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Abstract 

The transition to a zero-emission car fleet is a pivotal element of Europe's decarbonisation strategy. Italy’s 

participation in this trajectory is significant, given the size of its car fleet. Currently, only battery electric (BEVs) 

and hydrogen-powered are considered zero-emission vehicles. The final update of the National Energy and 

Climate Plan (NECP) includes an ambitious target for the diffusion of electric cars in the Italian fleet. The aim is 

to have a total of 4.3 million electric cars on the roads by 2030. However, by the end of 2023, the Italian e-fleet 

totalled 220,000 cars, which equals a mere 0.5% of the overall car population and 5% of the target. The objective 

of this study is threefold: firstly, to estimate the likely diffusion of electric cars in the Italian market; secondly, to 

assess the prospects for their penetration in the fleet in the coming years; and thirdly, to evaluate the 

consistency of the current diffusion path with the NECP target. Diffusion paths are derived using Bass and logistic 

diffusion models. We consider a business-as-usual scenario based solely on historical trends, and an accelerated 

diffusion alternative scenario, in which we assume that by 2023 new BEV models will enter the Italian car market, 

raising the market potential for this powertrain to the same level as the most successful non-plug-in hybrid 

models. Both scenarios show that, in the absence of further significant shifts, the deployment paths will be 

totally insufficient to meet NECP 2030 target. Fewer than half a million consumers appear to be interested in 

buying one of the battery electric models currently on sale in the business-as-usual scenario. The low share of 

enthusiastic potential adopters of BEVs, the increasing useful life of passenger cars, the lack of highly successful 

BEV models, the limited impact of the incentive schemes until 2023 and the strong competition from other 

alternative technologies (besides non-plug-in hybrids and LPG) continue to impede the penetration of electric 

powertrains in the Italian fleet. Incentive schemes and decarbonisation strategies must undergo major revision 

to achieve a path consistent with net-zero emission goals. 

 

1. Introduction 

European policy makers have identified battery electric cars as an indispensable ally for the 

decarbonisation of road transport. Italy's participation in these electrification trajectories is 

decisive for the success of the EU strategy. With almost 41 million passenger cars in 2023, 

Italy has one of the largest fleets in the Europe Union - second only to Germany (48.8 million 

in 2023). Yet, in Italy more than elsewhere, electric mobility is struggling to take the lead. 

The final update of the NECP, submitted to the European Commission in June 2024, sets the 

normative backbone of Italy's environmental policy up to 2030. The finalised document 

confirms ambitious goals for the diffusion of BEVs. Specifically, the plan targets the presence 

of 4.3 million electric cars and 2.3 million plug-in hybrids in the Italian fleet – which is currently 

dominated by fossil-fuelled internal combustion engines (ICE) – by 2030. This threshold does 

not appear to align with the current diffusion trajectories of these powertrains. In fact, by the 

end of 2023, the Italian e-fleet will have reached a total of around 220,000 cars, representing 
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just 0.5% of the total car population and 5% of the NECP target. Furthermore, the 

effectiveness of existing incentive programmes in influencing consumer choice towards BEVs 

has proven to be limited (Bonacina and Sileo, 2024). This indicates that market forces face a 

significant challenge to electrify the Italian fleet. 

The plausibility of the Italian e-mobility target raises concerns among experts. It seems clear 

that achieving European and national policy goals implies following dramatically new fleet 

trajectories. Assessing the feasibility of such trajectories is a task that requires reliable 

forecasts based on comprehensive data. However, none of the studies carried out so far have 

relied on standard models for the diffusion of durable products.  

To date, the most prominent fleet projections are based on policy targets and the idea that 

the fleet will shrink as the green transition unfolds. According to ACEA (2024), the EU 

passenger car fleet grew by 1.1% in 2022 compared to 2021. The increase is observed in all 

EU countries except Sweden (-0.03%) and Finland (-0.5%). Although this is partly explained by 

the economic recovery after COVID-19, there is no evidence that the fleet is about to shrink. 

In Italy, the number of cars in the fleet has increased by an average of about 550,000 units 

per year over the last five decades. Part of the story is that the scrapping of old cars is not 

progressing at the pace required for realistic replacement. As a result, the age composition of 

the fleet has changed over the years. Compared to the early 2000s, the age distribution is 

now heavier at the tail, with a growing number of cars over 30 years old in the fleet (2.7 

million in 2000, but 8.7 million in 2022). This distribution has obvious implications for 

emissions and energy efficiency. 

This study aims to study the diffusion dynamics of electric passenger cars in the Italian fleet. 

