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Inference for Rank-Rank Regressions

Denis Chetverikov* Daniel Wilhelm?

May 22, 2024

Abstract

Slope coefficients in rank-rank regressions are popular measures of intergenerational mo-
bility. In this paper, we first point out two important properties of the OLS estimator in such
regressions: commonly used variance estimators do not consistently estimate the asymptotic
variance of the OLS estimator and, when the underlying distribution is not continuous, the
OLS estimator may be highly sensitive to the way in which ties are handled. Motivated by
these findings we derive the asymptotic theory for the OLS estimator in a general rank-rank
regression specification without making assumptions about the continuity of the underlying
distribution. We then extend the asymptotic theory to other regressions involving ranks
that have been used in empirical work. Finally, we apply our new inference methods to
three empirical studies. We find that the confidence intervals based on estimators of the
correct variance may sometimes be substantially shorter and sometimes substantially longer
than those based on commonly used variance estimators. The differences in confidence in-
tervals concern economically meaningful values of mobility and thus may lead to different

conclusions when comparing mobility across different regions or countries.
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1 Introduction

Regressions involving ranks are widely used in empirical work in economics. A notable example
is a rank-rank regression for measuring the persistence in socioeconomic status across gener-
ations. Dahl and DeLeire (2008) and Chetty et al. (2014) have been influential in promoting
this approach and a vast and fast-growing empirical literature is using such and related regres-
sions for the study of intergenerational mobility in different socioeconomic outcomes, countries,
regions, and time periods.! The resulting measures are crucial inputs to broader political and
public debates about inequality, about the importance of the family and the neighborhood into
which children are born, and about how to create opportunities for children to rise out of poverty
(Mogstad and Torsvik (2023)). Beyond intergenerational mobility, regressions involving ranks
are used in a range of other areas such as behavioral economics (e.g., Huffman et al. (2022)),
development (e.g., Bagde et al. (2016)), education (e.g., Murphy and Weinhardt (2020)), health
(e.g., Grongvist et al. (2020)), industrial organization (e.g., Cagé et al. (2019)), labor (e.g., Faia
and Pezone (2023)), migration (e.g., Ward (2022)), and urban economics (e.g., Lee and Lin
(2017)).

In its simplest form, a rank-rank regression in the intergenerational mobility literature con-
sists of performing two steps: first, rank a child’s and their parent’s socioeconomic status (say,
income) in their respective distributions and, second, run a regression of the child’s rank on
a constant and the parent’s rank. The slope coefficient in this regression is then interpreted
as a relative measure of intergenerational mobility. A small value of the slope indicates low
dependence of the child’s position in their income distribution on the parent’s position in their
income distribution, and thus high mobility. Applied work often assumes that the slope coeffi-
cient is equal to the rank correlation of the two incomes, which facilitates the interpretation of
its magnitude as a parameter taking values between minus one and one.

In this paper, we develop an asymptotic theory for the OLS estimator of such rank-rank
regressions and other regressions involving ranks.

First, we document two important properties of the OLS estimator in rank-rank regressions:
commonly used standard errors are not valid and, when the underlying distribution is not
continuous, then the OLS estimator may be highly sensitive to how ties in the ranks are handled.
We show that the homoskedastic and Eicker-White variance estimators are not consistently
estimating the asymptotic variance of the OLS estimator. In fact, their probability limits may
be too large or too small relative to the true asymptotic variance, depending on the shape
of the copula of the two variables to be ranked. As a consequence, inference based on these
commonly used variance estimators may be conservative or fail to satisfy coverage criteria. In
addition, when the underlying distribution is not continuous, then the regression estimand and

the statistical properties of the OLS estimator depend, sometimes crucially, on the way in which

!Some examples are Olivetti and Paserman (2015), Black et al. (2019), Abramitzky et al. (2021), Fagereng
et al. (2021), Nybom and Stuhler (2023), and Ward (2023). Recent surveys by Deutscher and Mazumder (2023)

and Mogstad and Torsvik (2023) provide numerous further examples and references.



ties are handled.

Second, we derive the asymptotic distribution of the OLS estimator in a general rank-rank
regression with covariates and without assumptions on whether the underlying distribution is
continuous or not. In the special case in which the distributions are continuous and there are
no covariates, the OLS estimator is equal to Spearman’s rank correlation, and our limiting
distribution coincides with that derived by Hoeffding (1948) for Spearman’s rank correlation. In
other regression specifications or when at least one of the marginal distributions is not continuous
(e.g., because of zero incomes or top-coding), then the OLS estimator is not equal to Spearman’s
rank correlation anymore and Hoeffding’s results do not apply. Importantly, in the case of non-
continuous distributions, the estimand and the estimator’s asymptotic distribution are both
sensitive to how ties are handled.

Third, we extend the asymptotic theory to other regressions involving ranks. For example, in
the empirical literature studying intergenerational mobility, rank-rank regressions are sometimes
run separately in different regions of a country, for instance in commuting zones within the U.S.,
but the ranks are computed in the national distribution rather than within the regions (e.g.,
as in Chetty et al. (2014), Acciari et al. (2022), Corak (2020)). This type of regression yields
rank-rank slopes for each commuting zone with ranks defined on a common scale. We cover such
clustered rank-rank regressions. Two further extensions treat the case in which the regression
involves a general, non-ranked, outcome variable and a ranked regressor (e.g., as in Murphy
and Weinhardt (2020)) and the case in which the regression involves a ranked outcome and a
general, non-ranked regressor (e.g., as in Abramitzky et al. (2021)). For all these extensions, we
derive the asymptotic distribution of the OLS estimator.

Fourth, for each of the regression models involving ranks, we propose a consistent estimator
of the true asymptotic variance of the OLS estimator. Software implementations of these are
provided in the R package csranks, which is available on CRAN. A Stata command is under
development.

Finally, we discuss three empirical applications in which we compare inference methods based
on our new variance estimators to those based on the commonly used variance estimators.

The first application is to Ward (2023), who studies intergenerational mobility in the U.S.
in terms of occupational status using PSID data. In this application, the confidence intervals
based on our new variance estimators are similar to those based on commonly used variance
estimators, except on a small subsample of parent-child cohort pairs in which the homoskedastic
variance estimator leads to conservative inference.

In the second application, we analyze the data from Asher et al. (2024), who studies inter-
generational mobility in India in terms of education. In this data set, the marginal distributions
of education are discrete, which generates ties in the ranks. Tied observations can be assigned a
range of possible ranks without changing the overall ranking. We find that the rank-rank slopes
are highly sensitive to which of these possible values for the rank are chosen. If the largest
possible is chosen, then the rank-rank slopes are very large (close to 1) for early birth cohorts

and then decline across cohorts to a value of 0.65, still a very large estimate. If the smallest



possible value of the rank of tied observations is chosen, then the estimates remain roughly con-
stant at a low value around 0.4 across cohorts. The rank-rank slopes are therefore so sensitive
to the definition of the ranks that neither their trends across cohorts can be inferred nor can
one make confident comparisons with other countries like the U.S., where a comparable esti-
mate is 0.46. As we show, for discrete variables the rank-rank slope is not equal to Spearman’s
rank correlation. Interestingly, in this application, Spearman’s rank correlation is insensitive
to the definition of the ranks and roughly constant across birth cohorts at a value around 0.5.
Therefore, robust conclusions about relative mobility can be reached based on Spearman’s rank
correlation, but not based on rank-rank slopes.

For the third application, we design a simulation experiment calibrated to data analyzed
by Chetty et al. (2014, 2018); Chetty and Hendren (2018) to study intergenerational income
mobility in commuting zones in the U.S.. We find that our (correct) standard errors may be
substantially larger or smaller than those computed using the homoskedastic or Eicker-White
variance estimators. For some of the commuting zones, the latter standard errors may be
up to 60% too large or up to 20% too small. The differences in standard errors translate
into economically meaningful differences in confidence intervals. For instance, we find that
mobility in several commuting zones in California are significantly different from those in Italy
and Canada according to our inference method. In contrast, the homoskedastic and Eicker-
White variance estimators lead to confidence intervals that are conservative and include the
mobility values of Italy and Canada. Similarly, there are commuting zones in California whose
mobility is not significantly different from those in Norway and Canada according to our inference
method, but the homoskedastic variance is too small and leads to confidence intervals that do
not include Norway’s and Canada’s mobility values. Such comparisons of mobility across regions
and countries are common in the literature. To avoid misled conclusions, it may therefore be
important to conduct inference based on estimators of the correct variance.

The derivations of our theoretical results are based on the theory of U-statistics, as originally
developed in Hoeffding (1948) and comprehensively reviewed in Serfling (2002). Alternatively,
since our estimation problem is semiparametric, we could have derived the same results using
empirical process theory as, e.g., in Newey (1994). In addition, instead of letting the controls
enter the rank-rank regression in a separately additive fashion, we could consider a more flexible
specification, where the slope coefficient of the rank-rank regression depends on the controls
nonparametrically. For such a model, we would be able to obtain the asymptotic distribution
results using the theory of influence function adjustments, as developed in Chernozhukov et al.
(2022), or other semiparametric techniques. However, we focus on the simple, linear rank
regressions as they seem to be most relevant for empirical work.

Our paper contributes to the general literature on nonparametric rank statistics. Since the
literature is large, we provide here only some key references, referring an interested reader, for
example, to a recent review Chatterjee (2023). As mentioned above, Hoeffding (1948) derived the
asymptotic distribution for Spearman’s rank correlation in the case of continuous distributions.

Neslehova (2007) defined rank correlation measures for noncontinuous distributions, using a



specific way of handling ties, with the extension satisfying several intuitive axioms that any
measure of concordance between random variables should satisfy. Mesfioui and Quessy (2010)
extended the results of Neslehova (2007) to cover the case of more than two variables. Genest
et al. (2013) studied the problem of estimating Spearman’s rank correlation in the multivariate
case with discontinuities. Ornstein and Lyhagen (2016) derived the asymptotic normality result
and the asymptotic variance formula for the Spearman’s rank correlation for variables with
finite support. We note here that these extensions are, although relevant, quite different from
our work. In particular, we study the OLS estimator in general regression specifications involving
ranks, which coincide with the Spearman’s rank correlation only in the special case of the rank-
rank regression when the marginal distributions are continuous and there are no covariates.
Otherwise, our estimands and estimators differ from those in the papers listed here.

Our work is also related to Klein et al. (2020), Mogstad et al. (2024) and Bazylik et al.
(2024), who also proposed inference methods involving ranks, but the key difference is that
they focused on inference on ranks of population parameters whereas we consider inference on
features of the distribution of ranked observations.

The paper is organized as follows. We conclude the introduction with a survey on how
empirical researchers in economics use regressions involving ranks. In the next section, we
show that commonly used OLS variance estimators are not consistent in the context of rank-
rank regressions and discuss how pointmasses in the marginal distributions affect inference. In
Section 3, we derive a general asymptotic theory for rank-rank regressions. In Section 4, we
provide three extensions, covering other regressions involving ranks which have been used in
empirical work. In Section 5, we present three empirical applications. All proofs are contained

in the online appendix.

1.1 Survey on the Use of Regressions Involving Ranks

Empirical researchers often transform variables into ranks before using them in a regression. To
document this practice, we used Google Scholar to search for articles published between January
2013 and February 2024 containing the words “rank” and “regression”.? We restricted the search
to the journals American Economic Review (excluding comments, P&P), Journal of Political
Economy (excluding JPE Micro and JPE Macro), Quarterly Journal of Economics, and Review
of Economic Studies. We dropped all theoretical papers without an empirical application and
those that used the word “rank” in a different context, leading to a sample of 62 papers.
Many of the papers contain a large number of different regression specifications involving
ranks, but we only record which types of regressions (“rank-rank”, “level-rank”, “rank-level”),
which types of estimators (“OLS”, “TSLS”, “nonparametric”, “other”), and which types of stan-
dard errors occur in a paper. “Rank-rank” refers to a regression in which both the outcome and

at least one regressor have been transformed into ranks before running the regression. Similarly,

2With this search we may have missed papers that do not use the word “rank” to describe their transformation

of the variables, but rather words like “percentiles” or “deciles”.



level-rank rank-level rank-rank

Panel A: type of estimator

OLS 28 16 21
TSLS 3 1 1
nonparametric 24 3 12
other 7 3 0

Panel B: type of standard error

homoskedastic/unknown 10 3 11
robust 7 )
clustered 18 6 5
other 0 2
none 27 7 17
total 62 23 34

Table 1: Number of (paper X estimator type X regression type X standard error type) combinations by type
of estimator and type of standard error. The sample consists of papers published between January 2013 and
February 2024 in American Economic Review, Journal of Political Economy, Quarterly Journal of Economics,

and Review of Economic Studies.

