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Abstract 

Only positive instances of various events, e.g., secondary diagnoses, are actively labeled in hospital 

administrative data. In line with this, several studies indicate underreporting of adverse events such as 

sepsis. The gold standard for relabeling of uncoded sepsis cases, medical record review, is laborious, 

costly, and infeasible to execute for identifying sepsis in large, national datasets. We apply a positive 

unlabeled (PU) learner as a novel approach to identify sepsis cases from hospital administrative data.  

We exploit the Hospital Case Cost Statistic from the Swiss Federal Statistics Office (data years 2017 to 

2019) including 72 cost attributes at case level. We hypothesize that these cost data should prove 

effective for learning a classification model as positive sepsis cases in the unlabeled data should exhibit 

similar cost patterns as labeled positive examples. We randomly draw 200,000 unlabeled examples from 

the full dataset and add 64,915 positive examples of sepsis labeled in the observation period for model 

training and evaluation. We  train a robust PU learner proven in other applications, AdaSampling, with 

support vector machine as classification model. For model evaluation, we perform five-fold cross-

validation. Due to the PU setting, we can only use positive examples in the test set and estimate recall 

along with precision and recall at 10%, 20%, and 30% for four different evaluation scenarios, changing 

the coding strategy for labeling sepsis cases. 

Our model has a recall of 85.1% when labeling sepsis cases explicitly in the test set. Recall decreases to 

55.5% when labeling sepsis cases exclusively with an implicit coding strategy. Recall at k% is highest 

for the evaluation scenarios focusing on implicit coding strategies, yet remains relatively low 

throughout all scenarios. Precision at k% is highest when only considering cases as positive examples 

that would be labeled according to both the explicit as well as implicit coding strategy (e.g., 92.3% for 

k=10%). 

Compared to the sensitivity of directly identifying sepsis cases from hospital administrative data 

reported in studies using medical record review, the recall of our model is high. We propose a two step 

process using PU learning for increasing the quality of hospital administrative data and performing 

sensitity analyses for health economic and health services research.
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1 Introduction 

Commonly, a classification algorithm that is to distinguish between positive and negative examples in 

unseen data, commonly referred to as binary classification, is learned from a fully labeled training set. 

In practice, situations arise, however, where only one class, usually positive examples, is labeled and 

the unlabeled data contains both negative and positive examples. Accordingly, the subject of learning 

from positive and unlabeled (PU) data has increasingly received attention in the machine learning 

research community in the last two decades (Bekker and Davis, 2020; Calvo et al., 2007a; Denis et al., 

2005; Elkan and Noto, 2008; Zhang et al., 2019). 

Large datasets used for health economic and health services research, e.g., from administrative and 

billing data, are prone to limitations regarding the documentation as well as correct and consistent 

coding of certain (adverse) events (Freitas et al., 2014). In fact, only positive instances are actively coded 

(e.g., secondary diagnoses) and uncoded instances are assumed to be negative rather than missing or 

unlabeled. Accordingly, negative examples in hospital administrative data might contain a considerable 

degree of class label noise. Consequentially, values of quality indicators used in health economic and 

health services research, for instance inpatient complication rates or patient safety indicators, might be 

higher or lower than those that are currently estimated from administrative data (Maass et al., 2015). 

Similarly, calculation of cost weights for and grouping of diagnosis-related groups (DRGs) could be 

affected by under- and misreporting. DRGs are used for hospital payment in many countries, e.g., in 

Switzerland and Germany, and are grouped, among other information, using diagnoses and procedure 

codes (Blümel et al., 2020; De Pietro et al., 2015). As both might suffer from class label noise, DRG 

grouping might be distorted, possibly affecting hospitals’ revenues - and ultimately hospitals’ profits. 

Sepsis is a well-researched example of the above described limitations. Different studies have found 

that sepsis cases are under- and/ or misreported in hospital administrative data (Fleischmann-Struzek 

et al., 2018; Fleischmann-Struzek and Rudd, 2023; Mellhammar et al., 2023; Rhee et al., 2015; 

Schwarzkopf et al., 2023). Studies often rely on medical record review by experts checking whether a 

non-reported diagnosis actually means that the patient did not suffer from that disease or complication. 

Following this approach, Mellhammer et al. (2023) find, for instance, that inpatient sepsis rates 

estimated from administrative data were 1.0% (95% CI, 1.0%-1.1%) to 1.4% (95% CI, 1.4%-1.5%) while 

medical record review estimated a sepsis rate of 4.1% (95% CI, 3.6%-4.5%). Similarly, Schwarzkopf et al. 

(2023) report low sensitivity (26.8% to 38.0% depending on sepsis definition) for sepsis detection via 

diagnosis codes from hospital administrative data. Using medical record review, the authors found that 

in their sample of more than 10,000 inpatient cases from ten German hospitals, incidence of severe 

sepsis-1 was at 3.3% instead of 1.4% as estimated from hospital administrative data. 
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PU learning algorithms have been applied in biology and bioinformatics, e.g., for gene prediction and 

detection (Calvo et al., 2007b; Wang et al., 2006) and gene network inference (Cerulo et al., 2010), in text 

classification (Liu et al., 2003; Yu et al., 2003), and various other applications (Jaskie and Spanias, 2019). 

While there are some PU learning applications investigating hospital management topics (Arjannikov 

and Tzanetakis, 2021a, 2021b), to the best of our knowledge, PU learning has so far not been applied to 

increase the quality of hospital administrative data, e.g., to improve health economic and health services 

research. 

If discussed at all, health economic and health services studies using hospital administrative data list 

the issue of unlabeled data as one of their limitations. At the same time, studies cannot use laborious, 

costly methods such as medical record review to correctly label tens of thousands of observations or 

even more, e.g., in a national database. PU learning models, on the other hand, might constitute a more 

efficient approach to increase administrative data quality. Thus, we investigate the following research 

question: Is PU learning a suitable approach to increase hospital administrative data quality? 

We focus on sepsis as application example due to three reasons. Firstly, it is well researched that sepsis 

is commonly underreported when only relying on hospital administrative data. While there is evidence 

that the reporting of sepsis in hospital administrative and claims data has increased in the last two 

decades (e.g., Fleischmann-Struzek et al., 2018; Rhee et al., 2014), the above cited, very recent studies 

indicate that the issue persists (Mellhammar et al., 2023; Schwarzkopf et al., 2023). Secondly, sepsis is a 

major complication for both surgical and non-surgical patients (Singer et al., 2016). This underscores its 

medical relevance and is advantageous regarding data volume PU data learners can learn from. Thirdly, 

sepsis has highly relevant medical and economic consequences: Patients’ health status deteriorates 

considerably, sepsis is strongly linked to high hospital mortality rates, and the economic burden of 

sepsis is considerable (Rhee et al., 2014; Singer et al., 2016; Tiru et al., 2015). 

2 Methods 

Data 

Learning attributes and data source  

We hypothesize that a classifier might learn positive examples of sepsis cases from hospital cost data. 

Costs accrue from treatment. While sepsis might not have been documented by physicians and/ or 

nurses and/ or it might not have been coded from documented information by coding specialists (or in 

fact it might not have been diagnosed at all) (Rhee et al., 2014; Schwarzkopf et al., 2023), we assume that 

symptoms are observed and treated. While a non-treatment might occur in single instances, it should 

not occur systematically. Indeed, a deliberate non-treatment of symptoms would be highly unethical. 

Consequentially, positive examples of sepsis part of the unlabeled data should exhibit similar cost 

patterns as actual positive examples. 
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We exploit the Hospital Case Cost Statistic from the Swiss Federal Statistics Office for data years 2017 

to 2019. This dataset should be well-suited for PU data classifiers to learn from hospital cost data as it 

contains 71 distinct cost attributes and additionally total costs at case level. There are eleven variable, 

direct cost categories including, for instance, pharmaceuticals, blood and blood products, medical 

materials, and implants. The remaining 60 cost attributes refer to indirect costs. More specifically, in the 

dataset, 30 service centers are listed, comprising medical services such as intensive care unit (ICU) 

physician services, pathology, physiotherapy, dialysis, laboratory analyses, anasthesiology, operating 

room area, emergency services, and diagnostic imaging, as well as tertiary services such as patient 

administration and hospitality services. For each of these service centers, two indirect cost categories 

are given, namely one including indirect costs without asset usage costs and one including only asset 

usage costs.  