In our framework, the forecast does not rely on policy targets, as we recognise that the 

policies implemented so far have failed to stimulate the scrapping of old cars and the uptake 

of (new) electric cars. We argue that a data-driven approach to forecasting provides the kind 

of cautious reference scenario needed to consider realistic and far-reaching policy measures. 

To the best of our knowledge, no such study has been carried out in Italy. 

The rest of the paper is structured as follows. Section 2 reviews the literature on the likely 
adoption of innovative propulsion technologies. Section 3 presents the data. The diffusion 
dynamics of battery electric models sold since 2011 are derived and discussed in Section 4. 
The outlook for the diffusion of battery electric cars in Italy until 2030 is in Section 5. Finally, 
section 6 concludes with policy recommendations, highlighting potential limitations of the 
present work and suggesting avenues for further development. 

 

2. Literature review 

Researchers have developed mathematical models to estimate the penetration rate of new 
powertrains. These models can be distinguished by the modelling technique employed to 
represent the interactions within the marketplace. The three principal modelling techniques 
used in the literature on market forecasting are agent-based, consumer choice and diffusion-
based models (Ayyadi and Maaroufi, 2018). 

2.1 Agent-based and consumer choice models 
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Agent-based models (AM) are computer simulations that create a virtual environment where 
the actions and interactions of agents can be observed and analysed. The intrinsic 
characteristics of agents influence their actions and, as a consequence, the overall outcome. 
Four main actors have been identified in the field of vehicle technology adoption: consumers, 
automakers, policy-makers and fuel suppliers. A comprehensive overview of the applications 
of AMs in transport simulation is in Huang et al. (2022).  

The main advantage of agent-based models is the capacity to incorporate agents' distinctive 
characteristics, needs, and constraints when simulating their behaviour and interactions. The 
main drawback is the inherent complexity of the approach. The verification and validation of 
agent-based models' results is a challenging process, particularly when it comes to agent-level 
data and elasticities. These elements can have a significant impact on the overall modelling 
results (Ayyadi and Maaroufi, 2018). 

In the academic literature, discrete choice and logit models have been extensively employed 
to describe individual and collective decision-making processes. Logit models are a commonly 
utilised tool for modelling probabilistic consumer preferences, whereas discrete choice 
models calculate the probability of selecting a specific product from the available alternatives, 
taking into account the influence of these preferences (Liao et al. 2016). The conventional 
approach to describing consumer preferences for cars is through the use of either multinomial 
logit models1 or nested logits2 (Al-Alawi and Bradley, 2013). 

Consumer choice models are more accessible, transparent and less complex than agent-based 
models. However, they require detailed, historical data on consumers' preferences and sales. 
Additionally, the focus of consumer choice and agent-based models is the relationship 
between vehicle ownership and a set of individual and social preferences (see Lieven et al., 
2010). Although these models are well suited for depicting consumption behaviours at a 
specific point in time, they are less fit for the purpose of forecasting. Consequently, although 
these models are useful for identifying purchasing drivers and barriers, they are not well 
suited to the scope of this work.  

2.2 Diffusion-based models (DM) 

The term 'diffusion' is defined as the process by which a new invention or product is accepted 
by the market. The rate of diffusion is the speed with which a novel product gains acceptance 
in the market. It is influenced by a range of internal and external factors (such as metrics of 
innovation, communication, time, and the surrounding social system), which may be subject 
to control or not. DMs seek to capture the life cycle of new products over time (Rogers, 1976; 
Robinson, 2009). A common approach to modelling the diffusion of innovation is to represent 
it as a normal distribution over time with five categories of adopters: first-innovators, early 
adopters, early majority, late majority, and laggards (Campbell, 2015; Robinson, 2009; Robert, 
1979; Rogers, 1983; Sahin, 2006). First-innovators are defined as individuals who are the first 
to adopt new products, despite the potential risks involved (Rogers, 2003). Early adopters 
rank second in the timing of the adoption of an innovation. Their social connections to first-
innovators (and other adopters) exert a significant influence on their behaviour. Early 
adopters are naturally inclined to set trends and play a central role in the success of an 
innovation. While first-innovators are idealistic, energetic, and fixated on innovation, early 

                                                      
1 Multinomial logit models represent the probability of selecting an alternative over all the options available. 
2 Nested logit models represent the probability of selecting an alternative over a cluster (or nest) of options 
available. 
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adopters are socially respected, well-informed, and economically successful (Robinson, 
2009). The remaining categories have a slower adoption rate due to their lower level of social 
influence and lower financial status. 

Figure 1. The normally distributed rate of diffusion for a new product and the five categories of adopters. 