“level-rank” (“rank-level”) refers to a regression in which at least one regressor (only the out-
come) but not the outcome (none of the regressors) has been transformed into ranks. We obtain
a total of 119 (paper X estimator type X regression type x standard error type) combinations
in the sample. More details about the literature search can be found in Appendix A.

Table 1 categorizes the 119 observations by type of estimator (Panel A) and by type of
standard error (Panel B). First, consider the 34 observations involving rank-rank specifications.
The majority (21) was estimated by OLS. Many papers (10) did not specify which method
for the computation of standard errors was used. In most of these, we suspected the use of
homoskedastic variance estimators and thus grouped them together with the one paper that
explicitly indicated “homoskedastic” standard errors (“homoskedastic/unknown”). Many re-
gression results were presented without standard errors (17). Not a single paper employed
robust standard errors. Among the papers employing at least one rank-rank regression, the ma-
jority (about 75%) defined ranks in the sample in which the regression was run (as in Section 3
below). The remaining 25% employed clustered regressions (as in Section 4.1 below), in which
ranks are defined in a larger population.

Level-rank regressions occurred in 62 of the observations, most of them employing OLS (28),
but a substantial share (24) employed nonparametric methods. For these regressions, clustering
or not reporting standard errors was most common. Rank-level regressions occurred somewhat

less frequently in our sample (23).



To gain some insight into the topics of the papers Figure 14 in the appendix shows the number
of times each top-level JEL-code appears on the papers that contain regressions involving ranks.
Labor and Demographic Economics (JEL codes starting with “J”) are the most frequent, but
health, education, public economics, and microeconomics are also listed as classifications by a
substantial share of the papers. Overall, the graph indicates that regressions involving ranks are

used in variety of subfields of economics.

2 DMotivation

To motivate the subsequent theoretical developments, in this section we focus on rank-rank
regressions and show that commonly used inference methods for these regressions are not valid,
even in the simplest case when the underlying variables are continuously distributed and there
are no covariates. Then, we discuss how the presence of pointmasses affects the estimand and

the statistical properties of the OLS estimator.

2.1 Rank-Rank Regressions With Continuous Marginal Distributions

For concreteness, consider a child’s income Y and their parent’s income X. Suppose we are
interested in measuring intergenerational mobility by running a regression of the child’s income
rank on a constant and the parent’s income rank. The slope coefficient from this regression
reflects the persistence of the two generations’ positions in their respective income distributions.
A small value of the slope indicates low persistence and thus high mobility.

To simplify the discussion we start with the simplest possible rank-rank regression in which
there are no covariates and the two income distributions are continuous. Let F' be the joint
distribution of (X,Y) and let Fx and Fy be the corresponding marginals. Given an i.i.d.
sample {(X;,Y;)}", from F', we run the rank-rank regression as follows. First, compute the
child’s income rank RZ-X = ﬁX (X;) and the parent’s income rank RB/ = F\y(Y,}), where ﬁX and
F\y denote the empirical cdfs of X and Y. Then, run a regression of RZY on a constant and RZX .
The OLS estimator of the slope parameter can then be written as the sample covariance of RZY
and RZ-X divided by the sample variance of R;-X :

Y (BRY - RY)(RY — RY)
T L@ RN

where RX and RY are sample averages of RZX and RZY, respectively. Inference is then performed

by computing standard errors and confidence intervals based on the usual variance formulas for

the OLS estimator. Popular choices are the homoskedastic and robust variance formulas,
1 = 1 2/ pX _ pX
~2 n doicg 512 _n P 52(Ri — RY)?

~92 =11
Chom ‘= — and ogy = — ,
o Y (RY — RX)? (257 (RX — RX)2)?
where &; := RY — B— pRX for all i = 1,...,n and B := RY — pRX. The estimator 57, is

sometimes used when regression errors are believed to be homoskedastic whereas 31251/1/ is robust

to heteroskedasticity and is often referred to as the Eicker-White estimator.



The OLS estimator p is also often interpreted as Spearman’s rank correlation,
5 > (RY — R)(RY — RY)
TSR - RYEYIL (R - RV

Indeed, given that the marginal distributions Fx and Fy are both assumed to be continuous,

(1)

we have

Lot — X 5 @)

Zz 1 RX RX) 7
with probability one.® Thus, the OLS estimator of the rank-rank regression and Spearman’s
rank correlation are numerically identical in finite samples. As a result, they must have the

same asymptotic properties, which we now discuss.

First, it is well known that the probability limit of pg is

1 pt
p= 12/0 /0 C(u,v)dudv — 3 = Corr(Fx(X), Fy(Y)), (3)

with C' denoting the copula of the pair (X,Y), i.e. C(x,y) := P(Fx(X) <z, Fy(Y) <y) for all
z,y € [0,1]. Second, Hoeffding (1948) showed that

Vn(ps = p) =4 N(0,0%),

where
0% = 9Var((2FX(X) — 1)@ (Y) - 1) +4x(X) + 4¢Y(Y)) (4)
and
VYx(x) = /(F(%Z/) — Fx(z)Fy(y))dFy(y), = €R, (5)
vr() = [(Fo) - Fx@)Fr()iFx (@), ye®. (6)

The main goal of this subsection is to point out that the OLS variance estimators 8,21 om and E%W,

which are commonly used in applied work, are not consistently estimating the true asymptotic

variance o2. In consequence, inference based on these variance estimators may be misleading.
To show that the estimators Eiom and G%W are not consistent for o2, we first derive proba-

bility limits for both estimators. To do so, define
My == E[(Fx(X) —1/2)*(Fy(Y) - 1/2)Y, k,1€{0,1,2,3,4}.
The following lemma provides the probability limits.

Lemma 1. Let {(X;,Y;)}!' be an i.i.d. sample from a distribution F with continuous marginals.

Then
a,%om := plim Egom =1- p2 (7)
n—oo

3To see this, note that by continuity of the distributions, with probability one there are no ties in the data

and RY,...,RY is just a reordering of R, ..., XX.



and )
oty = plim G5y, = 144 <M22 —2pMs31 + p) . (8)

n—00 80

The proof of this result, as well as of all other results presented in this paper, can be found
in Online Appendix E.

An important special case of this lemma occurs when X and Y are independent, in which
case p = 0 and both probability limits are equal to the correct variance, a,zl om = O’%W =02 =1.
In general, however, the three variances are different. In fact, 0,21 om and O’%W can each be larger
or smaller than the correct variance 0. Appendix B.1 shows that all three variances depend on
the joint distribution F' only through its copula C. Therefore, whether and by how much the
variances are larger or smaller depends on the shape of the copula of child and parent incomes.
To illustrate this point we compare the three variances in three simple parametric families of
copulas.

Specifically, we compute the minimal and maximal differences U,QZ om o2 and O'%W — 02 over
three families of copulas: the Gaussian, the Student-t (“t”), and a “quadratic” copula. In all
cases, we optimize over the parameters of the copulas so as to find the largest and smallest
difference in variances. Details of the specifications and solutions of the optimization problems
can be found in Appendix B.2.

Panels A and B in Figure 1 show the variances achieving the minimal and maximal differences
for the homoskedastic (“hom”) and the Eicker-White (“EW?”) variances within the different
families of copulas. They also display the rank correlation p of the copulas that achieve the

optima. Within the t and the quadratic families, the correct variance o2

may be substantially
larger than the hom and EW variances, up to about 70% larger. Within the Gaussian family
this is not possible, but the correct variance may be significantly smaller than the other two,
almost half as large. Within the quadratic and the t families, the correct variance may also be
smaller than the other two, but to a lesser extent than in the Gaussian family.

Interestingly, the minimal difference in variances is achieved for copulas that have rank
correlation close to zero whereas the maximal differences occur for copulas with high rank
correlation. To show that substantial differences in variances occur not only for very small or
very large rank correlations, the graphs also indicate the value of the three different variances
for the copula that matches the rank correlation of child and parent incomes in Los Angeles,
one of the commuting zones that we further analyze in Section 5.3. In the data by Chetty
et al. (2022a), Los Angeles has a rank correlation of 0.254. Since individual-level incomes are
not publicly available, we do not know the true copula of incomes in Los Angeles. The dots in
Figure 1 indicate the values of the correct, the hom, and the EW variances if the copula were
Gaussian, t, or quadratic. If it were Gaussian, the hom and EW variances would be slightly
larger than the correct one. If it were quadratic, however, the hom and EW variances would both
be substantially smaller than the correct variance. Finally, in the t family, the hom variance
would be substantially smaller than the correct variance, but the EW variance would be about

the same as the correct one.



A Homoskedastic variance

maximal difference minimal difference
L]
15
.
1.0
° L] . L]
0.5
. ° .
0.0
Gaussian quadratic t Gaussian quadratic t

. correct . hom . rho e Los Angeles

B Eicker-White variance

maximal difference minimal difference
L]
15
. L]
L]
1.0
) L]
0.5
. ° .
0.0
Gaussian quadratic t Gaussian quadratic t

. correct . EW . rho e Los Angeles

Figure 1: Variances achieving minimal and maximal differences within different families of copulas. Specifications
and details can be found in Appendix B. “correct” refers to o2, “hom” to o2,,,, “EW” to o5y, and “rho” to
the rank correlation of the copula achieving the optimized difference. The dots indicate the rank correlation in
Los Angeles and the implied variances for the particular copula within the parametric family that corresponds to

that rank correlation.

2, U,me, and O'%W are all bounded, and so mutual differences between them

The variances o
are bounded as well. This is not true for ratios, however. The following lemma shows that if
we do not restrict the distributions F, the ratios o7, /o2 and 0%y, /0? can both be arbitrarily
large. To emphasize the dependence of the variances on the joint distribution F' of (X,Y), we

use the notation o7 (F), 0%, (F), and o?(F).

Lemma 2. There exists a sequence {Fy}p>1 of distributions on R? with continuous marginals
such that o3, (Fy)/0?(Fy) — 0o and oy, (Fy)/o?(Fy) — 0o as k — oc.

An implication of this lemma is that the two variances a,%om and U%W can be larger than the
correct variance by arbitrarily large factors. As the proof of the lemma reveals, the divergence
occurs under sequences of copulas approaching perfect dependence so that both variances tend

to zero, but the correct variance converges to zero at a faster rate than the variances Uime and

10
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Given the result in Lemma 2, the next interesting question is how small the variances o?

hom

and J%W can be relative to the true variance 2. The following lemma provides a partial answer

to this question in the case of a,2wm.

Lemma 3. There exists a constant ¢ > 0 such that o, (F)/0?(F) > ¢ for all distributions F

on R? with continuous marginals.

By this lemma, the ratio 0,21 om/ o2 is bounded away from zero, so that ‘7}21 om Can be smaller
than o2 only by a factor that is bounded from below by the constant c¢.” However, it is important
to emphasize that this constant may be rather small. In particular, this constant is strictly
smaller than one, as there do exist distributions F' such that o7 (F)/o?(F) < 1. For example,
we have already seen in Figure 1 that for simple well-known classes of copulas, like the t copula,
the hom variance may be substantially smaller than the correct variance. In the empirical
applications of Section 5, we also find that the hom variance may be substantially smaller than
the correct variance.

In conclusion, this subsection has shown that commonly used formulas for the estimation
of asymptotic variances, and thus also for standard errors, do not yield the correct asymptotic
variance of the OLS estimator in a rank-rank regression. In particular, the homoskedastic and
the Eicker-White standard errors may be too small or too large depending on the shape of the
copula. In consequence, confidence intervals may be too short or too wide, possibly leading to

under-coverage or conservative inference.

2.2 Rank-Rank Regressions With Noncontinuous Marginal Distributions

The well-established asymptotic theory for Spearman’s rank correlation described in the pre-
vious subsection crucially depends on the assumption that both marginals of the distribution
F are continuous. In empirical applications of rank-rank regressions, however, pointmasses are
common. For instance, incomes may be top-coded and there may be pointmasses at zero or
negative incomes (e.g. as in Chetty and Hendren (2018)).% In addition, ranks may be computed
from discrete measures other than income, e.g., occupational status as in Ward (2023), human
capital as in de la Croix and Goni (2022), or years of education as in Asher et al. (2024). In
such cases, pointmasses in the marginal distributions (of Y and X) create ties in the ranks and

their presence changes inference in the rank-rank regression in at least three important ways: (i)

“The copulas leading to large ratios of the variances are not the same as those leading to large differences
between the variances. The large differences in Figure 1 are achieved when at least one of the variances is far
from zero whereas large ratios are achieved when both are close to zero. This explains why larger ratios than

those implied by Figure 1 are possible.

5We do not know whether a version of Lemma 3 holds for the EW variance 0%y, but we would be surprised
if that were not the case.

