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Algorithmic Cooperation 

Abstract 

Algorithms play an increasingly important role in economic situations. These situations are often 
strategic, where the artificial intelligence may or may not be cooperative. We study the deter-
minants and forms of algorithmic cooperation in the infinitely repeated prisoner’s dilemma. We 
run a sequence of computational experiments, accompanied by additional repeated prisoner’s 
dilemma games played by humans in the lab. We find that the same factors that increase human 
cooperation largely also determine the cooperation rates of algorithms. However, algorithms tend 
to play different strategies than humans. Algorithms cooperate less than humans when cooperation 
is very risky or not incentive-compatible. 
JEL-Codes: C720, C730, C920, D830. 
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1 Introduction

Cooperation often increases the welfare of humans and other species, but

incentivizing agents to cooperate may be difficult. The prisoner’s dilemma

distills the essential incentives and rewards of such social dilemmas: The

Pareto-efficient outcome is in dominated strategies, so each individual has

a strong incentive to free-ride on the other player. Theoretically, it is well

understood that the possibility of future interaction, or repetition, is es-

sential for establishing cooperation among self-interested players: Future

encounters can be used to incentivize compliance through the threat of pun-

ishment. However, as there are myriad equilibria for sufficiently high dis-

count factors and uncooperative equilibria persist, it becomes an empirical

exercise to study how the repeated prisoner’s dilemma is being played. The

vast experimental literature (see our literature review below) has addressed

the determinants, forms, and levels of cooperation for human players.

We study how self-learning algorithms play the repeated prisoner’s

dilemma. Specifically, we place the algorithms into the same economic

environments implemented in laboratory experiments and analyze their be-

havior with the tools used to study human behavior (Dal Bó and Fréchette,

2018). As with humans, we are interested in the determinants, forms, and

levels of cooperation. In each of these dimensions, we draw on the exper-

imental literature to understand the similarities and differences between

self-learning algorithms and humans in social dilemmas. First, we exam-

ine whether the determinants that shape human cooperation also influence

algorithmic cooperation. Second, we ask which strategies the algorithms

adopt and contrast them with those of humans. Finally, we compare the

levels of cooperation between humans and algorithms and ask which factors

contribute to the differences.

Understanding the behavior of self-learning algorithms is essential (Rah-

wan et al., 2019). After all, algorithms advise humans or decide on their

behalf more and more often. For example, algorithms may autonomously

drive cars, adjust financial portfolios, detect fraud, or set prices, among

other applications. Some autonomous algorithms operate in strategic sit-

uations and interact repeatedly with other self-learning agents. This can

occur in coordination problems; for example, in choosing traffic routes, or
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in warfare (Jensen et al., 2020). Other strategic situations present the AI

with the possibility of cooperating in social dilemmas, e.g., in team produc-

tion or computation offloading (Kuang et al., 2021), or in markets to the

detriment of the consumers (Harrington, 2018, Miklós-Thal and Tucker,

2019, Calvano et al., 2020b, Ezrachi and Stucke, 2020, Harrington, 2022,

Martin and Rasch, 2022). Either way, it is important to understand how

algorithms interact with each other and their potential impact on society.

As a methodological step forward in this direction, we apply the strat-

egy frequency estimation method (SFEM), developed for the analysis of

human data (Dal Bó and Fréchette, 2011), to the algorithms’ decisions.

The algorithms’ behavior often appears as a black box, and knowledge of

how algorithms work and how to predict their behavior is important. A key

challenge for interpreting algorithmic behavior is that the number and com-

plexity of the strategies grows in the algorithm’s complexity. The SFEM

works around this issue by estimating the frequency of each strategy from a

pre-specified set of candidate strategies (e.g., grim trigger, tit-for-tat, etc.).

The result is a representation of strategies that is both understandable to

humans and comparable to the strategies adopted by humans. We assess

the estimates of the SFEM and find that it performs accurately in our set-

ting. This finding suggests that the SFEM can also be fruitfully applied to

studying algorithmic behavior in other strategic settings.

Our experimental design is as follows. We analyze how a Q-learning

algorithm plays various repeated prisoner’s dilemma games. Q-learning

(Watkins, 1989, Watkins and Dayan, 1992) is a form of reinforcement learn-

ing, widely studied in economics (Calvano et al., 2020a, Johnson et al., 2023,

Klein, 2021, Abada and Lambin, 2023, Asker et al., 2024) and forms the

basis of several more sophisticated algorithms used in the field. We have

three main treatment variables. First, we vary the reward from mutual

cooperation across three levels. The discount factor is our second treat-

ment variable, which we set at four different values. Our third treatment

variable is the algorithm’s memory, which is hard-coded in Q-learning. We

consider algorithms with memory one, two, and three. Lastly, we study

how cooperation and the distribution of learned strategies depend on the

treatment variables and the algorithm’s learning and exploration rate. We

do not view these hyperparameters as classic treatment variables because
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they lack an economic interpretation. As our objective is to compare the

algorithms’ to human behavior, we run additional laboratory experiments

to collect data for parameter constellations that have been unexplored up

to now. These results are of independent interest.

Regarding the determinants of cooperation, we find that the same fac-

tors that increase human cooperation largely also determine algorithmic co-

operation rates: A higher reward from cooperation and a higher weight on

future payoffs facilitate algorithmic cooperation. The length of the memory

of the agent has an ambiguous influence, and we find that many algorithms

do not fully exploit the memory, as most learned strategies are memory-

one. A robust finding of the experimental literature is that cooperation

is more likely when it can be supported as a (risk-dominant) equilibrium

(Blonski et al., 2011, Blonski and Spagnolo, 2015). We confirm that al-

gorithmic cooperation emerges only if there are cooperative equilibria and

that cooperation increases as it becomes risk-dominant.

Our main finding is that humans and algorithms adopt different strate-

gies to sustain and punish cooperation (given parameter combinations for

which both humans and algorithms frequently cooperate). Dal Bó and

Fréchette (2018) show that the most frequent cooperative strategies are

tit-for-tat and grim trigger. While we find that algorithms also play tit-for-

tat, they hardly ever select the grim trigger. Instead, algorithms play win-

stay-lose-shift (Nowak and Sigmund, 1993), a strategy only rarely played

by humans, and a hitherto undocumented strategy that cooperates if and

only if both players defected in the last rounds.

Our third object of interest is the level of cooperation. Here we find no

unambiguous answer as to whether algorithms outperform humans. While

this is sometimes the case, we also find that algorithms often cooperate

less than humans. In particular, algorithms never cooperate for low dis-

count factors and low reward parameters, while humans achieve low but

positive cooperation rates. Hence, humans cooperate significantly more in

environments where cooperation is very risky or not incentive-compatible.

In an extension, we repeat the experiments with ChatGPT, a Large Lan-

guage Model (LLM), as the players to study the robustness of our findings

to the algorithmic class. LLMs are not designed to learn optimal behav-

ior in a particular environment but are trained on vast human-generated
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data. As such, they are readily available, and humans increasingly inter-

act with them for various tasks (see online appendix S.4 for references).

The algorithm’s propensity to cooperate is similar to the one of humans

for medium discount rates and reward parameters. However, strikingly,

the determinants that shape cooperation among humans and Q-learning

algorithms do not play a significant role for ChatGPT. ChatGPT mainly

adopts strategies with memory up to one and chooses always cooperate,

tit-for-tat, grim, and win-stay-lose-shift.

Related literature. The first strand of the literature we relate to studies

human behavior in the indefinitely repeated prisoner’s dilemma. Early

laboratory experiments with human participants were conducted by Roth

and Murnighan (1978) and Murnighan and Roth (1983). Dal Bó (2005)

first implemented several supergames in the lab, each indefinitely repeated.

The meta-study of Dal Bó and Fréchette (2018) summarizes the subsequent

literature.1 Throughout the paper, we draw upon the insights and methods

of this literature, such as Fudenberg et al. (2012) and Romero and Rosokha

(2018), and structure the analysis as in Dal Bó and Fréchette (2018).

The second related literature is the one on self-learning algorithms in

economics, which has so far largely focused on cooperation in the sense of

(socially undesirable) anti-competitive collusion in oligopoly games.2 Fol-

lowing an early study by Waltman and Kaymak (2008), Calvano et al.

(2020a) and Klein (2021) show in simulation studies that Q-learning algo-

rithms often learn to play collusive prices on-path and that average prices

drop after a deviation and gradually increase again. However, it is difficult

to describe the algorithms’ strategies due to the relatively complex stage

1Both the theoretical and experimental literature have also recognized the impor-
tance of monitoring (Green and Porter, 1984, Harrington and Skrzypacz, 2011, Aoyagi
et al., 2019), communication (Fonseca and Normann, 2012, Freitag et al., 2021) and be-
liefs (Aoyagi et al., 2022, Gill and Rosokha, 2024) for the sustainability of cooperation.
Although enabling “communication” among algorithms might be of interest in its own
right, we do not follow that avenue in this paper.