The most well-known diffusion-based models in the automotive industry are the Bass, logistic, 
generalised Bass, and Gompertz models. For example, Zue et al. (2015) employed the Bass 
model to predict the rate of adoption of natural gas vehicles in Japan, while Qian and 
Soopramanien (2014) used Bass, logistic, and Gompertz models to forecast automobile sales 
in China. Ayyadi and Maaroufi (2018) utilized the aforementioned models to forecast car sales 
in Morocco. Dhakal et al. (2021) conducted a comparative evaluation of Bass and logistic 
diffusion models to forecast the diffusion of electric vehicles in major countries. Rietman et 
al. (2020) employed both Bass and logistic models to forecast global electric vehicle sales. 
Lamberson (2009) employed both Bass and Gompertz models to estimate hybrid and plug-in 
hybrid new car sales in the United States. Bitencourt et al. (2021) employed a Bass model to 
examine the factors influencing the adoption of electric vehicles in North America. Ensslen et 
al. (2019) employed diffusion models to predict the diffusion of electric vehicles in France and 
Germany. 

DMs are deterministic time functions with S-shaped (or sigmoid) curves (Michalakelis et al., 
2008). The rate of diffusion (adoption or penetration) at time t, 𝑦𝑡, is represented in Fig. 1 and 
can be expressed as: 

𝑦𝑡 = 𝜑𝑡 × (1 − 𝑌𝑡−1) 

where 𝜑𝑡 is the probability of purchase at time t, 𝑌𝑡−1 is the portion of potential adopters 
who have adopted the novel product by time 𝑡 − 1. Therefore, the term in round brackets is 
the fraction of potential adopters who have yet to embrace the innovation.  

Peak penetration is observed when the last innovator adopts the new product. Subsequent 
adoptions are made by the imitators, that is to say the late majority and laggards. The 
cumulative penetration, obtained by summing marginal adoption at each period, has the S-
shaped (sigmoid) form illustrated in Fig. 2. 
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Figure 2. S-shaped (sigmoid) form of cumulative penetration. 

Diffusion-based models are routinely used by analysts to study the market potential of 
innovative propulsion technologies, especially when diffusion plays a decisive (or critical) role. 
They take in the inherent regularity of diffusion processes and use math formula to elaborate 
on its core characteristics over time. The success of these models relates to different factors. 
Firstly, DMs’ diffusion paths align with real-market outcomes and have face value which is 
consistent with the common perception of a slow uptake and saturation. Secondly, diffusion-
based models are data parsimonious: they typically require only a time series of the seminal 
diffusion (i.e. first purchases) of a given technology (Al-Alawi and Bradley, 2013). Thirdly, DMs 
fit sales almost as well as much more complex models that seek to correct their limitations 
(Bass et al.,1994; Chandrasekaran and Tellis, 2007). This approach aligns with the aims of the 
present study. The next subsections provide an overview of the Bass and Logistics diffusion 
models. 

2.2.1. Bass (diffusion-based) model (BM) 

The BM posits that the probability of purchase at any given time (𝜑𝑡) is linearly related to the 
number of previous buyers (Bass, 1969). This implies that the rate of innovation adoption at a 
given point in time is influenced (exclusively) by previous adoptions communicated through 
channels such as marketing, word-of-mouth, and social networking (Kumar et al. 2022). 
Formally,  

𝜑𝑡 = 𝑝 + 𝑞𝑌𝑡−1 and, by substitution, 𝑦𝑡 = (𝑝 + 𝑞𝑌𝑡−1) × (1 − 𝑌𝑡−1) with 𝑝, 𝑞 > 0 

where 𝑝 and 𝑞 represent the probability that an innovator and an imitator, respectively, will 
adopt the new product. The cumulative penetration is then 

𝑌𝑡 = ∫ 𝑦𝑡𝑑𝑡
𝑡

0
=

1−𝑒−(𝑝+𝑞)𝑡

[1+(
𝑞

𝑝⁄ )𝑒−(𝑝+𝑞)𝑡 ]
. 

Higher values of 𝑝 indicate an increased adoption rate in the earlier years, which can be 
represented by a leftward shift of the S-shaped curve. Conversely, higher values of 𝑞 indicate 
an increased adoption rate in later years, which can be represented by a rightward shift of 
the sigmoid curve. Following this narrative, the number of first time purchases, 𝑛𝑡, at time t 
can be expressed as follows: 

(1) 𝑛𝑡 = 𝑀𝑦𝑡 = (𝑀 − 𝑁𝑡−1) (𝑝 + 𝑞
𝑁𝑡−1

𝑀
) = 𝑝𝑀 + (𝑞 − 𝑝)𝑁𝑡−1 −

𝑞

𝑀
𝑁𝑡−1

2 . 
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where M is the market potential3 and 𝑁𝑡−1 is cumulative purchases until beginning of time t. 