5In fact, one of the commonly cited (Deutscher and Mazumder (2023), Mogstad and Torsvik (2023)) advantages
of studying the rank-rank relationship over other approaches such as estimating intergenerational elasticities is

that the rank-based approach is applicable in the presence of zero incomes.
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Figure 2: Estimates of the rank-rank slope p, and Spearman’s rank correlation by birth cohort and with 95%
marginal confidence intervals. The colors refer to different definition of ranks: “smallest rank” (w = 0), “mid-
rank” (w = 0.5), and “largest rank” (w = 1). The dashed-lines indicate similar measures of mobility for the U.S.
and Denmark as reported in Asher et al. (2024).

the interpretation of the estimand in the rank-rank regression depends on whether there are ties
or not, (ii) the estimand varies with the way in which ties are handled, and (iii) the statistical
properties of the OLS estimator differ for different ways of handling ties. We now illustrate each

of these three points in more detail.

Interpretation of the estimand. In contrast to the continuous case, when there are point-
masses in the marginal distributions, the OLS estimator of the rank-rank slope is not equal to
Spearman’s rank correlation. This is because, as shown in (2), the rank-rank slope is equal to
Spearman’s rank correlation multiplied by the ratio of standard deviations of the ranks. For
continuous distributions, this ratio is equal to one, but in the presence of pointmasses the ratio
can take any value in (0,00). Therefore, the slope coefficient of the rank-rank regression may
lie outside of the [—1, 1] interval and cannot be interpreted as a correlation. Researchers should
therefore be careful about whether they want to estimate Spearman’s rank correlation or the
rank-rank slope, and potentially adjust the rank-rank slope by the ratio of standard deviations.

Figure 2 illustrates this point. It is based on the data used in Section 5.2 in which we study
intergenerational mobility in India, using the data from Asher et al. (2024). In this case, Y and
X are (discrete) measures of years of education of a child and their parent, respectively. The left-
most panel shows estimates of the slope in a rank-rank regression for different birth cohorts of
children. These are estimates, not the estimands, but since the 95% confidence intervals (based
on our asymptotic theory in Section 3.1) are fairly narrow, the estimates provide insights into the
possible values of the corresponding estimands. Consider the estimates labelled “largest ranks”,
which refers to the constructions of ranks exactly as in Section 2.1 above. The panel in the
middle shows the corresponding estimates of Spearman’s rank correlation, and the right-most

panel shows the ratio of standard deviations from (2). Here, the differences between Spearman’s
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rank correlation and the rank-rank slopes are striking: the former is about 0.5 for all birth
cohorts while the rank-rank slope starts out at a value close to one for the 1950 birth cohort
and then declines to about 0.65 for the latest birth cohort. The reason for this difference is due
to the ratio of standard errors declining across birth cohorts. If Spearman’s rank correlation for
the 1950 cohort was a little higher, then multiplying it by the ratio of standard deviations, which
is close to 1.9, would lead to a rank-rank slope larger than one. This latter point illustrates the
fact that the rank-rank slope cannot be interpreted as a correlation when there are pointmasses

in the marginal distributions.

Sensitivity of the estimand to the definition of ranks. In the presence of pointmasses in
the marginal distributions, one can assign different ranks to tied observations without changing
the overall ranking. For instance, when 10 out of 100 observations are tied at the smallest value,
then one can assign each of them the rank 0.01 (“smallest rank”), all of them the rank 0.1
(“largest rank”), or any value in between. The coefficients in the rank-rank regression depend
on the specific way in which ranks are assigned to such tied observations.

To illustrate this point, consider the left-most panel in Figure 2 which shows the estimates
of the rank-rank slopes for three different definitions of the rank. As mentioned above these
are estimates, not the estimands, but since the 95% confidence intervals are fairly narrow,
the estimates provide insights into the possible values of the corresponding estimands. The
sensitivity of the rank-rank slope to the definition of the rank is striking. When the largest
ranks are employed, the rank-rank slope is very large and declining across cohorts, but for the
smallest ranks it takes small values and remains roughly constant across cohorts. Compared to
a similar rank-rank slope based on a more continuous measure of education in the U.S. (dashed
line), the rank-rank slopes in India may be larger or smaller depending on which definition of
the ranks is used.

The differences between the rank-rank slope and Spearman’s rho are also substantial: whereas
the first panel showed substantial sensitivity of the rank-rank slope to the definition of the ranks,
the Spearman’s rank correlation shown in the second panel is about 0.5 for all birth cohorts and
all definitions of the ranks. Equation (2) explains the reason for these difference: the rank-rank
slope is equal to Spearman’s rank correlation multiplied by the ratio of standard deviations of
the ranks. The third panel in Figure 2 shows the estimates of the ratios. Because the marginal
distributions of education vary substantially across birth cohorts, the ratios of the standard
deviations across birth cohorts. In addition, these ratios of standard deviations are very sen-
sitive to the way in which ties in the ranks are handled. In conclusion, the rank-rank slope’s
sensitivity to the definition of the ranks and its variation across birth cohorts is not inherited

from Spearman’s rank correlation, but rather from the ratio of standard deviations.
Sensitivity of the OLS estimator’s statistical properties to the definition of ranks.

In addition to the estimand, also the OLS estimator’s statistical properties depend on the way

in which ties in the ranks are handled. Since the estimand is sensitive to the definition of the
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ranks, so is the OLS estimator of these estimands. However, not only the probability limit and,
thus, the mean of the estimator, but also its asymptotic variance depends on the definition of the
ranks. This will be formally shown in Section 3.1. In consequence, standard errors for the OLS
estimator vary depending on how ties in the ranks are handled. In the first panel of Figure 2
this dependence manifests itself in the length of the confidence intervals, which are substantially
wider for the estimator based on the largest ranks compared to those based on the smallest
ranks.

Because of the sensitivity of the OLS estimator in rank-rank regressions, we recommend that

researchers check the robustness of their results with respect to the definition of the ranks.

2.3 Summary

The previous arguments can be summarized as follows:

1. Hoeffding (1948)’s derivation of the asymptotic distribution of Spearman’s rank correlation
yields the correct asymptotic distribution of the OLS estimator of the slope in a rank-rank
regression in the special case with continuous marginal distributions of ¥ and X and

without covariates.

2. Commonly used variance estimators for OLS regressions do not estimate this asymptotic
variance. They may be too small or too large depending on the shape of the copula of the
pair (X,Y).

3. When at least one of the two marginal distributions of ¥ and X is not continuous or when
there are covariates in the regression, then Hoeffding’s theory does not apply. Importantly,
in the noncontinuous case, the rank-rank regression estimand, the OLS estimator, and its

asymptotic distribution are all sensitive to the specific way in which ties are handled.

The next section develops a general, unifying asymptotic theory for coefficients in a rank-
rank regression that allows for any definition of the rank, for continuous or noncontinuous

distributions, and for the presence of covariates.

3 Inference for Rank-Rank Regressions

3.1 Asymptotic Normality Result

In this section, we develop the asymptotic theory for the OLS estimator of a rank-rank regression.
The results apply to continuous and non-continuous distributions F'. To deal with potential ties,
we consider a more general definition of the rank, in fact a class of ranks, indexed by a parameter
w € [0, 1]. Different definitions of the rank differ in the way in which they handle ties, but they

are all equivalent in the absence of ties.
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] 1 2 3 4 5 6 7 8 9 10
X; 3 4 7 7 10 11 15 15 15 15

smallest rank: RYX forw=0|0.1 02 0.3 0.3 05 06 07 0.7 0.7 0.7
mid-rank: RX forw=0.,5 |01 02 0.35 0.35 05 0.6 0.85 0.85 0.85 0.85
largest rank: RZ-X forw=1 0.1 02 04 04 05 0.6 1 1 1 1

Table 2: example of three different definitions of ranks for a given sample. Bold columns indicate ties.

For a fixed, user-specified w € [0,1], let Fiy () := P(X < ), I(u,v) := wl{u < v} + (1 -
w)1{u < v}, and
Rx(z) :=wFx(z)+ (1 —w)Fy(z), xze€R.

For an i.i.d. sample X1,..., X, from F, we then define the rank of i as RZ-X = }A%X(Xi), where

Bx(@) = wFx () + (1 — ) Py (2) + 1;“’, rER, (9)

is an estimator of Rx(x) and ﬁg () = n ' Y0 1{X; < 2} is an estimator of Fi (x). This
definition of the rank is such that an individual ¢ with a large value of X; is assigned a large
rank. If F'x is continuous, then the probability of a tie among X1,..., X, is zero and the rank
RZ-X is the same for all values of w. If F'x is not continuous, then different choices of w lead to
definitions of the rank that handle ties differently. For instance, if w = 1 then R¥ = F ¥ (Xi)
and tied individuals are assigned the largest possible rank. If w = 1/2, then RiX is the mid-rank
as defined in Hoeffding (1948), which assigns to tied individuals the average of the smallest
and largest possible ranks. Finally, w = 0 leads to a definition of the rank that assigns to tied
individuals the smallest possible rank. Table 2 illustrates the different definitions of ranks in an
example with ties. The quantities Fy, Fy, Ry and their estimators are defined analogously for
Y. We assume that w is the same value in Rx and Ry, so that ranks are defined consistently
for both variables X and Y. Throughout the paper, this value of w is fixed and chosen by the

researcher, so it does not appear as argument or index anywhere.

e (RXM(/X)H -0, (10)

where W is a d-dimensional vector of covariates, € is noise, and p, [ are regression coefficients

We consider the following regression model:

Ry(Y)=pRx(X)+W'+e, E

to be estimated. In applications, W typically includes a constant, but our theoretical results
below do not require that. As already indicated in Section 2.2, the interpretation of p depends on
whether the marginal distributions of Y and X are continuous and, if at least one of them is not,
how ties are handled. However, in the model (10) there is one additional reason complicating
the interpretation of p, namely the presence of covariates: even if Y and X have continuous
marginal distributions, in the presence of covariates W that are correlated with X, p cannot be

interpreted as a rank correlation and, in particular, does not have to lie in the interval [—1,1].7

"This can be seen by writing p as the covariance of residuals from partialling out W from the two ranks divided

15



Letting {(X;, W;,Y;)}™; be an i.i.d. sample from the distribution of the triplet (X, W,Y),
we study the properties of the following OLS estimator of the vector of parameters (p, 8')":

(9 B @; (15;) (m Wz")>_1; (f;) RY. (11)

To derive the asymptotic normality of p, we introduce the projection of Rx (X)) onto the covari-
ates:
Rx(X)=W'y+v, EYW]=0, (12)

where v is a random variable representing the projection residual, and + is a vector of parameters.

Consider the following regularity conditions:

Assumption 1. {(X;, W;,Y;)}" is an i.i.d. sample from the distribution of (X, W,Y’).
Assumption 2. The vector W satisfies E[||W||*] < co and the matriz E[WW'] is non-singular.
Assumption 3. The random variable v is such that E[v?] > 0.

These are standard regularity conditions underlying typical regression analysis. Assump-
tion 3 requires that the rank Rx (X)) can not be represented as a linear combination of covariates.
Importantly, our regularity conditions do not require X and Y to be continuously distributed.

Under these conditions, we have the following asymptotic normality result.

Theorem 1. Suppose that (10)—(12) hold and that Assumptions 1-3 are satisfied. Then

Vn(p—p) =

2\F Z {h1 (X5, Wi, Vi) + ha(X3, Y:) + hs(X; )} +op(1) —p N(0,02),

where
o? = %E [(hl(X, W,Y) + he(X,Y) + hg(X))Q] (13)

with o2 := E[v?] and
hi(z,w,y) := (Ry (y) — pRx () — w’ﬂ)(Rx(fL’) —w'y),
ha(z,y) = E[(I(y,Y) — pl(z, X) = W'B)(Rx (X) —
hs(z) = E[(Ry(Y) — pRx(X) = W'B)(I(z, X) —
forallxz e R, weRP, and y € R.

As already mentioned above, the proof of this result, as well as of all other results presented

in this paper, can be found in Online Appendix E. In fact, Theorem 1 follows from a more

by the variance of one of the two residuals. Then, this ratio is not equal to the correlation of the ranks after

partialling out W because the standard deviations of the two residuals are not necessarily equal.
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general result, which we state in Online Appendix D (Theorem 5). The more general result

shows joint asymptotic normality for p and B ,

~ n

NG (5_ p) — LS it op() 5o NO,S), S = Bl
-5 s

and provides an explicit formula for ;. The joint asymptotic distribution for p and B is useful

for empirical work in the intergenerational mobility literature. Suppose there are no covariates

so W only contains a constant. Besides the rank-rank slope, another popular measure of inter-

generational mobility (Deutscher and Mazumder (2023)) is the expected income rank of a child

given that their parent’s income rank is equal to some given value p:

O0p == B+ pp.