2There is also a literature that studies pricing algorithms in the field. Chen et al.
(2016) provide an early empirical analysis of algorithmic pricing on Amazon Market-
place. Assad et al. (2023) analyze the impact of algorithms in the German retail gasoline
market. Brown and MacKay (2023) show that pricing algorithms have important effects
in the allergy medications industry. Finally, Wieting and Sapi (2021) analyze algorith-
mic pricing with data from the online marketplace Bol.com.
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games, let alone how the distribution of strategies depends on the game pa-

rameters. In contrast, we analyze the repeated prisoner’s dilemma (which

can be seen as a pricing game with two-stage game actions). This allows us

to get a more complete understanding of on-path and off-path behavior of

Q-learning agents, using the strategy frequency estimation method (Dal Bó

and Fréchette, 2011). Moreover, our setting allows us to draw upon a rich

set of experimental studies to compare human with algorithmic behavior.3

Another difference is that while Calvano et al. (2020a) study the impact of

many variables on the algorithms’ propensity to collude, they do so with

one variable at a time. In contrast, we have a full 3×4×3 treatment design

and find non-linear interaction effects.

Schaefer (2022) and Boczoń et al. (2023) also inquire into the deter-

minants of cooperation among Q-learning algorithms in the repeated pris-

oner’s dilemma. Schaefer (2022) calibrates a heuristic measure called the

“kinetic log ratio” to explain the cooperation propensity. Boczoń et al.

(2023) test equilibrium selection focusing on the size of the basin of attrac-

tion of always defect and the effect of strategic uncertainty. Barfuss and

Meylahn (2022) investigate the relevance of noise in sustaining cooperative

outcomes for reinforcement learning algorithms. We add to this literature

not only the systematic analysis of the determinants of cooperation but

also of the strategies played by algorithms.

The computer science literature that studies artificial intelligence in

strategic situations often prioritizes algorithmic performance in various

games (Crandall and Goodrich, 2011, Lerer and Peysakhovich, 2017, Cran-

dall et al., 2018, Dafoe et al., 2020) or explores complex, video-game-like

settings (Hughes et al., 2018, Agapiou et al., 2022). Unlike these stud-

ies, we analyze a fundamental reinforcement learning algorithm, and apply

tools from game theory and experimental economics to describe its behav-

3While in our setting the algorithm itself is the experimental subject of interest, other
forms of reinforcement learning have been used to describe human learning, starting with
early contributions by Thorndike (1898), Bush and Mosteller (1955), and Siegel (1961).
In comparison to Q-learning, most of these learning models are myopic in the sense
that they have no memory of the history of the game. As such, they often have limited
foresight of the consequences of their current action on future payoffs (Waltman and
Kaymak, 2008). For applications that use these simpler learning algorithms to explain
human behavior in multiplayer strategic games, see Roth and Erev (1995), Erev and
Roth (1998), and Romero and Rosokha (2019).

6



ior. This approach sets our work apart from studies like that of Sandholm

and Crites (1996), which focused solely on the performance of Q-learning

in the prisoner’s dilemma without considering variations in environmental

parameters or employing the economic tools we use to understand behavior.

Related to our paper are the experiments on the interaction of humans

and algorithms (Crandall et al., 2018). Normann and Sternberg (2023)

analyze a prisoner’s dilemma experiment with three players where one of

the players may or may not be a pre-programmed algorithm. In a market

environment, Werner (2022) conducts lab experiments in which humans

either play with other humans or against self-learned pricing algorithms.

He finds that algorithms can be more collusive than humans. In contrast,

we compare human-human with machine-machine interaction.

2 Economic environment and hypotheses

2.1 Basic setup

We study the infinitely repeated prisoner’s dilemma with perfect monitor-

ing. There are two players who repeatedly play the stage-game prisoner’s

dilemma and discount future payoffs with the common discount factor δ. In

the stage game, each player either cooperates (C) or defects (D). Table 1

shows two payoff matrices of the stage game: the normalized payoffs and

the payoffs we implement in our experiments. We develop the theoretical

predictions with normalized payoffs where mutual cooperation leads to a

payoff of 1 and mutual defection to a payoff of 0. In Table 1, g then stands

for the payoff the player gains when defecting (instead of cooperating) while

the other player cooperates, and −ℓ represents the payoff loss when coop-

erating (instead of defecting) while the other player defects. Naturally,

both g and ℓ are positive. In our experiments, we implement the payoffs in

Table 1b and vary the reward parameter R from mutual cooperation. The

prisoner’s dilemma arises when D is strictly dominant, (D,D) the unique

stage-game Nash equilibrium, and (C,C) Pareto-efficient. We consider re-

ward parameters that satisfy 31 < R < 50, which also imply that mutual

cooperation is Pareto-efficient in the repeated game.

We restrict attention to finite-memory strategies of the infinitely re-
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Table 1: Stage game payoffs

(a) Normalized payoffs

C D
C 1, 1 −ℓ, 1 + g
D 1 + g, −ℓ 0, 0

(b) Payoffs in the experiment

C D
C R,R 12, 50
D 50, 12 25, 25

peated prisoner’s dilemma. This stands in contrast to the theoretical text-

book treatment of repeated games with perfect monitoring, where players

can condition their actions on the entire history of past play. However, as

arbitrarily long histories require unbounded memory, such strategies cannot

be implemented by finite algorithms in general and Q-learning in particu-

lar. Thus, we consider Markov strategies where the states are the action

profiles of the past k rounds; k ∈ N is each player’s memory. For example,

a memory-one strategy specifies behavior for the four states CC, CD, DC,

and DD. Throughout, we use the first letter to indicate player 1’s action in

a specific state, e.g., player 1 played C, and player 2 played D in the previ-

ous round in the state CD. With memory one and two actions, 16 (pure)

strategies are possible, if one ignores the initial state (see Table S.1 in the

online appendix). For the analysis of laboratory experiments, Fudenberg et

al. (2012) suggest 20 plausible strategies, which are at most memory three.

The results in Dal Bó and Fréchette (2019) imply that participants only

use a few strategies, and these are up to memory two. Thus, the restriction

to low levels of memory does not seem overly restrictive in comparison to

human actors.

The following low-memory strategies are particularly relevant in our

context. The first is ‘always defect’ (AllD), which prescribes playing D, the

strictly dominant stage-game action, in any round. (AllD, AllD) always

forms a subgame perfect Nash equilibrium (SPNE). ‘Always cooperate’

(AllC) prescribes to play C for any behavior of the previous round and is

never a SPNE. These strategies do not show any reward and punishment

behavior and can be implemented with zero memory. In contrast to AllC

and AllD, ‘Tit-For-Tat’ (TFT) is reciprocal and cooperative: TFT begins

with C in period one and mimics the rival’s action subsequently. TFT has

a minimal memory of one and (TFT, TFT) is generically not a SPNE. A

strategy with punishment that potentially forms a SPNE is ‘grim trigger’
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(GT): A player starts by cooperating but defects whenever any player has

deviated in the previous round. This version of GT requires a minimal

memory of one. More forgiving than GT is the strategy ‘win-stay, lose-shift’

(WSLS, sometimes also referred to as ‘perfect TFT;’ Nowak and Sigmund,

1993). A player following WSLS cooperates if and only if both players

chose the same action in the previous round, which makes it a memory-one

strategy. (WSLS, WSLS) can be a SPNE and, unlike TFT and GT, can

correct erroneous defections.

We also consider strategies that condition on the action profiles of the

past k > 1 rounds. For example, a trigger strategy that punishes for two

rounds (T2) is a memory-2 strategy. There are also memory-2 versions of

TFT and WSLS, such as TF2T (cooperate unless the opponent defected in

either of the last two rounds) and WSLS with two rounds of punishment.

Similar extensions are possible for memory three, such as T3 and TF3T.

2.2 The self-learning algorithm

We study how Q-learning algorithms play the repeated prisoner’s dilemma

in computational experiments. Q-learning is a popular reinforcement learn-

ing algorithm designed to solve Markov decision processes (Watkins, 1989,

Watkins and Dayan, 1992). Recent work by Calvano et al. (2020a) and

Klein (2021) has shown the potential of Q-learning algorithms in strategic

economic situations (largely with memory one).

An advantage of Q-learning is that it is tractable and interpretable.

Both properties are important for identifying the strategies of the algorithm

and for comparing them with the strategies of human players. Tractability

in the sense of hard-coding low memory levels guarantees sufficiently simple

strategies that can be interpreted by the researchers.4 Moreover, the set

of potential strategies remains manageable (its size grows exponentially in

memory length k) and similar to the strategies that human players have

4More sophisticated reinforcement learning algorithms may not lead to stationary
and low-memory strategies. Note that the principles of Q-learning are at the core of
most of the more advanced (deep) reinforcement learning algorithms used in the field. In
reinforcement learning, Q-learning is fundamental because it provides the basic structure
around which many sophisticated algorithms are built. Deep Q-Networks (DQN) and
Double Q-Learning are sophisticated algorithms that extend its simple but effective
value estimation process.

9



been found to use. If humans and algorithms choose from essentially the

same set of strategies, we keep “all else fixed” and can focus on the choice

differences. Interpretability in the sense of direct observation of the learned

strategies is important for evaluating the strategy frequency estimation

method.