2.2. Logistic (diffusion-based) model (LM) 

Demographic considerations drove the initial development of LMs, but the underlying 
principles of such models were soon validated for innovations (Berger, 1981). In both cases, 
the initial and final growth rates are observed to be relatively slow (Trappey and Wu, 2008). 
The LM posits that the probability of purchase at any given time (𝜑𝑡) is positive and constant 
(Berger, 1981). Formally,  

𝜑𝑡 = 𝑎 and, by substitution, 𝑦𝑡 = 𝑎 × (1 − 𝑌𝑡−1) with 𝑎 > 0 

The cumulative penetration is then 

𝑌𝑡 = ∫ 𝑦𝑡𝑑𝑡
𝑡

0
=

1

1+𝑒−𝑎(𝑡−𝑏). 

where b is the offset in the timescale. Using the logistic equation curve, the number of 
adopters at time t can be expressed as follows: 

(2) 𝑛𝑡 = 𝑀𝑦
𝑡

= 𝑎𝑀 × (1 − 𝑌𝑡−1) = 𝑎(𝑀 − 𝑁𝑡−1)

where 𝑁𝑡−1 = 𝑀/[1 + 𝑒−𝑎(𝑡−𝑏)] (see Kumar et al., 2022; Trappey and Wu, 2008; Lee et al.
2011). 

3. Data collection and summary statistics

This section presents a summary of the data employed for the regression analyses. The likely 
data sources are Unione Nazionale Rappresentanti Autoveicoli Esteri (UNRAE) and 
Automobile Club d'Italia (ACI), which are both duly authorised to disseminate data from the 
Italian Ministry of Transport. UNRAE's publications contain data on new passenger car 
registrations by fuel type on a monthly and annual basis. The monthly data set encompasses 
the period from December 2011 to May 2024 (150 observations), while the annual data set 
covers the period from 2000 to 2023 (24 observations). ACI website provides access to a 
variety of data, including those on the Italian car fleet by fuel type from 2000 to 2023 (24 
observations). Both sources permit to isolate battery electric cars from other powertrains, 
including non plug-in hybrids and plug-in hybrids. The data used in the estimation constitute 
the most recent available at the time the study is conducted. The battery electric car models 
that were available for sale prior to 2011 exhibited notable differences from those currently 
on the market. Consequently, data before 2011 must be excluded. Furthermore, as more data 
becomes available, the accuracy of diffusion models' predictions increases. For these reasons, 
we have elected to utilise monthly data on new registrations of battery electric cars. Table 1 
illustrates the statistics for the data used in the regressions as well as those on the monthly 
trend of new car registrations for all powertrains and fuels, and on the annual data on the car 
fleet. The plot of new registrations of passenger cars (battery electric cars vs. all powertrains) 
is in Figure 3. In the period under consideration, new registrations of battery electric cars 
accounted for less than 1.5 per cent (on average) of the total. Monthly peaks of over 8,000 
newly registered BEVs were observed in September 2021 (post-Covid-19 rebound), March 
and November 2023. 

3 The market potential, M, is assumed to be fixed at the time of the prediction. 
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Table 1. Summary statistics of data used for regressions. Source: our elaborations on UNRAE & ACI data, last 
access, June 2024. 

New registrations of passenger car 
Monthly data Dec. 2011-May 2024 

Passenger car fleet 
Annual data 2000-2023 

All powertrains BEV Non plug-in hybrid All powertrains BEV Non plug-in hybrid 

Max 227,118 8,496 63,905 40,909,630 219,540 575,212 

Min 4,325 8 246 36,960,500 3,430 5 

Mean 133,033 1,758 15,530 38,802,429 55,408 84,746 

Median 134,390 256 6,134 39,018,170 12,156 7,160 

Std. dev. 35,022 2,371 18,267 1,341,884 75,492 160,620 

Figure 3. The number of new registrations of passenger cars in Italy. On the left-hand side (LHS) of the graph, we 
have data on all powertrains, while on the right-hand side (RHS), we have data for battery-electric cars. Source: 
UNRAE, last access, June 2024. 

4. In-sample estimations based on Italian market data

This section presents the estimated BM and LM parameters based on monthly new BEV 
registrations from 1.12.2011 to 31.5.2024. The estimated equations are (1) and (2). In both 
cases the dependent variable is the number of new registrations of battery electric cars (𝑛𝑡) 
while the explanatory variable is the cumulative purchases up to t-1 (𝑁𝑡−1). The parameters 
are estimated by non-linear least squares (NLS). Note that the market potential M is also 
estimated endogenously in this specification. Srinivasan and Mason, (1986) and Mahajan and 
Sharma (1986) demonstrated that NLS outperforms maximum likelihood estimation for this 
kind of models. 