With the asymptotic joint distribution above, it is straightforward to compute standard errors
and confidence intervals for 6,

Theorem 1 has the following interpretation. If we knew the population ranks Ry (Y;) and
Rx(X;), we would simply estimate p and S by an OLS regression of Ry (Y;) on Rx(X;) and
W. The asymptotic variance of such an estimator for p would be given by E[h1(X, W,Y)?] /o2,
which is the familiar OLS variance formula. Without knowing the population ranks, however,
we have to plugin their estimators, and the extra terms in the asymptotic variance, represented
by ho(X,Y') and h3(X), provide the adjustments necessary to take into account the noise coming
from estimated ranks. Importantly, the estimation error in the ranks is of the same order of
magnitude as that in the OLS estimator with known ranks. Therefore, the estimation error in
the ranks does not become negligible in large samples, not even in the limit as the sample size
grows to infinity.

The derivation of the asymptotic normality result uses standard techniques from the U-
statistic theory. To see this consider the case without covariates so that W only contains a
constant. Then, the OLS estimator of the slope can be written as
w2 (B — RY)(RY — BY)

& L (RY — RX)?

It is easy to show that the denominator converges in probability to o

5=

2. The numerator is a
U-statistic because it is an average of terms involving R}/ and R,LX , which themselves are sample
averages. Under the above assumptions one can then verify the standard conditions for such a

U-statistic to be asymptotically normal (e.g., Serfling (2002)).

Remark 1 (Comparing the variance formulas in (4) and (13)). When both X and Y are
continuous random variables and W contains only a constant, the asymptotic variance formula
in (13) reduces to the classical Hoeffding variance formula in (4). Indeed, replacing X and Y
by Fx(X) and Fy(Y) respectively, we can assume without loss of generality that both X and
Y are U([0, 1]) random variables, in which case ¢ x(z) in (5) reduces to

1
/0 (E[{X <z}U{Y <y}| —ay)dy = E[I{X <z2}(1-Y)] —2/2 =2/2 — E[1{X < z}Y].
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Similarly, 1y (y) in (6) reduces to y/2 — E[1{Y < y}X]. Hence, the variance in (4) simplifies to
0? = 144Var(h(X,Y)), where

hz,) = 2y — B{X < 2}Y] - B[I{Y <y}X], z€RyeR, (14)
and it is straightforward to verify that h(z,y) coincides with hy(z,w,y) + ha(x,y) + hg(z) up to
an additive constant whenever X, Y ~ U([0,1]) and W contains only a constant. O

Remark 2 (Non-continuous distributions). The asymptotic normality result in Theorem 1 holds
for both continuous and noncontinuous distributions of Y and X. In the presence of pointmasses
in at least one of the distributions of Y and X, the estimands p and 8 depend on w, i.e. on
the way in which ties are handled. Similarly, the asymptotic variance o of the OLS estimator
derived in Theorem 1 depends on w. Therefore, different ways of handling ties through different
choices of w may affect not only the estimand and the estimator, but also the value of the

asymptotic variance. O

3.2 Consistent Estimation of the Asymptotic Variance

In this subsection, we propose an estimator of the asymptotic variance o2 appearing in the
asymptotic normality result in Theorem 1 and show that it is consistent. In particular, we

consider the following plug-in estimator:

1 n
~2 2
0= —y E (Hy; + Ha; + Hg;)?,
nok 4
=1
where 52 :=n"1Y" 72 is an empirical analog of 02 = E[?], 1; := RX — W/7, and

Hyi o= (R = pRY — WiB) (RY - W),

1 & N ~ N
Hai = — 3 (1Y) = pL(X:, X;) = W)B) (RY = W),
j=1

1 o . 3 o~
j=1

for all i = 1,...,n. The following lemma shows that this simple plug-in estimator is consistent

without any additional assumptions.
Lemma 4. Suppose that (10)—~(12) hold and that Assumptions 1-3 are satisfied. Then 5> —p o2.

Theorem 1 and Lemma 4 give the correct way to perform inference in rank-rank regressions.

For example, a (1 — «) x 100% asymptotic confidence interval for p can be constructed using

~ Za/Qa-\ ~ Za/28
(-2 )

where 2, /o is the number such that P(N(0,1) > z,/2) = /2. Standard hypothesis testing can

the standard formula

be performed analogously.
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Remark 3 (Bootstrapping the distribution of v/n(p — p)). In addition to performing inference
on p via a consistent estimator of the asymptotic variance 52 in Lemma 4, one can also perform
inference by bootstrapping the distribution of /n(p — p). Indeed, to show bootstrap validity,
observe that p = p(F) is a smooth functional (Hadamard differentiable), and our estimator p
takes the plug-in form, p = p(ﬁ ). Therefore, given that the empirical distribution function
F satisfies Donsker’s theorem, it follows from Theorem 3.1 in Fang and Santos (2019) that
the distribution of \/n(p* — p), where p* is the estimator p obtained on a bootstrap sample,
consistently estimates that of \/n(p — p); see also Bickel and Freedman (1981) for the original

result on bootstrapping von Mises functionals. O

4 Inference for Other Regressions Involving Ranks

Motivated by regressions that have been used in empirical work, especially in the intergener-
ational mobility literature, we provide three extensions of the asymptotic normality result in
Theorem 1. In particular, we consider (i) a rank-rank regression with clusters, where ranks are
computed in the national distributions rather than in the cluster-specific distributions, (ii) a
regression of a general outcome Y on the rank Rx(X), and (iii) a regression of the rank Ry (Y)
on a covariate X. For brevity of the paper, we keep the discussions of each extension relatively
short.

4.1 Rank-Rank Regressions With Clusters

In this subsection, we consider a population (e.g., the U.S.) that is divided into ng subpopula-
tions or “clusters” (e.g., commuting zones). We are interested in running rank-rank regressions
separately within each cluster. The ranks, however, are computed from the distribution of the
entire population (e.g., the U.S.). Chetty et al. (2014) has been influential in promoting these
kind of regressions for the analysis of mobility across regions, where the scale of the mobility
measure is fixed by the national distribution. The survey by Deutscher and Mazumder (2023)
provides more examples of empirical work running such regressions, for instance Corak (2020)
and Acciari et al. (2022).

Specifically, we consider the model

= Rx (X
Ry(Y) =3 1{G = g} (pgRx(X) + W',) +2,  E|e ( 6| =0as, 09)
g=1
where G is an observed random variable taking values in {1,...,ng} to indicate the cluster to

which an individual belongs. The quadruple (G, X, W,Y") has distribution F, and we continue
to denote marginal distributions of X and Y by Fx and Fy. The quantities F'y, Fy , Rx(x),
and Ry (y) are also as previously defined, so that Rx(X), for instance, is the rank of X in
the entire population, not the rank within a cluster. So, in model (15), the coefficients p, and

B4 are cluster-specific, but the ranks Ry (Y) and Rx(X) are not. In consequence, p, cannot
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be interpreted as the rank correlation within the cluster g. Instead, in the intergenerational
mobility literature, the rank-rank slope is interpreted as a relative measure of mobility in a
region g, where its scale is fixed by the national population. Unlike the rank-rank slope in the
model without clusters, (10), the slopes p, do not only depend on the copula of Y and X in a
cluster, but also on the marginal distributions of Y and X in the cluster. To see this note that
adding a fixed amount to every child and parent income in a cluster does not change the ranking
of children and parents within the cluster, but it may change the ranking of these individuals in
their national income distributions. In conclusion, the p, may then also change.
We now introduce a first-stage projection equation similar to the one in (12), except that
the coefficients are cluster-specific:
ngG
Rx(X) = Z 1{G = g}W'y, +v, E[YW|G]=0as. (16)
g=1
Let {(G;, X;, W;,Y;)}, be an i.i.d. sample from the distribution of (G, X, W,Y’). Ranks are
computed using all observations, i.e. RX := Rx(X;) with Ry (z) as in (9) and Fyx (ﬁg) the
(left-limit of the) empirical cdf of Xi,...,X,. The computation of the rank R} is analogous.
First, notice that an OLS regression of R} on all regressors, i.e. (1{G; = g}RZX)Zgl and

(1{G; = g}VViX)Zgl, produces estimates (py, Eg);ﬁl of (pg,ﬁg)ggl that can be written as:

o) = (Yue=a (1 Ao ()
(é) - (;ﬂ{Gl =9 <W1> (P%X Wz)) ;]1{@—9} <W1> Ry . (17)

Therefore, (pyg, B\g) can be computed by an OLS regression of RZY on RZ-X and W; using only
observations ¢ from cluster g. Similarly, 7, can be computed by an OLS regression of RX on
W; using only observations ¢ from cluster g. Note however, as explained above, that the ranks
RZX and RZY are computed using observations of X and Y from all clusters and thus the OLS
estimators across clusters are not independent.

The following are Assumptions 1-3 adapted to the model with clusters:
Assumption 4. {(G;, X;, W;, Y}, is a random sample from the distribution of (G, X, W,Y’).

Assumption 5. The vector W is such that E[||W||*] < co and, for allg = 1,...,ng, the matriz
E[1{G = g}WW'] is non-singular.

Assumption 6. The random variable v is such that E[1{G = g}1*| >0 for allg=1,...,ng.

As in the previous section, note that our assumptions do not require the marginal distribu-
tions F'x and Fy to be continuous. In addition, we introduce an assumption about the number

and size of the clusters:

Assumption 7. The number of clusters ng is a finite constant and P(G = g) > 0 for all
g=1,...,G.
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Observe that if the number of clusters were to increase together with the sample size n, with
the number of units within each cluster being of the same order, the extra noise coming from
estimated ranks would be asymptotically negligible, and the standard OLS variance formula
would be applicable. The new result below applies to the case with a fixed number of clusters
so that the estimation error in the ranks is not negligible even in large samples. This scenario
seems reasonable, for instance, in our empirical application in which a cluster is a commuting
zone within a U.S. state because each of these states contains only a small number of commuting
zones relative to the sample size.

Under these four assumptions, we have the following extension of Theorem 1.

Theorem 2. Suppose that (15)—(17) hold and that Assumptions /-7 are satisfied. Then for all
g=1,...,G, we have

\/ﬁ(ﬁg_pg) UQg\/»Z{hlg G17X27W17Y)+h29<XZ7Y)+h3g( )}+0P(1) —D N(0,0’;),

where

B[ (hg(G, X, W,Y) 4 o g (XY ) + By (X))
with o3, , := E[1{G = g}v?] and

h1,g(g, 2, w,y) == 1{g = g}(Ry (y) — pgRx (z) — w'By)(Rx (x) — w'yy),
hag(z,y) = E[I{G = g}(I(y,Y) — pgl(z,X) — WBg)(Rx (X) —
hsg(x) := E[I{G = g}(Ry (Y) — pgRx(X) = W'By)(I(x, X) —

— —

forallge{l,....ng}, z€ R, w e RP, and y € R.

In Online Appendix D, we provide a joint asymptotic normality result for all regression

coefficients. Letting p := (p1,-.-,0ng)s P = (P1,--+,Pne)s B = (Bi,...,@m)’, and B =
(B15- -+ Bng) > the appendix shows that

i=1

and provides an explicit formula for v;. From this result, one can then easily calculate the asymp-
totic distribution of linear combinations of parameters. For instance, similarly as in the rank-
rank regression without clusters, a popular measure of intergenerational mobility (Deutscher

and Mazumder (2023)) is the expected rank of a child with parents at a given income rank p,

p =By + pg - (19)

The asymptotic distribution in (18) allows us to construct a confidence interval for §,, for a

specific commuting zone g or simultaneous confidence sets across all commuting zones.
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An estimator of the asymptotic variance o2 is

. 1 ¢
0'3 == Z(Hl’g’i + HQ,g,i + H3797i)2’

noy , <=
where
1 n
52y = - D MGi = gHRE — W/,
i=1
Higi = WG = g} (R =, BY = WiB,) (RY = W/3,).
1 o ~ ~ ~
Hagi = — > UGy = g} (102 Yy) = ol (X, X;) = W)B, ) (B = WA,)
j=1
1 « .
Hagi = — > U{G; = g} (R} = 5, RY = W)B,) (1(X:, X;) = Wi3,)
j=1
forall g € {1,...,ng} and i = 1,...,n. One can prove consistency of this estimator using the

same arguments as those in the proof of Lemma 4.

4.2 Level-Rank Regressions

In this subsection, we consider a regression model with the level of Y as the dependent variable

e <RXW(/X)>] = 0. (20)

Such a regression has been used, for instance, by Chetty et al. (2014) or Abramitzky et al.

and a rank as the regressor:

Y = pRx(X)+W'B +e¢, E

(2021) who regress a child’s outcome like college attendance or teenage pregnancy on their
parent’s income rank. Another example is Chetty et al. (2011) in which wages are regressed on
the rank of a test score.

For the above regression, the OLS estimator takes the form

()- 00 e ) ()

The following theorem derives asymptotic normality for p.

