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Manipulation Tests in Regression Discontinuity Design:
The Need for Equivalence Testing

Jack Fitzgerald, Vrije Universiteit Amsterdam∗

July 14, 2024

Abstract

Researchers utilizing regression discontinuity design (RDD) commonly test for run-

ning variable (RV) manipulation around a cutoff, but incorrectly assert that insignif-

icant manipulation test statistics are evidence of negligible manipulation. I introduce

simple frequentist equivalence testing procedures that can provide statistically signif-

icant evidence that RV manipulation around a cutoff is practically equal to zero. I

then demonstrate the necessity of these procedures, leveraging replication data from

36 RDD publications to conduct 45 equivalence-based RV manipulation tests. Over

44% of RV density discontinuities at the cutoff cannot be significantly bounded be-

neath a 50% upward jump. Bounding equivalence-based manipulation test failure rates

beneath 5% requires arguing that a 350% upward density jump is practically equal to

zero. Meta-analytic estimates reveal that average RV manipulation around the cutoff

is equivalent to a 26% upward density jump. These results imply that many published

RDD estimates may be confounded by discontinuities in potential outcomes due to RV

manipulation that remains undetectable by existing tests. I provide research guidelines

and commands in Stata and R to help researchers conduct more credible equivalence-

based manipulation testing in future RDD research.

Keywords: McCrary density test, rddensity, DCdensity, Hartman test
JEL: C12, C18, C87, P00
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1 Introduction

Regression discontinuity design (RDD) is one of the cornerstone quasi-experimental tech-

niques that has propelled the credibility revolution in economics, political science, and other

social sciences over the past 25 years (Imbens & Wooldridge 2009; Angrist & Pischke 2010;

Samii 2016; Athey & Imbens 2017; Gopalan, Rosinger, & Ahn 2020, Imbens 2024). Cun-

ningham (2021) finds that more than 5600 papers mentioning RDD were published in 2019

alone. RDD identifies local average treatment effects of interventions that are assigned when

an agent’s ‘running variable’ (RV) crosses some cutoff. Part of the reason for RDD’s popu-

larity is its ‘experimental appeal’. For sufficiently granular RVs, people often trust that an

agent’s RV crossing the cutoff effectively randomizes that agent into or out of treatment,

elminating selection biases that would arise if agents could choose their own treatment status.

This paper offers improvements on existing testing procedures that assess violations of

a critical RDD identification assumption. Local average treatment effect identification in

RDD hinges on the assumption that potential outcomes by treatment status are continu-

ous functions of the RV as that RV crosses the cutoff. This assumption can be violated if

agents with RV values near the cutoff endogenously manipulate their observed RV values

to opt themselves into or out of treatment. If this kind of manipulation occurs, then RDD

estimates will reflect not just treatment effects, but also confounding from differences in

relevant characteristics between agents with different manipulation strategies (see Angrist &

Pischke 2009; Lee & Lemieux 2010; Gerard, Rokkanen, & Rothe 2020; Cunningham 2021).

RV density discontinuity tests can assess ex post whether such RV manipulation around

the cutoff has occurred. McCrary (2008) proposed the first such test, noting that if agents
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manipulate RV values around the cutoff, then this will be visible as a discontinuity in the RV’s

density at the cutoff. McCrary’s (2008) procedure, termed in code as DCdensity, estimates

the one-sided limits of the RV’s density as it approaches the cutoff from above and below. The

test proceeds by assessing whether the (logarithmic) difference in RV densities at the cutoff

is statistically significantly different from zero. An alternative version of this test known as

rddensity has also recently emerged (Cattaneo, Jansson, & Ma 2018; Cattaneo, Jansson,

& Ma 2020).

Such RV manipulation tests are quite popular in RDD papers. At time of writing, Web of

Science reports that McCrary (2008) has around 1700 citations, and that Cattaneo, Jansson,

& Ma (2018) and Cattaneo, Jansson, & Ma (2020) already have around 400 citations between

them. These tests are a standard recommendation in texts on RDD and causal inference more

generally, and are thus functionally required in RDD papers by journal editors and referees

in economics, political science, and other disciplines (see Imbens & Lemieux 2008; Imbens

& Wooldridge 2009; Lee & Lemieux 2010; Caughey & Sekhon 2011; Eggers et al. 2015; de la

Cuesta & Imai 2016; Athey & Imbens 2017; Eggers et al. 2018; Cunningham 2021; Hartman

2021; Cattaneo & Titiunik 2022; Huntington-Klein 2022; Villamizar-Villegas, Pinzon-Puerto,

& Ruiz-Sanchez 2022; Sieweki & Santoni 2022; Imbens 2024).

However, in practice, RV manipulation tests are usually applied fallaciously. Researchers

utilizing RDD nearly always wish to demonstrate that RV manipulation near the cutoff is

negligible. Researchers typically evidence this assertion by showing that RV density discon-

tinuities at the cutoff are not statistically significantly different from zero (Hartman 2021).

However, it is widely-known that this is bad scientific practice, as an underpowered estimate

may be meaningfully large even if it is not statistically significantly different from zero (Alt-
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man & Bland 1995; Imai, King, & Stuart 2008 Wasserstein & Lazar 2016). Standard testing 

procedures may thus fail to detect meaningful RV manipulation near the cutoff.

This paper introduces equivalence testing frameworks that are more appropriate for 

demonstrating that RV manipulation around a cutoff i s p ractically e qual t o z ero. Under 

these frameworks, the researcher begins by setting a threshold for the maximally accept-

able ratio between the one-sided limits of the RV’s density as it approaches the cutoff from 

each side. This is effectively a  way o f s pecifying t he l argest RV d ensity d iscontinuity that 

would be ‘economically insignificant’. The procedures then a ssess whether there i s statisti-

cally significant evidence that the ratio between these estimated l imits to the r ight and left 

of the cutoff i s s ignificantly bo unded wi thin th is th reshold. I di scuss tw o pr ocedures that 

can provide such evidence. First, I discuss a novel equivalence testing approach to RV ma-

nipulation testing, which I term the ‘logarithmic density discontinuity’ (LDD) equivalence 

test. Thereafter, I discuss Hartman’s (2021) workhorse equivalence testing framework, upon 

which the LDD equivalence test is based and upon which my testing framework provides 

several improvements.

The social sciences are increasingly recognizing the need for equivalence testing when 

researchers wish to demonstrate null results or negligible relationships. Equivalence testing 

has a long history in biomedical sciences, and applications are being increasingly advanced 

in econometrics, psychology, and political science (e.g., see Piaggio et al. 2012; Hartman 

& Hidalgo 2018; Lakens, Scheel, & Isager 2018; Dette & Schumann 2024). Recent empirical 

work shows that up to 63% of estimates defending null claims made in top economics journals 

– roughly 90% of which are not statistically significantly different from zero – cannot be 

significantly bounded beneath reasonable benchmark effect sizes using equivalence testing  
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(Fitzgerald 2024). This paper shows similar results for RV manipulation tests.