For ease of exposition, we now describe Q-learning for memory-one

strategies and relegate more details on Q-learning to the online appendix.

The decision-making process of a Q-learning player is represented by a Q-

matrix. The dimension of this Q-matrix depends on the player’s memory,

i.e., how many past periods the player considers for the decision in the given

period and the number of possible actions. For strategies with memory

one, the Q-matrix has four rows (one row for each state) and two columns

(one for each action). The entries Q(s, a) of the Q-matrix are the current

approximations of the expected discounted utilities when choosing action a

in state s. The players use their Q-matrices to choose actions and update

their approximations of the long-run payoffs. For a given Q-matrix, the

optimal strategy is given by the row-wise maximizers.

Q-learning starts with some initial Q-matrix. At time t in state s, player

i chooses the optimal (“greedy”) action with probability 1− εt; the player

exploits their knowledge as encoded in the Q-matrix. With complementary

probability, the player explores other, possibly suboptimal, actions and

chooses an action uniformly at random. This form of random exploration

aims at balancing a trade-off for the algorithm. On the one hand, the player

wants to exploit the knowledge it already has in form of the Q-matrix. On

the other hand, the player has to explore the state space to improve the

approximation of the profitability of other state-action combinations.

Irrespective of whether the action a was chosen through exploitation

or exploration, the player obtains feedback through the stage-game payoff

π(s, a), where π(s, a) ∈ {0, 1,−ℓ, 1 + g}, which is naturally dependent on

the player’s action a and the other player’s action. The player uses the

payoff feedback in round t to update the guess of the long-run payoff of
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choosing action a in state s according to

Qt+1(s, a) = (1−α) Qt(s, a)︸ ︷︷ ︸
old value

+α

 π(s, a)︸ ︷︷ ︸
current payoff

+ δ max
a′∈{C,D}

Qt(s
′, a′)︸ ︷︷ ︸

guessed long-run payoff

 .

The new value is a convex combination of the old value, and the current

stage-game payoff π plus the best possible guessed long-run payoff in the

next state s′. The weight put on the latter payoff is denoted by α and

referred to as the learning rate. The next state is given by the players’

period-t actions. Note that each player updates only a single cell in each

period.

Besides the learning rate α, a key parameter is the exploration proba-

bility εt. Following common practice in the literature (e.g., Calvano et al.,

2020a), we choose ε to decay over time; specifically, εt = e−βt, where β > 0.

Note that the updating procedure in Q-learning also crucially depends on

the discount factor δ, which we vary across treatments. While δ is given by

the environment that the algorithm is acting in, α and β are “hyperparam-

eters.” They are not learned by the algorithm and not optimized over, but

exogenously given by the researcher.5 Another important parameter is ν,

which is implied by α, β, and k; it denotes the expected number of times a

cell in the Q-matrix is being explored purely by randomness, disregarding

optimality (Calvano et al., 2020a). The interest in this parameter stems

from the fact that for a fixed β, the probability that a cell is visited by

chance through exploration is smaller in larger state spaces (and hence for

higher memory k). In our experiment, we keep ν constant across k to at

least partially control for this interaction. The online appendix contains

the formula of ν. We discuss our Q-learning implementation in Section 3.2.

2.3 Experimental insights and our hypotheses

We draw upon the experimental literature to form our hypotheses about

the determinants and forms of algorithmic cooperating. Starting with the

5This specification enables the most direct comparison with human subjects. The
unilateral incentives to use or improve algorithms are studied in Harrington (2022) and
Abada et al. (2022).
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determinants, the experimental literature has identified several factors that

shape human cooperation (Dal Bó and Fréchette, 2018, Embrey et al., 2018,

Mengel, 2018). We consider the following four factors where we conjecture

that these are also relevant for algorithmic cooperation.6

The experimental literature has shown that cooperation among humans

can be expected to increase in the discount factor and the reward param-

eter (Dal Bó and Fréchette, 2018). A higher discount factor δ increases

the probability of future interactions and makes cooperation more attrac-

tive compared to short-run gains from defection. A larger reward payoff

generally makes cooperation more attractive.

Hypothesis 1. The cooperation rate among self-learning algorithms in-

creases in R and δ.

Note that Calvano et al. (2020a) find a non-monotone relation between δ

and collusion (cooperation) in their repeated differentiated Bertrand game.

The relation is positive for relatively high δ, however. Due to the different

games, they cannot study variation in R and, therefore, not the interaction

between R and δ (as in the following concepts).

Second, cooperation rates tend to be higher in experiments with humans

when cooperation can be supported in a SPNE (Dal Bó and Fréchette, 2011,

2018). The condition is formalized through a binary variable that takes the

value 1 when the payoff parameters (δ, g, ℓ) are such that GT forms a SPNE

equilibrium and 0 otherwise. Formally (GT, GT) is a SPNE if

1+ δ+ δ2+ δ3+ . . . ≥ 1+g+ δ ·0+ δ2 ·0+ δ3 ·0+ . . . ⇔ δ ≥ g

1 + g
≡ δSPNE,

that is, if the discount factor is above the critical value δSPNE. The mere fact

that cooperation is part of an equilibrium does not guarantee cooperation

in lab experiments; the discount factor being sufficiently large is more of

a necessary condition for cooperation than a sufficient one (Dal Bó and

Fréchette, 2018). We conjecture that this also holds for algorithms.

6There are also other factors that influence human cooperation rates. For example,
in lab experiments, an important determinant of average cooperation is the level of
cooperation in period one (Breitmoser, 2015, Dal Bó and Fréchette, 2018). Whereas
this allows for a parsimonious restriction of the analysis to the first period, there is no
comparable counterpart in self-learning algorithms.
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Hypothesis 2. A necessary but not sufficient condition for self-learning

algorithms with k > 0 to cooperate is that grim trigger forms a SPNE.

Hypothesis 2 does not claim that Q-learning results in strategies that

are always subgame perfect. Moreover, we know that Q-learning can lead

to cooperative outcomes even in the absence of memory (Asker et al., 2024,

Dolgopolov, 2021, Banchio and Mantegazza, 2022), so subgame perfection

cannot play a role in that case. We hypothesize that a necessary condition

for cooperation to emerge with k > 0 is that the discount factor is high

enough for the grim trigger strategy to be subgame perfect.

The third determinant of cooperation in lab experiments is the size of

the basin of attraction of always defect, “sizeBAD” (Dal Bó and Fréchette,

2011, 2018), which is a measure for how robust cooperation is to strategic

uncertainty. To define the basin of attraction, consider a hypothetical

coordination game in which the players choose between the repeated-game

strategies GT and AllD. In this game, the players believe that the opponent

plays GT with probability p and AllD with probability 1 − p. The basin

of attraction of AllD is then defined as the maximum p that makes AllD

the best response. We use p to denote sizeBAD. To find the formula for p,

compare the expected payoff from playing GT, p/(1 − δ) + (1 − p) · (−ℓ),

to the expected payoff from AllD, p · (1 + g) + (1 − p) · 0. The expected

payoff of GT is (weakly) larger than that of AllD if and only if

p ≥ (1− δ)ℓ

1− (1− δ)(1 + g − ℓ)
≡ p. (1)

If GT does not form a SPNE, set p equal to 1.

Hypothesis 3. Algorithmic cooperation decreases in sizeBAD.

A related fourth determinant of cooperation is Risk Dominance (Blonski

et al., 2011, Blonski and Spagnolo, 2015). Specifically, cooperation is found

to be higher in the infinitely repeated prisoner’s dilemma if in the hypo-

thetical coordination game consisting of AllD and GT, the cooperative GT

equilibrium is risk dominant (RD). This is the case if the discount factor is

sufficiently high. To find the minimum discount factor for risk dominance,

assume that both strategies are equally likely and substitute p = 1/2 in (1)
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(Harsanyi and Selten, 1988). This leads to the critical discount factor

δ ≥ g + ℓ

1 + g + ℓ
≡ δRD,

as in Blonski et al. (2011, Proposition 2, page 175).

Hypothesis 4. Algorithmic cooperation is higher when cooperation is risk

dominant, i.e., when δ ≥ δRD.

There are also hypotheses that relate to the specific Q-learning algo-

rithms and that have no human counterpart. Based on Calvano et al.

(2020a, Figure 1), we conjecture that cooperation decreases in α and β. As

ν decreases in β, we expect cooperation to increase in ν.

Hypothesis 5. The level of cooperation among self-learning algorithms

decreases in α and increases in ν.

In contrast to humans, memory is hard-coded in Q-learning algorithms.

The effect of memory on cooperation is ex ante unclear. On the one hand,

cooperation can increase in memory as higher memory allows more sophis-

ticated punishment strategies. For example, it may be that a single period

of punishment, as in WSLS, may not deter deviations while two periods

of punishment do. On the other hand, cooperation may decrease in mem-

ory due to the increased state space and potentially longer cycles.7 The

possibility of longer cycles may come with fewer rounds in which players

cooperate.