Theorem 3. Suppose that (12), (20), and (21) hold, that E[e?] < oo, and that Assumptions
1-8 are satisfied. Then

V(P —p) =

0_21/5 Z {hl(Xi,Wi,Yi) + ho(X;) + hg(Xi)} +op(1) =p N(0,0’z),
v =1

where
0% = %E[(hl(X, W.Y) + ha(X) + h3(X))2]

22



with o2 := E[v?] and

hi(z,w,y) := (y — pRx (z) — w'B)(Rx (z) — w'y),
ha(x) := E[Y — pI(z, X) = W'B)(Rx(X) — W'y)],
ha(x) :== E[(Y — pRx(X) = W'B)(I(x, X) — W'y)]

H =

forallx e R, weRP, and y € R.

In Online Appendix D, we provide a joint asymptotic normality result for all regression

coefficients, i.e. we show that

~ 1 n

Vi [ 27 ) = =S it op(1) 5p N(0,8), S = Elg],
p-8 i

and derive the expression for ;. A consistent estimator of the asymptotic variance can be

obtained by the plugin method, analogously to our discussion in Section 3.

4.3 Rank-Level Regressions

In this subsection, we consider a regression model in which the outcome variable has been

transformed into a rank, but the regressors are included as levels:
Ry (Y)=W'B +e¢, E[eW] =0, (22)

where, for simplicity of notation, we let the vector W absorb the regressor X. Examples of such
a regressions in applied work are Sharkey and Torrats-Espinosa (2017) who regress the income
rank on the crime rate and Ghosh et al. (2023) who regress income rank on a binary indicator
for whether a couple is in an isonymous marriage.

Denote by W; the I-th element of W := (Wy,...,W,)" and by W_; the vector of all elements
of W except the [-th. The projection of W; onto W_; for any [ = 1, ..., p now takes the following
form:

Wi=W.v+w, E[yW_]=0, (23)

where 71, ...,y are (p—1)-dimensional vectors of parameters. For this model, the OLS estimator

takes the following form:
n )
B = (Z m-m’) S wWiRrY. (24)
i=1 i=1

We then have the following result.

Theorem 4. Suppose that (22)—(24) hold and that Assumptions 1 and 2 are satisfied. Then

Vi - 8) = jﬁ;w 4 op(1) —p N(0,5),
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where 3 := E[wﬂ/);]f i = (¢1(W27Y;)7 B ¢p(Wi7Y;l), fOT alli=1,...,n,

i(w,y) = Uig [hu,1(w, y) + R 2(y)],

v

hia(w,y) == (Ry(y) —w'B)(wr — w’ym),
hia(y) == E[(I(y,Y) = W'B) (Wi — W m)],

for allw € RP and y € R.

The theorem shows, in particular, that for the [-th element of B , we have

V(B — B1) —p N(0,0%),

where

1
05, = JTE (hia(W,Y) + hip(Y))?]

14
and, like above, a consistent estimator of the asymptotic variance can be obtained by the plugin

method, analogously to our discussion in Section 3.

5 Empirical Applications

We illustrate our new inference methods in three empirical applications. Each of them analyzes
intergenerational mobility, but the applications vary in the socioeconomic outcome under study
and in the populations from which data are drawn. The first analyzes mobility in occupational
status in the U.S.; the second mobility in education in India, and the third mobility in income

across U.S. neighborhoods.

5.1 Intergenerational Mobility in the U.S. — Occupational Status

In this section, we analyze intergenerational mobility in the U.S. as in Song et al. (2020) and
Ward (2023), who measure mobility by the rank-rank relationship between fathers’ and sons’

occupational status. We focus on cohorts covered by the PSID dataset used in Ward (2023).

Data. We use the PSID dataset from Ward (2023), including his construction of the Song

score (not his “adjusted” Song score), the measure of occupational status.

Econometric Specification. Our analysis deviates somewhat from that of Ward (2023). To
obtain a rank-rank regression model as in (10), we modify Ward’s regression in three ways.
First, we run a rank-rank regression separately for each subpopulation of father-son pairs within
which he computes ranks, i.e. within father-son birth cohort combinations. We remove father-

son cohorts with fewer than 20 observations. Second, we do not use sample weights. Third,
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Figure 3: Standard error of the indicated method divided by the correct standard error.

we do not average ranks over time. These three modifications to Ward (2023)’s regression
specification allow us to interpret the regression slopes as rank-rank regression slopes and the
model fits into (10). We estimate the rank-rank regression with and without the covariates used
by Ward (2023). Since the occupational status measure is a discrete variable, the rank-rank
slope we estimate is not a rank correlation (see Section 2.2). However, the occupational status
measure has many support points so that different definitions of the rank do not substantially
change estimates and standard errors. Therefore, we report results based on the largest ranks

(w=1). Results for the smallest ranks (w = 0) are similar.

Results. For the different father-son cohorts, Figure 3 shows the ratios of the hom and EW
standard errors divided by the correct standard error. A ratio above (below) one means that
the hom or EW standard error is larger (smaller) than the correct one. The left (right) panel
reports ratios for the rank-rank regression without (with) covariates.

Some of the hom and EW standard errors are too small relative to the correct one, many are
close to the correct one, but a few are substantially larger than the correct one. For instance,
for the 1940-1980 father-son cohort, the hom standard error is up to 30% larger than the correct
one.

The differences in standard errors translate into differences in confidence intervals for the
rank-rank slope. Figure 4 shows 95% marginal confidence intervals for the rank-rank slope using
data on father-son pairs for which the father is in the 1940 cohort. Most hom and EW confidence
intervals are similar to the correct confidence interval, but for the son’s cohort of 1980 we see
some differences: the hom confidence sets are longer than the correct ones and lead to somewhat
conservative inference.

All confidence intervals are fairly wide, not permitting to draw tight conclusions about the

mobility within father-son cohort pairs.
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Figure 4: 95% marginal confidence intervals for the rank-rank slope for fathers in the 1940 cohort.

5.2 Intergenerational Mobility in India — Education

Asher et al. (2024) compute rank-based measures of mobility from data on children’s and parents’
years of education in India. Because education is observed on discrete points of support, they
partially identify rank-rank slopes for a latent, continuously distributed measure of education.
We complement their analysis by directly estimating rank-rank slopes from the observed, discrete
education data, highlighting the sensitivity of the rank-rank slope to the way in which ties are

handled, and by providing valid confidence intervals.

Data. We use the 2012 India Human Development Survey (IHDS) dataset from Asher et al.

(2024) and focus on the relationship between fathers’ and sons’ years of education.

Econometric Specification. For each birth cohort of the children, we estimate the rank-
rank slopes in (10) with W containing only a constant. Unlike Asher et al. (2024) we do not use
sample weights. Ranks are defined as in (9) with w € {0,0.5,1}.

Results. Fathers’ and sons’ education is observed on a small number of support points from
0 to 14; see Figure 15 in the Appendix. Because of this discreteness, we compare rank-rank
slope estimates with different ways of handling ties in the ranks. For each birth cohort and each
definition of the rank, Figure 5 shows estimates of the rank-rank slope p, of the expected child

rank 695 as defined in Section 3.1, and of Spearman’s rank correlation.
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Figure 5: Estimates of the rank-rank slope p, expected child rank 6, and Spearman’s rank correlation by birth
cohort and with 95% marginal confidence intervals. The colors refer to different definitions of ranks: “smallest
rank” (w = 0), “mid-rank” (w = 0.5), and “largest rank” (w = 1). The dashed-lines indicate similar measures of
mobility for the U.S. and Denmark as reported in Asher et al. (2024).

Consider the graph on the left, which shows estimates and confidence intervals for the rank-
rank slope. The estimates are very sensitive to the way in which ties are handled, particularly in
the earlier birth cohorts. For instance, using the largest rank (w = 1) leads to a rank-rank slope
close to one with a relatively wide confidence interval. On the other hand, using the smallest
rank (w = 0) leads to a rank-rank slope of 0.42. In the latest birth cohort (1985), the largest
and smallest ranks lead to rank-rank slopes of 0.65 and 0.42, still a substantial difference. For
the 1950 birth cohort, according to the estimates based on the smallest ranks, mobility in India
is higher than in the U.S. (i.e., the rank-rank slope is smaller), while the estimates based on the
largest ranks imply that India has extremely low mobility with a rank-rank slope about twice
as large as that of the U.S.. Also, based on the largest ranks, mobility in India has increased
(rank-rank slopes have decreased) across birth cohorts. According to the estimates based on the
smallest ranks, mobility has remained constant at a high level (low rank-rank slope). It is worth
emphasizing that, for a given birth cohort, the difference in estimates is due only to the way in
which ties in the ranks are handled, i.e. which value of w is used. Otherwise, the estimator and
the data used are identical.

The graph in the middle shows estimates and confidence intervals for the expected child
rank conditional on the parents’ rank being equal to 0.25. The graph is qualitatively similar to
that of the rank-rank slope, except that all estimates lie above those for Denmark and the U.S..
Therefore, according to this measure, mobility in India appears to be higher than in Denmark
and the U.S., regardless of how ties are handled.

The graph on the right shows estimates and confidence intervals for Spearman’s rank correla-
tion for different ways of handling ties. Interestingly, the estimates and their confidence intervals

are almost insensitive to the way in which ties are handled. The estimates are close to 0.5 for
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all birth cohorts and all values of w, and the confidence intervals are all very narrow. To see
why the estimates of the rank-rank slopes and of the Spearman’s rank correlation substantially
differ, recall that the rank-rank slope p is equal to the Spearman’s rank correlation pg multiplied

by the ratio of standard deviations of the ranks:

Sy
5=y T

i (B — RY)>

For continuous marginal distributions of X and Y, the ratio of standard deviations is equal to
one, but when the marginal distributions are discrete, the ratio can take any value in (0, c0).
While Spearman’s rank correlation is almost insensitive to how ties are handled and barely
varies from birth cohort to birth cohort, the ratio of standard deviations is very sensitive to the
way in which ties are handled and does vary substantially across birth cohorts. The ratios of
standard errors is displayed in the right-most plot in Figure 2. When the smallest ranks (w = 0)
are employed, then the ratio of standard errors is close to 0.8 for all birth cohorts, while for
the largest ranks (w = 1), the ratio starts out at a value close to 1.9 for the 1950 birth cohort
and then decreases towards about 1.25 for the 1985 birth cohort. Overall, the patterns in the
ratios of standard errors mimics those found in the rank-rank slopes, while the Spearman’s rank
correlation remains close to 0.5 for all birth cohorts and all definitions of the ranks. Therefore,
the patterns seen in the rank-rank slopes across birth cohorts and their sensitivity to the way in
which ties are handled originate from the variation in the ratios of standard errors rather than
in Spearman’s rank correlation.

In this dataset, it seems possible to reach robust conclusions about the value of Spearman’s
rank correlation, namely it being close to 0.5 for all birth cohorts. On the other hand, the
rank-rank slope estimates are so sensitive to the definition of the ranks that they do not provide
robust conclusions about whether the trend across birth cohorts is increasing or decreasing, nor
whether the rank-rank slope in India is larger or smaller than that of the U.S..

Finally, Figure 6 shows the ratio of standard errors, i.e. the standard error of the indicated
method (“hom” or “EW”) divided by the correct standard error. A ratio above (below) one
means that the hom or EW standard error is larger (smaller) than the correct one. Both the
hom and the EW standard errors may be too large or too small relative to the correct standard
error, depending on how ties in the ranks are handled. For instance, for the smallest ranks,
both standard errors are larger than the correct one for all birth cohorts with the EW being
less conservative than the hom standard error. On the other hand, for the largest ranks, both
standard errors are two small relative to the correct standard error. For the 1950 birth cohort,
for instance, the EW standard error is about 20% too small and the hom standard error is about
10% too small.

5.3 Intergenerational Mobility in the U.S. — Income

In this section, we apply our new inference methods to the analysis of intergenerational mobility
in U.S. commuting zones (CZs) as in Chetty et al. (2014, 2018); Chetty and Hendren (2018).
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Figure 6: Standard error of the indicated method divided by the correct standard error. Each panel refers to a

different definition of ranks: “smallest rank” (w = 0), “mid-rank” (w = 0.5), and “largest rank” (w = 1).

Since the micro-data are not publicly available, we design a simulation experiment calibrated to
the available information about commuting zones’ income distributions.

Suppose we are interested in learning about mobility in CZs of California. A local politician
in a given CZ of the state may be interested in estimating mobility in their own CZ. In that
case, she might run a rank-rank regression as in (10) using only data from that particular
CZ. Importantly, ranks for children and parents are therefore computed in their respective
distributions within that CZ. Second, a state-level politician may want to learn about mobility
in all CZs of their state and perhaps compare mobility across CZs. In that case, she might
want to run a rank-rank regression with clusters as in (15), where ranks are computed in the
distribution of the whole state.