I demonstrate the necessity of equivalence testing for RV manipulation tests by showing

that many RVs employed in published RDD papers fail lenient equivalence-based RV ma-

nipulation tests. My analysis draws on the replication data gathered by Stommes, Aronow,

& Sävje (2023a), examining 45 RV density discontinuities at the cutoff across 36 RDD pub-

lications. Over 44% of these RVs’ density discontinuities at the cutoff cannot be significantly

bounded beneath a 50% upward jump. To bring this ‘failure rate’ for equivalence-based RV

manipulation tests beneath 5%, one must be willing to argue that a 350% upward jump in

RV density at the cutoff is practically equal to zero. In fact, I show meta-analytic evidence

that the average RV exhibits a density discontinuity equivalent to a 26% upward jump at

the cutoff. These results suggest that in many published RDD analyses, estimated treat-

ment effects may be confounded by meaningful RV manipulation at the cutoff that remains

undetected by existing testing frameworks.

Given the clear need for equivalence-based approaches to RV manipulation tests, I con-

clude by providing guidelines on how such testing can be done credibly. I particularly ad-

vocate for researchers to set acceptable density ratio thresholds idiosyncratically for each

study, surveying independent experts about the smallest density discontinuity ratios that

they would consider to be practically equal to zero (see also Fitzgerald 2024). I then provide

commands in Stata and R that can be used to conduct such testing, including the lddtest

command in Stata and the lddtest command in the eqtesting R package; Section 3.2

provides download instructions from Github. These procedures can provide more credible

evidence that RV manipulation near the cutoff does not threaten the validity of treatment

effects estimated by RDD.
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2 Running Variable Manipulation Testing

Currently, researchers reporting RDD results predominantly use one of two tests to assess the

presence of RV manipulation near the cutoff, the first of which is the DCdensity procedure

in Stata and R (McCrary 2008).1 The first and (historically) most popular RV manipu-

lation test, DCdensity begins by creating a fine-gridded histogram of running variable Z

and smoothing the histogram using separate local linear regressions to the left and right

of cutoff c, respectively producing probability density function estimates f̂−(Z) and f̂+(Z).

The command then computes the one-sided limits of Z’s density as it approaches c from

the left and right, which I respectively denote as f̂−(c) and f̂+(c). These limit estimates are

then converted into natural logarithms
(
ln
(
f̂−(c)

)
and ln

(
f̂+(c)

)
respectively

)
, permitting

computation of an estimate θ̂ ≡ ln
(
f̂+(c)

)
− ln

(
f̂−(c)

)
and a standard error SE

(
θ̂
)
of the

logarithmic discontinuity in RV density at c.

The second density discontinuity testing procedure commonly used for RV manipulation

testing is performed by the rddensity command in Stata, R, and Python (Cattaneo, Jans-

son, & Ma 2018; Cattaneo, Jansson, & Ma 2020), which differs from DCdensity in at least

three important respects. First, though DCdensity and rddensity both separately estimate

density functions to the left and right of c, rddensity does so using local polynomial es-

timation rather than local linear histogram smoothing. Second, the rddensity procedure

produces linear RV density estimates at the cutoff f̂−(c) and f̂+(c) along with respective

standard errors SE
(
f̂−(c)

)
and SE

(
f̂+(c)

)
, rather than logarithmic estimates. Third and

finally, rddensity’s manipulation tests assess a different point estimate than DCdensity,

1DCdensity support is provided in Stata by the DCdensity.ado file hosted by Justin McCrary at
https://eml.berkeley.edu/∼jmccrary/DCdensity/, and in R via the rdd R package (Dimmery 2016).
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focusing on the linear density discontinuity at the cutoff
(
f̂+(c)− f̂−(c)

)
, rather than the

logarithmic density discontinuity θ̂.

Though there are other estimators and tests of RV density discontinuities (see Otsu, Xu,

& Matsushita 2013; Frandsen 2017; Bugni & Canay 2021; Ma, Jales, & Yu 2021; Igarashi

2023), these estimators and tests are not in widespread use. This is in part because apart from

Bugni & Canay (2021), who offer the rdcont Stata package, no other proposed estimators or

tests are accompanied by public-facing statistical software commands. However, even rdcont

does not produce effect size estimates for the density discontinuity at the cutoff, and thus is

not useful for the equivalence tests discussed in this paper.2

In practice, researchers are seldom interested in using these tests to demonstrate that

there is evidence of RV manipulation around the cutoff. Rather, researchers ordinarily use

these tests to demonstrate that such manipulation does not occur, and thus that endogenous

RV manipulation does not pose a threat to the validity of their causal identification strategy.

To that end, researchers in practice interpret insignificant manipulation test statistics as

evidence that RV manipulation near the cutoff is negligible (Hartman 2021). Such practice

is demonstrated in empirical applications both in the original publications introducing these

methods (McCrary 2008; Cattaneo, Jannson, & Ma 2018; Cattaneo, Jansson, & Ma 2020)

and in texts that advocate for the usage of these tests (e.g., see Lee & Lemieux 2010; Eggers

et al. 2015; Cunningham 2021; Huntington-Klein 2022).

The common way in which these RV manipulation tests are used is thus inappropriate.

2As discussed in Section 3, an easily-interpretable effect size is functionally required for equivalence
testing in this setting. This is because conducting equivalence testing requires one to be able to define a
range of discontinuity values that are practically equal to zero, and to be able to test whether the estimated
discontinuity is bounded within this range.
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As Cattaneo, Jansson, & Ma (2018; 2020) note, the hypotheses that are functionally assessed

by both DCdensity and rddensity can be written as

H0 : lim
Z→c−

f(Z) = lim
Z→c+

f(Z)

HA : lim
Z→c−

f(Z) ̸= lim
Z→c+

f(Z).

(1)

In practice, researchers use insignificant test statistics in RV manipulation tests as evidence

in favor of H0. However, making this inference is widely-known to be bad scientific practice

(see Altman & Bland 1995; Wasserstein & Lazar 2016).

As noted in Fitzgerald (2024), if the researcher uses the testing framework in Equation

1 when interested in showing that lim
Z→c−

f(Z) = lim
Z→c+

f(Z), then the researcher begins by

assuming in the null hypothesis that what they want to show is true. Such a testing framework

shifts the burden of proof off of the researcher, who will not conclude that there is meaningful

RV manipulation near the cutoff unless the data is significant enough to force the researcher

to abandon H0. It is therefore a logical fallacy to infer that a statistically insignificant RV

manipulation test result is evidence of no meaningful manipulation. Formally, this inference

is an ‘appeal to ignorance’, which is committed when one argues that a claim is supported

simply because no one has yet produced evidence against the claim. Imai, King, & Stuart

(2008) specifically term this inference the ‘balance testing fallacy’ in placebo test contexts.