Exploratory Question 1. Does cooperation among self-learning algo-

rithms increase or decrease in memory?

The next question relates to the forms of cooperation. How do algo-

rithms cooperate on path and how do they punish deviations off path? In

laboratory experiments, humans mostly play the strategies always defect,

tit-for-tat and grim trigger (Dal Bó and Fréchette, 2011, Fudenberg et al.,

2012, Bigoni et al., 2015).

7The cycle length is defined as the number of rounds until an initial state is reached
again.
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Exploratory Question 2. Which strategies do algorithms learn? How do

the strategies depend on the game parameters (δ and R), on the learning

parameters α and ν, and on memory k?

The final question relates to the levels of cooperation. Humans are able

to sustain cooperation in lab experiments (Dal Bó and Fréchette, 2018)

and self-learning algorithms learn to cooperate (collude) in pricing games

(Calvano et al., 2020a). It is thus natural to compare the levels of cooper-

ation.

Exploratory Question 3. When are algorithms more or less cooperative

than humans?

3 The Experiments

We now describe our treatment variables, the numerical implementation of

the self-learning algorithm, and the human-subject experiments.

3.1 Treatment design

There are two main motivations for our experimental design. On the one

hand, we want to find the determinants, forms, and levels of algorithmic

cooperation. On the other hand, we wish to compare these to the human

counterparts. Hence, we chose parameters for which experimental data was

available and conducted additional experiments with human subjects.

Table 2: Experiments

R = 32 R = 40 R = 48

δ = 0.50 No criterion met GT GT, RD
p = 1.000 p = 0.722 p = 0.383

δ = 0.75 GT GT, RD GT, RD
p = 0.813 p = 0.271 p = 0.163

δ = 0.90 GT, RD GT, RD GT, RD
p = 0.224 p = 0.094 p = 0.060

δ = 0.95 GT, RD GT, RD GT, RD
p = 0.102 p = 0.045 p = 0.029
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We study a 3 × 4 × 3 design. We consider R ∈ {32, 40, 48} and

δ ∈ {0.50, 0.75, 0.90, 0.95}, motivated by configurations also used in Dal

Bó and Fréchette (2011), Ghidoni and Suetens (2022), Kartal and Müller

(2021) and Romero and Rosokha (2018). The variants with δ = 0.95 are

particularly relevant to compare with the parametrization used in Calvano

et al. (2020a), Klein (2021), and other studies using algorithmic simula-

tions. In human experiments, a discount factor of δ = 0.95 (and indeed

δ = 0.9) has only been studied for R = 32; see Table S.2 in the online

appendix. By adding the variants R = 40 and R = 48 with the discount

factors δ = 0.9 and δ = 0.95, our study adds to the literature on human

cooperation independently from the algorithmic simulations.

Table 2 summarizes the first two dimensions of our treatments and

provides the theoretical predictions. The table entry for each variant shows

whether GT can be supported as SPNE, and whether the specification

satisfies the Risk Dominance (RD) criterion. For GT, the thresholds for δ

are 0.72, 0.40 and 0.08 for R = 32, 40, and 48, respectively. For RD, the

thresholds δRD are 0.82, 0.61 and 0.39 for R = 32, 40, and 48, respectively.

As seen above, these are potentially important determinants of cooperation.

The table also reports the size of the basin of attraction of AllD.

3.2 The algorithmic Q-learning experiments

In our AI-based experiment, we distinguish for each run (parameterization)

the training stage and the playing stage. In the training stage, two Q-

learning algorithms repeatedly play the stage game in Table 1 and adjust

their strategies according to the common discount factor δ, the learning

rate α, and the exploration parameter β. The algorithms explore non-

greedy actions with exogenous probability, where the probability decreases

exponentially in time and according to the parameter β. The training ends

when neither algorithm changes the policy in any state for 109 rounds.8 In

the subsequent playing stage, the algorithms’ initial actions are the optimal

actions in the round of convergence. After that, they play according to

8The necessity for such a tight convergence criterion arises in the context of k = 3
and ν = 1000, which features a large state space and substantial initial exploration that
slows convergence times. In order to allow comparability across parametrizations, we
use the same convergence criterion throughout.
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the learned strategies. Throughout the paper, we focus on the strategies

learned upon convergence and deliberately abstract from the path toward

convergence, as well as the strategies and payoffs along that path. As such,

our results are best understood as an algorithm that was trained in isolation

and deployed to the ‘real world’ only after thorough preparation.

Following our experimental design, the hard-coded memory is at most

three.9 To account for the fact that a smaller β is needed to explore the

state space sufficiently often in larger state spaces, we choose β as a function

of memory. In particular, we choose β(k) to keep ν constant for all k.

In our main specification, we let α = 0.15, and we compute β(k) such

that we have ν = 20 for each k.10 We explore the robustness of our results

with respect to α (i.e., α ∈ {0.05, 0.1, 0.15, 0.2, 0.25}) and ν (i.e., ν ∈
{4, 20, 100, 450, 1000}). For each parametrization, we repeat 1000 runs with

a different random seed. Throughout all simulations, we use a random draw

from the unit interval as the initial values of the Q-matrix.

3.3 The human lab experiments

The experiments involving human participants were run as standard lab ex-

periments. The experimental design and instructions were identical to Dal

Bó and Fréchette (2011), Romero and Rosokha (2018), Kartal and Müller

(2021), and Ghidoni and Suetens (2022). In order to compare algorithmic

cooperation with human cooperation for each treatment cell, we conduct

the treatments R = 40 and R = 48 with the discount factors δ = 0.9 and

δ = 0.95 as lab experiments. For the other treatments in Table 2, ample

lab data exist already (see Table S.2 in the online appendix for a complete

list of experimental data from other studies that we use in this paper).

9A memory length of up to k = 3 improves upon the existing economics literature.
We cannot accommodate even higher memory due to the exponentially growing state
space. Hettich (2021) demonstrates that algorithms using function approximation tech-
niques like neural networks to represent the Q-matrix produce comparable outcomes
to Calvano et al. (2020a). See Dawid et al. (2023) for the role of “experience replay”
in deep Q-learning. Anyhow, given the simplicity of the action and state space in our
environment, employing a tabular Q-learning algorithm with expanded memory is likely
to cover most algorithmic behaviors.

10For comparison, Calvano et al. (2020a) focus on memory one and consider several
values for β such that the implied ν is in [4, 450]. However, most of their analysis focuses
on the case where ν ≈ 20, which will also be our main specification.
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The experiments took place at the DICElab of the University of Dues-

seldorf and the PLEx at the University of Potsdam between December 2022

and May 2023. Subjects were recruited from the lab’s subject pool using

hroot (Bock et al., 2014). Upon arrival at the lab, participants randomly

drew a token, assigning them a cubicle number. Printed instructions were

distributed and summarized verbally. Participants were also given the op-

portunity to ask questions individually and privately. We ensured complete

anonymity.

Subjects played several supergames. We aimed at a maximum of 15

supergames in each session unless the (pre-announced) time limit of two

hours was exceeded. In that case, the supergame that was started before

the two hours were up would be the final supergame. The matching was

fixed within a supergame, but random when a new supergame started.

Sessions were conducted with twenty or thirty participants. The random

matching across supergames was done within groups of ten subjects.

We pre-registered the human experiments and the hypotheses perti-

nent to human behavior at https://osf.io/zcv6x/, and we executed the

experimetns as registered. We had a total of 240 participants. Participants

earned 22.54 euros on average.

4 Determinants of cooperation

Figure 1 shows the average cooperation rate of the algorithms for each δ–

R treatment, averaged across all k and calculated over 1000 periods after

the algorithms converge. As expected, cooperation increases monotonically

and substantially in both δ and R, with one exception: For R = 48, the

shift from δ = 0.9 to δ = 0.95 leads to a decrease in cooperation. We

will return to this point when we examine learned strategies. Cooperation

is far from dominant, let alone perfect: Even for high realizations of the

δ–R parameters, cooperation rates do not exceed 60%. Despite the non-

monotonicity in δ for high values of R, we take the following result from

Figure 1, which is consistent with Hypothesis 1.

Result 1. The average cooperation rate among self-learning algorithms

increases in R and δ.

18



32 40 48
0

0.2

0.4

0.6

δ = 0.5

32 40 48

δ = 0.75

32 40 48

δ = 0.9

R=32 R=40 R=48

32 40 48

δ = 0.95

Figure 1: Cooperation rates of algorithms by δ–R treatment.
Note: The figure reports the cooperation rates averaged across all k for the
baseline parameters α = 0.15, ν = 20. The numerical values are available in
Table S.3 in the online appendix.