We apply our new inference methods to both types of regressions on simulated data, where
the data-generating process has been calibrated to information from the CZs in California, and
compare the results to methods using the homoskedastic and Eicker-White variance estimators.
Subsequently, we show that the results from California are not special in the sense that similar
results are found in other U.S. states. Finally, we explore the impact of top- and bottom-
censoring of incomes on the estimators.

In both types of regressions, the CZ-specific regressions of the form (10) and the regression
with clusters as in (15), W contains only a constant. Both regressions produce rank-rank slopes
pg for each CZ g. In addition, we compute the expected income rank of a child with parents at
the p-th rank, 6, ), as defined in (19).

Data. From Chetty et al. (2022b), we obtain information about the CZ-specific marginal

income distributions for 709 CZs.® Specifically, we obtain the CZ-specific mean and median for

8The information on the marginal income distributions is missing for some CZs, so we do not analyze all 741
CZs contained in the dataset by Chetty et al. (2022a).
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2011-12 for child family income of children in the 1980-82 birth cohorts and the CZ-specific mean
and median for 1996-2000 for the parent family income. In addition, we obtain CZ population
sizes from the 2000 census. From Chetty et al. (2022a), we obtain estimates of 6, , for two values
p = 0.25 and p = 0.75 for each CZ together with their standard errors.

Calibration. First, we calibrate a CZ-specific copula for children’s and parents’ income. To
this end, for each CZ g, we use the two estimates of 0, , for p = 0.25 and p = 0.75 to solve for
the implied estimate p, of the rank-rank slope p,. We then consider two copula families, the
normal and the t copulas. For each family we find the copula that matches the observed rank
correlation py.

Second, we calibrate CZ-specific marginal distributions for children’s and parents’ income.
For each CZ g we fit a log-normal distribution that matches the observed CZ-specific mean
and median incomes for children. Similarly, we fit a log-normal distribution that matches the
observed CZ-specific mean and median incomes for parents.

Finally, we calibrate CZ-specific sample sizes proportional to the observed CZ population

sizes.?

Simulation Exercise. We draw 1,000 Monte Carlo samples for each CZ. On each Monte Carlo
sample, we estimate the two parameters of interest, p, and 6, .25. For each, we compute three
types of standard errors: the correct standard errors from Theorem 5 or Theorem 6, respectively,
the OLS standard error assuming homoskedasticity of the regression errors (“hom”), and the
Eicker-White (“EW”) standard error. In the rank-rank regression with clusters, the hom and
EW standard errors for 64, p, are computed based on the residuals from CZ ¢.'% Ranks are
defined as in (9) with w = 1.

5.3.1 Mobility Across CZs in a Single State

We start by performing inference about mobility in the CZs of a single state, California. As
indicated above, a local politician may be interested in estimating mobility in their own CZ
and, thus, may run a rank-rank regression as in (10) using only data from that particular CZ.
Similarly, a state-level politician may want to learn about mobility in all CZs of their state
and perhaps compare mobility across CZs. In that case, she might want to run a rank-rank
regression with clusters as in (15).

Figures 7 and 8 show results for these two types of regressions. They plot the ratios of the

hom and EW standard errors divided by the correct standard error. A ratio above (below) one

We define a minimum (n := 2,000) and maximum (7 := 10,000) sample size. Among all CZs in the U.S.,
the one with the smallest (largest) populations size is assigned n (7). All other CZs are assigned a sample size
between these two, proportional to their population size.

10 An alternative approach would be to pool the residuals from all CZs to estimate the residual variance, similar
to the regression in (15). The results from this approach are similar to those without pooling residuals and are

not shown here.
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Figure 7: Separate rank-rank regression within each CZ: standard error of the indicated method divided by the
correct standard error.

means that the hom or EW standard error is larger (smaller) than the correct one.

For the normal copula, the hom and EW standard errors are larger than the correct one in
all CZs. In the separate rank-rank regressions, for the rank-rank slope pg4, the ratio of standard
errors is close to one, but for the expected income rank 6, .25, the ratios are close to 1.6, i.e.
the hom and EW standard errors are about 60% too large. For the rank-rank regression with
clusters, the ratios are all fairly close to one except for 64025 in Los Angeles, where the hom
and EW standard errors are slightly over 5% too large.

For the t copula, on the other hand, the hom standard error for the rank-rank slope may
be substantially (around 20%) smaller than the correct one. The hom standard error for the
expected income rank may be around 30% too large in the separate rank-rank regressions, but
up to 10% too small in the rank-rank regressions with clusters. The EW standard error may
also be substantially too large (about 40% too large in the separate regressions), but is never
too small.

The differences in standard errors translate into differences in confidence intervals. Figures 9
and 10 show 95% marginal confidence intervals for the mobility estimates based on the normal
and the t copulas. Figures 16 and 17 in the Appendix show the corresponding figures for the
rank-rank regression with clusters.

For the normal copula, confidence intervals for the rank-rank slope are similar across the
three methods. For the expected income rank, however, the confidence intervals based on hom
and EW variance estimators are substantially longer than those based on the correct variance

estimator, and thus lead to conservative inference. The difference in length of the hom and EW
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Figure 8: Rank-rank regression with clusters: standard error of the indicated method divided by the correct

standard error.

compared to the correct confidence intervals is economically meaningful in the sense that the
hom and EW confidence intervals include meaningful values of mobility that the correct intervals
exclude. For instance, the hom and EW confidence intervals for Modesto, San Jose, Santa Rosa,
and Santa Barbara all include Italy’s (Acciari et al. (2022) report a value of 0.445) and Canada’s
(Corak (2020) reports a value of 0.444) values of mobility, but the correct intervals are shorter
and exclude Italy’s and Canada’s values. Similarly, Cresent City’s hom and EW confidence
intervals include Australia’s value of mobility (Deutscher and Mazumder (2023) report a value
of 0.45), but the correct interval is shorter and does not include Australia’s value.

For the t copula, the hom confidence intervals for the rank-rank slope are too small while
the EW confidence intervals are almost identical to the correct ones. The difference in length
of the hom and the correct confidence intervals is economically meaningful in the sense that
the hom confidence intervals exclude meaningful values of mobility that the correct intervals
include. For instance, the hom confidence intervals for Redding and Mammoth Lakes imply
that mobility in these two CZs is significantly different from that in Germany (Bratberg et al.
(2017) report a rank-rank slope of 0.245) and Canada (Corak (2020) report a rank-rank slope
of 0.242) while the correct confidence intervals are longer and include Germany’s and Canada’s
values of mobility. Similarly, Santa Barbara’s hom confidence interval implies that mobility in
this CZ is significantly different from that in Norway (Bratberg et al. (2017) report a rank-rank
slope of 0.223) and Italy (Acciari et al. (2022) report a rank-rank slope of 0.220), but the correct
confidence interval includes Norway’s and Italy’s values of mobility.

Comparisons of mobility across countries are common in the literature (Deutscher and

32



California
confidence intervals of regression parameters (normal copula)

rho theta
0.46
0.40 -
y |
0.35 an® | gm a=_"
: 044 = 5 | = { ‘{
y |
m -
0.30 - -
-
0.42 -~ - an
- - -
- -
0.25 L
-
-
0.40
0.20
-
OO QA O 22 2 O\ DO O (O & @R Q.0 QA Q92 2 O\ DO O (O (& (@ DD
O R N A RIS R R N A A OIS
\l_Q} @(\Q/ 4 \S\vﬁ\(\\;yo QQ@(& S fé\@o@(b’»\’b \‘_\ <K \‘S\?S\(\\/@o Qng fbé\(\ @g\é\@@'\"b
& & G POEAN F & S SREL TS
S LOVS & & LOVS S

method - correct 4 EW = hom

Figure 9: Separate rank-rank regression within each CZ: 95% marginal confidence intervals for the normal

copula.

Mazumder (2023)) and the above discussion shows that our new confidence intervals may lead

to different conclusions than those based on commonly used variance estimators.

5.3.2 Mobility Across CZs in All States

We now turn to the 709 CZs across all U.S. states. For the separate rank-rank regressions,
Figure 11 shows the histogram of ratios of standard errors across all CZs. Figure 18 in the
Appendix shows the corresponding figure for the rank-rank regression with clusters. Both figures
illustrate that the results for California are not special. In particular, as in California, most ratios
for the normal copula and the expected income rank parameter take values around 1.6, so that
most hom and EW standard errors are about 60% too large. Similarly, as in California, most

hom standard errors for the t copula and the rank-rank slope are about 20% too small.

5.3.3 The Impact of Censoring

In Section 2.2 and Remark 2, we have already argued that pointmasses in the marginal distri-
butions of income create ties in the ranks and that the way in which ties are handled has an
impact on the estimand and the statistical properties of the OLS estimator.

First, we study the impact of top- and bottom-censoring of the incomes on the estimand

p. To this end we draw a large sample (of size 10%) from the (continuous) calibrated income
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Figure 10: Separate rank-rank regression within each CZ: 95% marginal confidence intervals for the t copula.

distribution of the CZ Los Angeles using the Gaussian copula. Then, parental incomes are
censored below (“bottom censoring”) or above (“top censoring”) at the ¢-th or the (1 — ¢)-th
quantile. We successively increasing ¢ from zero to 0.25.

Figure 12 shows how the rank-rank slope and Spearman’s rank correlation change with the
amount of censoring ¢ and with the way in which ties are handled.

Consider the first row of the figure. At ¢ = 0 there is no censoring and the joint distribution
of incomes is continuous, so the rank correlation and the rank-rank slope are equal. With more
censoring (larger ¢), the joint distribution features larger pointmasses and the two estimands
diverge. Without censoring, the rank-rank slope is equal to 0.254 while with 25% top-censoring,
the rank-rank slope takes a value of 0.287. Among the ranking of all 709 commuting zones
(CZs) that we analyze, this change in mobility corresponds to Los Angeles moving from 59th
place to 134th place. This is a substantial change in mobility. Of course, 25% of the sample
being censored is an extreme case, but we see significant sensitivity of the rank-rank slope with
respect to g even for smaller values. In addition, discreteness stemming from sources other than
censoring may have similarly substantial impacts on the estimand.

While for top-censoring, the rank-rank slope increases with ¢, for bottom-censoring it de-
creases with q.

The first row of the figure shows the estimands for w = 0, i.e. the smallest rank. The second

row shows the same estimands when w = 1, i.e. largest ranks. The rank correlation is almost
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Figure 11: Separate rank-rank regression within each CZ: histograms of ratios of standard errors.

the same for the two definitions of the rank, but the rank-rank slope substantially changes.
Handling ties differently (w = 1) than in the first row of the figure (w = 0) means that Los
Angeles’ mobility measure drops from 0.254 without censoring to 0.218 with 25% top-censoring.
This change in mobility corresponds to Los Angeles moving from 59th place up to 20th place in
the ranking of all 709 CZs.

Second, the way in which ties are handled also impacts the statistical properties of the OLS
estimator of the rank-rank slope. Figure 13 illustrates this point by showing the estimated
distribution of the estimator for the two different definitions of the ranks for w = 0 and w = 1.
To create this graph, we simulated 10,000 samples of size 2,000 from the income distribution
calibrated to data from Los Angeles with 25% top-coding and the Gaussian copula. In Figure 12,
we have already seen how the estimand changes depending on whether w = 0 or w = 1. In
Figure 13, we see this reflected in the different means of the two distributions of the estimator.
In addition, however, the variance of the two estimators is also different. If ties are handled by

setting w = 0, the variance is larger compared to the estimator’s variance when w = 1.
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Figure 12: Spearman’s rank correlation (“Spearman”) and the slope coefficient from a rank-rank regression
(“rank-rank reg”), where Y is a child’s income and X their parent’s income. The graphs in the first column
(“bottom censoring”) show the two estimands when all parental incomes up to the ¢-th quantile are set to zero,
while those in the second column (“top censoring”) show the same quantities when all parental incomes above the
(1 — g)-th quantile are set equal to the income at that quantile. The first row employs the smallest rank (w = 0)

and the second row the largest rank (w = 1).
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Figure 13: Estimated density of the OLS estimator of the rank-rank slope with two different ways of handling
ties: either employing the smallest rank (w = 0) or the largest rank (w = 1). The densities are estimated based

on simulated data from the income distribution calibrated to data from Los Angeles with 25% top-censoring.
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Appendix

A The Survey on the Use of Regressions Involving Ranks

We searched for papers on Google Scholar. For instance, to find articles in the Review of
Economic Studies, we used the search phrase “rank regression source:” Review of Economic
Studies”” and then restricted the years of publication to 2013 to present (February 2024 at the
time of the search). For the American Economic Review, we excluded Papers & Proceedings,
AER Insights, and comments. For the Journal of Political Economy, we excluded JPE Micro
and JPE Macro.