Thus in the way that they are currently applied, RV manipulation tests suffer from major

credibility challenges. For researchers interested in showing that there is no RV manipulation

near the cutoff, imprecision is ‘good’, in the sense that less power and more imprecision make

it easier to obtain the researcher’s desired finding (Imai, King, & Stuart 2008). This creates
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two perverse incentives. On one hand, simulation evidence shows that randomly dropping

observations from a dataset can increase the likelihood of finding statistically insignificant

placebo effects, even as the placebo effect estimates themselves grow larger (Imai, King,

& Stuart 2008). Researchers can thus get closer to obtaining statistically insignificant RV

manipulation test results either by trimming their sample or by setting restrictive band-

widths. On the other hand, statistically significant evidence of RV manipulation may go

unreported. In some cases, there may even be good justification for this latter practice. In

very large datasets, a negligibly small RV density discontinuity may be misclassified as ‘sig-

nificant’ simply due to very high power, creating ‘false alarms’ about meaningfully harmful

RV manipulation near the cutoff. Both of these selective reporting issues manifest as ‘reverse

p-hacking’, and there is strong evidence of such selective reporting in top economics journals

(Dreber, Johanneson, & Yang 2024). The key danger of these credibility flaws is that in many

RDD studies, there may be meaningful RV manipulation near the cutoff that standard tests

are simply not well-powered enough to detect, or significant RV manipulation near the cutoff

that simply remains unreported to readers.

3 Equivalence-Based Manipulation Tests

A more credible equivalence-based testing framework for RV manipulation testing can be

constructed from hypotheses of the form

H0 : lim
Z→c−

f(Z) ̸≈ lim
Z→c+

f(Z)

HA : lim
Z→c−

f(Z) ≈ lim
Z→c+

f(Z).

(2)
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If one can define a range of values for which lim
Z→c−

f(Z) ≈ lim
Z→c+

f(Z), then this is a feasibly

testable hypothesis framework, as one can assess whether the RV’s density discontinuity at

the cutoff is bounded within that range using interval testing procedures. This section details

two such procedures.

Both procedures that I detail here require the researcher to specify the largest ratio of

f̂+(c) to f̂−(c) that they would consider ‘practically equal’ to 1. I parameterize this maximal

acceptable ratio as ϵ > 1. This effectively requires the researcher to specify the maximal RV

density discontinuity that they would consider to be ‘economically insignificant’. This is a

subjective judgment call that will differ depending on the RV being examined and the specific

research setting. In Section 6, I provide guidelines for how to credibly set this threshold.

Density ratios are useful effect size measures of RV density discontinuities a the cutoff

because they are generally interpretable and comparable. Though some RV manipulation

testing frameworks (e.g., rddensity) center linear density discontinuities as the estimand

of interest, linear density discontinuities require idiosyncratic information about the dataset

for proper interpretation, and are thus not generally comparable across datasets (see also

Hartman 2021). For example, if Z crossing c induces a histogram discontinuity of 12 observa-

tions, this is more notable in a dataset of 100 observations than it is in a dataset of 1,000,000

observations. The usual practice of converting observation counts to probability densities

creates similar comparability issues. For instance, if Z crossing c induces a three percentage

point jump in probability density, this is more notable in a dataset of 1,000,000 observa-

tions than it is in a dataset of 100 observations. In contrast, density ratios at the cutoff are

always comparable across datasets, and are relatively easy to interpret. This is important

for equivalence-based testing procedures, as it helps researchers define valid thresholds for
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practically negligible effect sizes.

3.1 A Novel Testing Framework

DCdensity is particularly useful for addressing an unwieldy feature of tests on RV density

ratios. Specifically, ratios are linearly asymmetric effect sizes in percentage terms. For ex-

ample, a density ratio of 3
2
is equivalent to a 50% upward jump, whereas a density ratio of

2
3
is equivalent to a 33.3% downward jump. Fortunately, the logarithms of these ratios are

linearly symmetric. For instance, ln
(
2
3

)
= − ln

(
3
2

)
. Estimates from DCdensity can thus be

used to construct equivalence tests with linearly symmetric bounds. As aforementioned in

Section 2, the point estimate of interest to the McCrary procedure can be written as

θ̂ ≡ ln
(
f̂+(c)

)
− ln

(
f̂−(c)

)
= ln

(
f̂+(c)

f̂−(c)

)
,

and thus DCdensity directly estimates the logarithmic ratio between RV density estimates

at the cutoff. Further, McCrary (2008) shows that θ̂ is consistent and asymptotically normal,

which provides useful inference guarantees.

My proposed testing framework assesses whether the θ̂ estimate produced by DCdensity

is bounded within a linearly symmetric interval that converts maximal acceptable density

ratio ϵ and its inverse 1
ϵ
into logarithms

(
ln(ϵ) and −ln(ϵ) respectively

)
. I term this framework

the ‘logarithmic density discontinuity (LDD) equivalence test.’

Definition 3.1 (The Logarithmic Density Discontinuity Equivalence Test). The researcher

wants to assess the hypotheses in Equation 2 using a test with Type I error rate α ∈ (0, 1].
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They thus set a maximally acceptable density discontinuity ratio ϵ > 1, formulating a null

hypothesis as

H0 : ln

(
lim

Z→c+
f(Z)

)
− ln

(
lim

Z→c+
f(Z)

)
< − ln(ϵ)

or

ln

(
lim

Z→c+
f(Z)

)
− ln

(
lim

Z→c+
f(Z)

)
> ln(ϵ)

and an alternative hypothesis as

HA : ln

(
lim

Z→c+
f(Z)

)
− ln

(
lim

Z→c+
f(Z)

)
≥ − ln(ϵ)

and

ln

(
lim

Z→c+
f(Z)

)
− ln

(
lim

Z→c+
f(Z)

)
≤ ln(ϵ).

The researcher then estimates the LDD of Z as it approaches c from above and below, along

with the standard error of this LDD, by obtaining θ̂ and SE
(
θ̂
)
from DCdensity. Thereafter,

test statistics are computed as

t−LDD =
θ̂ − ln(ϵ)

SE
(
θ̂
) t+LDD =

θ̂ + ln(ϵ)

SE
(
θ̂
) , (3)

and the researcher obtains the relevant test statistic

tLDD = argmin
t∈{t−LDD,t+LDD}

{t} . (4)

Institute for Replication I4R DP No. 136

14



Let Φ(·) be the cumulative density function of the standard normal distribution, and let

z∗α = Φ−1(1−α). If tLDD = t−LDD, then the researcher rejects H0 and concludes that lim
Z→c−

f(Z)

is practically equal to lim
Z→c+

f(Z) if and only if tLDD ≥ z∗α. If tLDD = t+LDD, then the researcher

rejects H0 and concludes that lim
Z→c−

f(Z) is practically equal to lim
Z→c+

f(Z) if and only if

tLDD ≤ −z∗α.

This test is an extension of the ‘two one-sided tests’ framework, a workhorse framework

in frequentist equivalence testing (Schuirmann 1987). This test holds size α because its

decision rule is based on the smaller of its two one-sided test statistics, and thus the test is

an intersection-union test of two one-sided tests that each hold size α (Berger & Hsu 1996).

The LDD equivalence test in Definition 3.1 can also be inverted to produce ‘equivalence

confidence intervals (ECIs)’.

Definition 3.2 (The Logarithmic Density Discontinuity Equivalence Confidence Interval).