Besides, the dataset contains information on cases’ gender, age (5-year age bands), admission reason, 

discharge reason, main treating hospital department, diagnosis-related group code, the main diagnosis, 

up to 49 secondary diagnoses, the main procedure, up to 99 additional procedures, and many other 

patient characteristics. We deliberately do not use these attributes for learning due to two reasons: 

Firstly, patient characteristics such as age, gender, and co-morbidities might be well-suited to predict 

the risk of developing sepsis. For risk prediction, a fully labeled dataset and supervised learning 

methods would be used. In PU learning, the setting is distinctly different, however. In addition, further 

analysis with PU learner outputs might be biased if the same attributes were used in the PU learning 

process that would later also be used for, e.g., risk-adjustment of outcome indicators. Secondly, 

attributes such as the diagnosis-related group code, specific procedures, and the treating hospital 

department should be well-reflected in the cost attributes. For learning our PU classifier, we thus focus 

on cost attributes.  

There are several tens of thousands of ICD-10-codes and procedure codes. Each case receives one main 

diagnosis and between one and 100 procedures. The number of possible combinations of main diagnosis 

and list of procedures is vast. It is perceivable that there are combinations that lead to similar cost 

patterns as seen for labeled and unlabeled sepsis cases. Thus, we complement cost attributes with 

aggregated information on main diagnosis and performed treatments (see Table 5 in the supplements 

for a full list) to enable our PU learner to efficiently learn sepsis cases from cost data. 

Identification of sepsis cases 

Commonly, sepsis cases are identified in hospital administrative data via diagnosis codes specified in 

the International Classification of Diseases, Version 10 (ICD-10). Yet there is no one gold standard what 

diagnosis codes or combination of codes to use for identification of sepsis cases (Singer et al., 2016). 

Usually, authors rely on different explicit and implicit coding strategies. Explicit coding means that 

ICD-10-codes concretely naming sepsis as disease are used while implicit coding strategies rely on 
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combinations of ICD-10-codes strongly linked to sepsis. To evaluate our PU learner, we use an explicit 

as well as an implicit coding strategy (Angus definition (Angus et al., 2001), i.e., organ dysfunction in 

combination with an infection), described in more detail below (see Table 4 in the supplements for used 

ICD-10-codes). Both definitions were also used by Schwarzkopf et al. (2023).  

Inclusion and exclusion criteria, undersampling and size of final sample 

As sepsis can potentially occur in any patient, we include all acute somatic care inpatient cases. In our 

dataset, age is recorded in 5-year age bands (0-4, 5-9, 10-14, 15-19, etc.). To only include adults, we 

exclude cases below 20 years of age. The Hospital Case Cost Statistic provided by the Swiss Federal 

Statistics Office includes all acute somatic care cases hospitalized in Swiss hospitals after cleaning of the 

cost data. In this data cleaning process, about 30% of cases are excluded. 

Still, applying the above inclusion and exclusion criteria, the sample would comprise more than 2.7 

million cases with an explicit (implicit) coding sepsis rate of roughly 2.39% (6.49%). To balance the 

dataset and manage computation time, we reduce the number of negative (or rather unlabeled) sepsis 

cases (undersampling). To this end, we extract all 64’915 observed positive sepsis cases (explicit coding) 

and add a random sub-sample of 200,000 unlabeled sepsis cases from the initial dataset. Our final 

sample comprises 264’915 cases with a positive class label mean of 24.50%.  

PU learning algorithm 

We first briefly formally review binary classification and preliminaries relevant for PU learning (e.g., 

the labeling mechanism). Second, we discuss the underlying assumptions for PU learning in the context 

of hospital administrative data. Third, we present the learning technique we applied. Lastly, we discuss 

model evaluation. For all four sections, we rely on the work of Bekker and Davis (2020), who have 

provided a thorough review of the current state of knowledge regarding PU learning. 

Formal descriptions 

PU learning is a type of binary classification. Yet it differs succinctly from classical set-ups of (a) fully 

and semi-supervised learning, and (b) learning from positive-only or one-class data. Bekker and Davis 

(2020) outline that main differences are that (a) only positive examples are reliable and there are no 

negative examples to learn from and (b) not only positive but also unlabeled examples in the training 

set are used for learning. 

When training a binary classifier to predict the class label of an example, training examples are tuples 

(𝑥, 𝑦), 𝑥 = {𝑎1, 𝑎2, … 𝑎𝑘} describing a vector of attribute values of data instance 𝑥 ∈ 𝑋, and 𝑦 ∈ {0,1} 

denoting the class label (𝑦 = 1 indicates a positive and 𝑦 = 0 a negative example). To train a binary 

classification learner, it is assumed that the training set is an independent and identically distributed 

(iid) sample of the real distribution: 
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𝒙 ~ 𝑓(𝑥)  

 ~ 𝛼𝑓+(𝑥) + (1 − 𝛼)𝑓−(𝑥) (1) 

where 𝒙 denotes a set of vectors of attribute values, 𝛼 = 𝑝(𝑦 = 1) is the class prior, f is the probability 

density function of the true distribution, and 𝑓+ of the positive and 𝑓− of the negative examples. 

While PU learners also aim to classify positive and negative examples subject to their attributes, they 

must do so from the labeled subset of positive examples and unlabeled data instances, i.e., they cannot 

learn from negative examples. The binary variable 𝑠 indicates whether 𝑥 was selected to be labeled 

(Elkan and Noto, 2008). In the PU data setting, the probability of an example to be selected for labeling 

equals 0 if it is unlabeled in the dataset:  

𝑝(𝑠 = 1 | 𝑥, 𝑦 = 0) = 0  (2) 

Accordingly, if an example was selected for labeling, it belongs to the positive class:  

𝑝(𝑦 = 1 | 𝑠 = 1) = 1  (3) 

A PU dataset can then be described as a set of triplets (𝑥, 𝑦, 𝑠) with 𝑠 as binary variable indicating 

whether the tuple (𝑥, 𝑦) was selected to be labeled. Note also that only (𝑥, 𝑠) are recorded and that if 

𝑠 = 0, an example could be positive or negative (Bekker et al., 2020; Elkan and Noto, 2008).  

Bekker et al. (2020) define the propensity score, i.e., the probability for a positive example 𝑥 to be selected 

for labeling, as 𝑒(𝑥)  =  𝑝(𝑠 = 1|𝑥, 𝑦 = 1). Building on the PU definition and Bayes’ rule, the authors 

then define the labeled distrubtion 𝑓𝑙 in relation to the positive distribution 𝑓+ as 

𝑓𝑙(𝑥) =
𝑒(𝑥)

𝑐
𝑓+(𝑥)  

(4) 

with label frequency 𝑐 = 𝑝(𝑠 = 1|𝑦 = 1), describing the fraction of positive examples selected for 

labeling. 

Assumptions 

a. Training set 

We assume a single-training-set scenario (Bekker and Davis, 2020). This means that both positive and 

unlabeled examples originate from the same dataset. Additionally, the dataset is an iid sample from the 

real distribution. Further assuming that a fraction 𝑐 from the positive instances were selected for 

labeling according to examples’ individual propensity score 𝑒(𝑥), the share of labeled examples in the 

dataset is 𝛼𝑒(𝑥) in the single-training-set scenario. 

𝒙 ~ 𝑓(𝑥)  

~ 𝛼𝑒(𝑥)𝑓𝑙(𝑥) + (1 − 𝛼𝑒(𝑥))𝑓𝑢(𝑥) (5) 

with 𝑓𝑙 and 𝑓𝑢 denoting the labeled and unlabeled distribution, respectively.  

We assume a single-training-set scenario as positive and unlabeled examples of sepsis cases recorded 

in hospital administrative data all originate from the Hospital Case Cost Statistic dataset provided by 

the Swiss Federal Statistics Office. Data for this dataset are collected at all hospital sites in Switzerland. 



   

 

6 

 

Recording of positive or unlabeled examples are not limited to a subset of hospitals but each hospital 

can record both positive as well as negative (or rather unlabeled) instances. Single-training-set scenarios 

are most common in PU learning applications and thus, available learning algorithms can usually 

handle them well (Bekker and Davis, 2020). 

b. Labeling mechanism 

To enable learning from PU data, the mechanism how an example was selected to be labeled as positive 

must be understood for one’s dataset. As outlined earlier, we must assume a bias in diagnosis, 

documentation and coding of sepsis cases. First, sepsis might not have been diagnosed as, for instance, 

physicians did not interpret symptoms accordingly and thus did not order laboratory analyses and/ or 

take other diagnostic measures. Whether sepsis was diagnosed or not thus is biased by treating 

physicians’ experience with the disease and their behavior and decisions when observing symptoms. 