We then manually went through all search results, looking for the occurence of the word
“rank” in each paper. Many papers were immediately discarded if, for instance the word only
occurred in the context of “rank conditions” or in papers without an empirical analysis. For
each paper, we made a judgement about whether the regressor, the outcome variable, or both
in a regression had been transformed into ranks, classifying them as “rank-rank”, “level-rank”,
or “rank-level”. For papers containing at least one of these types of regressions, we then clas-
sified the type of estimator being used into the categories “OLS” (containing papers that ex-
plicitly state that OLS was used and those that didn’t explicitly state the method used, but
we judged to most likely have been OLS!'!), “TSLS”, “nonparametric” (e.g., kernel regression,
local-polynomial regression, bin-scatter), and “other” (e.g., probit, logit, regression discontinuity
designs). Next, we classified the methods used for computation of standard errors into the cat-
egories “homoskedastic” (papers explicitly stating that they used the textbook homoskedastic

“robust” or “heteroskedasticity-robust”,

error formula), “robust” (any estimator referred to as
but does not contain the word “cluster”), “clustered” (any method whose description contains
the words based on the stem “cluster”), “unknown” (for cases in which we could not find any
description of the method used), “none” (for cases in which no standard errors were computed),

and “other” (e.g., bootstrap, permutation inference).

B Differences in Asymptotic Variances

B.1 Asymptotic Variances as Functionals of the Copula

Under the assumption that F' is continuous, all three asymptotic variances analyzed in Section 2
can be written as functionals of the copula C. First, one can use results in Borkowf (2002) to
show that

0% =144 {9607 + 05 + 203 + 204 + 205} (25)

« ”

HThese are cases in which the paper contains a description of the form ... was regressed on ...” without any

further details.
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Figure 14: Number of (paper x regression type x standard error type) combinations by top-level JEL-code. The
sample consists of papers published in American Economic Review, Quarterly Journal of Economics, and Review
of Economic Studies between January 2013 and February 2024. The Journal of Political Economy is excluded

because it does not publish JEL codes for its articles.

where

1 —u)?(1 = v)%dC(u,v)

c\Hc\\\

/0 /D (1 —u—=0+C(u,0))(1 - a)(1 = 0)dC(u,v)dC(u,v)
iy

1
/D min{1 — u, 1 — @}(1 — v)(1 — 5)dC(u, v)dC (@, 7)

0
0
05 — /01 /01 /01 /01 min{1 — v,1— 5}(1 — u)(1 — 7)dC(u, v)dC (@, 7)

Second, since p = 12 fol fol C(u,v)dudv — 3, the homoskedastic asymptotic variance of the OLS

estimator can be written as

1 pl 2
or=1-— (12/0 /0 C(u,v)dudv — 3) . (26)

1 1
= u — kU— ! u, v
My = / / (u— 1/2)F (v — 1/2)1dC (u, v),

Finally, noticing that

it is clear that

80

is a functional of C. Interestingly, all three variances depend on C, and only on C.

02
o = 144 <M22 — 2pM31 + )
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B.2 Optimizing the Difference in Variances Within Families of Copulas

This section provides details on the calculations of the maximal and minimal differences of
variances presented in Figure 1. Specifically, we want to minimize and maximize the difference
03—
of F, and only on C. To make this dependence explicit, we write 0(C) and o2 (C). Consider

o2 for j € {hom, EW}. As shown in Appendix B.1, both variances depend on the copula C

the maximization problem first. We want to solve

max o7(C) — o*(C), (27)

where C is a family of copulas. We consider three families, the Gaussian family, the (Student-)t
family, and one with quadratic dependence.
Denote by Gy the bivariate Gaussian copula with correlation 6 (both variances are equal to

one, means are equal to zero). The Gaussian family is then defined as
CGaussian = {G91 0 c [O, 1]}

Let Ty denote a (Student-)t copula with one degree of freedom and dependence parameter 6.

Then, the t family we consider is
Ci:={Ty: 6 €0,1]}.

Finally, consider the following “quadratic” data-generating process. X ~ U[-1/2,1/2], Y =
1/24 60X + (1 —0)X? + ¢, where e ~ N(0,107%). Denote by Fy the joint distribution of (X,Y)
and by Qg the copula of Fy. Then, the quadratic family we consider is defined as

Cquadratic = {QO: NS [07 1]}

We want to solve (27) with C being replaced by each of the three families as well as the
corresponding minimization problem. These are optimization problems in the scalar parameter
6 € [0, 1], which we solve by simulation combined with a grid search. First, we define an equi-
distant grid of [0, 1] of size 200. For each parameter value 6 on this grid, we then draw 10,000
samples of size 2,000 from the bivariate copula in C with that parameter. Then, we compute
the value of the objective function in (27) for each of these draws and then average over all
Monte Carlo samples. Denote the maximizer 6 on the grid leading to the largest value of the
objective function by 6*. The left graph of panel A in Figure 1 then plots the magnitude of
02(Cp+) (“correct”), of o2, (Cp+) (“hom”) and the rank correlation p of the copula Cp+ in the
given parametric family.

The black dots are computed as follows. In the data from Section 5.3, Los Angeles has a
rank correlation of 0.254. For each of the parametric families, we can then find the parameter
value 014 € [0,1] so that the copula from that parametric family has a rank correlation equal
to 0.254. Besides the value of p, the dots then show the values of 0?(Cy, ,) and UJZ(CQLA) for
j € {hom, EW}.

The right graph in panel A of Figure 1 plots the quantities for the copula that solves the
minimization problem corresponding to (27). Panel B of the figure shows the corresponding

graphs for the optimization problems with j = EW.
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C Additional Results for the Empirical Applications
C.1 Intergenerational Mobility in India — Education

joint distribution of fathers' and sons' years of education
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Figure 15: Count of observations for each pair of father and son years of education, by birth cohort of the son.

C.2 Intergenerational Mobility in the U.S. — Income
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Figure 16: Rank-rank regression with clusters: 95% marginal confidence intervals for the normal copula.
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confidence intervals of regression parameters (t copula)
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Figure 17: Rank-rank regression with clusters: 95% marginal confidence intervals for the t copula.
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Figure 18: Rank-rank regression with clusters: histograms of ratios of standard errors.
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Online Appendix

D Asymptotic Theory for All Regression Coefficients

D.1 Rank-Rank Regressions

In this section, we present the asymptotic theory for all coefficients in the rank-rank regression

£ (RX (X)>] =0, (28)
W

where we had already introduced the equation projecting Rx(X) onto the other regressors in
W

model studied in Section 3:

Ry(Y)Zpr(X)—i-W/ﬂ-i-E, B

Rx(X)=W'y+v, E[vW]=0. (29)

To study the asymptotic behavior of the coeflicients 3, we now also introduce some additional
projections. Let W, denote an element of W := (Wy,...,W,)" and by W_; the vector of all
elements of W except the I-th. We now introduce the projection of W; onto Rx(X) and the

remaining regressors W_;: for any, [ =1,...,p,
Rx (X
%% :Tle<X)+Wil5l—|—Ul, E |y ( I)/I(/( )>] =0, (30)
—1
where 71,..., 7, are scalar constants and d1,...,d, are (p — 1)-dimensional vectors of constants.

Assumption 8. Forl=1,...,p, the random variable v; is such that E[v?] > 0.

Consider the OLS estimator in (11):

(9 B (z”; (5;) (X V%’)>_1iil (f;) RY. (31)

Let 03, ho,1 == hi, ho2 := ha, and hg3 := h3 be as defined in Theorem 1. For [ =1,...,p,
further define o7, := E[uv7],

1
ooz, w,y) == ) [ho,1(z,w,y) + ho2(x,y) + hos(z)]

b, w) = — (e, ,y) + ol ) + ()]

vy

and
) := (Ry(y) — pRx(z) — w'B)(w; — nRx(x) — w’;d),
hia(x,y) == E[(I(y,Y) = pI(z, X) = W'B)(W; — nRx (X) — W.,8)],
hl’g(x) = E[(Ry(Y) — pr(X) - WIB)(VVZ - Tlf(x,X) — Wilél)]

hl,l(x7 w,y

Finally, let ¢; := (¢o(Xi, Wi, Vi), 61(Xi, Wi, Vi), ..., p(Xi, Wi, Y3))'.
With the additional assumption and notation, one can derive the following joint asymptotic

normality result:
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Theorem 5. Suppose that (28)—(31) hold and that Assumptions 1-3, and 8 are satisfied. Then
p—p 1 <
V| = =—= > vi+op(l) —p N(0,%),
where ¥ := E[;1)]] and ;’s are as defined above in this section.

Theorem 1 has already shown the asymptotic variance of p. Theorem 5 adds to that result
by providing the asymptotic variance for individual components of B: foralll =1,...,p, we

have
V(B — B1) —p N(0,0%,),

where .
o} =~ F [(hl,l(x, W,Y) + hio(X,Y) + h,,g(X))Q] .

vy

D.2 Rank-Rank Regressions With Clusters

In this section, we present the asymptotic theory for all coefficients in the rank-rank regression

. Rx(X)
w

where we had already introduced the equation projecting Rx(X) onto the other regressors in
W

model with clusters studied in Section 4.1:

G| =0as., (32)

Ry(Y) = zc:]l{G =g} (pgRx(X) + W'By) +¢, E
g=1

nG
Rx(X) = Z]I{G =gWyy+v, EWW|G]=0as. (33)

g=1
To study the asymptotic behavior of the coefficients 3,, we now also introduce some additional
projections. Let W) denote an element of W := (Wy,...,W,)" and by W_; the vector of all
elements of W except the I-th. We now introduce the projection of W; onto Rx(X) and the

remaining regressors W_;: for any, [ =1,...,p,

nG
W, = Z]I{G =g} (Tl,ng(X) + W/_lél’g) +v, E

g=1 -

U <RI)/T(/(X)> ' G] =0as., (34)

where 7; 4 are scalar constants and d; 4 are (p — 1)-dimensional vectors of constants.

Assumption 9. Forl = 1,...,p and g = 1,...,ng, the random wvariable v; is such that
E[1{G = g}v?] > 0.

Consider the OLS estimator in (17):
n -1y
Py R¥ X RN oy
~ = ]I{GZ = C} Rz Wz’/ ]I{GZ = C} Ri . (35)
<ﬁ9> <; (Wl> ( >> ; Wi
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Let o2

V?Q ’

l=1,...,pand g =1,...,ng, further define a?w = E[1{G = g}v}],

hot,g == hig, ho2g = hag, and ho34 := h34 be as defined in Theorem 2. For

_ 1 _
P0,g(9, 2, w,y) = —5—[ho,1,9(9, 2w, y) + hozg(2,y) + hose(2)]
V7g
¢l,g(§, x,Yy, w) = O'T [hl,l,g(ga z,w, y) + hl,Q,g(l‘v y) + hl,3,g($)]
v,g9

and

hl,l,g(gv z,w, y) = ﬂ{g = g}(RY(y> - ,OgRX(ZL') - wlﬁg)(wl - Tl,gRX(x) - le517g)7
hi2g(z,y) = E[I{G = g}(I(y,Y) — pgl (x, X) — W'Bg) (Wi — migRx (X) — Wll‘sl,g)]a
hisg(x) = E[I{G = g}(Ry (Y) — pgRx (X) — W'Bg) (W) — g1 (, X) — W/ d1,4)].

Finauya let %’,g = (d)o,g(Giv Xi7 ‘/I/iu YL)) ¢1,g(Gi7 Xi7 Wi7 }/2)7 ) ¢p7g(Gi) Xi) Wi7 }/l)), and % =
(¢0,1(Gi7 Xiv Wia E)? ceey ¢0,7ZG (Gu Xia Wiv Y;)7 ¢1,1(Gi7 X’ia Wi7 }/:L)a veey ¢1,nG(Gi7 X’ia Wi7 }/:L)7 .. ')/'
With the additional assumption and notation, one can derive the following joint asymptotic

normality result:

Theorem 6. Suppose (32)—(35) hold and that Assumptions 4-7, and 9 are satisfied. Then:

p-p) 1 &,
ﬁ(g_ﬂ> = n;wz‘i‘OP(l) —D N(072)7

where ¥ := E[;y)] and ; as defined in this section.