The researcher wishes to assess the hypotheses in Equation 2 using a test with Type I error

rate α ∈ (0, 1]. They thus set a maximally acceptable density discontinuity ratio ϵ > 1 and

formulate a real interval

ECI1−α =
[
θ̂ − z∗αSE

(
θ̂
)
, θ̂ + z∗αSE

(
θ̂
)]

. (5)

The researcher concludes that lim
Z→c−

f(Z) is practically equal to lim
Z→c+

f(Z) if and only if

ECI1−α ⊂ [− ln(ϵ), ln(ϵ)].

When exponentiated, the LDD ECI provides the smallest range of ratios within which

one can significantly bound the ratio of f̂+(c) to f̂−(c). One can conclude that the ratio of
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f̂+(c) to f̂−(c) is statistically significantly bounded between 1
ϵ
and ϵ if and only if the LDD

ECI is entirely contained within [− ln(ϵ), ln(ϵ)].

3.2 Statistical Software Commands

I provide statistical software commands in Stata and R to implement my proposed LDD

equivalence testing procedure from Section 3.1. For Stata, I provide the lddtest command,

which can be accessed from https://github.com/jack-fitzgerald/lddtest. For R, I provide a

similar lddtest command in the eqtesting R package. eqtesting can be accessed from

https://github.com/jack-fitzgerald/eqtesting. Each of these commands is effectively a wrap-

per for DCdensity. The Stata version of lddtest relies on McCrary’s (2008) original Stata

code, while the R version of lddtest uses the DCdensity command from Dimmery’s (2016)

rdd package as a dependency. In addition to the running variable, both commands require

users to specify the cutoff c and the maximal acceptable ratio ϵ between density estimates

on each side of the cutoff.

3.3 The Hartman Test

The LDD equivalence test draws inspiration from Hartman (2021), who establishes the cur-

rent workhorse framework for equivalence-based RV manipulation testing. Her approach is

similar in spirit to mine, but her framework relies on the linear RV density estimates at

the cutoff f̂+(c) and f̂−(c) produced by rddensity, rather than the logarithmic density

discontinuity estimate θ̂ produced by DCdensity. I term her framework the ‘Hartman test’.3

3The Hartman test can be implemented in R using the rdd.tost.ratio command, provided at
https://github.com/ekhartman/rdd equivalence/blob/master/RDD equivalence functions.R. The command
relies on inputs that are generated by the rddensity command (Cattaneo, Jansson, & Ma 2020). See Hart-
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Definition 3.3 (The Hartman Test). The researcher wishes to assess the hypotheses in

Equation 2 using a test with Type I error rate α ∈ (0, 1]. They thus set a maximally acceptable

density discontinuity ratio ϵ > 1 and formulate null and alternative hypotheses as

H0 :
lim

Z→c+
f(Z)

lim
Z→c−

f(Z)
<

1

ϵ
or

lim
Z→c+

f(Z)

lim
Z→c−

f(Z)
> ϵ

HA :
lim

Z→c+
f(Z)

lim
Z→c−

f(Z)
≥ 1

ϵ
and

lim
Z→c+

f(Z)

lim
Z→c−

f(Z)
≤ ϵ.

(6)

The researcher then estimates the density of Z as it approaches c from the left and right as

f̂−(c) and f̂+(c) (respectively) using the rddensity procedure, computes test statistics

t−H =
f̂+(c)− f̂−(c)

ϵ√
Var

(
f̂+(c)

)
+ 1

ϵ2
Var

(
f̂−(c)

) t+H =
f̂+(c)− ϵf̂−(c)√

Var
(
f̂+(c)

)
+ ϵ2Var

(
f̂−(c)

) , (7)

and obtains the relevant test statistic

tH = argmin
t∈{t−H ,t+H}

{t} . (8)

If tH = t−H , then the researcher rejects H0 and concludes that lim
Z→c−

f(Z) is practically equal

to lim
Z→c+

f(Z) if and only if tH ≥ z∗α. If tH = t+H , then the researcher rejects H0 and concludes

that lim
Z→c−

f(Z) is practically equal to lim
Z→c+

f(Z) if and only if tH ≤ −z∗α.

Hartman’s testing framework can (at times) also be inverted to allow estimation of the

smallest ratio value ϵ∗ that would permit a statistically significant bounding of f̂+(c)

f̂−(c)
. When

tractable, this inversion procedure permits estimation of what I term the ‘Hartman equiva-

man (2021) for details.
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lence confidence interval’ (Hartman ECI).4

Definition 3.4 (The Hartman Equivalence Confidence Interval). The researcher wishes to

find the smallest ratio ϵ∗ > 1 such that one can significantly bound f̂+(c)

f̂−(c)
in the range [ 1

ϵ∗
, ϵ∗]

at a significance level of α using the Hartman test in Definition 3.3. If f̂+(c)

f̂−(c)
< 1, then the

researcher solves

z∗α =
f̂+(c)− f̂−(c)

ϵ∗√
Var

(
f̂+(c)

)
+ 1

(ϵ∗)2
Var

(
f̂−(c)

) (9)

for ϵ∗ and selects the smallest ϵ∗ > 1 from among the quadratic solutions. If f̂+(c)

f̂−(c)
> 1, then

the researcher solves

−z∗α =
f̂+(c)− ϵ∗f̂−(c)√

Var
(
f̂+(c)

)
+ (ϵ∗)2Var

(
f̂−(c)

) (10)

for ϵ∗ and selects the smallest ϵ∗ > 1 from among the quadratic solutions.

When the Hartman ECI is tractable, under the Hartman test, one can conclude that a

density discontinuity at the cutoff is practically equal to zero if and only if
[
1
ϵ∗
, ϵ∗
]
⊂
[
1
ϵ
, ϵ
]
.

Because the Hartman ECI is just an inversion of the Hartman test, this decision rule produces

identical conclusions to the Hartman test (conditional on the Hartman ECI being tractable).

When defined, Hartman ECIs are asymmetric on the linear scale and symmetric on the

logarithmic scale (Hartman 2021).

The LDD equivalence test that I propose in Section 3.1 improves on the Hartman test

4In what follows, for simplicity, I omit the virtually nonexistent case where f̂+(c)

f̂−(c)
= 1 exactly.
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in two ways. First, density ratios are only a valid effect size measure if f̂−(c) and f̂+(c)

both exceed zero. This condition should always hold in principle, as f̂−(c) and f̂+(c) are

both point estimates of probability density functions. However, in practice, rddensity can

produce negative estimates of f̂−(c) and/or f̂+(c). As I note in Section 4, rddensity yields

negative estimates of f̂−(c) or f̂+(c) for two of the 45 RVs in my replication sample. Such

non-positive estimates can arise from functional form misspecification in rddensity’s local

polynomial approximations of probability density functions. This problem is amplified by the

fact that rddensity corrects for bias by estimating higher-order polynomials of probability

density (see Cattaneo, Jansson, & Ma 2018; Cattaneo, Jansson, & Ma 2020).5 This can

lead to outliers with Z values far away from c effectively receiving undue weight in the

probability density estimation (see Gelman & Imbens 2018). These properties pose validity

challenges to the Hartman test, because if either f̂−(c) or f̂+(c) are non-positive, the point

estimate of interest to the Hartman test may be a negative ratio, require division by zero,

or arise from comparisons of two negative point estimates that should in principle never be

negative. The LDD equivalence test resolves this issue with the Hartman test by relying

on DCdensity rather than rddensity. The locally-smoothed histogram estimators used in

DCdensity virtually never produce non-positive f̂−(c) or f̂+(c) estimates, which arise much

more frequently from the local polynomial estimators of rddensity.