To investigate the role of memory and the other parameters on cooper-

ation, we run several regressions with the cooperation rate (as in Figure 1)

for our baseline parameterization (α = 0.15, ν = 20) as the dependent vari-

able and the variables from the hypotheses section as regressors, see Table

3. Regression (1) confirms the descriptive results above. We see a substan-

tial and highly significant effect of δ and R. The regression also includes

memory as a control. The average effect of k is negatively significant. Ta-

ble S.3 in the online appendix further distinguishes the cooperation rates

by k. There we see that the memory length has an ambiguous influence on

cooperation in general. Cooperation rates at k = 1 often seem higher than

those for k = 2 and k = 3, but this is not the case throughout. In any case,

memory k appears to be a second-order factor. Its effect on cooperation is

dominated by the impact of δ and R. Finally, we note that the unexpected

drop of cooperation for R = 48 and when moving from δ = 0.9 to δ = 0.95

is indeed visible for all k ∈ {1, 2, 3}. We answer the Exploratory Question 1

as follows.

Result 2. The effect of memory on cooperation of self-learning algorithms
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Table 3: Determinants of average cooperation, α = 0.15, ν = 20

(1) (2) (3) (4)
δ 94.76∗∗∗

(0.77)
R 1.49∗∗∗

(0.02)
k = 2 −3.10∗∗∗ −3.10∗∗∗ −3.10∗∗∗ −3.10∗∗∗

(0.33) (0.38) (0.35) (0.33)
k = 3 −6.88∗∗∗ −6.88∗∗∗ −6.88∗∗∗ −6.88∗∗∗

(0.33) (0.38) (0.35) (0.33)
GT 10.47∗∗∗

(0.61)
RD 20.91∗∗∗

(0.34)
p −52.35∗∗∗

(0.45)
δ − δRD 76.07∗∗∗

(0.56)
Constant −108.01∗∗∗ 3.33∗∗∗ 42.15∗∗∗ 12.21∗∗∗

(1.04) (0.59) (0.29) (0.25)
N 36000 36000 36000 36000

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

is ambiguous in general and negative on average.

We now ask how cooperation rates are affected when cooperative equi-

libria exist. We formalize this using a binary variable that takes the value

of one if the discount factor δ exceeds δSPNE, and zero otherwise. Table 2

shows for which treatments this condition is met. From the cooperation

rates in Figure 1, we note three points regarding δSPNE. First, there is no

cooperation in treatment (δ = 0.5, R = 32) where GT is not a SPNE. Sec-

ond, in all treatments with significant levels of cooperation, GT does form

a SPNE. Third, the fact that GT is an equilibrium is not sufficient for coop-

eration. Indeed, for δ = 0.5 and R = 40 there is virtually no cooperation,

and there is very little cooperation in (δ = 0.5, R = 48) and (δ = 0.75, R =

32). This is despite GT being an equilibrium in these cases. We conclude

with the following statement, which also has a human counterpart.

Result 3. For self-learning algorithms, cooperation occurs only when grim

trigger forms a SPNE.
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The next potential determinant of cooperation is risk dominance (Blon-

ski et al., 2011, Blonski and Spagnolo, 2015). We expect cooperation to be

higher when δ ≥ δRD. For example, Table 2 shows that for δ = 0.5, GT is

risk dominant only when R = 48. Looking at Figure 1 and δ = 0.5, while

cooperation does indeed increase as R increases from 40 to 48, the gain

in cooperation is very modest (from 0 to 2.75%). Nevertheless, Figure 1

suggests a positive influence of the RD criterion on cooperation.

To systematically examine the influence of RD and GT on cooperation,

we drop δ and R as regressors and instead analyze whether a treatment

satisfied the condition for GT or RD in regression (2) of Table 3. We find

that cooperation is indeed higher when there are cooperative equilibria

and, in addition, when the equilibrium is risk dominant. We take this

as evidence in favor of Hypothesis 4, where an analogous statement also

holds for human players. In regression (4) in Table 3, we also find that

cooperation increases in δ− δRD, which is an intuitive measure of how risk

dominant cooperation is.

Result 4. Algorithms cooperate more when cooperation is risk dominant.

The final determinant of cooperation that is motivated by human coop-

eration is the size of the basin of attraction of always defect. A smaller basin

of attraction can be interpreted in the sense that cooperative strategies are

more robust to the uncertainty surrounding the other player’s strategy (Dal

Bó and Fréchette, 2011). We investigate the role of p in regression (3) in

Table 3. The sign of the estimated coefficient is negative, as expected by

Hypothesis 3.

Result 5. Algorithmic cooperation decreases in sizeBAD.

In addition to the factors that determine human cooperation, we expect

the learning parameters to affect the cooperation rates of the algorithms.

In the rest of this section, we examine all data, not just the baseline pa-

rameters with α = 0.15 and ν = 20. We analyze the role of the learning

parameters in Table 4, where we report the same set of regressions as in

Table 3 but now for all data and with the additional controls α and ν.

Across all parameter specifications, the effect of α is negative and highly

significant, whereas the effect of ν is positive and significant. This provides
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evidence for Hypothesis 5. While the average cooperation decreases in α

and increases in ν, the impact of these learning parameters is ambiguous

for given game parameters. For example, with memory one, δ = 0.90 and

R = 40, average cooperation is around 40% for ν = 20 but only around

20% for ν = 1000. For ν = 20, and the same δ–R pair, average cooperation

drops to around 16% as α is decreased from 0.15 to 0.05. Thus, there is no

clear support for Hypothesis 5.

Result 6. Average cooperation across all δ-R-k parameters decreases in α

and increases in ν. For a given game, the impact of α and ν is ambiguous.

Looking at the entire data and controlling for α and ν does not change

most of the previous insights. Cooperation still increases in R and δ, is

higher when GT is a SPNE, and risk dominance and sizeBad have the

expected influence on cooperation. The only exception is the influence of

memory on cooperation. Here for the general set of α and ν, the average

effect of k is positive significant.

We conclude this section by noting that the same determinants influence

human and algorithmic cooperation rates. In the next section, we delve

deeper into how algorithms learn to play the repeated prisoner’s dilemma.

5 Forms of cooperation

We now analyze the strategies that the algorithms learn to play. These

strategies tell us how the algorithms cooperate and how cooperation is

sustained through punishment. One advantage of Q-learning is that the

algorithm’s strategy can be inferred directly from the Q-matrix. While this

is true in principle, the complexity of the state space and hence the set of all

memory-k strategies grows exponentially in k. Analyzing and classifying

the strategies becomes a daunting task as the number of strategies that

differ only in inessential off-path states grows in k. We circumvent the

complexity problem by estimating the proportions of the strategies from a

fixed set of potential strategies.
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Table 4: Determinants of average cooperation, all (α, ν)

(1) (2) (3) (4)
δ 96.40∗∗∗

(0.17)
R 1.95∗∗∗

(0.00)
k = 2 1.16∗∗∗ 1.16∗∗∗ 1.16∗∗∗ 1.16∗∗∗

(0.07) (0.09) (0.08) (0.08)
k = 3 0.24∗∗ 0.24∗∗ 0.24∗∗ 0.24∗∗

(0.07) (0.09) (0.08) (0.08)
α −8.38∗∗∗ −8.38∗∗∗ −8.38∗∗∗ −8.38∗∗∗

(0.43) (0.49) (0.47) (0.43)
ν 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00) (0.00)
GT 4.58∗∗∗

(0.13)
RD 27.46∗∗∗

(0.08)
p −51.96∗∗∗

(0.10)
δ − δRD 85.48∗∗∗

(0.13)
Constant −135.29∗∗∗ −2.73∗∗∗ 34.38∗∗∗ 2.97∗∗∗

(0.25) (0.15) (0.10) (0.09)
N 900000 900000 900000 900000

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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5.1 Estimating the strategies

We use the Strategy Frequency Estimation Method (SFEM) to estimate

the distribution of the limit strategies of the algorithms. The SFEM was

developed to analyze human decision data by Dal Bó and Fréchette (2011)

and has since then been widely used for the estimation of the strategies

that humans use in the repeated prisoner’s dilemma (see, for instance,

Fudenberg et al., 2012, Bigoni et al., 2015, Romero and Rosokha, 2018,

Dal Bó and Fréchette, 2019).

For a given set of strategies, the SFEM assumes that player i chooses

strategy sl, l = 1, . . . , L, with probability ϕl in a given supergame. In each

period of the supergame, the player either plays according to strategy sl,

or makes a random mistake. We denote the probability of following the

strategy and not making a mistake by σ ∈ (1/2, 1), which is a parameter to

be estimated. The probability that a player plays according to the strategy

sl is then given by Pi(s
l) =

∏
t σ

It,i(1 − σ)1−It,i , where It,i is an indicator

variable that is equal to one if the player’s action corresponds to the action

prescribed by strategy sl and is zero otherwise. Summing over all players in

the game leads to the loglikelihood function L =
∑

i ln(
∑

l ϕ
lPi(s

l)). We

maximize L to estimate {ϕl}Ll=1, the frequency with which the predefined

strategies are played in the population.

We include the 20 strategies of Fudenberg et al. (2012) into our set of

predefined strategies. These include classic memory-one strategies such as

tit-for-tat, grim trigger, win-stay-lose-shift, as well as strategies that re-

quire a longer memory length such as lenient grim trigger strategies or

win-stay-lose-shift with two punishment periods. Furthermore, we add

an additional memory-one strategy to the estimation procedure which we

found when manually classifying the strategies. This strategy prescribes to

defect unless both player defected in the previous period. We call this strat-

egy win-shift-lose-shift (WShLSh) and discuss it further below. Our set of

strategies consists of 25 strategies, the remaining being a suspicious version

of WShLSh with defection in the first round, win-stay-lose-shift with three

periods of punishment, and memory two and three version of WShLSh.