Second, coding relies on thorough documentation. Schwarzkopf et al. (2023) found that if sepsis was 

not named in patients’ medical charts, only 7.6% of true positive cases were explicitly coded as sepsis-1 

cases while of the cases where sepsis was named in the medical chart, 61.8% of true positive cases were 

explicitly coded. Third, the findings of Schwarzkopf et al. (2023) also show that even if documented 

correctly, 38.2% of true positive cases were not coded, implying improvement potential in coding 

practices. According to Schwarzkopf et al. (2023), documentation and coding quality varied strongly 

between the ten hospitals participating in their study, potentially underscoring how the experience and 

behavior of doctors, nurses, and coding specialists influences data quality. 

In PU learning, it is either assumed that positive examples were Selected Completely At Random 

(SCAR) or Selected At Random (SAR) (Bekker and Davis, 2020). In our dataset, the attributes potentially 

biasing diagnosis, documentation, and coding of sepsis cases are not recorded. For instance, there is no 

attribute describing physicians’ experience with sepsis cases or qualification of coding specialists 

translating documented information into ICD-10-codes. Still, we must follow the SAR assumption: 

positive examples’ probability to be labeled in our dataset depends on their attributes, i.e., our sample 

is a biased sample from the positive distribution (Bekker et al., 2020; Bekker and Davis, 2020):  

𝑒(𝑥) = 𝑝(𝑥, 𝑦 = 1) (6) 

Bekker et al. (2020) introduced different settings in which learning under the SAR assumption with 

unknown exact propensity scores is possible. Specifically, in the context of our study, we may assume 

a reduction of SAR to SCAR as the attributes influencing the examples’ propensity score to be labeled 

are fewer (or in fact even different) than the attributes used for the classification model. The underlying 

additional assumption is that it is not possible to know if an example got labeled due to its propensity 

score or due to an actually low class probability. Then, there must be a subset of attributes the propensity 

score depends upon, i.e., the propensity attributes 𝑥𝑒: 
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𝑝(𝑠 = 1| 𝑥, 𝑦 = 1) = 𝑝(𝑠 = 1| 𝑥𝑒 , 𝑦 = 1)  

𝑒(𝑥) = 𝑒(𝑥𝑒) (7) 

In the hospital context, attributes influencing the labeling mechanism are the experience and behavior 

of physicians, nurses, and coding specialists (and the written and verbal communication between these 

groups). We may assume a reduction from SAR to SCAR, as the classification model will rely on other 

attributes than the labeler (i.e., the coding specialist). Specifically, the labeler does not use hospital cost 

data at case level as these data are irrelevant for coding. 

c. Data and class distribution 

Lastly, we assume separability and smoothness regarding data distribution:  

• Separability: A classifier exists that can distinguish between negative and positive examples. 

Bekker and Davis (2020) formulate this assumption as a function 𝑓 mapping positive examples 

to a value above or equal to a defined threshold 𝜏 and vice versa for negative examples: 

𝑓(𝑥𝑖) ≥ 𝜏,   𝑦𝑖 = 1  

𝑓(𝑥𝑖) < 𝜏,   𝑦𝑖 = 0  

We expect hospital cost data to be a rich data source for training such a classifier. 

• Smoothness: If the attributes of two instances 𝑥1 and 𝑥2 are similar, their probability to belong 

to the positive class will also be similar, i.e. 𝑝(𝑦 = 1|𝑥1) is similar to 𝑝(𝑦 = 1|𝑥2). As outlined 

earlier, we assume cost attributes to reflect treatment of sepsis symptoms (e.g., medication, 

ventilation, intensive care nursing, etc.). Thus, cases with similar cost patterns should have a 

similar probability to belong to the positive sepsis class. 

Selected learning technique 

PU learning algorithms can be categorized into (1) one-class, (2) heuristic, (3) robust, and (4) bias-based 

approaches. Each of these approaches has distinct advantages and disadvantages, well-described 

elsewhere (Bekker and Davis, 2020; Yang et al., 2019, 2017). For our study, we rely on the AdaSampling 

package for the programming language R, developed by Yang et al. (2019, 2017). AdaSampling was 

developed building on wrapper-based feature selection (Kohavi and John, 1997). It belongs to the PU 

learning algorithm category of robust approaches yet it does not identify negative instances via noisy 

filtering or a prespecified threshold, nor does it need bias estimation like other robust approaches.  

Instead, Yang et al. (2019) outline that the algorithm iteratively estimates the probability of data 

instances’ labels to be mislabeled using a choosable learning algorithm, such as radial kernel support 

vector machine (SVM) or k-nearest-neighbors (k-NN). With each new iteration, the estimation is based 

on a resampled dataset from the initial sample with the probability of a data instance to be excluded 

from this resampled dataset being equal to its probability to be mislabeled. This means that data 

instances with a higher probability to be mislabeled are more likely to be eventually excluded from 
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updated training sets. The training set for the final prediction of the binary classifier then consists of 

examples with a relatively low probability to be mislabeled, i.e., they are reliable examples. 

The AdaSampling algorithm has been used in other studies (e.g., by Zhou et al. (2022)), showing reliable 

results. From the set of available probabilistic classification models SVM, k-NN, feature weighted k-

NN, logistic regression, and linear discriminant analysis, we use the default setting of AdaSampling, 

i.e., SVM for classification. We run the SVM classifier 20 times, inducing an ensemble learning model. 

All calculations are performed with R version 4.2.1 2021.11.01 and AdaSampling version 1.3. 

Model evaluation 

To answer our research question, we need to assess the quality of the PU learner’s output. The main 

challenge is that by PU definition, datasets do not contain actual negatives. Thus, false positives (FP) 

and true negatives (TN) cannot be identified in PU data. Commonly, when developing PU learners, 

authors circumvent this evaluation issue creating synthetic datasets and/ or using benchmark datasets, 

e.g., when evaluating developed algorithms. 

Our goal is to increase the quality of a real-world dataset, however. Hence, we must use the actual datset 

in which only actual positive examples are reliable. Combined with the positive and negative 

predictions from our model, we can calculate recall (equal to sensitivity) 𝑟, recall at k% 𝑟𝑘 and precision 

at k% 𝑝𝑘 (Buckley and Voorhees, 2000; Manning et al., 2009), for evaluation:  

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(8) 

𝑟𝑘 =
𝑇𝑃 𝑖𝑛 𝑡𝑜𝑝 𝑘%

𝑇𝑃
 

(9) 

𝑝𝑘 =
𝑇𝑃 𝑖𝑛 𝑡𝑜𝑝 𝑘%

𝑎𝑙𝑙 𝑑𝑎𝑡𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑘%
 

(10) 

As Bekker and Davis (2020) point out, recall can be estimated in the PU learning setting under the SCAR 

assumption, which is why it is essential that we can reduce SAR to SCAR as discussed earlier. We argue 

that for our goal, recall is the central evaluation metric as we need to correctly identify as many sepsis 

cases from the administrative data as possible.  

We estimate 𝑟𝑘 and 𝑝𝑘 for the top 10%, 20%, and 30% of predictions. Both metrics were developed for 

information retrieval applications such as web searches. With 𝑟𝑘, we can evaluate what share of TPs are 

among the top k% of our model’s predictions. With 𝑝𝑘, we assess the accuracy of our top predictions. 

When evaluating, we calculate the above metrics counting actual positive examples in four different 

constellations: (1) All cases with explicit sepsis codes, (2) cases with explicit or implicit sepsis codes, (3) 

all cases with implicit codes, and (4) cases with implicit codes but without explicit codes. Note that we 

train our model defining positive labels exclusively with explicit codes. Constellations (2) to (4) will thus 
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help us to evaluate whether our learner can correctly identify positive examples of an alternative sepsis 

coding definition in the unlabeled data.  

For evaluation, we perform cross-validation with five equal folds of the positive examples. We run five 

iterations to train and test our model, altering with each iteration what four folds are added to the 

200’000 unlabeled examples used for training and what fold is reserved for testing. We average 

evaluation results of the five iterations to estimate the final evaluation metrics. We use the positive class 

label mean of 24.50% as threshold for positive classification. 

3 Results 

Descriptive results 

We present descriptive results of selected attributes in Table 1 and of the number and share per ICD-10-

chapter in Table 2. We provide a full list of descriptive results in Table 6 in the supplements.  