The second key issue with the Hartman test is that the ‘critical ratio’ ϵ∗ is not always

tractable to calculate, even when f̂−(c) and f̂+(c) are both positive. This issue can arise from

one of two scenarios. First, solving Equation 9 or Equation 10 yields quadratic solutions for

5DCdensity instead addresses bias through undersmoothing; see McCrary (2008).
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ϵ∗, producing solution candidates of the form

ϵ∗ =
−v ±

√
v2 − 4uw

2u
.

Online Appendix A shows that the radicands of these candidates are negative whenever

4 (z∗α)
4Var

(
f̂−(c)

)
Var

(
f̂+(c)

)
>
(
f̂−(c)

)2
+ 4 (z∗α)

2 f̂+(c)Var
(
f̂−(c)

)
.

If this occurs, then no candidate for an analytically-solved ϵ∗ exists on the real plane, as

solving Equation 9 or Equation 10 for ϵ∗ then requires taking the square root of a negative

number. Second, even if this radicand is non-negative, there may be no ϵ∗ candidate that

exceeds 1, which is a required property of ϵ∗ (see Definition 3.4). At times, the absence of an

analytically tractable ϵ∗ > 1 can imply that there is no ϵ > 1 for which one can significantly

bound f̂+(c)

f̂−(c)
∈
[
1
ϵ
, ϵ
]
. The LDD equivalence test that I propose in Section 3.1 does not suffer

from this property. Provided that DCdensity can produce valid estimates for θ̂ and SE
(
θ̂
)
,

it is always possible to obtain an ECI from the LDD equivalence test, and so one can always

find a critical ϵ∗ for which θ̂ is significantly bounded within [− ln (ϵ∗) , ln (ϵ∗)].

Though these problems result in Hartman ECIs being undefined for many RV density

discontinuities, similar issues do not arise for ECIs arising from my LDD equivalence test.

As I discuss in Section 4, when RV density discontinuities are computed using local linear

regression under rddensity, I find that four of the 45 RVs in my replication sample have

non-tractable Hartman ECIs. When local quadratic regression is used instead, rddensity

produces non-tractable Hartman ECIs for seven RVs. However, I show that these tractability
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issues are completely eliminated for all RVs in my replication sample after switching to the

LDD equivalence test.

4 Data and Methods

My empirical analysis leverages the replication data from Stommes, Aronow, & Sävje (2023a),

who assess the robustness of RDD findings in top political science journals. Stommes,

Aronow, & Sävje (2023a) systematically collect all empirical RDD articles published in

American Journal of Political Science, American Political Science Review, and Journal of

Politics from 2009-2018.6 They obtain replication data on 36 publications, and make this

data available in a Harvard Dataverse repository (Stommes, Aronow, & Sävje 2023b). Some

of the publications which Stommes, Aronow, & Sävje (2023a) replicate store data in multiple

datasets. I proceed by examining RV density discontinuities at the cutoff for each distinct

dataset. This yields 45 RV manipulation tests across 36 RDD publications.

Though my results arise from data on political science publications, my findings are

also very relevant for empirical practice in economics. The vast majority of my sample is

comprised of data from close election designs, which remain quite popular in economics (see

Cunningham 2021). 73% of the RVs in my sample are electoral vote shares, and 75% of the

articles in my sample identify causal effects exclusively through the electoral victories that

arise when these vote shares cross a given cutoff. Other publications in the sample exploit

additional RVs that are popular in economic research, including spatial discontinuities and

age discontinuities. In fact, of the 81 publications documented in Lee & Lemieux’s (2010)

6One article with available replication data examined by Stommes, Aronow, & Sävje (2023a) is in fact
published in print in 2019, but was published online in 2018.
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survey of RDD applications in economics, nearly 42% exploit discontinuities in vote shares,

spatial distance, and/or age for identification. Therefore, if robustness checks on the RVs

in this sample reveal serious issues, then this raises credibility concerns about many RDD

applications in economics.

I estimate each RV density discontinuity in three ways. The first set of results arises from

DCdensity. The second set is obtained by estimating the RV density discontinuity using

rddensity, employing local linear estimation to obtain the point estimate and local quadratic

estimation to compute the bias correction. The third set of results is again obtained from

rddensity, but now utilizing local quadratic estimation for the point estimate and third-

order polynomials for bias correction. I restrict rddensity estimations to local linear and

local quadratic specifications to avoid skew and inference issues that can arise when higher-

order polynomials are estimated in RDD settings (see Gelman & Imbens 2018). In all cases, I

estimate RV density discontinuities at the cutoff using the default bandwidths computed by

each command. Though DCdensity produces a direct θ̂ point estimate, I can directly compute

a point estimate of θ̂ for the linear rddensity estimates as θ̂ ≡ ln
(
f̂+(c)

)
− ln

(
f̂−(c)

)
,

provided that rddensity produces non-negative f̂−(c) and f̂+(c). I drop any rddensity

estimates for which either f̂−(c) ≤ 0 or f̂+(c) ≤ 0. All estimates are computed in R.

Table 1 displays summary statistics of the results from my replications. Summary statis-

tics are only calculated for 44 of the 45 discontinuities in my sample for variables concerning

rddensity. This is because both local linear and local quadratic estimates from rddensity

yield non-positive estimates for either f̂−(c) or f̂+(c) on one RV in the sample.

Sample sizes for the RVs themselves appear to be reasonably large. The median sample

size N is 1450, and all RVs possess at least 134 observations. The mean of sample sizes is

Institute for Replication I4R DP No. 136

22



Min P10 P25 P50 P75 P90 Max Mean SD N

N 134 257.6 706 1450 21773 114514.6 517255 40928.244 102586.024 45

θ̂, DCdensity -1.141 -0.273 -0.065 0.028 0.237 0.616 1.466 0.078 0.439 45∣∣∣θ̂∣∣∣, DCdensity 0.000 0.016 0.044 0.140 0.375 0.784 1.466 0.279 0.345 45

SE
(
θ̂
)
, DCdensity 0.005 0.017 0.040 0.105 0.221 0.369 0.551 0.152 0.142 45

Standard p-value, DCdensity 0.000 0.000 0.001 0.236 0.556 0.824 0.999 0.321 0.33 45
ϵ∗, DCdensity 1.036 1.095 1.179 1.426 2.015 3.651 8.586 2.002 1.511 45

θ̂, rddensity, local linear -2.223 -0.445 -0.103 0.034 0.474 0.785 1.389 0.086 0.575 44∣∣∣θ̂∣∣∣, rddensity, local linear 0.000 0.036 0.064 0.235 0.529 0.822 2.223 0.391 0.427 44