Table 2. The NLS fit of Bass and logistic models’ parameters, mean absolute deviation (MAD) and mean absolute 
percentage error (MAPE). 

R2 M p q a b MAD MAPE 

Logistic 0.9976 312,013 13.5092 129 (08/2022) 590.3287 276.4428 

Bass 0.9982 311,970 0.0000053 0.0740 590.4547 283.0367 
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The in-sample trends are accurately estimated by the two models. The Mean Absolute 

Deviation (MAD) and the Mean Absolute Percentage Error (MAPE) indices,4 calculated by 
applying the formulae 

𝑀𝐴𝐷 =
∑ |𝑛𝑡−𝑛�̂�|𝑁

𝑡=0

𝑁
     and     𝑀𝐴𝑃𝐸 =

100

𝑁
∑

|𝑛𝑡−𝑛�̂�|

𝑛�̂�

𝑁
𝑡=0 , 

indicate a slight superiority of the logistic over the Bass in-sample fit (Table 2). Indeed, the in-
sample diffusion paths of the two models are strikingly similar. Looking at battery electric cars 
sold since 2011, both models identify a penetration peak at the end of 2022 (see Figure 4). 
This would suggest that all innovators have already purchased one of the battery electric car 
models available for sale before 2022, and that the adoption rate is about to decline. 
However, in 2023, new electric car models and new car manufacturers have entered the EU 
(and therefore Italian) car market, which could give a new impetus to the diffusion path. If 
these models are perceived as something new compared to what was available before, we 
could observe the activation of a new diffusion dynamic in the coming years. This would 
explain, among other things, the peaks in 2023 alluded to in section 3. We will return to this 
point later (see section 5). 

 

 
Figure 4. Actual and fitted first purchases of battery electric cars. 

Furthermore, both models indicate a market potential of 320,000 units (M) over the forecast 
horizon. This figure should be interpreted as follows: in Italy, according to the diffusion 
models used in this study, there are 320,000 potential first-time buyers of battery electric cars 
sold between 2011 and 2023 (375,000 using the underestimation coefficient of Dhakal et al., 
2021). The fitted imitation and innovation coefficients are consistently lower than those 
commonly reported in the literature, regardless of the country, time frame and powertrain 
considered (Figure 5). This may be attributed to the fact that battery electric vehicles in Italy 
face competition not only from plug-in and non-plug-in hybrid powertrains, but also from 
internal combustion engines fuelled with CNG or LPG. It is noteworthy that even in 2023, the 
demand for LPG-powered cars outweighed that of BEV and plug-in hybrids combined. Also in 
2023, the best-selling BEV model accounted for 6% of the demand met by the best-selling 

                                                      
4 𝑁 is the number of observations (150) and 𝑛�̂� is the forecast of 𝑛𝑡. 
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non-plug-in hybrid model and 30% of the demand met by the best-selling LPG model. Section 
4.1 provides further insight by calibrating the Bass coefficients (p and q) to an exogenous 
market potential. 
 

 
Figure 5. Scatter plot of Bass’ innovation (p) and imitation (q) coefficients in the literature. 
Source: Massiani and Gohs, 2015. Our predictions for Italy are shown in red. 

4.1 Bass model coefficients with exogenous market potential 

This subsection presents a calibration of the Bass parameters (p and q) under the assumption 

that the market potential (M) is exogenously fixed. If both 𝑁𝑡−1 and M are known, eq. (1) can 

be rewritten as  

𝑛𝑡 = (𝑀 − 𝑁𝑡−1)𝑝 + 𝑞 (1 −
𝑁𝑡−1

𝑀
) 𝑁𝑡−1 = 𝑋𝑡−1𝑝 + 𝑌𝑡−1𝑞 

where 𝑋𝑡−1 = 𝑀 − 𝑁𝑡−1and 𝑌𝑡−1 = (1 − 𝑁𝑡−1/𝑀)𝑁𝑡−1. The calibrated p and q values of the Bass 

model for market potentials of 500,000, 1,000,000, 2,000,000, 4,000,000 and 6,000,000 are 

estimated through ordinary least squares and illustrated in Table 3. According to our 

estimation, an exogenous M exceeding 6,000,000, is associated to statistically insignificant p 

and q, indicating an implausible diffusion pattern under the Bass distribution. 

Table 3. Calibration of Bass parameters. ***, ** and * indicate statistical significance 
at the 1%, 5% and 10% levels respectively. 