Table 1: Descriptive results of selected attributes 

Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Total costs 17,895 

(40,575) 

8,515 

(4,837-

16,610) 

36,342 

(71,718) 

14,731 

(7,720-

34,426) 

11,907 

(19,104) 

7,418 

(4,240-

13,363) 

Variable direct costs [CHF] – selected attributes       

Pharmaceuticals 518 (3183) 89 (19-252) 1398 

(5783) 

261 (94-

817) 

232 (1494) 63 (10-168) 

Blood and blood products 227 (3055) 0 (0-0) 763 (5935) 0 (0-0) 53 (896) 0 (0-0) 

Medical material 587 (2066) 77 (1-418) 1009 

(3448) 

108 (17-

593) 

450 (1311) 66 (0-381) 

Fixed indirect costs [CHF] – selected attributes       

Operating room, overheads excl. IUC 711 (2174) 0 (0-830) 982 (3765) 0 (0-0) 623 (1275) 0 (0-934) 

Operating room, IUC 181 (516) 0 (0-197) 233 (833) 0 (0-1) 164 (355) 0 (0-225) 

Operating room doctors - activities 6a, 

overheads excl. IUC 

238 (903) 0 (0-0) 342 (1387) 0 (0-0) 204 (672) 0 (0-34) 

Operating room doctors - activities 6a, 

IUC 

13 (74) 0 (0-0) 18 (106) 0 (0-0) 11 (59) 0 (0-0) 

Anesthesia, overheads excl. IUC 602 (1650) 0 (0-758) 850 (2759) 0 (0-493) 521 (1054) 0 (0-802) 

Anesthesia, IUC 58 (160) 0 (0-69) 79 (263) 0 (0-39) 50 (106) 0 (0-74) 

Intensive care unit, overheads excl. IUC 2165 

(14418) 

0 (0-0) 7592 

(27602) 

0 (0-3274) 403 (3925) 0 (0-0) 

Intensive care unit, IUC 204 (1346) 0 (0-0) 714 (2573) 0 (0-271) 38 (374) 0 (0-0) 

Intensive care unit physicians - activities 

6b1, overheads excl. IUC 

411 (3236) 0 (0-0) 1418 

(6225) 

0 (0-139) 84 (928) 0 (0-0) 

Intensive care unit physicians - activities 

6b1, IUC 

17 (167) 0 (0-0) 56 (310) 0 (0-0) 4 (70) 0 (0-0) 

IMCU, overheads excl. IUC 290 (3050) 0 (0-0) 799 (5671) 0 (0-0) 125 (1331) 0 (0-0) 

Intermediate Care Units (IMCU), IUC 21 (246) 0 (0-0) 55 (455) 0 (0-0) 9 (111) 0 (0-0) 
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Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

IMCU physicians - activities 6b2, 

overheads excl. IUC 

41 (445) 0 (0-0) 107 (803) 0 (0-0) 19 (225) 0 (0-0) 

IMCU physicians - activities 6b2, IUC 2 (26) 0 (0-0) 5 (46) 0 (0-0) 1 (15) 0 (0-0) 

Emergency, overheads excl. IUC 196 (330) 0 (0-323) 352 (369) 307 (87-

479) 

145 (300) 0 (0-235) 

Emergency, IUC 20 (36) 0 (0-31) 36 (41) 26 (6-53) 15 (33) 0 (0-22) 

Emergency medical services - activities 

6b3, overheads excl. IUC 

94 (188) 0 (0-133) 167 (227) 68 (0-280) 70 (166) 0 (0-44) 

Emergency med. serv. – activit. 6b3, IUC 4 (12) 0 (0-1) 7 (15) 0 (0-7) 3 (10) 0 (0-0) 

Imaging procedures, overheads excl. IUC 293 (731) 55 (0-312) 657 (1179) 297 (86-

744) 

175 (446) 0 (0-176) 

Imaging procedures, IUC 81 (212) 13 (0-82) 179 (328) 76 (23-199) 50 (142) 0 (0-46) 

Laboratory, overheads excl. IUC 520 (1878) 108 (0-405) 1477 

(3459) 

570 (251-

1270) 

209 (627) 58 (0-210) 

Laboratory, IUC 61 (232) 11 (0-44) 175 (428) 61 (23-147) 25 (82) 6 (0-23) 

Dialysis, overheads excl. IUC 70 (1107) 0 (0-0) 239 (2137) 0 (0-0) 15 (358) 0 (0-0) 

Dialysis, IUC 8 (125) 0 (0-0) 25 (238) 0 (0-0) 2 (45) 0 (0-0) 

Physicians, activities 1-5, overh. excl. IUC 1411 

(3168) 

790 (216-

1613) 

2561 

(5343) 

1443 (738-

2733) 

1038 

(1860) 

623 (112-

1289) 

Physicians, activities 1-5, IUC 97 (234) 38 (2-104) 170 (360) 76 (23-175) 73 (169) 28 (0-85) 

Physiotherapy, overheads excl. IUC 267 (1090) 0 (0-208) 609 (1826) 185 (0-598) 156 (665) 0 (0-114) 

Physiotherapy, IUC 35 (135) 0 (0-25) 73 (190) 19 (0-74) 22 (109) 0 (0-13) 

Non-medical therapies and consultations, 

overheads excl. IUC 

148 (911) 0 (0-31) 257 (812) 3 (0-225) 112 (938) 0 (0-13) 

Non-med. therapies and consultations, 

IUC 

15 (116) 0 (0-3) 26 (97) 1 (0-20) 11 (121) 0 (0-1) 

Medical and therapeutic diagnostics, 

overheads excl. IUC 

134 (613) 0 (0-0) 234 (823) 0 (0-121) 101 (523) 0 (0-0) 

Medical and therapeutic diagnostics, IUC 37 (155) 0 (0-0) 64 (212) 0 (0-31) 28 (129) 0 (0-0) 

Medical and therapeutic diagnostics 

doctors - activities 6b5, overheads excl. 

71 (412) 0 (0-0) 155 (684) 0 (0-13) 44 (265) 0 (0-0) 

Medical and therapeutic diagnostics - 

activities 6b5, IUC 

3 (22) 0 (0-0) 7 (33) 0 (0-0) 2 (16) 0 (0-0) 

Nursing care, overheads excl. IUC 3705 

(8127) 

1582 (720-

3719) 

7158 

(12458) 

3670 

(1616-

8028) 

2584 

(5656) 

1282 (630-

2644) 

Nursing care, IUC 256 (625) 104 (36-

252) 

462 (945) 210 (79-

500) 

189 (458) 85 (31-193) 

CHOP chapters: Procedures and surgeries of the... 

Procedures not classified elsewhere 0.25 (0.78) 0 (0-0) 0.31 (0.94) 0 (0-0) 0.23 (0.71) 0 (0-0) 

Nervous system 0.08 (0.46) 0 (0-0) 0.08 (0.58) 0 (0-0) 0.09 (0.41) 0 (0-0) 

Endocrine system 0 (0.07) 0 (0-0) 0 (0.05) 0 (0-0) 0 (0.08) 0 (0-0) 

Eye 0.02 (0.25) 0 (0-0) 0 (0.07) 0 (0-0) 0.02 (0.29) 0 (0-0) 

Ears 0.01 (0.1) 0 (0-0) 0 (0.06) 0 (0-0) 0.01 (0.11) 0 (0-0) 

Nose, mouth, throat 0.04 (0.31) 0 (0-0) 0.02 (0.24) 0 (0-0) 0.04 (0.33) 0 (0-0) 
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Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Respiratory system 0.08 (0.54) 0 (0-0) 0.22 (0.95) 0 (0-0) 0.03 (0.29) 0 (0-0) 

Cardiovascular system 0.3 (1.65) 0 (0-0) 0.67 (2.82) 0 (0-0) 0.18 (0.98) 0 (0-0) 

Hematopoietic and lymphatic system 0.02 (0.19) 0 (0-0) 0.04 (0.25) 0 (0-0) 0.02 (0.17) 0 (0-0) 

Digestive tract 0.29 (1.25) 0 (0-0) 0.67 (2.22) 0 (0-0) 0.17 (0.65) 0 (0-0) 

Urinary organs 0.11 (0.47) 0 (0-0) 0.22 (0.67) 0 (0-0) 0.07 (0.37) 0 (0-0) 

Male sexual organs 0.01 (0.14) 0 (0-0) 0.01 (0.16) 0 (0-0) 0.02 (0.14) 0 (0-0) 

Female sexual organs 0.04 (0.31) 0 (0-0) 0.01 (0.16) 0 (0-0) 0.05 (0.35) 0 (0-0) 