In the memory-two version of WShLSh, the player cooperates if and only

if both players defected in the previous two periods. The memory-three
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variant works analogously.

Identification in SFEM relies on the assumption that players make mis-

takes in the form of the random deviation described by σ.11 If players

do no not make mistakes, it is impossible to distinguish between certain

strategies. For example, suppose that one player plays AllC while the other

player plays TFT. When matched with each other, the observed actions are

observationally equivalent, yet the underlying strategies differ. Upon con-

vergence, however, the algorithms play according to their limit strategy and

no longer deviate from this strategy in the form of random errors. To iden-

tify ϕl, we, therefore, need to induce random noise into the environment.

We start from the convergence state. The two algorithms play according

to their limit strategy for 50 rounds. In a randomly selected round, one of

the algorithms deviates from the action dictated by its limit strategy. To

separate strategies off-path, the deviating player deviates in a total of three

randomly selected periods.12 The recorded actions after this deviation cre-

ate noise in the environment, which allows us to identify the strategies

using SFEM. We use this approach for 1,000 independent simulation runs

for each environment and algorithmic parameterization. Furthermore, for

each simulation run, we induce the random deviation separately, that is,

we only consider the actions of the player who did not deviate.

Crucially, compared to many human-player experiments, we can ver-

ify that the SFEM yields correct estimates. The reason is that, for each

algorithm, we directly observe the Q-matrix, which provides the complete

mapping from states to actions. We assess the SFEM for memory-one

(k = 1) algorithms, where only 16 strategies are possible (see Table S.1 in

the online appendix). Table S.5 in the online appendix shows the differ-

ences between the SFEM and the “manual” classification. We find only

few and minor differences, which demonstrates that the SFEM can indeed

be applied to algorithmic decision-making in strategic situations. To keep

the method of estimating the proportions of the strategies the same for the

11Furthermore, while model extensions exist (see, for instance, Breitmoser, 2015),
SFEM assumes that players can use pure strategies only. Focusing on pure strategies is
without loss of generality in our setup, as the algorithm cannot learn mixed strategies.

12The random round in which the algorithm deviates is drawn from a Poisson distri-
bution with λ = 20. Conditional on the first draw, a second Poisson distribution with
λ = 1 determines the second round in which the player deviates. The third round is
again determined by a Poisson draw with λ = 1.
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Figure 2: Strategy frequency estimation of algorithmic data by
δ-R treatment.

Note: The figure reports the estimates for k = 1 for the baseline parameters
α = 0.15, ν = 20. The numerical values are available in Table S.5 in the online
appendix.

human and the algorithmic experiments with different memory lengths, we

focus on the SFEM throughout the paper.

5.2 Algorithmic strategies

We first focus on memory-one algorithms (k = 1), where technically only

memory-one strategies are feasible.13 Figure 2 shows the results of the

SFEM for k = 1. Consistent with low cooperation rates (Figure 1), AllD

dominates for low δ–R combinations. The share of AllD decreases in δ

and R. For R ≥ 40 and δ ≥ 0.9, cooperative strategies emerge more

persistently: we mainly observe AllC, TFT, and WSLS. However, AllD is

still the modal strategy for (δ = 0.90, R = 40). WShLSh is most common

for R = 48, and it is even the modal strategy for δ ≥ 0.9 and R = 48.

It is learned so often that the average cooperation rate actually decreases

in R. Note that WShLSh never forms a symmetric SPNE. Nevertheless,

13We nevertheless use all 25 strategies in the set of possible strategies of the SFEM
to keep the analysis comparable to k > 1. Online appendix S.3 provides a robustness
check.
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Figure 3: Exploration and the frequency of strategies.
Note: The figure reports the estimates for δ ≥ 0.9, R ≥ 40, k = 1, and α = 0.15.
The WSLS∗ family includes WSLS with memory 1, 2, and 3. The WShLSh∗

family includes WShLSh with memory 1, 2, and 3 and suspicious WShLSh.
The TFT∗ family includes TFT, TF2T, TF3T, 2TFT, and 2TF2T. The AllD∗

family includes AllD, DTFT, DTF2T, and DTF3T. The x-axis is on a log-scale.

the algorithms learn the strategy for large realizations of R. We discuss

WShLSh in detail below.

Result 7. With memory one, the most frequently learned strategies by the

algorithms are AllD, WSLS, TFT, and WShLSh.

Next, we analyze the dependency of the strategies on the learning pa-

rameter ν; a higher ν implies more exploration. We combine the various

variants of WSLS, WShLSh, TFT, and Grim, into “families” of strategies

(as described in Figure 3). Figure 3 shows the dependency of the most fre-

quent families of strategies on the learning parameter ν. The figure reports

pooled means of δ ∈ {0.90, 0.95} and R ∈ {40, 48}. A first observation is

that the prevalence of AllD drops initially in ν but reaches a constant level

of around 22%. Second, WSLS increases monotonically in ν and becomes

the modal strategy for ν ≥ 100. Third, the WShLSh family is always

among the top three strategies in terms of frequency but falls in ν for ν

sufficiently high. Lastly, the TFT family accounts for rather consistently

between 5 and 15% of the data.

We continue the SFEM when k > 1. Table S.4 in the online appendix

27



reports how the distribution of learned strategies depends on the memory

length k. Now that memory-two and -three strategies are feasible for the

algorithm, we indeed observe higher-memory strategies. In particular, an

increase in k goes along with higher-memory versions of WShLSh, which

typically co-exist with lower-memory versions. For high (δ, R)-pairs, the

occurrence of the WShLSh-family is roughly constant in k, but their de-

composition changes. Moreover, for k = 2, there is now a non-negligible

share of TF2T. With k = 3, we also observe 2TF2T. Similarly, the memory-

one strategy DCAlt becomes relevant. Figures S.1 and S.2 in online ap-

pendix S.2 summarize the strategy estimation comparable to Figure 2.

With higher memory, we see that the share of AllC and WSLS decreases

while the share of the TFT family increases.

Result 8. With memory two or three, the most frequently adopted strategies

by the algorithms are AllD and those in the TFT and WShLSh families.

Table S.4 also shows that algorithms hardly ever adopt strategies from

the grim trigger family. GT is never played for most parameter combina-

tions. Its highest estimated share is 0.1%.

Result 9. Algorithms hardly ever learn grim trigger strategies.

In online appendix S.3, we investigate how the determinants of cooper-

ation influence strategy choice. To this end, we classify the strategies into

the categories “cooperative,” “lenient,” and “forgiving” (Fudenberg et al.,

2012). We find that the occurrence of all three classes reacts positively to

increases in the discount factor δ and reward parameter R (likely due to

moving away from AllD). Memory increases the average cooperation rates

mostly through increasing lenient and forgiving strategies. The learning

rate α and the exploration parameter ν generally have no significant im-

pact on the strategy class; the only exception is that a higher ν leads to

more cooperative strategies.

The widespread use of certain strategies that do not seem very attrac-

tive from a theoretical perspective may be surprising. For instance, for

k = 1, an algorithm that plays WShLSh cooperates if and only if both

players defected in the previous round (i.e., the exact opposite of Grim).

When paired with another player who also plays WShLSh, this results in a
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(CC,DD) cycle, alternating between mutual cooperation and mutual de-

fection. Suppose players are in state DD; why do they still cooperate in

the next round? Clearly, they could gain considerably by deviating in the

next round, receiving a payoff of 50 instead of R, and also returning to DD

again in two rounds.

The intuition behindWShLSh is as follows: Suppose that the Q-matrices

of both players are currently such that D is played in all four states. Thus

the initially relevant state is DD, with associated Q-values of subsequent

cooperation and defection, respectively: Q(DD,C) and Q(DD,D). Since

both players defect in state DD, each player continues to receive 25 in

that state. Depending on how Q(DD,C) was initialized and the payoff

structure, Q(DD,D) may eventually fall below Q(DD,C), in which case

the player begins switching to C in state DD. If this switch occurs around

the same time for the other player, both players cooperate in state DD

and keep getting positive feedback (payoff R) by doing so, which reinforces

this action. When exploration eventually stops, both players have ‘learned’

that cooperation is the optimal action in state DD, resulting in WShLSh.

Since there is noise both in the initialization of the Q-matrix and in the

learning process, the above argument describes a possibility and not a de-

terministic convergence result. Bertrand et al. (2023) establish the generic

possibility for convergence to cooperative strategies such as WShLSh (lose-

switch in their terminology) and WSLS (Pavlov in their terminology) of

Q-learning algorithms in the prisoner’s dilemma. Their result also builds

on the initialization of the Q-matrix and follows a similar intuition to the

one described above.