Standard p-value, rddensity, local linear 0.000 0.010 0.102 0.340 0.492 0.791 1.000 0.363 0.291 44
ϵ∗, rddensity, local linear 1.066 1.112 1.402 1.984 5.028 9.896 45.882 4.891 7.792 41

θ̂, rddensity, local quadratic -2.670 -0.308 -0.106 -0.017 0.118 0.514 1.848 0.002 0.568 44∣∣∣θ̂∣∣∣, rddensity, local quadratic 0.000 0.030 0.062 0.107 0.315 0.608 2.670 0.295 0.483 44

Standard p-value, rddensity, local quadratic 0.000 0.021 0.162 0.541 0.669 0.878 1.000 0.478 0.315 44
ϵ∗, rddensity, local quadratic 1.114 1.137 1.295 1.511 2.096 3.323 25.390 2.726 4.221 38

Note: The N column denotes the number of RV density discontinuities for which the variable is non-missing.

Table 1: Summary Statistics
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right-skewed by very large sample sizes near the top of N ’s distribution. This implies that in

principle, most of the RV manipulation tests I perform should not be severely underpowered.

Some of the RV density discontinuities in this sample would be deemed significant by

standard testing frameworks. Standard p-values are computed directly by DCdensity and

rddensity using tests of the form in Equation 1. rddensity produces standard p-values

beneath 5% for 15.6% of RV density discontinuities using local linear estimation, and for

11.1% of RV density discontinuities using local quadratic estimation. DCdensity estimates

standard p-values below 5% for 37.8% of RV density discontinuities.

The median sizes of RV logarithmic density discontinuities at the cutoff range from 0.107

to 0.235, which correspond to upward RV density jumps of 11.3-26.5%. The ϵ∗ thresholds

displayed in Table 1 also show that rather large ϵ thresholds must be adopted to significantly

bound most RV density discontinuities at the cutoff. Based on the estimates for DCdensity,

one must set ϵ = 1.426 to significantly bound even half of the RV density discontinuities

at the cutoff in my sample. This requires arguing that a 42.6% upward jump in RV density

at the cutoff is practically equal to zero. Even larger ϵ thresholds are required for similar

boundings based on the estimates from rddensity.

Examining the observation counts for ϵ∗ across each of the three testing frameworks

makes the Hartman ECI’s tractability issues apparent. As discussed in Section 3.3, when

rddensity is run using local linear (local quadratic) estimation, four (seven) RVs do not

produce tractable Hartman ECIs. These cases arise either due to tractability failures of the

Hartman ECI or because rddensity yields non-positive estimates for either f̂−(c) or f̂+(c).

I conduct equivalence testing for each RV density discontinuity by assessing whether there

is statistically significant evidence at a 5% significance level that θ̂ ∈ [− ln(1.5), ln(1.5)]. This
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functionally assesses whether each RV density discontinuity can be significantly bounded

beneath a 50% upward jump (or equivalently, a 33.3% downward jump). I conduct this testing

using the LDD equivalence test outlined in Definition 3.1 for the estimates derived from

DCdensity, and do so using the Hartman test in Definition 3.3 for the estimates obtained

from rddensity. In the terminology of these tests, my threshold effectively sets ϵ = 1.5.

I select ϵ = 1.5 as my benchmark density discontinuity ratio for three reasons. First,

there is evidence from the epidemiology literature that an odds ratio of 1.5 corresponds

closely to a Cohen’s d value of 0.2, which is a small effect size per Cohen (1988). Setting

ϵ = 1.5 thus effectively assesses whether RV density discontinuities can be bounded beneath

sizes typically judged to be small in the social sciences. Second, this follows the practice of

Hartman (2021), who uses this threshold in her re-analysis of the vote share RVs constructed

in Eggers et al. (2015). Third and finally, most people would likely find a 50% upward jump

to be a large discontinuity in practical settings. For example, voters would be likely and

rightfully be concerned about election results where the number of politicians just above the

winning vote cutoff is 50% higher than the number of politicians just below.

It should be easy to show that density discontinuities at the cutoff for RVs used for causal

identification in RDD publications can be significantly bounded beneath a 50% upward jump,

especially in high-caliber journals such as those sampled by Stommes, Aronow, & Sävje

(2023a). If this condition holds for a given RV, then this RV ‘passes’ my lenient benchmark

equivalence test. I compute the proportion of RVs that ‘fail’ this benchmark equivalence test,

which I term the equivalence testing ‘failure rate’ (see also Fitzgerald 2024). I compute this

failure rate at two levels. The RV-level failure rate is just the proportion of all RVs that fail

the equivalence test. The article-level failure rate is obtained by first computing the RV-level
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failure rate within each article, and then calculating the average within-article failure rate

across articles. I estimate precision by computing the standard errors of these means.

5 Results

5.1 Equivalence Testing Failure Rates

In my sample, equivalence testing failure rates for RV density discontinuities at the cutoff are

exceptionally high. Figure 1 displays the main failure rate estimates, and Online Appendix

Table A1 provides a table version of these results. These equivalence testing failure rates

range from 44.4-83.1%. To provide a sense of interpretation, Model 1 in Figure 1 implies

that in my sample, 44.4% of RV density discontinuities at the cutoff cannot be significantly

bounded beneath a 50% upward jump. This implies that treatment effects estimated by

RDDs that exploit the RVs in my sample may in many cases be confounded by meaningful

endogenous RV manipulation near the cutoff, and there is no reliable evidence to reassure

researchers that such manipulation does not occur.

These results cannot be explained by the choice of aggregation procedure; both RV-

level and article-level failure rates are persistently significant. The results also cannot be

explained away by the specific testing procedure employed. Equivalence testing failure rates

remain significant regardless of whether logarithmic density discontinuities are estimated by

DCdensity or rddensity, and regardless of whether local linear or local quadratic estimation

is used to estimate the RV density discontinuity in rddensity.

Because these dimensions do not impact the significance of my main equivalence testing
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Note: Equivalence testing failure rates at a 5% significance level with ϵ = 1.5 are provided along with 90%
and 95% confidence intervals based on the standard error of the mean. Equivalence tests are conducted
using the LDD equivalence test in Definition 3.1 for results from DCdensity and using the Hartman test in
Definition 3.3 for results from rddensity.

Figure 1: Main Failure Rate Estimates

Institute for Replication I4R DP No. 136

27



failure rate estimates, I primarily preference logarithmic RV density discontinuities arising

from DCdensity in my discussion of results. I make this choice for two reasons. First, the

RV-level failure rates arising from DCdensity are the smallest of my main failure rate es-

timates. Therefore, Model 1’s estimates are the most robust in Figure 1 given my general

findings about the severe magnitude of equivalence testing failure rates. Second, as discussed

in Section 2, DCdensity produces a standard error for logarithmic density discontinuities,

whereas this is not true for rddensity; the failure rates displayed in Figure 1 must be com-

puted using the Hartman test (see Section 3.3). This point gains hightened importance when

I compute meta-analytic estimates for logarithmic RV density discontinuities in Section 5.3.

