Lemma 25 is

satisfied as the inequality condition cannot hold for any li,1 ∈ [0, D
N
].

Lemma 27. Let lSO1 ∈ (0, D
N
), s∗1 := −βγ(N − 1)ψD

N
c′(Ñ lSO1 ) > 0, and LNE|s be the

set of possible Nash equilibria for a given s1, s2 ≥ 0 and g1, g2 = 0. Then, it holds that

LNE|s = {(lSO1 , lSO2 )} ∀ s1 = s∗1, s2 > rD + c̄− r.

Proof. By the Appendix version of Proposition 2, if lSO1 ∈ (0, D
N
), then

LNE ∈
{
{(0, 0)Ni=1}, {(0, 0)Ni=1, (l

∗NE
1 , ψ

D

N
)Ni=1}, {(l∗NE1 , ψ

D

N
)Ni=1}

}
.

The same steps can be followed for the re-defined maximization problem under policies

in Equation 16 such that

LNE|s ∈
{
{(0, 0)Ni=1}, {(0, 0)Ni=1, (l

∗NE
1 |s, ψD

N
)Ni=1}, {(l∗NE1 |s, ψD

N
)Ni=1}

}
.

By Lemma 24, it holds that

(lSO1 , ψ
D

N
)Ni=1 ∈ LNE|s ∀ s1 = s∗1, s2 ≥ 0.

By Equation 39, the FOC with respect to li,2 requires that

r − c(γ
∑
j ̸=i

lNEj,1 |s+ γgg1 + lNEi,1 |s)− rD + s2 − µi,2 + µi,4 = 0
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which, since c(·) ≤ c̄, can only hold for g1 = 0, s2 > rD − (r − c̄) if µi,2 > 0—i.e., for

lNEi,2 |s = ψD
N
. Hence, (0, 0)Ni=1 /∈ LNE|s.

D.3 Public loan provision

Lemma 28. Let lSO1 ∈ (0, D
N
), and let LNE|g be the set of possible Nash equilibria for a

given g1, g2 ≥ 0 and s1, s2 = 0. Let l∗NE1 |g := (c′)−1

(
− c̄+rD−r
βψ

D−g2
N

)
− γg

Ñ
g1. Then

LNE|g ∈ P

({(
max{0,min{l∗NE1 |g, D − g1

N
}}, ψD − g2

N

)N
i=1

, (0, 0)Ni=1

})
\ ∅.

Proof. By Lemma 22, every solution in LNE|g must be symmetric. By Lemma 2, lSO1 < D
N

implies that l∗NE1 < D
N
, but the demand constraint li,1 ≤ D−g1

N
can still bind for very low

values of γ and very high values of g1.

Under public loan provision, the FOC with respect to li,2 now requires that

r − c(L̃NEi,1 |g + γgg1)− rD − µi,2 + µi,4 = 0.

The deterministic rule for lNEi,2 |g then becomes

lNEi,2 |g =

0, if r − c(L̃i,1 + γgg1) ≤ rD

ψD−g2
N

, otherwise.
(44)

Therefore, γgg1 ≥ c−1(r − rD) implies that lNE2 |g = ψD−g2
N

.

Similarly, the best response function derived under the steps followed for Lemma 9

changes as follows:

BRi(L−i)|g =



(
D−g1
N

, ψD−g2
N

)
if r − c̄− βc′

(
γL−i,1 + γgg1 +

D−g1
N

)
ψD−g2

N
> rD ∧

r − c(γL−i,1 + γgg1 +
D−g1
N

) > rD ∧

πi(L−i, (
D−g1
N

, ψD−g2
N

)) > 0(
l∗i,1|g, ψ

D−g2
N

)
if ∃li,1 ∈ [0, D−g1

N
) :

r − c̄− βc′ (γL−i,1 + γgg1 + li,1)ψ
D−g2
N

= rD,

πi(L−i, (li,1, ψ
D−g2
N

)) > 0(
0, ψD−g2

N

)
if the prior conditions are not satisfied and

r − c(γL−i,1 + γgg1) > rD

(0, 0) otherwise
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with

l∗i,1|g = (c′)−1

(
rD − r + c̄

βψD−g2
N

)
− γL−i,1 − γgg1.

Steps to derive the possible Nash equilibria are the same as in Appendix C.2 with one

important difference. By Equation 44, it is now possible that (0, ψD−g2
N

)Ni=1 ∈ LNE|g if

γgg1 > c−1(r − rD).

Deriving the symmetric amount of loan financing that solves the FOC with respect

to li,1 yields

Ñ l∗NE1 |g = (c′)−1

(
rD − r + c̄

βψD−g2
N

)
− γgg1

which, subject to the nonnegativity and the demand constraint, leads to the possible

definitions of LNE|g in Lemma 28.

Lemma 29. Let lSO1 ∈ (0, D
N
) let LNE|g be the set of possible Nash equilibria for a given

g1, g2 ≥ 0 and s1, s2 = 0. Then the parameter space, for which
(
min{l∗NE1 |g, D−g1

N
}}, ψD−g2

N

)N
i=1

∈
LNE|g, decreases in g2.

Proof. Based on the best-response function BRi(Li)|g above, a Nash equilibrium with

lNE1 |g > 0 requires that

r − c̄− βc′
(
Ñ lNE1 |g + γgg1

)
ψ
D − g2
N

≥ rD.