M 500,000 1,000,000 2,000,000 4,000,000 6,000,000 

p 0.09859*** 0.19719** 0.39438** 0,78875* 1.18312 

q 0.03120*** 0.12979*** 0.32698** 0,72136* 1.11573 

 
The results of the calibrations are consistent with the findings in Section 4. The limited uptake 

of battery electric cars can be attributed to the relatively small number of adopters in the 

early stages of the innovation process: low numbers of innovators (first-innovators and early 

adopters) generate slow diffusion paths and small cumulative penetrations.  

The Bass model indicates that it is possible, but highly unlikely, to extend the pool of adopters 

up to 4 million, which equals 1/10th of the Italian population between the ages of 18 and 70 

(Istat, 2023). Further extensions are – ceteris paribus - unfeasible.  
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This result provides an intriguing insight into the matter under discussion. Beyond policy 

goals, BEV adoption, like all sort of innovations, is determined by peer effects. An interesting 

venue for further research and enlightened policy-making is considering the power of user 

experiences and word-of-mouth in boosting new acquisitions. Failure to provide support in a 

timely manner or to target the appropriate demographic may result in unclaimed funds 

and/or a lack of efficacy. In the years 2022 and 2023, more than 50% of the funds allocated 

by the Italian government to incentivise the purchase of battery electric passenger cars 

remained unclaimed. 

 

5. Forecasting the diffusion of BEV in Italy 

Many research institutions have sought to ascertain the number of electric vehicles that will 

be in use in the Italian fleet by 2030. Subsection 5.1 presents a review of existing findings, 

which have several shortcomings. Firstly, several studies fail to distinguish between the 

figures for battery electric powertrains and those for plug-in hybrids. Secondly, some studies 

focus on the fleet, while others concentrate on new registrations. Thirdly, the underlying 

assumptions that inform the estimates are not always clearly delineated. Finally, there is a 

general tendency for downward revisions of initial forecasts.  

As previously stated, diffusion models do not quantify the number of battery electric cars in 

use. Conversely, they provide estimates of the likely diffusion of these vehicles, that is, they 

quantify the number of first-time buyers of BEVs. However, with ad hoc integration, diffusion 

paths could be used to forecast the likely number of BEVs in use and hence the size of the e-

fleet. Subsection 5.2 and 5.3 present two diffusion scenarios for BEVs: one based on the 

historical trend of BEVs in Italy (business-as-usual scenario, BAU) and the other based on the 

historical trend of non-rechargeable hybrids (accelerated diffusion scenario, AD). The 

rationale of the BAU scenario is straightforward: if no changes are made, what can be 

expected in 2030? The idea of applying the historical diffusion paths of non-plug-in hybrids to 

BEV models on sale by 2023 may seem unusual, but let's explain the underlying rationale. In 

2023, new carmakers have entered the EU automotive market, launching novel battery 

electric models. These models can be referred to as post-2023 BEVs. Should Italian consumers 

express greater satisfaction with post-2023 BEV models than they did with pre-2023 ones, the 

diffusion path of battery electric cars will accelerate in the years to come. The data currently 

available is insufficient to permit the quantification of the diffusion path of post-2023 BEVs. 

Nevertheless, it is possible to calculate the diffusion path of the most recent and most 

successful models in Italy and extend this trajectory to post-2023 battery electric cars. Over 

the past decade, Italian consumers have exhibited a clear preference for non-plug-in hybrid 

vehicles. Consequently, in the AD scenario, the historical diffusion dynamics of non-plug-in 

hybrids are applied to post-2023 BEVs. It is not certain that post-2023 BEVs will enjoy the 

same degree of success as past non-plug-in hybrids. However, should post-2023 BEVs be more 

successful than pre-2023 ones, their diffusion paths could, at most, mirror that of non-plug-

in hybrid powertrains. From this perspective, the adoptions in the AD scenario can be 

understood as the maximum possible BEV diffusion path under contingent conditions. The 

BAU and AD scenarios are based on the same policy measures, as stipulated by Law 178/2020, 
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which states that the measures supporting the automotive sector will stay in force until 2030. 

At the end of each scenario, a quantitative assessment of the Italian e-fleet by 2030 is 

provided. 

5.1 Battery electric cars in Italy by 2030: a literature review 

According to Motus-E et al. (2023), annual sales of electric vehicles in Europe will increase 

from 1.5 million to 12 million in the decade 2020-2030; from 0.07 to 1.13 in Italy. This trend 

corresponds to a CAGR (compound annual growth rate) of 23% for Europe and 32% for Italy. 