In online appendix S.3, we investigate how the economic and algorithmic

parameters influence some properties of the limiting strategy profiles. We

find that the cycle length increases in δ, R, and memory k. Hence, as

average cooperation rates increase (due to higher δ-R), the increase is not

due to on-path mutual cooperation but more complex behavior. This claim

finds additional support in the finding that the fraction of states on the

equilibrium path where both players play the same actions decreases in δ

and k.
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Table 5: SFEM for human data, TFT and GT aggregated as
families of strategies.

Treatment AllC AllD TFT* GT*
(δ = 0.90, R = 40) 2.9 5.0 53.3 29.9
(δ = 0.90, R = 48) 8.1 0.0 69.1 16.6
(δ = 0.95, R = 40) 0.0 3.3 83.0 12.0
(δ = 0.95, R = 48) 0.0 3.3 44.4 48.9

5.3 Human strategies

How do the strategies implemented by humans differ from those chosen

by the algorithms? In their meta study, Dal Bó and Fréchette (2018) find

that, across experiments, humans tend to adopt AllD, TFT and GT.14

While algorithms learn AllD for low δ, they rarely learn GT. In contrast,

algorithms play WSLS and WShLSh, which are rarely observed in human

populations.

Table 5 shows the results of the SFEM for the new laboratory exper-

iments we conduct with high discount factors. The table aggregates the

TFT and GT families of strategies (see Table S.7 in the online appendix for

the full set of strategies.) We note that the TFT and GT strategy families

strongly dominate among humans. Together, they account for 83% to 95%

of the strategy estimates. This exceeds the share of TFT and GT in the

most cooperative games in Dal Bó and Fréchette (2018). Given the high

cooperation rates, it is not surprising that AllD plays only a minor role. It

may be more surprising that also AllC captures only a minor share. It ap-

pears that human subjects learn not to cooperate unconditionally, despite

the high cooperation rates.

6 Levels of cooperation

We finally ask about the differences in cooperation rates between humans

and algorithms. Figure 4 shows the cooperation rates across all rounds

14Recently, Romero and Rosokha (2023) found that experienced humans tend to use
the pure strategies AllD, TFT and GT also when they have the option to play mixed
strategies.
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Figure 4: Cooperation rates of humans by δ–R treatment.
Note: The numerical values are available in Table S.6 in the online appendix.

and supergames from the laboratory experiments.15 The figure includes

previous experiments with all δ ≤ 0.75 or R = 32 treatments, and our

experiments with R ≥ 40 and δ ≥ 0.90. Human cooperation is surprisingly

high for these δ–R realizations.16

The comparison with algorithmic data is non-trivial, since the learning

parameters α and ν determine the cooperation level, as do the hard-coded

memory length k. Therefore, we compare the human data to two parame-

terizations. First, our baseline parameterization as summarized in Figure 1.

Second, as result 6 suggests that algorithmic cooperation increases in ν, the

highest ν in our computational experiments, ν = 1, 000 (keeping α = 0.15).

For the baseline parameterization (α = 0.15 and ν = 20), Table 6 shows

the difference between the human and the algorithmic cooperation rates

and tests the significance with a two-sided Mann-Whitney-U-test. First,

humans cooperate more in all treatments, although the difference is not

always statistically significant. A second striking insight is that humans

15A detailed list of sources used for these calculations is provided in Table S.2 in the
online appendix, and analysis across supergames is provided in Table S.16.

16We note for the humans the same non-monotonicity in the cooperation rate for
δ = 0.95 as R increases from 40 to 48.
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cooperate to some extent where the algorithm entirely fails to choose C,

namely when δ = 0.5 and in treatment (δ = 0.75, R = 32). This is true for

all levels of memory k. The difference is relatively minor in treatment (δ =

0.50, R = 32) as humans also cooperate little in this treatment on average.

On the other hand, humans cooperate with an average rate of about 60%

significantly more in the (δ = 0.75, R = 40) treatment, where algorithms

cooperate at a mere rate of 2.75%. We see this as suggestive evidence that

humans try to establish cooperation even in environments where it is hard

to sustain cooperation. Third, the differences in the cooperation rates are

high also for high δ–R treatments. Depending on memory k, the difference

may or may not be statistically significant.

Having said that, the conclusion that humans cooperate more than the

algorithm is not generally tenable. For the second parametrization (ν =

1, 000), Table 6 shows that with the higher ν, algorithms cooperate more on

average for high δ–R realizations. It appears that in environments in which

it is relatively difficult to cooperate, humans establish more cooperation.

On the other hand, in settings where collusion is relatively easy to sustain,

algorithms that explore extensively cooperate more.

We summarize our findings by answering Exploratory Question 3.

Result 10. When cooperation is relatively hard to sustain, humans coop-

erate more than algorithms. The comparison is ambiguous in other cases.

Even with high exploration, algorithms may cooperate significantly less than

humans.

Humans and algorithms learn to cooperate in very different ways. Hu-

mans do not have a parameter that determines the exploration of new

strategies, and they can learn within and across supergames. Algorithmic

learning, on the other hand, is strongly influenced by the exogenous explo-

ration parameter. Additionally, for self-learning algorithms, “learning to

cooperate” and “cooperation” itself are separate issues due to the learning

and playing phases. However, for humans, the data comprises both phases.

Where humans and self-learning algorithms differ most strongly is in

the learning phase. Humans need only a small number of rounds or a few

supergames to cooperate; they belong to a generally cooperative species.

In contrast, reinforcement learning algorithms must start from scratch and
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Table 6: Difference human vs. algorithmic cooperation rates,
ν = 20 and ν = 1000

ν = 20 k δ R = 32 R = 40 R = 48

1 0.50 8.15∗∗∗ 20.82∗∗∗ 42.38∗∗∗

0.75 18.54∗∗∗ 59.28∗∗∗ 37.08∗∗∗

0.90 27.45∗∗∗ 40.62 22.86
0.95 19.05 27.16 27.80∗

2 0.50 8.15∗∗∗ 20.82∗∗∗ 44.85∗∗∗

0.75 18.54∗∗∗ 57.65∗∗∗ 44.82∗∗∗

0.90 25.58∗∗∗ 38.05∗∗ 30.29∗

0.95 23.35∗ 37.22∗∗∗ 39.14∗∗∗

3 0.50 8.15∗∗∗ 20.82∗∗∗ 44.13∗∗∗

0.75 18.54∗∗∗ 59.12∗∗∗ 46.13∗∗∗

0.90 31.88∗∗∗ 58.47∗∗∗ 36.75∗∗∗

0.95 26.75∗∗∗ 41.28∗∗∗ 41.71∗∗∗

ν = 1000 k δ R = 32 R = 40 R = 48

1 0.50 8.15∗∗∗ 20.82∗∗∗ 45.13∗∗∗

0.75 18.54∗∗∗ 59.63∗∗∗ 41.15∗∗∗

0.90 36.42∗∗∗ 60.23∗∗∗ 7.46
0.95 49.22∗∗∗ −2.19∗∗∗ −3.51∗∗∗

2 0.50 8.15∗∗∗ 20.82∗∗∗ 45.13∗∗∗

0.75 18.54∗∗∗ 59.63∗∗∗ 65.25∗∗∗

0.90 36.42∗∗∗ 62.97∗∗∗ −10.90∗∗∗

0.95 48.81∗∗∗ −14.04∗∗∗ −12.16∗∗∗

3 0.50 8.15∗∗∗ 20.82∗∗∗ 45.13∗∗∗

0.75 18.54∗∗∗ 59.63∗∗∗ 68.15∗∗∗

0.90 36.42∗∗∗ 62.23∗∗∗ −4.82∗∗∗

0.95 37.53∗∗∗ −8.39∗∗∗ −12.13∗∗∗

Note: This table shows the difference between cooperation rates
of humans and algorithms, as well as the significance level of a
two-sided Mann-Whitney-U-test. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001
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require a large number of rounds to learn. Humans can interpret each

other, play deliberately, and infer the intentions of their opponents. These

differences between humans and algorithms appear to explain some of our

results, such as why humans cooperate more when cooperation is relatively

difficult to sustain. While the discount factor and reward parameter affect

both human and algorithmic “learning to cooperate,” the different natures

of learning lead to different outcomes in supergames, such as the more

forgiving nature of the strategies employed by the algorithm.

7 Cooperation among Large Language Models

As a robustness check, we now report on a computational experiment with

an algorithm other than Q-learning. In the new experiment, two Large

Language Models (LLMs) play the repeated prisoner’s dilemma against

each other. As the LLM, we analyze the gpt-3.5-turbo-0301 model from

OpenAI. The details are in online appendix S.4.

We again organize the algorithm’s behavior through the lens of the de-

terminants, forms, and levels of cooperation. Our first finding is that the

LLM’s cooperation rates are not responsive to changes in the economic en-

vironment as formalized by the discount factor δ and the reward parameter

R. The level of cooperation is around 75-80%. Using the SFEM, we find

that LLMs mainly adopt cooperative strategies like AllC, TFT, GT, and

WSLS.