As c′ < 0, this is, ceteris paribus, less likely to hold for g2 ↑.
The FOC with respect to li,2 does not depend on g2, while bank profits πi, ceteris

paribus, also decrease weakly monotonically in g2, making the profitability condition in

the best-response function less likely to hold as well. Therefore, all three conditions for

a Nash equilibrium with lNE1 |g > 0 are either less likely to hold or unaffected by g2 ↑.

Lemma 30. Let lSO1 ∈ (0, D
N
), and let LNE|g be the set of possible Nash equilibria for

a given g1, g2 ≥ 0 and s1, s2 = 0. Let g∗1 := c−1(r−rD)
γg

. Then, if g1 > g∗1, it holds that

(0, 0) /∈ LNE|g.

Proof. This follows directly from Equation 44 since g1 > g∗1 implies that lNE2 |g = ψD−g2
N

.

Importantly, this is a sufficient but not a necessary condition for (0, 0) /∈ LNE|g because

a value for g1 that is (slightly) below g∗1 might still enable an individual bank i to reach

positive profits by deviating unilaterally from the (0, 0) Nash equilibrium.
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E Proofs for Lemmas 3 and 4 (policy costs & policy

mix)

E.1 Comparing the de-risking subsidy and public loan provision

for addressing the coordination failure

Lemma 31. Let lSO1 ∈ (0, D
N
), g1 = g∗1 + ϵ, g2 = s1 = 0, and s2 = rD + c̄ − r + ϵ, where

ϵ > 0 is an infinitesimally small positive constant. Then, it holds that

g∗1 < βgrgDD =⇒ PC(g1) < PC(s2) ∀ rgD = rD, r
g = r, βg ≥ 0, g2 ≥ 0, lNE1 |g ≥ 0

Proof. If the characteristics of the public loan provider and private banks are identical

and ϵ is negligible, then

PC(s2) ≈ (rD + c̄− r)βψDrD

PC(g1) = (rD + c̄− r)g1 − β
(
r − c(g1 + γNlNE1 |g)− rD

)
g2.

Since g2 can always be set to zero if second-period public loans are nonprofitable (i.e.,

if r − c(g1 + γNlNE1 |g) ≤ rD), this implies that

PC(g1) ≤ (rD + c̄− r)g1

such that any g1 < βψDrD satisfies PC(g1) < PC(s2).

E.2 Policy mix

Using formal notation, Lemma 4 can be stated as follows:

Lemma 32. Let lSO1 ∈ (0, D
N
), LNE|gs be the set of possible Nash equilibria given g1 =

g∗1 + ϵ, and s1 = s∗1, g2 = s2 = 0. Then, it holds that

• LNE|gs = {(lSO1 − γg

Ñ
g1, ψ

D
N
)Ni=1} ∀ g2 ≥ 0;

• lNE1 |g < lNE1 |gs < lSO1 .

Proof. Note that the FOC with respect to li,2 in Equation 39 is unaffected by s1 = s∗1.

Hence, Lemma 30 equally applies such that (0, 0)Ni=1 /∈ LNE|gs for g1 = g∗1 + ϵ.

By lSO1 ∈ (0, D
N
) and Equation 11, we know that

−βψD
N
c′(Ñ lSO1 ) (1 + γ(N − 1)) = rD + c̄− r.

Under the given policy mix, the FOC with respect to li,1 from the individual bank’s
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profit maximization in Equation 38 then yields

−βψD
N
c′(Ñ l∗NE1 |gs+ γgg1) + s∗1 = rD + c̄− r.

Inserting the definition of s∗1 then gives us

−βψD
N

(
c′(Ñ l∗NE1 |gs+ γgg1) + γ(N − 1)c′(Ñ lSO1 )

)
= rD + c̄− r.

Since bank i takes g1 as exogenous, combining this with the FOC from the social maxi-

mization problem requires

Ñ lSO1 = Ñ l∗NE1 |gs+ γgg1.

Note that by the Appendix version of Proposition 1, lSO1 ∈ (0, D
N
) implies strictly positive

overall profits. Given the definition of g1, this implies that

Ñ lSO1 > γgg1

because for L̄1 = 0, g1 = g∗1 + ϵ, the return spread at t = 2 is zero, and banks make zero

profits in both periods. Therefore,

lSO1 − γg

Ñ
g1 > 0

such that l∗NE1 |gs ∈ (0, D
N
).

Regarding the second statement in Lemma 32, lNE1 |gs < lSO1 follows directly from

lNE1 |gs = lSO1 − γg

Ñ
g1

since γg, g1, Ñ > 0.

By the Appendix version of Proposition 4, the maximum value lNE1 |g can take for any

g1 is (c
′)−1

(
− c̄+rD−r
βψ

D−g2
N

)
− γg

Ñ
g1. Given g2 = 0, this is equivalent to l∗NE1 − γg

Ñ
g1, where l

∗NE
1

is the unconstrained symmetric solution to the market outcome FOC with respect to li,1

in the absence of any policy intervention. From the Appendix version of Proposition 2,

it follows that

l∗NE1 < lSO1 .

This implies that

l∗NE1 − γg

Ñ
g1 < lSO1 − γg

Ñ
g1

which is equivalent to

lNE1 |g < lNE1 |gs.
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