In Motus-E (2021), Italy's e-fleet (BEVs and plug-in hybrids) is expected to grow from 0.099 

million to 5.3 million between 2020 and 2030. In 2023, the Smart Mobility Report of the 

Politecnico di Milano laid out three scenarios for the deployment of electric mobility by 2025 

and 2030: BAU (business-as-usual), PD (policy-driven) and FD (fully decarbonised). Depending 

on the scenario, the number of battery electric and plug-in hybrid cars in the Italian fleet is 

expected to reach 1.1 million (BAU), 1.5 million (PD) or 1.7 million (FD) in 2025; 3.8 million 

(BAU), 6.6 million (PD), 7.8 million (FD) in 2030. Franceschini et al. (2021) propose two growth 

scenarios for BEVs up to 2030. In the “baseline growth” scenario, the Italian fleet will consist 

of 2.7 million BEVs by 2030; 3.5 million in the “accelerated growth” case. According to Motus-

E et al. (2022), battery electric cars will account for 27% of new registrations by 2030. In this 

case, the authors focus on the factors that influence the propensity of consumers to buy an 

electric car, and therefore price plays a crucial role: the (stated) propensity to buy an electric 

model increases by 10% for prices above €49,000, up to 87% for prices below €21,000. Finally, 

Rie and Unem (2022) propose two scenarios - RSE FF55 and SA FF55 - which are both 

compatible with the objectives of Fit-for55. The first scenario foresees 6.2 million battery 

electric cars in 2030. The second, which the authors themselves consider more plausible given 

the dynamics of recent years, assumes 1.7 million BEVs in 2030. Despite the heterogeneity of 

the figures, there is a tendency for the most recent works to moderate earlier projections 

(Table 4). 

Table 4. Summary of projections for the Italian e-fleet up to 2030. 
Author Type of aggregate Value 

Motus-E (2021) BEV in the fleet 4.4 million BEV  

Franceschini et al. (2021) BEV in the fleet Basic growth: 2.7 million BEV (±200,000) 
Accelerated growth: 3.5 million BEV 

Motus-E and Quintenergia 
(2022) 

New registrations of BEV 27% of new registrations   

RiE and Unem (2022) BEV in the fleet RSEFF55: 6.2 million BEV  
SAFF55 1.7 million BEV  

Motus-E et al. (2023) Sales of BEV 1.127 million BEV  

Politecnico di Milano (2023) BEV & plug-in hybrids in the 
fleet 

Business as usual: 3.8 million  
Policy-driven:  6.6 million  
Fully decarbonised: 7.8 million 

 

5.2 Potential adopters and projections of the Italian e-fleet in the BAU scenario 

The historical diffusion dynamics calculated in Section 4 are extended from June 2024 to 
December 2030 to obtain the cumulative penetration in Figure 6 (𝑁𝑡). In the absence of 
changes and assuming that post-2023 battery electric cars are as satisfactory as pre-2023 
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ones, by 2030 the Italian BEV market will reach the saturation level: all 320,000 individuals 
(private and companies) who are willing to purchase a battery electric car will have made (at 
least) one purchase.  

 

 
Figure 6. Cumulative out-of-sample diffusion forecast of battery electric cars in BAU scenario. 

In order to quantify the Italian electric fleet by 2030 in the BAU scenario, it is necessary to 

refine the above information with data on the usage habits of electric car buyers. This data 

should include information on the frequency with which they are willing to replace their car 

and the point in time at which electric cars are going to be definitively scrapped. Once again, 

we cannot rely on historical data: BEV series are too short. In addition, there would seem to 

be significant differences in usage patterns between electric car and ICE owners; therefore, it 

is not possible to extend the dynamics observed for conventional powertrains to BEVs. The 

available data indicate that the main purchasers of battery electric cars are legal entities. It is 

well established that societies have a faster car turnover rate than privates. This indicates that 

the initial purchasers of battery electric vehicles may repeat their purchase every 36-48 

months. It is unlikely (and inadvisable) that a 36-48 month old BEV will be removed from the 

fleet; it is more probable that it will be sold on the second-hand market. The question then 

arises as to how long they will remain operational. According to ACEA, the average age of cars 

in the Italian fleet is 12 years and a few months. There is no guarantee that battery electric 

cars will have a similar lifespan. Since car manufacturers offer 8-year warranties on the 

batteries of new electric cars, it might be plausible to assume that electric cars have an 

average lifetime of 10 years. If usage patterns of electric car users are as above, the BAU 

diffusion path would result in almost 0.6-0.75 million battery electric cars in the Italian fleet 

by 2030. Lower (higher) scrappage rates or shorter (longer) turnover will lead to higher 