5.2 Failure Curves

My large equivalence testing failure rate estimates cannot be explained by my choice of

maximal acceptable density ratio ϵ. Figure 2 displays the ‘failure curve’ for DCdensity, which

shows the distribution of RV-level equivalence testing failure rates across different maximal

acceptable density ratios ϵ (see also Fitzgerald 2024). The shape of the failure curve reflects

the fact that equivalence testing failure rates decline when one is willing to deem larger RV

density discontinuities at the cutoff to be ‘practically equal to zero’.

The failure curve in Figure 2 shows that in my sample, equivalence testing failure rates

for RV manipulation tests remain significantly above nominal levels even as the ϵ threshold

is allowed to grow exceedingly large. Consider the RV density discontinuity that one would

need to tolerate in order to obtain equivalence testing failure rates beneath a traditional 5%

rate. The horizontal dashed line in Figure 2 denotes a 5% failure rate; the failure curve only
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Note: The failure curve for DCdensity is displayed with uncertainty bands representing 95% confidence
intervals of RV-level equivalence testing failure rates, based on the standard error of the mean. Equivalence
testing failure rates are computed based on the LDD equivalence test in Definition 3.1. The solid and dashed
horizontal lines respectively denote 0% and 5% failure rates.

Figure 2: Failure Curve
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crosses this line when ϵ = 4.509. This implies that in order to obtain equivalence testing

failure rates beneath 5%, one would need to be willing to claim that a density ratio of

ϵ = 4.509 is practically equal to 1. This is identical to arguing that a 350.9% upward jump in

RV density at the cutoff is practically equal to zero. Because such an argument is ludicrous,

a more reasonable alternative conclusion emerges: RV manipulation near the cutoff cannot

be reliably bounded beneath reasonable thresholds for a substantial proportion of RVs used

in RDD analyses published in top political science journals.

Online Appendix Figure A1 shows these failure curves for each testing procedure. The

headline results for the failure curve in Figure 2 hold for all testing procedures examined

in Figure A1. In fact, failure rates arising from DCdensity are stochastically dominated by

those from rddensity for all ϵ thresholds, confirming that DCdensity produces the lowest

failure rates for equivalence-based RV manipulation tests in my sample.

5.3 Meta-Analytic Results

How large is the average RV density jump at the cutoff? To examine this question, I obtain

a meta-analytic estimate of absolute logarithmic RV density discontinuities, utilizing LDD

estimates θ̂ and their standard errors SE
(
θ̂
)

from DCdensity. I focus on absolute LDDs

rather than raw LDDs because RV manipulation in either direction of the cutoff raises

concerns about treatment effects estimated by RDD.

I compute my meta-analytic estimate using an unrestricted weighted least squares ap-

proach (Ioannidis, Doucouliagos, & Stanley 2022; Stanley et al. 2023). Let i index a given
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RV. This approach employs a regression of the form

∣∣∣θ̂i∣∣∣
SE
(
θ̂i

) = β
1

SE
(
θ̂i

) + µi,

where β is the meta-analytic estimate of interest. In this setting, β is equivalent to a weighted

average of effect sizes
∣∣∣θ̂i∣∣∣, where the weights are given by

(
SE
(
θ̂i

))−2

(Stanley et al. 2023).

This reflects the fact that unrestricted weighted least squares gives more weight to more

precise estimates, which gives the procedure strong empirical advantages over other meta-

analytic estimation methods such as random effects estimation (see Stanley et al. 2023).

Figure 3 displays the meta-analytic absolute LDD estimate, along with absolute LDDs at

the cutoff for each RV examined in my sample. The meta-analytic estimate for
∣∣∣θ̂∣∣∣ = 0.234,

with a standard error SE
(∣∣∣θ̂∣∣∣) = 0.025. This estimate implies that the meta-analytic average

RV density discontinuity at the cutoff is equivalent to a 26.3% upward jump. This average

discontinuity is precisely estimated, and is quite significantly bounded beneath a threshold of

ln(1.5). However, as aforementioned in Section 4, I select this threshold in part because it is

particularly large, and would raise valid manipulation concerns in research-relevant settings

such as elections. For many RDD applications, researchers may have good reason to be wary

of RV manipulation of the magnitude demonstrated in Figure 3.

These results contradict findings from prior research that conducts RV manipulation tests

on large sets of RVs. In particular, Eggers et al. (2015) find that pooling 20 international

samples of vote share RVs yields a logarithmic RV density discontinuity estimate that is not

statistically significantly different from zero. Hartman’s (2021) reproduction of Eggers et al.

(2015) also shows that this pooled estimate is quite small, corresponding to just a 2% RV
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Note: Above the black horizontal line, absolute logarithmic RV density discontinuities at the cutoff are
displayed for each of the 45 RVs in my sample, along with 90% and 95% confidence intervals. The meta-
analytic estimate is displayed below the black horizontal line. Dashed vertical black and gray lines respectively
denote zero and ln(1.5). Logarithmic RV density discontinuities are estimated using DCdensity.

Figure 3: Meta-Analytic Estimates
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density jump at the cutoff with a Hartman ECI of [0.95, 1.05].

The much larger meta-analytic RV density discontinuity in my sample arises largely

because my meta-analytic estimate and the pooled estimate from Eggers et al. (2015) are

estimating two different parameters that have two different interpretations. Whereas my

meta-analytic estimate shows the average absolute LDD in my sample, the logarithm of

the pooled estimate from Hartman’s (2021) reproduction of Eggers et al. (2015) provides the

average raw LDD in the sample from Eggers et al. (2015). The pooled estimate in Eggers et al.

(2015) thus does not rule out meaningful vote share manipulation, as this pooled estimate is

consistent with some elections exhibiting vote share manipulation towards victory and some

exhibiting vote share manipulation towards defeat, with the grand mean of such manipulation

averaging out to zero. In contrast, my meta-analytic estimate shows that when looking at

one RV at a time, RV manipulation at the cutoff tends to differ quite substantially from zero

for each RV, regardless of whether it is RV manipulation into or out of treatment. Taking the

average of these absolute LDDs shows that the average RV has some manipulation around

the cutoff that is statistically significantly different from zero, regardless of direction.

6 Conclusion

I introduce several equivalence-based RV manipulation tests for RDD applications. In a

large sample of RDD publications in top political science journals, I find that RVs often

fail lenient versions of these tests. Over 44% of RVs in these publications have density

discontinuities at the cutoff that cannot be significantly bounded beneath a 50% upward

jump. Bringing equivalence testing failure rates beneath 5% requires arguing that upward
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RV density jumps of 350% are practically equal to zero, and meta-analytic estimates even

suggest an average upward RV density jump of 26% at the cutoff. These results suggest that

many RVs used in RDD research may exhibit meaningful manipulation near the cutoff that

standard testing procedures cannot detect. Therefore, in many RDD publications, treatment

effect confounding from RV manipulation near the cutoff cannot be reliably ruled out.