Obstetric procedures 0.1 (0.48) 0 (0-0) 0 (0.08) 0 (0-0) 0.13 (0.54) 0 (0-0) 

Musculoskeletal system 0.28 (1.06) 0 (0-0) 0.21 (1.23) 0 (0-0) 0.30 (1) 0 (0-0) 

Integumentary system 0.15 (1.21) 0 (0-0) 0.37 (2.18) 0 (0-0) 0.08 (0.62) 0 (0-0) 

Other diagnostic or therapeutic 

procedures 

2.48 (5.67) 1 (0-2) 3.17 (4.76) 2 (0-4) 2.26 (5.92) 0 (0-1) 

Measurement instruments 0.87 (6.04) 0 (0-0) 0.68 (5.48) 0 (0-0) 0.93 (6.21) 0 (0-0) 

Rehabilitation 0.02 (0.15) 0 (0-0) 0.01 (0.12) 0 (0-0) 0.02 (0.16) 0 (0-0) 

Age, gender, mortality       

Age 55.9 (26.9) 60 (35-80) 69.3 (20.4) 75 (60-85) 51.6 (27.4) 55 (30-75) 

Share of female patients 50%  58%  47%  

Raw inpatient mortality rate 4.65%  14.46%  1.47%  

Annotations: CHOP = Swiss Operation and Procedure Catalogue; ICD = International Classification of Diseases; IMCU = 

Intermediate Care Units; IUC = Infrastructure Usage Costs. All costs are in Swiss franks and rounded to full numbers. All shares 

are rounded to two decimals. The number of cases per CHOP chapter are rounded to two decimals and age to one decimal. 

Labeled sepsis cases follow the explicit coding definition presented in Table 4 in the supplements.  

Labeled sepsis cases exhibit more than three times higher total costs than unlabeled cases. Mean costs 

associated with surgery (operating room cost attributes), the intensive care and intermediate care units, 

the emergency unit, medical and diagnostic services, and nursing care are all considerably higher for 

labeled sepsis cases compared to unlabeled cases. Labeled sepsis cases on average receive considerably 

more surgeries of the respiratory and cardiovascular systems, and of the digestive tract. This is only 

partially mirrored in Table 2 showing more main diagnoses in ICD chapter J (diseases of the respiratory 

system) for labeled cases. Patients labeled as sepsis cases are on average roughly 18 years older than 

unlabeled cases. The raw inpatient mortality rate is almost ten times higher for labeled than for 

unlabeled cases.  

Table 2: Descriptive results of ICD chapters 

ICD chapter 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Number Share Number Share Number Share 

A / B - Certain infectious and parasitic 

diseases (A00-B99) 

29’653 11% 25’845 40% 3’808 2% 

C / D - Neoplasms (C00-D49) and Diseases 

of the blood and blood-forming organs 

and certain disorders involving the 

immune mechanism (D50-D89) 

22’753 9% 5’407 8% 17’346 9% 
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E - Endocrine, nutritional and metabolic 

diseases 

4’118 2% 591 1% 3’527 2% 

F - Mental, behavioral and 

neurodevelopmental disorders 

16’942 6% 454 1% 16’488 8% 

G - Diseases of the nervous system 5’926 2% 621 1% 5’305 3% 

H - Diseases of the eye and adnexa (H00-

H59) and Diseases of the ear and 

mastoid process (H60-H95) 

2’500 1% 39 0% 2’461 1% 

I - Diseases of the circulatory system 24’725 9% 3’569 5% 21’156 11% 

J - Diseases of the respiratory system 20’486 8% 7’870 12% 12’616 6% 

K - Diseases of the digestive system 21’566 8% 4’837 7% 16’729 8% 

L - Diseases of the skin and subcutaneous 

tissue 

3’255 1% 626 1% 2’629 1% 

M - Diseases of the musculoskeletal system 

and connective tissue 

23’597 9% 1’297 2% 22’300 11% 

N - Diseases of the genitourinary system 19’628 7% 8’670 13% 10’958 5% 

O - Pregnancy, childbirth and the 

puerperium 

15’900 6% 292 0% 15’608 8% 

P - Certain conditions originating in the 

perinatal period 

6’385 2% 887 1% 5’498 3% 

Q - Congenital malformations, 

deformations and chromosomal 

abnormalities 

1’773 1% 149 0% 1’624 1% 

R - Symptoms, signs and abnormal clinical 

and laboratory findings, not elsewhere 

classified 

6’651 3% 558 1% 6’093 3% 

S / T - Injury, poisoning and certain other 

consequences of external causes (S00-

T88) 

28’187 11% 3’192 5% 24’995 12% 

Z - Factors that influence health status and 

lead to healthcare utilization 

10’757 4% 11 0% 10’746 5% 

Not specified 113 0% 0 0% 113 0% 

Annotations: ICD = International Classification of Diseases. Labeled sepsis cases follow the explicit coding definition presented 

in Table 4 in the supplements. 

Model evaluation 

We present the results of the model evaluation in Table 3. We train our model with positive examples 

according to the explicit coding strategy (see Table 4 in the supplements for coding strategies). In the 

second column of Table 3, positive examples in the test set are labeled according to this explicit coding 

strategy and compared with model predictions for model evaluation. To receive additional insights into 

the performance of our model, we label positive examples differently in the test set for three more 

evaluation scenarios. In the third column, we label an example positive according to the implicit coding 

strategy. These examples might also be positive according to the explicit coding strategy but do not 

have to be. In the fourth column, positive labels are only given to cases in the test set that are positive 

according to both the explicit as well as the implicit coding strategy. In the fifth column, examples are 

labeled positive exclusively according to the implicit coding strategy. 
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Table 3: Evaluation metrics 

Evaluation metric Explicit Implicit Explicit and implicit Only implicit 

Recall 0.851 0.842 0.812 0.555 

Recall at 10% 0.103 0.117 0.099 0.061 

Recall at 20% 0.188 0.192 0.185 0.151 

Recall at 30% 0.246 0.246 0.246 0.252 

Precision at 10% 0.872 0.790 0.923 0.051 

Precision at 20% 0.800 0.648 0.862 0.062 

Precision at 30% 0.697 0.555 0.766 0.069 

Number of cases in 

the final sample 

64,915 50,372 40,740 9,632 

Evaluation scenario A B C D 

Annotations: Coding strategies are presented in Table 4 in the supplements. Highest values per evaluation metric are in bold 

letters.  

Recall is above 0.80 for the three evaluations involving positive examples labeled according to the 

explicit coding strategy. Recall is highest for evaluation scenario A. For evaluation scenario D, recall still 

is at 0.555, indicating that the model correctly predicts more than 50% of the examples as TP, although 

it was trained on a different coding strategy. 

Recall at k% is highest for evaluation scenario B for k=10% and k=20%. Recall at k% first is relatively 

low in evaluation scenario D. Yet it improves strongly and eventually is the highest among the four 

scenarios for k=30%, albeit at a low level as only 25.2% of TP in the test set are among the top 30% of 

model predictions. 

Scenario D shows the lowest values for precision at k% while Scenario C scores highest. For precision 

at 10%, for instance, 92.3% of the top 10% of model predictions are true positive examples. This means 

that the top-k% of predictions are most reliably true positive examples in Scenario C.  

4 Discussion 

We test whether PU learning is an efficient approach to increase the quality of hospital administrative 

data. Diagnosis codes, for instance, are only actively labeled if they receive a positive class label. Sepsis, 

commonly underreported in hospital administrative data, serves as application example for identifying 

positive examples in unlabeled data. We hypothesize that cost data at case level could be useful for 

identifying positive examples of sepsis in unlabeled data as symptoms of sepsis will always need to be 

treated, incurring costs, even if sepsis as such was not diagnosed, documented, or coded.  

Our results show that the employed PU learning approach (AdaSampling) used with SVM as classifier 

is effective in correctly identifying positive examples in unseen data. Recall is higher than 0.80 for 

evaluation scenarios A, B, and C. In these scenarios, all or large parts of the labeled positive examples 

in the test set follow the same explicit coding strategy as the labeled positive examples in the train set. 
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Our model even correctly identifies the majority of positive examples of sepsis (55.5%) exclusively 

following an implicit coding strategy in scenario D. 

When looking at the top 10%, 20% and 30% of predictions, our model is less effective at correctly labeling 

positive examples in these top-k% groups. Evaluation scenarios focusing on the implicit coding strategy 

perform best in terms of recall at k%. This indicates that there must be considerable number of implicit 

coding positive examples in the unlabeled data that exhibit very similar cost patterns as the explicit 

coding positive examples the model was trained on. This is also in line with the relatively high recall 

for evaluation scenario D discussed earlier. 