(lower) figures. The saturation level and the time horizon over which it will be reached provide 

an indication for carmakers and policymakers, among others, of the number of potential (and 

residual) first-time buyers of BEV models. In the BAU scenario, battery electric cars do not 

appear to be a compelling alternative to ICEs. 
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5.3 Potential adopters and projections of the Italian e-fleet in the AD scenario 

The AD scenario assumes that the diffusion trajectory of non-plug-in hybrid cars will be 
extended to post-2023 BEV models. Consequently, the initial step is to determine the 
diffusion trajectory of non-plug-in hybrid models. Table 4 shows the BM and LM coefficients 
estimated via the NLS method on new monthly registrations of non-plug-in hybrid cars over 
the period 1/1/2011 to 31/5/2024. As with battery electric cars, the data were obtained from 
monthly reports published by UNRAE. The application of the coefficients presented in Table 
4 to post-2023 data yields the cumulative projection represented in Figure 7. The value at 
2030 is just under 700,000, which is more than twice the cumulative adopters in BAU. 
Furthermore, in the AD scenario, only 7% of potential buyers have made their first purchase 
by December 2030. This implies that there would be still 93% residual first-purchases. In the 
absence of further shocks, according to the AD scenario, the adoption peak should be reached 
between 2033 and 2035, while market saturation could occur between 2040 and 2045.  

Table 4. The NLS fit of Bass and Logistic models’ parameters for non-plug-in hybrids, mean absolute deviation 
(MAD) and mean absolute percentage error (MAPE). 

 R2 M p q a b MAD MAPE 

Logistic 0.9988 5,384,584   2.34 157 (12/2024) 16,601.3471 44.6417 

Bass 0.9991 5,620,381 0.0000055 0.0042   17,936.8284 15.7895 

 

Assuming, as before, a turnover rate of BEV owner of 36-48 months and an average life time 
of 10 years for BEV models, the AD diffusion path would be consistent with 1,2-1,4 million 
battery electric cars in the Italian fleet by 2030.  

 
Figure 7. Cumulative out-of-sample diffusion forecast of battery electric cars in AD scenario. 

 

Although the market potential is considerably higher than in the BAU scenario, the effects 

on the vehicle fleet in 2030 remain limited. The low innovation coefficients characterising 

the Italian market and the late entry of new BEV models (late with respect to NECP timeline) 

are in stark contrast with ambitious and urging policy objectives. 
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6. Final remarks and policy recommendations 

While deep-diving into the current state and market potential of electric vehicle adoption in 

Italy, our study reveals several challenges in achieving the targets set by the National Energy 

and Climate Plan (NECP) for 2030. 

Based on new registration data, our forecasts for first-time purchases indicate that battery-

electric passenger cars are struggling to become an attractive option for consumers. This lack 

of enthusiasm for BEVs suggests a structural diffidence towards electric vehicles among Italian 

consumers. As things stand, the policy goals seem to be poorly anchored in the current reality 

of the automotive market and risk being missed if not accompanied by far-reaching policy 

action and, even more, by new electric models with features that meet consumer 

preferences.   

Policymakers must assess the reasons behind this reluctance, outlining a clear and realistic 

roadmap to build consumer confidence and encourage the adoption of electric vehicles. 

Among the supporting measures, we believe that work should be done on incentives for the 

purchase of second-hand BEVs, which are not offered today.   

An aspect that cannot be overlooked is that the Italian market shows greater sensitivity to 

hybrid EVs and alternative fuels. In June 2024, when this work was finished, the number of 

new BEV registrations reached an all-time high of 13,415, due to new incentive schemes 

brought forward by the Italian government. As these were implemented later than the initially 

announced date, we argue that this outstanding figure is the result of a build-up of orders, 

more than of a structural change in the BEV market. In fact, it should be noted that - albeit 

with much lower incentives than BEVs - registrations of LPG and hybrid cars also rose sharply 

in the same period. As an example, the Fiat Panda, the best-selling car in Italy since 2012 and 

since 2020 also a best-selling hybrid, has nearly doubled its registrations in June 2024 

compared to June 2023.  In line with our assumptions, we reiterate that the mass deployment 

of BEVs could only take place if more popular car models emerge. However, we note that the 

marketing of the hybrid Panda has been extended first to 2027 and then to 2030. At the same 

time - after the unsuccessful launch of the electric 500, a 500 hybrid is planned to start 

production between late 2025 and early 2026.  

Policymakers should recognize this preference and reframe environmental strategies to 

include other options alongside electrification efforts. This approach could involve initiatives 

to reduce the total number of vehicles and consider alternative fuel sources.  
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