The empirical findings in this paper mirror those in Hartman’s (2021) re-analyses of RV

manipulation tests for vote share RVs. Eggers et al. (2015) conduct RV manipulation tests

on 20 electoral vote share RVs, finding that 95% produce estimates that are not statistically

significantly different from zero. Hartman (2021) re-analyzes these RVs using equivalence-

based RV manipulation tests (particularly using rddensity and the Hartman test), finding

that 35% of RV density discontinuities at the cutoff cannot be significantly bounded beneath

a 50% upward jump. The equivalence testing failure rates that I find in this paper are even

larger than those found by Hartman (2021), remain high across a range of different testing

specifications, and are demonstrated for a broader range of popular RV types applied in

published RDD studies.

Because these findings make clear that equivalence-based procedures are needed for RV

manipulation testing in RDD, I conclude by offering guidelines on how such testing can

be done credibly. Perhaps the most important question is the maximally acceptable ratio ϵ

between RV density limits at the cutoff. This threshold is ultimately a subjective judgment

call, and will differ for different research settings. Thus though benchmark thresholds are

useful in meta-analytic work that examines research across an entire field, the same cannot

be said for individual RDD applications. The ϵ = 1.5 threshold that I use in this paper is

by no means a universal benchmark for all studies, and is selected for this analysis in part
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because it represents a discontinuity that would be seen as very large in practice (see Section

4). I therefore recommend setting ϵ idiosyncratically for each unique research setting, rather

than relying on disciplinary benchmark thresholds.

Credible equivalence testing depends on the threshold ϵ being set independently to avoid

p-hacking (Campbell & Gustafson 2021; Fitzgerald 2024). To that end, I recommend that

researchers aggregate ϵ by surveying other experts for their judgments of the largest per-

centage upward jump in RV density at the cutoff that they would consider to be practically

equal to zero. Online platforms such as the Social Science Prediction Platform (DellaVigna,

Pope, & Vivalt 2019) possess centralized pools of researchers who can offer their judgments

and predictions on the RV density discontinuity that will be observed at a given cutoff. If the

research setting is highly idiosyncratic and requires specialized field knowledge for reasonably

accurate predictions and judgments, then it may be reasonable to use the platform’s email

list feature to invite specific groups of researchers with specialized field expertise to offer

their predictions and judgments. Though researchers may reasonably consider such a survey

to be too much of a time and effort investment to elicit a threshold for a robustness check,

eliciting predictions and judgments on RV density discontinuities can be naturally coupled

with eliciting predictions and judgments on the primary treatment effect(s) of interest, which

can yield a myriad of useful insights (see DellaVigna, Pope, & Vivalt 2019).

Once a maximally acceptable ratio ϵ is set, I recommend using my proposed logarithmic

density discontinuity equivalence testing approach to assess whether the ratio of density

estimates on each side of the cutoff can be significantly bounded beneath ϵ (see Section

3.1). I recommend using this approach, rather than combining rddensity with the Hartman

test, to avoid invalid non-positive density estimates that can emerge from rddensity and
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intractible test results that can arise from the Hartman test (see Section 3.3 and Section 4).

My recommended procedure can be implemented using the lddtest Stata command or the

lddtest command in the eqtesting R package. Both the eqtesting R package and the

lddtest Stata command are available for download from Github, and Section 3.2 provides

download instructions.
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Online Appendix

A Quadratic Solutions and Hartman ECI Intractability

Per Definition 3.4, if f̂+(c) < f̂−(c), then computing the Hartman ECI requires solving

z∗α =
f̂+(c)− f̂−(c)

ϵ∗√
Var

(
f̂+(c)

)
+ 1

(ϵ∗)2
Var

(
f̂−(c)

)

for ϵ∗. After simplification, this resolves to

[
Var

(
f̂−(c)

)
(z∗α)

2
]
(ϵ∗)2 +

[
f̂−(c)

]
ϵ+

[
Var

(
f̂+(c)

)
(z∗α)

2 − f̂+(c)
]
= 0. (A1)

This equation has a quadratic solution:

ϵ∗ =
−f̂−(c)±

√(
f̂−(c)

)2
− 4 (z∗α)

4
Var

(
f̂−(c)

)
Var

(
f̂+(c)

)
+ 4 (z∗α)

2
f̂+(c)Var

(
f̂−(c)

)
2 (z∗α)

2
Var

(
f̂+(c)

)
− 2f̂+(c)

. (A2)

In contrast, if f̂+(c) > f̂−(c), then computing the Hartman ECI requires solving

−z∗α =
f̂+(c)− ϵ∗f̂−(c)√

Var
(
f̂+(c)

)
+ (ϵ∗)2Var

(
f̂−(c)

)

for ϵ∗. After simplification, one obtains

[
Var

(
f̂+(c)

)
(z∗α)

2 − f̂+(c)
]
(ϵ∗)2 +

[
f̂−(c)

]
ϵ+

[
Var

(
f̂−(c)

)
(z∗α)

2
]
= 0. (A3)
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This equation also has a quadratic solution:

ϵ∗ =
−f̂−(c)±

√(
f̂−(c)

)2
− 4 (z∗α)

4
Var

(
f̂−(c)

)
Var

(
f̂+(c)

)
+ 4 (z∗α)

2
f̂+(c)Var

(
f̂−(c)

)
2 (z∗α)

2
Var

(
f̂−(c)

) . (A4)

Notice that the radicands of the quadratic solutions in Equations A2 and A4 are equiv-

alent and equal

(
f̂−(c)

)2
− 4 (z∗α)

4Var
(
f̂−(c)

)
Var

(
f̂+(c)

)
+ 4 (z∗α)

2 f̂+(c)Var
(
f̂−(c)

)
.

This arises because for a quadratic equation of the form

ϵ∗ =
−v ±

√
v2 − 4uw

2u
,

v is equivalent between Equations A1 and A3; specifically, v = f̂−(c). These two equations

also share u and w terms that change positions between equations. Thus the radicands of

both Equation A2 and Equation A4 turn negative whenever

4uw > v2

4 (z∗α)
4Var

(
f̂−(c)

)
Var

(
f̂+(c)

)
>
(
f̂−(c)

)2
+ 4 (z∗α)

2 f̂+(c)Var
(
f̂−(c)

)
.
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B Appendix Tables and Figures

(1) (2) (3) (4) (5) (6)

Failure Rate 0.444 0.75 0.636 0.55 0.571 0.831
(0.075) (0.066) (0.073) (0.082) (0.082) (0.06)

Aggregation Level RV RV RV Article Article Article
Effect Size Measure DCdensity rddensity rddensity DCdensity rddensity rddensity
Estimation Type Local Linear Local Quadratic Local Quadratic Local Quadratic

Note: This table provides the numerical estimates displayed in Figure 1.

Table A1: Main Failure Rate Estimates
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Note: Failure curves are displayed with uncertainty bands representing 95% confidence intervals of RV-
level equivalence testing failure rates, based on the standard error of the mean. The black and gray dashed
horizontal lines respectively denote 0% and 5% failure rates.

Figure A1: Failure Curves for Different Testing Procedures
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