We find high precision at k% for evaluation scenarios A, B, and C. This means that our model performs 

well in identifying positive examples with its top predictions in these scenarios. 

Schwarzkopf et al. (2023) find low sensitivity when sepsis cases are identified from raw hospital 

administrative data. Our findings indicate that PU learning can support research using hospital 

administrative data, e.g., in health economics, health services research, epidemiology, and disease 

surveillance. Concretely, we suggest that studies could include PU learning in two sensitivity analyses: 

First, a PU learner could be used to assess data quality and the potential number of positive examples 

in the unlabeled data. Second, if the first step hints at a high number of positives in the unlabeled data, 

labels of the top k% should be flipped and the main model should be re-run with the data with new 

class labels. This is not only relevant for sepsis but also inpatient complications and patient safety 

indicators estimated from hospital administrative data. Risk-adjustment using co-morbidities identified 

from hospital administrative data could also be improved with these two PU learning steps. A sepsis-

specific implication of the high estimates for precision at k% is that PU learners could help prioritize 

cases for medical record review: If precision at k% is high, the top-k% predictions should be relabeled 

with the PU learner and de-prioritized from medical record review. 

Findings from the literature 

Our results are difficult to compare to other studies as the only healthcare applications we are aware of 

investigate very different research questions.  

Limitations 

While the robust PU learning approach AdaSampling has proven reliability for different applications, 

our findings are not generalizable to all PU learning approaches. Studies using other learning 

algorithms should be carried out to test what PU learners are best suited for improving hospital 

administrative data quality. In addition, different classifiers such as random forests, or gradient 

boosting might also yield different results compared to the SVM classifier we employed in this study. 
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The implications of our findings are limited by the fact that we can only partially evaluate our model. 

One possibility to complement model evaluation could be to carry out an empirical Monte Carlo 

simulation to estimate finite sample performance of PU learners under predefined conditions.  

Lastly, PU learning is not limited to sepsis or re-labeling diagnosis codes but could also be a meaningful 

application for procedure codes, e.g., for robotic-assisted surgery systems (CHOP code 00.99.50 Use of 

a surgical robot). 

5 Conclusion 

With PU learning, we propose a novel approach for increasing the quality of hospital administrative 

data using the identification of sepsis cases in unlabeled data as application example. The implications 

from our research is that studies using hospital administrative data should employ PU learners to check 

the quality of their data and, if quality is sub-par, flip class labels for top predictions of the PU learner 

for a sensitivity analysis. Potentially, this approach could improve the performance of downstream 

tasks such as risk-adjustment, DRG coding and derivation of DRG cost weights, and estimation of 

inpatient complication rates or patient safety indicators for (causal) outcomes research.  
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Supplementary material 

Table 4: Explicit and implicit sepsis codes 

 Explicit Sepsis-1 coding Implicit coding (Angus definition) 

Explicit 

sepsis-1 

ICD-10-

codes 

A021; A200; A207; A217; A227; 

A241; A267; A282; A327; A391; 

A392; A393; A394; A40; A41; 

A427; A483; A499; A548; B007; 

B376; B377; B49; P36; R572; R650; 

R651 

- 

ICD-10-

codes for 

infection 

- A00; A01; A02; A03; A04; A05; A06; A07; A08; A09; 

A15; A16; A17; A18; A19; A20; A21; A22; A23; A24; 

A25; A26; A27; A28; A32; A36; A37; A38; A39; A40; 

A41; A42; A43; A44; A46; A48; A49; A50; A54; A55; 

A56; A59; A65; A690; A691; A692; A698; A699; A74; 

A75; A77; A78; A79; A80; A81; A83; A84; A85; A86; 

A87; A88; A89; A90; A91; A92; A93; A94; A95; A96; 

A97; A98; A99; B00; B01; B02; B03; B04; B05; B06; B07; 

B08; B09; B25; B26; B27; B33; B34; B37; B38; B39; B40; 

B41; B42; B43; B44; B45; B46; B47; B48; B49; B50; B51; 

B52; B53; B54; B55; B58; B60; B64; B67; B95; B96; B97; 

B98; B99; G00; G01; G02; G03; G04; G05; G06; G07; 

G08; H050; H602; H700; I32; I33; I38; I39; I40; I41; I80; 

I981; J01; J02; J03; J04; J05; J06; J09; J10; J11; J12; J13; 

J14; J15; J16; J17; J18; J20; J21; J22; J36; J390; J391; J440; 

J441; J85; J86; K35; K36; K37; K5702; K5703; K5712; 

K5713; K5722; K5723; K5732; K5733; K5742; K5743; 

K5752; K5753; K5782; K5783; K5792; K5793; K61; 

K630; K631; K65; K67; K750; K751; K770; K810; L02; 

L03; L04; L05; L08; M00; M01; M86; N10; N151; N159; 

N30; N34; N390; N41; N45; N482; N49; N61; N70; 

N71; N72; N73; N74; N75; N76; N77; N980; O030; 

O035; O040; O045; O050; O055; O060; O065; O070; 

O075; O080; O23; O411; O753; O85; O86; O883; O91; 

O98; P23; P240; P248; P249; P35; P36; P37; P38; P39; 

P77; P781; R572; R650; R651; T802; T814; T826; T827; 

T835; T836; T845; T846; T847; T857; T880; U6900; 

U6940 

ICD-10-

codes for 

organ 

dysfunction 

- D65; D688; D689; D695; D696; E872; F05; G931; G934; 

I959; J80; J960; J969; J984; K720; K727; K762; K763; 

N17; N19; R060; R068; R40; R572; R578; R579; R651 

Notes: If a code was present for a case, it was counted as a positive example. If the code was not present, the case was 

counted as a negative or rather unlabeled example. For the Angus definition, both at least one code from the ICD-10-codes 

for infection and at least one code from the ICD-10-codes for organ dysfunction needed to be present for a case to be 

counted as a positive example. We considered both primary and secondary diagnoses. If an ICD-10-code is listed with only 

two or three characters, this means that all subordinate codes (i.e., all more detailed ICD-10-codes with three of four 

characters) were considered (if available for the particular ICD-10-code). Definitions are based on Schwarzkopf et al. (2023) 

and Angus et al. (2001).  
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Table 5: Included attributes PU data classifier could learn from 

Category Attribute 

H
o

sp
it

al
 c

o
st

s 
at

 c
as

e 
le

v
el

 
Total costs 

Pharmaceuticals 

Blood and blood products 

Medical material 

Implants 

Medical, diagnostic and therapeutic third-party services (excl. doctors' fees) 

Doctor's fees (not subject to social security contributions) 

Medical fees, hospital doctors (subject to social security contributions) 

Medical fees, attending physicians (subject to social security contributions) 

Patient transportation by third parties 

Other patient-related third-party services 

Other expenses for patients 

Patient administration, overheads excl. IUC 

Patient administration, IUC 

Operating room, overheads excl. IUC 

Operating room, IUC 

Operating room doctors - activities 6a, overheads excl. IUC 

Operating room doctors - activities 6a, IUC 

Anesthesia, overheads excl. IUC 

Anesthesia, IUC 

Intensive care unit, overheads excl. IUC 

Intensive care unit, IUC 

Intensive care unit physicians - activities 6b1, overheads excl. IUC 

Intensive care unit physicians - activities 6b1, IUC 

Intermediate Care Units (IMCU), overheads excl. IUC 

Intermediate Care Units (IMCU), IUC 

IMCU physicians - activities 6b2, overheads excl. IUC 

IMCU physicians - activities 6b2, IUC 

Emergency, overheads excl. IUC 

Emergency, IUC 

Emergency physician services - activities 6b3, overheads excl. IUC 

Emergency physician services - activities 6b3, IUC 

Imaging procedures, overheads excl. IUC 

Imaging procedures, IUC 

Delivery room, overheads excl. IUC 

Delivery room, IUC 

Delivery room doctors - activities 6b4, overheads excl. IUC 

Delivery room doctors - activities 6b4, IUC 

Nuclear medicine and radiation oncology, overheads excl. IUC 

Nuclear medicine and radiation oncology, IUC 

Laboratory, overheads excl. IUC 

Laboratory, IUC 

Dialysis, overheads excl. IUC 

Dialysis, IUC 

Physicians, activities 1-5, overheads excl. IUC 

Physicians, activities 1-5, IUC 

Physiotherapy, overheads excl. IUC 

Physiotherapy, IUC 

Occupational therapy, overheads excl. IUC 

Occupational therapy, IUC 

Speech therapy, overheads excl. IUC 

Speech therapy, IUC 
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Category Attribute 

Non-medical therapies and consultations, overheads excl. IUC 

Non-medical therapies and consultations, IUC 

Medical and therapeutic diagnostics, overheads excl. IUC 

Medical and therapeutic diagnostics, IUC 

Medical and therapeutic diagnostics doctors - activities 6b5, overheads excl. 