We take the following two insights away. First, not all algorithms re-

spond to the environment as humans (and Q-learning algorithms) do and

as economic theory suggests. Second, LLMs do not match human behavior

in strategic situations despite being trained on a large corpus of human-

generated text, often with the explicit goal of mimicking human behavior

(OpenAI, 2022). In our case, ChatGPT and humans differ in the determi-

nants of cooperation, the adopted strategies, and largely also in the levels

of cooperation: ChatGPT cooperates significantly more than humans for

low δ–R combinations but statistically indistinguishably for high δ–R pairs.

The failure to respond to the economic environment suggests that LLMs

are not up to the task of maximizing long-run payoffs under strategic un-

certainty. This is despite our efforts to make the key parameters salient in
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our instructions to the algorithm.

8 Conclusion

Comprehensive knowledge of how algorithms work is essential as artificial

intelligence is increasingly used in strategic situations (Rahwan et al., 2019).

Our work aims to improve the understanding of algorithmic cooperation.

In a series of computational experiments on the repeated prisoner’s

dilemma, we find that the same factors that influence human cooperation

also apply to Q-learning algorithms. However, algorithms tend to play dif-

ferent strategies than humans. On the one hand, Q-learning may appear

more rational because it is more likely to forgive past defections by reini-

tiating cooperation. On the other hand, Q-learning frequently converges

to strategies that are never part of an equilibrium. While algorithms can

be tuned to cooperate more than humans, no universal set of parameters

leads to higher cooperation rates across all prisoner’s dilemma variants. In

particular, Q-learning algorithms tend to cooperate less than humans in

environments where cooperation is relatively hard to sustain. Investigat-

ing the theoretical drivers for this ambiguity appears to be a fruitful area

for future research. Overall, the artificial intelligence studied in this paper

does not systematically outperform humans.

Methodologically, we demonstrate that the tools that game-theoretic

and experimental research have developed for analyzing human behav-

ior can be fruitfully applied to open the black box of algorithmic be-

havior. Game-theoretic concepts such as risk dominance (Harsanyi and

Selten, 1988) and the size of the basin of ‘always defect’ (Dal Bó and

Fréchette, 2011) explain not only human but also algorithmic cooperation

rates. Moreover, the strategy frequency estimation method (Dal Bó and

Fréchette, 2011) can approximate the strategies complex algorithms learn.

We expect the SFEM to also work well in other settings.

There are also questions about collusion between firms that our re-

search can address. These may need to be taken with a grain of salt, as

a two-action dilemma may not fit oligopoly setups with richer action sets.

Nevertheless, there are two core policy issues to which our work seems

relevant. First, it is essential for antitrust policy to know what market
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conditions are conducive to self-learning algorithms. Our results suggest

that there are no major differences from human decision-makers. A sec-

ond important policy question is how to detect collusion by self-learning

algorithms (Calvano et al., 2020b). Here the SFEM may also enhance our

understanding of algorithmic collusion by providing an easy-to-interpret

and theory-driven description of the algorithm’s strategy. Indeed, we find

evidence for retaliation and matching strategies, which are thought to be

indicative of collusion in oligopoly.
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ning, Tina Zhu, Kevin McKee, Raphael Koster et al., “Inequity

Aversion Improves Cooperation in Intertemporal Social Dilemmas,” Ad-

vances in Neural Information Processing Systems, 2018, 31.

Jensen, Benjamin M., Christopher Whyte, and Scott Cuomo,

“Algorithms at War: the Promise, Peril, and Limits of Artificial In-

telligence,” International Studies Review, 2020, 22 (3), 526–550.

40



Johnson, Justin P., Andrew Rhodes, and Matthijs R. Wilden-

beest, “Platform Design When Sellers Use Pricing Algorithms,” Econo-

metrica, 2023, 91 (5), 1841–1879.

Kartal, Melis and Wieland Müller, “A New Approach to the Analysis

of Cooperation Under the Shadow of the Future: Theory and Experi-

mental Evidence,” Available at SSRN 3222964, 2021.

Klein, Timo, “Autonomous Algorithmic Collusion: Q-learning under Se-

quential Pricing,” The RAND Journal of Economics, 2021, 52 (3), 538–

558.

Kuang, Zhufang, Zhihao Ma, Zhe Li, and Xiaoheng Deng, “Coop-

erative Computation Offloading and Resource Allocation for Delay Min-

imization in Mobile Edge Computing,” Journal of Systems Architecture,

2021, 118, 102167.

Lerer, Adam and Alexander Peysakhovich, “Maintaining Coopera-

tion in Complex Social Dilemmas using Deep Reinforcement Learning,”

arXiv preprint arXiv:1707.01068, 2017.

Martin, Simon and Alexander Rasch, “Collusion by Algorithm: The

role of Unobserved Actions,” 2022.

Mengel, Friederike, “Risk and Temptation: A Meta-study on Prisoner’s

Dilemma Games,” The Economic Journal, 2018, 128 (616), 3182–3209.

Miklós-Thal, Jeanine and Catherine Tucker, “Collusion by Algo-

rithm: Does Better Demand Prediction Facilitate Coordination between

Sellers?,” Management Science, 2019, 65 (4), 1552–1561.

Murnighan, J. Keith and Alvin E. Roth, “Expecting Continued Play

in Prisoner’s Dilemma Games: A Test of Several Models,” Journal of

Conflict Resolution, 1983, 27 (2), 279–300.

Normann, Hans-Theo and Martin Sternberg, “Human-algorithm In-

teraction: Algorithmic Pricing in Hybrid Laboratory Markets,” European

Economic Review, 2023, 152, 104347.

41



Nowak, Martin and Karl Sigmund, “A Strategy of Win-stay, Lose-

shift that Outperforms Tit-for-tat in the Prisoner’s Dilemma Game,”

Nature, 1993, 364 (6432), 56–58.

OpenAI, “Introducing ChatGPT,” https://openai.com/blog/chatgpt

2022.

Rahwan, Iyad, Manuel Cebrian, Nick Obradovich, Josh Bongard,

Jean-François Bonnefon, Cynthia Breazeal, Jacob W. Crandall,

Nicholas A. Christakis, Iain D. Couzin, Matthew O. Jackson

et al., “Machine Behaviour,” Nature, 2019, 568 (7753), 477–486.

Romero, Julian and Yaroslav Rosokha, “Constructing Strategies in

the Indefinitely Repeated Prisoner’s Dilemma Game,” European Eco-

nomic Review, 2018, 104, 185–219.

and , “A Model of Adaptive Reinforcement Learning,” Available at

SSRN 3350711, 2019.

and , “Mixed Strategies in the Indefinitely Repeated Prisoner’s

Dilemma,” Econometrica, 2023, 91 (6), 2295–2331.

Roth, Alvin E and Ido Erev, “Learning in extensive-form games: Ex-

perimental data and simple dynamic models in the intermediate term,”

Games and economic behavior, 1995, 8 (1), 164–212.

Roth, Alvin E. and J.Keith Murnighan, “Equilibrium Behavior and

Repeated Play of the Prisoner’s Dilemma,” Journal of Mathematical Psy-

chology, 1978, 17 (2), 189–198.

Sandholm, Tuomas W and Robert H Crites, “Multiagent Reinforce-

ment Learning in the Iterated Prisoner’s Dilemma,” Biosystems, 1996,

37 (1-2), 147–166.

Schaefer, Maximilian, “On the Emergence of Cooperation in the Re-

peated Prisoner’s Dilemma,” arXiv preprint arXiv:2211.15331, 2022.

Siegel, Sidney, “Decision making and learning under varying conditions

of reinforcement.,” Annals of the New York Academy of Sciences, 1961.

42

https://openai.com/blog/chatgpt


Thorndike, Edward L, “Animal intelligence: An experimental study of

the associative processes in animals.,” The Psychological Review: Mono-

graph Supplements, 1898, 2 (4), i.

Waltman, Ludo and Uzay Kaymak, “Q-learning Agents in a Cournot

Oligopoly Model,” Journal of Economic Dynamics and Control, 2008,

32 (10), 3275–3293.

Watkins, Christopher John Cornish Hellaby, “Learning from De-

layed Rewards.” PhD dissertation, King’s College, Cambridge 1989.

and Peter Dayan, “Q-Learning,” Machine Learning, 1992, 8, 279–292.

Werner, Tobias, “Algorithmic and Human Collusion,” Available at SSRN

3960738, 2022.

Wieting, Marcel and Geza Sapi, “Algorithms in the Marketplace: An

Empirical Analysis of Automated Pricing in E-Commerce,” Available at

SSRN 3945137, 2021.

43


	Martin algorithmic cooperation.pdf
	Introduction
	Economic environment and hypotheses
	Basic setup
	The self-learning algorithm
	Experimental insights and our hypotheses

	The Experiments
	Treatment design
	The algorithmic Q-learning experiments
	The human lab experiments

	Determinants of cooperation
	Forms of cooperation
	Estimating the strategies
	Algorithmic strategies
	Human strategies

	Levels of cooperation
	Cooperation among Large Language Models
	Conclusion

	11124abstract.pdf
	Abstract