Medical and therapeutic diagnostics - activities 6b5, IUC 

Nursing, overheads excl. IUC 

Nursing care, IUC 

Hotel rooms, overheads excl. IUC 

Hotel rooms, IUC 

Hotel kitchen, overheads excl. IUC 

Hotel kitchen, IUC 

Hotel service, overheads excl. IUC 

Hotel service, IUC 

Other service providers, overheads excl. IUC 

Other service providers, IUC 

Pathology, overheads excl. IUC 

Pathology, IUC 

Rescue and ambulance service (secondary transport only), overheads excl. IUC 

Rescue and ambulance service (secondary transports only), IUC 

Aggregated 

medical 

information 

ICD chapter of main diagnosis 

Number of procedures per CHOP chapter 

Annotations: IUC = Infrastructure Usage Costs; ICD = International Classification of Diseases; CHOP = Swiss Operation 

and Procedure Catalogue. All attributes of the category hospital costs at case level are in Swiss franks and continuous 

variables with a theoretical range between 0 and positive infinity. ICD chapters are dummy variables. The number of 

procedures per CHOP chapter are natural numbers including 0. Overall, there are 23 ICD (21 relevant for main diagnoses) 

and 19 CHOP chapters. 
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Table 6: Descriptive results of cost attributes, procedure chapters, age, gender, and inpatient 

mortality 

Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Total costs 17895 

(40575) 

8515 

(4837-

16610) 

36342 

(71718) 

14731 

(7720-

34426) 

11907 

(19104) 

7418 

(4240-

13363) 

Variable direct costs [CHF]       

Pharmaceuticals 518 (3183) 89 (19-252) 1398 

(5783) 

261 (94-

817) 

232 (1494) 63 (10-168) 

Blood and blood products 227 (3055) 0 (0-0) 763 (5935) 0 (0-0) 53 (896) 0 (0-0) 

Medical material 587 (2066) 77 (1-418) 1009 

(3448) 

108 (17-

593) 

450 (1311) 66 (0-381) 

Implants 436 (2726) 0 (0-0) 385 (3613) 0 (0-0) 453 (2367) 0 (0-0) 

Medical, diagnostic and therapeutic third-

party services (excl. doctors' fees) 

258 (1182) 0 (0-127) 597 (1942) 1 (0-476) 148 (760) 0 (0-66) 

Doctor's fees (not subject to social security 

contributions) 

265 (1342) 0 (0-0) 272 (2186) 0 (0-0) 262 (913) 0 (0-0) 

Medical fees, hospital doctors (subject to 

social security contributions) 

22 (197) 0 (0-0) 31 (258) 0 (0-0) 19 (172) 0 (0-0) 

Medical fees, attending physicians 

(subject to social security contributions) 

17 (182) 0 (0-0) 21 (206) 0 (0-0) 16 (174) 0 (0-0) 

Patient transportation by third parties 68 (401) 0 (0-0) 127 (608) 0 (0-0) 48 (303) 0 (0-0) 

Other patient-related third-party services 15 (493) 0 (0-0) 35 (667) 0 (0-0) 9 (421) 0 (0-0) 

Other expenses for patients 11 (203) 0 (0-0) 26 (333) 0 (0-0) 6 (137) 0 (0-0) 

Fixed indirect costs [CHF]       

Patient administration, overheads excl. 

IUC 

196 (199) 172 (112-

239) 

211 (204) 184 (119-

244) 

191 (197) 167 (111-

237) 

Patient administration, IUC 17 (24) 11 (6-21) 18 (29) 11 (7-20) 17 (22) 11 (6-21) 

Operating room, overheads excl. IUC 711 (2174) 0 (0-830) 982 (3765) 0 (0-0) 623 (1275) 0 (0-934) 

Operating room, IUC 181 (516) 0 (0-197) 233 (833) 0 (0-1) 164 (355) 0 (0-225) 

Operating room doctors - activities 6a, 

overheads excl. IUC 

238 (903) 0 (0-0) 342 (1387) 0 (0-0) 204 (672) 0 (0-34) 

Operating room doctors - activities 6a, 

IUC 

13 (74) 0 (0-0) 18 (106) 0 (0-0) 11 (59) 0 (0-0) 

Anesthesia, overheads excl. IUC 602 (1650) 0 (0-758) 850 (2759) 0 (0-493) 521 (1054) 0 (0-802) 

Anesthesia, IUC 58 (160) 0 (0-69) 79 (263) 0 (0-39) 50 (106) 0 (0-74) 

Intensive care unit, overheads excl. IUC 2165 

(14418) 

0 (0-0) 7592 

(27602) 

0 (0-3274) 403 (3925) 0 (0-0) 

Intensive care unit, IUC 204 (1346) 0 (0-0) 714 (2573) 0 (0-271) 38 (374) 0 (0-0) 

Intensive care unit physicians - activities 

6b1, overheads excl. IUC 

411 (3236) 0 (0-0) 1418 

(6225) 

0 (0-139) 84 (928) 0 (0-0) 

Intensive care unit physicians - activities 

6b1, IUC 

17 (167) 0 (0-0) 56 (310) 0 (0-0) 4 (70) 0 (0-0) 

IMCU, overheads excl. IUC 290 (3050) 0 (0-0) 799 (5671) 0 (0-0) 125 (1331) 0 (0-0) 

Intermediate Care Units (IMCU), IUC 21 (246) 0 (0-0) 55 (455) 0 (0-0) 9 (111) 0 (0-0) 
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Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

IMCU physicians - activities 6b2, 

overheads excl. IUC 

41 (445) 0 (0-0) 107 (803) 0 (0-0) 19 (225) 0 (0-0) 

IMCU physicians - activities 6b2, IUC 2 (26) 0 (0-0) 5 (46) 0 (0-0) 1 (15) 0 (0-0) 

Emergency, overheads excl. IUC 196 (330) 0 (0-323) 352 (369) 307 (87-

479) 

145 (300) 0 (0-235) 

Emergency, IUC 20 (36) 0 (0-31) 36 (41) 26 (6-53) 15 (33) 0 (0-22) 

Emergency physician services - activities 

6b3, overheads excl. IUC 

94 (188) 0 (0-133) 167 (227) 68 (0-280) 70 (166) 0 (0-44) 

Emergency physician services – activities 

6b3, IUC 

4 (12) 0 (0-1) 7 (15) 0 (0-7) 3 (10) 0 (0-0) 

Imaging procedures, overheads excl. IUC 293 (731) 55 (0-312) 657 (1179) 297 (86-

744) 

175 (446) 0 (0-176) 

Imaging procedures, IUC 81 (212) 13 (0-82) 179 (328) 76 (23-199) 50 (142) 0 (0-46) 

Delivery room, overheads excl. IUC 105 (604) 0 (0-0) 7 (195) 0 (0-0) 137 (683) 0 (0-0) 

Delivery room, IUC 14 (89) 0 (0-0) 1 (28) 0 (0-0) 18 (101) 0 (0-0) 

Delivery room doctors - activities 6b4, 

overheads excl. IUC 

18 (149) 0 (0-0) 2 (62) 0 (0-0) 23 (168) 0 (0-0) 

Delivery room doctors - activities 6b4, 

IUC 

1 (12) 0 (0-0) 0 (7) 0 (0-0) 1 (13) 0 (0-0) 

Nuclear medicine and radiation oncology, 

overheads excl. IUC 

22 (303) 0 (0-0) 34 (371) 0 (0-0) 18 (277) 0 (0-0) 

Nuclear med. and radiation oncology, 

IUC 

8 (112) 0 (0-0) 12 (136) 0 (0-0) 7 (102) 0 (0-0) 

Laboratory, overheads excl. IUC 520 (1878) 108 (0-405) 1477 

(3459) 

570 (251-

1270) 

209 (627) 58 (0-210) 

Laboratory, IUC 61 (232) 11 (0-44) 175 (428) 61 (23-147) 25 (82) 6 (0-23) 

Dialysis, overheads excl. IUC 70 (1107) 0 (0-0) 239 (2137) 0 (0-0) 15 (358) 0 (0-0) 

Dialysis, IUC 8 (125) 0 (0-0) 25 (238) 0 (0-0) 2 (45) 0 (0-0) 

Physicians, activities 1-5, overh. excl. IUC 1411 

(3168) 

790 (216-

1613) 

2561 

(5343) 

1443 (738-

2733) 

1038 

(1860) 

623 (112-

1289) 

Physicians, activities 1-5, IUC 97 (234) 38 (2-104) 170 (360) 76 (23-175) 73 (169) 28 (0-85) 

Physiotherapy, overheads excl. IUC 267 (1090) 0 (0-208) 609 (1826) 185 (0-598) 156 (665) 0 (0-114) 

Physiotherapy, IUC 35 (135) 0 (0-25) 73 (190) 19 (0-74) 22 (109) 0 (0-13) 

Occupational therapy, overheads excl. 

IUC 

43 (431) 0 (0-0) 62 (554) 0 (0-0) 36 (383) 0 (0-0) 

Occupational therapy, IUC 5 (62) 0 (0-0) 7 (70) 0 (0-0) 5 (59) 0 (0-0) 

Speech therapy, overheads excl. IUC 18 (247) 0 (0-0) 43 (398) 0 (0-0) 10 (171) 0 (0-0) 

Speech therapy, IUC 2 (24) 0 (0-0) 4 (41) 0 (0-0) 1 (14) 0 (0-0) 

Non-medical therapies and consultations, 

overheads excl. IUC 

148 (911) 0 (0-31) 257 (812) 3 (0-225) 112 (938) 0 (0-13) 

Non-med. therapies and consultations, 

IUC 

15 (116) 0 (0-3) 26 (97) 1 (0-20) 11 (121) 0 (0-1) 

Medical and therapeutic diagnostics, 

overheads excl. IUC 

134 (613) 0 (0-0) 234 (823) 0 (0-121) 101 (523) 0 (0-0) 

Medical and therapeutic diagnostics, IUC 37 (155) 0 (0-0) 64 (212) 0 (0-31) 28 (129) 0 (0-0) 
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Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Medical and therapeutic diagnostics 

doctors - activities 6b5, overheads excl. 

71 (412) 0 (0-0) 155 (684) 0 (0-13) 44 (265) 0 (0-0) 

Medical and therapeutic diagnostics - 

activities 6b5, IUC 

3 (22) 0 (0-0) 7 (33) 0 (0-0) 2 (16) 0 (0-0) 

Nursing care, overheads excl. IUC 3705 

(8127) 

1582 (720-

3719) 

7158 

(12458) 

3670 

(1616-

8028) 

2584 

(5656) 

1282 (630-

2644) 

Nursing care, IUC 256 (625) 104 (36-

252) 

462 (945) 210 (79-

500) 

189 (458) 85 (31-193) 

Hotel rooms, overheads excl. IUC 371 (809) 183 (81-

388) 

670 (1235) 355 (178-

723) 

274 (578) 150 (67-

299) 

Hotel rooms, IUC 267 (792) 118 (32-

280) 

473 (1027) 225 (72-

517) 

201 (686) 97 (23-220) 

Hotel kitchen, overheads excl. IUC 452 (767) 247 (107-

519) 

776 (993) 496 (258-

947) 

347 (644) 199 (88-

394) 

Hotel kitchen, IUC 63 (239) 30 (9-70) 104 (157) 58 (21-125) 50 (259) 24 (7-55) 

Hotel service, overheads excl. IUC 95 (375) 0 (0-71) 152 (447) 0 (0-120) 76 (347) 0 (0-58) 

Hotel service, IUC 7 (31) 0 (0-3) 9 (32) 0 (0-6) 6 (31) 0 (0-3) 

Other serv. providers, overheads excl. 

IUC 

41 (224) 0 (0-22) 73 (277) 3 (0-51) 30 (203) 0 (0-16) 

Other service providers, IUC 13 (97) 0 (0-3) 25 (155) 0 (0-8) 9 (67) 0 (0-2) 

Pathology, overheads excl. IUC 43 (294) 0 (0-0) 77 (437) 0 (0-0) 32 (229) 0 (0-0) 

Pathology, IUC 8 (60) 0 (0-0) 15 (95) 0 (0-0) 6 (42) 0 (0-0) 

Rescue/ ambulance service (secondary 

transport), overheads excl. IUC 

13 (139) 0 (0-0) 26 (190) 0 (0-0) 9 (118) 0 (0-0) 

Rescue/ ambulance service (secondary 

transport), IUC 

1 (18) 0 (0-0) 3 (24) 0 (0-0) 1 (16) 0 (0-0) 

CHOP chapters: Surgeries of the...       

Procedures not classified elsewhere 0.25 (0.78) 0 (0-0) 0.31 (0.94) 0 (0-0) 0.23 (0.71) 0 (0-0) 

Nervous system 0.08 (0.46) 0 (0-0) 0.08 (0.58) 0 (0-0) 0.09 (0.41) 0 (0-0) 

Endocrine system 0 (0.07) 0 (0-0) 0 (0.05) 0 (0-0) 0 (0.08) 0 (0-0) 

Eye 0.02 (0.25) 0 (0-0) 0 (0.07) 0 (0-0) 0.02 (0.29) 0 (0-0) 

Ears 0.01 (0.1) 0 (0-0) 0 (0.06) 0 (0-0) 0.01 (0.11) 0 (0-0) 

Nose, mouth, throat 0.04 (0.31) 0 (0-0) 0.02 (0.24) 0 (0-0) 0.04 (0.33) 0 (0-0) 

Respiratory system 0.08 (0.54) 0 (0-0) 0.22 (0.95) 0 (0-0) 0.03 (0.29) 0 (0-0) 

Cardiovascular system 0.3 (1.65) 0 (0-0) 0.67 (2.82) 0 (0-0) 0.18 (0.98) 0 (0-0) 

Hematopoietic and lymphatic system 0.02 (0.19) 0 (0-0) 0.04 (0.25) 0 (0-0) 0.02 (0.17) 0 (0-0) 

Digestive tract 0.29 (1.25) 0 (0-0) 0.67 (2.22) 0 (0-0) 0.17 (0.65) 0 (0-0) 

Urinary organs 0.11 (0.47) 0 (0-0) 0.22 (0.67) 0 (0-0) 0.07 (0.37) 0 (0-0) 

Male sexual organs 0.01 (0.14) 0 (0-0) 0.01 (0.16) 0 (0-0) 0.02 (0.14) 0 (0-0) 

Female sexual organs 0.04 (0.31) 0 (0-0) 0.01 (0.16) 0 (0-0) 0.05 (0.35) 0 (0-0) 

Obstetric procedures 0.1 (0.48) 0 (0-0) 0 (0.08) 0 (0-0) 0.13 (0.54) 0 (0-0) 

Musculoskeletal system 0.28 (1.06) 0 (0-0) 0.21 (1.23) 0 (0-0) 0.3 (1) 0 (0-0) 

Integumentary system 0.15 (1.21) 0 (0-0) 0.37 (2.18) 0 (0-0) 0.08 (0.62) 0 (0-0) 
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Attribute 

Total sample 

(n=264,915) 

Labeled sepsis cases 

(n=64,915) 

Unlabeled cases 

(n=200,000) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Mean (SD) Median 

(25th – 75th) 

Other diagnostic or therapeutic 

procedures 

2.48 (5.67) 1 (0-2) 3.17 (4.76) 2 (0-4) 2.26 (5.92) 0 (0-1) 

Measurement instruments 0.87 (6.04) 0 (0-0) 0.68 (5.48) 0 (0-0) 0.93 (6.21) 0 (0-0) 

Rehabilitation 0.02 (0.15) 0 (0-0) 0.01 (0.12) 0 (0-0) 0.02 (0.16) 0 (0-0) 

Age, gender, mortality       

Age 55.91 

(26.94) 

60 (35-80) 69.28 

(20.38) 

75 (60-85) 51.57 

(27.38) 

55 (30-75) 

Share of female patients 50%  58%  47%  

Inpatient mortality rate 4.65%  14.46%  1.47%  

Annotation: CHOP = Swiss Operation and Procedure Catalogue; ICD = International Classification of Diseases; IMCU = 

Intermediate Care Units; IUC = Infrastructure Usage Costs. All costs are in Swiss franks and rounded to full numbers. All 

shares are rounded to two decimals. CHOP chapters and age are rounded to two decimals. Labeled sepsis cases follow the 

explicit coding definition presented in Table 4 in the supplements. 