Theorem 2 already shows the asymptotic variance of p,. Similarly, for the [-th component
of B\g, denoted by Bl,ga we have

V(Brg — Brg) —p N(O, oh.,):
where 1
Ty = o B | (g (G X W) 4 b (X,Y) + b (X))

v,9

D.3 Regression of a General Outcome on a Rank

In this section, we present the asymptotic theory for all coefficients in the rank-rank regression

e (RXW(/X)>] =0, (36)

with the projection equations (29) and (30). Consider the OLS estimator in (21):

(g) - (z: <l;f> (rX Wz‘/>)1§ (ﬁf) Y;. (37)
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model studied in Section 4.2:

Y =pRx(X)+W'B+¢, E




Let JE, ho,1 := hi, ho2 := ha, and hg3 := hs be defined as in Theorem 3. For | = 1,

further define 02, := E[v7],
1
¢o(z,w,y) = o [ho,1(z,w,y) + ho2(x) + hos(z)]
(hi1(z,w,y) + hio(x) + hyg(x)]

le(l‘, Y, w) = 9
o,

and
hia(z,w,y) == (y — pRx(x) —w'B)(w — nRx (z) — w’,dy),
(Y — pI(z, X) = W'B)(W; — 1 Rx (X) — W',68)],

hio(z) == E
= E[(Y — pRx(X) —W'B)(W, — I (x, X) — W' ,5)].

i 3()
Finally, let 1/)1 = (QSO(XZ, Wia E)a ¢1 (XZ, Wia K)a DRI pr(Xi, Wi7 E)),
With the additional notation, one can derive the following joint asymptotic normality result:

Theorem 7. Suppose (29), (30), (36), and (37) hold and that Assumptions 1-3, and 8 are

satisfied. Then:
~ 1 n
P p) :nglwl_‘_OP(l) —D N(O,E),

NS
B—p
where ¥ := E[;y)] and ¢; as defined in this section.

Theorem 3 already shows the asymptotic variance of p. Similarly, for the I-th component of

Bl we have
V(B — Bi) =p N(0,03),
where .
o} == F [(hm(X, W,Y) + hio(X,Y) + hl73(X))2] .
v

E Proofs

E.1 Proofs for Section 2

Define the sample counterpart to My;:

k l

— IR PN JIRNPN ~ RPN
My = nZ; FX(Xi)_nZ:lFX(Xj) FY(Yi)_EZ v(Y))
1= 1=
Before proving Lemma 1, we state and prove the following auxiliary lemma.
Lemma 5. Let (X;,Y;), i =1,...,n, be an i.i.d. sample from a distribution F with continuous

marginals. Then My, = My + op(1) for (k,1) € {(0,2),(2,0),(2,2),(3,1),(4,0)}.
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Proof. Define Py; := Fx(X;) — 1 Y Fx (X)), Px; = Fx(X;) — LS | Fx (X)), and Py; :=
Fx(X;)— E[Fx(X)]. Similarly, define Py;, Py;, and Py;. Also, let R,, := max{sup,cp |Fx(z) —
Fx ()|, supyeg |Fy(y) — Fy(y)|}. Note that by the Glivenko-Cantelli theorem (e.g., Theorem
1.3 in Dudley (2014)), R,, = o,(1). We will use this bound, as well as the elementary identity
a? —b? = (a — b)? + 2(a — b)b, several times without referring to them explicitly.

First, consider
1o 1o 1o ’
Vo — P2 _ n N2 _ | = n )
My = EZPX" = EZFX(XZ) (nZFX(X,)> :
i=1 i=1 =1
Using the law of large numbers, we have

> (Fx(Xi)? - Fx(X)?)
=1

S

L f:ﬁ (X;)? = L zn:F (X:)? +
n X i - n 4 X 7
=1 =1
n

= E[Fx(X)*] 4 0,(1) + %Z(ﬁX(Xz') — Fx(X)* + 2 > (Fx(X:) — Fx (X)) Fx (X))
=1 i=1

= E[Fx(X)?] + op(1).

Furthermore,

n

2 2
RPN 1 1~ 5
(n Z FX(Xi)> = <n ZFX(XZ') +- Z(FX(Xi) - FX(Xi))> = (E[Fx(X)] + 0p(1))*.
=1 =1 =1
Therefore, we have shown M = Mag + 0p(1). Analogously, Moy = Moy + op(1).
Second, consider
Ty = LS PLBL = LS (B - P2 Ph+ LS (B — B2 P+ LS B
22—nz Xi Yi_nz Xi — ki Yi+nz vi — Ly Xi+nz Xitvi
i=1 i=1 i=1 =1

= A, + B, +0C,.
Here,
1 n
Anzﬁz< )2(27P)2(z> 32/1

i=1

NN 2 2 «

= > (Pai—Pu) P+ =Y (Pxi— Pxi) PP

=1 =1
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and so
1~ 5o 1~
|A,| < 41%,215 leyl- — 2R, ZlPXiPYZ. = 0,(1)
1= 1=

since |Py4| < 1, |Px;| < 1. Also, by an analogous argument, B, = op(1). In addition,
1o~ ~
Cn = n Z P )2(1'13 32/z
i=1

:EZ(P)Q(Z‘_P)Q(Z‘)PS%'{';Z(Piai_Pe/i)P)Q(i"'ﬁZP)Q(iP}z/i
i=1 i=1 i=1
n

1 ~ 2 2 o [~ ~
= z; <PX1‘ - PXZ') P2, + - z; (PXi - PXi) Px;PZ;
1= 1=

1 " ~ 2 2 n - 1 n
+nz;(PYi_PYi> P)%i—f—nz;(Pyl'—PYi) PY@P)2(1+nZ;P§(zP}%z
i= = i

2
n n

:%Zﬁfn %Z(FX(XJ')_E(FX(X))) +%ZPXZ-I5;% %Z(FX(X]-)—E(FX(X)))
i=1 Jj=1 i=1 j=1
2
F PSS ) - B |+ 23 PP | S (R (1) — B (V)

i=1 j=1 i=1 j=1

+ % Zn:(FX(Xi) — E[Fx(X)])*(Fy(Yi) - E[Fy(Y)])?
=1

by the law of large numbers and the bounds \ﬁyﬁ <1, |P)2(Z| <1, and |Py;| < 1.
Third, consider

. 1 noo 1 n R B R 1 n R B ~ 1 noo_
My = =S PyiPri=— 3 (Phi— Ph) Prit — > (Pri— Pri) P+ — 3 PPy
" =1 " =1 n i=1 " i=1

=D+ B, + F,.

Using the elementary identity a® — b = (a — b)3 + 3ab(a — b), we have

1 e/~ ~ ~ I/~ ~ \3 ~ 3 e/~ ~ ~ o~ o~
D, = - Z (P)i‘(Z — me) Py, = - Z (PXz- — PXi> Py; + - Z (PXi — sz') PxiPx;Py;.
=1 =1

i= 1=

Then, continue the proof similarly as for J/M\QQ.
Finally, consider
. 1 noo 1 n R _ R 1 n R _ _ 1 noo_
My = EZP)@ = EZ (P)zﬁ—P)2Q-> P;Z(i-i-gz (P)Q(Z _P)2(i) P)Q(i"i‘ﬁzp)%ip)%i'
i=1 i=1 i=1 i=1

Then, continue the proof similarly as for ]\//.722. Q.E.D.
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Proof of Lemma 1. Consider first the estimator for homoskedastic regression errors o7 . We

have

n

—ZA? —Z RY — RY - p(RX - RY)]"

=1

iiz RY RY /\ Z(RX RX)
i=1
2 2

S RO R0l IRV B PoEORED STeY
i=1 j=1

i=1 j=1
= Moz — p*Mag = Moz — p* Mag + 0p(1) = Moa(1 — p*) + 0p(1)
where the second-to-last equality follows from Lemma 5 and the last one from noting that

MQO = M()Q. Similarly,
1« -
n D (R¥ = R¥)? = Moy + (1),

and so (7) follows.
Next, consider the Eicker-White estimator U%W. Similarly as above, we have

n

fZAQ RX RX Z (RX RX)]2(RZX _Rx)z
izn: RX RX)
=1

_ Aﬁ Y _ pY X _ pX)3
2p— Y (R} = R")(RY - RY)

=1

N PN NN e RPN :
= ;Z y (Vi) — EZFY(}/]) Fx(Xi) = ) Fx(X;)
i=1 Jj=1 Jj=1
3

1 4 1 x4 ~ RPN

—25—- > FY(YZ)—EZFY(YJ) Fx(Xi) = =~ ) Fx(Xj)
i=1 7=1 j=1
4
1 -~ NP

2

+p 21 Fx(Xi) — nleX(Xj)
I3 j=

= My, — 2ﬁ]\/4\31 + ﬁzf\//f40 = May — 2pM31 + p*Myg + 0,(1),

where the last equality follows from Lemma 5. Similarly,

" 2
1 _
(n Z(R%X - RX>2> = M3y + 0p(1),
i=1
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and so (8) follows by noting that My = 1/12, and Myo = 1/80. Q.E.D.

Proof of Lemma 2. Let a € (0,1) be a constant and let F' be the cdf of a pair (X,Y") of U([0,1])

random variables such that
a—X, if0<X<aq,

Yy —
X, ifa< X <1.
Then
ar —2%/2, if0<2z<a,
E[l{X <z}Y] =
x?/2, ifa<ax<l1.
and
ay —y?/2, if0<y<a,
By < 1] = 1Y ye/ <y<

y?/2, ifoa<y<1.
Hence, given that X > a if and only if Y > a, the function & in (14) satisfies
E[h(X,Y)] = E[(X(a ~X) — (aX — X2/2) — (ala — X) — (a — X)2/2)>]I{X < a}]
— E[-(a*/2)1{X < a}] = —a*/2
and
EMX, Y)Y =E [(X(a — X) - (aX — X2/2) — (aa — X) — (a — X)2/2))2]I{X < a}]
= B[(a?/2)*1{X < a}] = d°/4.

Therefore, given that 02 = 144Var(h(X,Y)) by the discussion in a remark after Theorem 1, it
follows that
0? = U(E[R(X, Y)?] - (E[A(X, Y)])?) = 36(a° — a°)

On the other hand, by Lemma 1,

ol =1-—p?=1-(12E[XY] - 3)* = -8 — 144(E[XY])? + T2E[XY]

1 a3)\? 1 a3
=8 144 (- — — 72( - — — | =4(a® - a).
(5-5) 2 (-5) -

In addition, tedious algebra shows that

1 a3 at a® 1 a’ at 3a®
Myp=— L 4% & == & 82093,
2T 613 6 Ty sty g 7 “

Thus, by Lemma 1,
1 a® at
U%W:144<<80—6+3—6>

1 33 n a*  3ad® n a® T 3a® n 1 a + a®
S e (Tl — 4
40 10 2 10 2 5 80 20 20
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Combining these bounds, we obtain that o7, /0% — 0o and 0%, /0% — oo as a — 0, yielding
the asserted claim. Q.E.D.

Proof of Lemma 3. Let F' be any distribution with continuous marginals and let (X, Y") be a pair
of random variables with distribution F. Letting F'x and Fy denote the corresponding marginal
distributions, it follows that U := Fx(X) and V := Fy(Y) are both U([0, 1]) random variables.
Also, F(X,Y) = C(U,V), where C is the copula of F'. In addition, p = Corr(Fx(X), Fy(Y)) =
12E[UV] - 3.

Consider first the case p > 0. By Lemma 1,

o2 1-pP=0-p)(1+p) >1—p=4—12E[UV]

hom —
=4— E[12UV — 6U? — 6V? + 6U* + 6V?]
=4+ 6E[(U — V)2 — 6E[U? — 6E[V?] = 6E[(U — V).

On the other hand, by (4),

1 1
2 = ar — — v)— v)av u —Uu U
2/9 =V ((ZU 12V 1)+4/O (C(U,v) — Uv)d +4/0 (O, V) — uV)d >

1 1 2
< 2F ((2U—1)(2V—1)+4/ (U/\U—Uv)dv+4/ (u/\V—uV)du—l)] (38)
0 0
1 1 2
428 <4/ (C(Uv) — U Av)do + 4/ (O, V) — un V)du> . (39)
0 0
Here, observe that
1 772 1 _ /2
/(U/\U—U’U)d’UZU v and /(u/\V—uV)du:V2V.
0 0

Thus, the expression in (38) is equal to
2F [(4UV —2U% —2V?)?] =8E [(U - V)] <8E[(U - V)?].
To bound (39), we claim that
|C(u,v) —uAv| < P|U—=V| > |u—0|). (40)
Indeed, if u < v, then

C(u,v) —uNv=E[I{U <u}l{V <v}] — E[I{U < u}1{U < v}]
= E[{U <u}(1{V <o} —1{U <v})] = —E[1{U < u}1{V > v}],

and so (40) follows. On the other hand, if u > v, then
C(u,v) —uANv=E[I{U < u}l1{V <v}] — E[1{V < u}1{V < v}]

= BIL{V < o}(1{U < u} — L{V < u})] = —E[L{V < }1{U > u}],
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and so (40) follows as well, yielding the claim. Thus,
1 1
/ |C'(u,v) —uAvldv < / P([U =V| > |u—v|)dv
0 0
1
< 2/ PU = V| > t)dt < 2E[|U — V]
0
and, similarly,
1
/ 1O, v) — u A vldu < 2B]U — V).
0
Hence, the expression in (39) is bounded from above by
2 x 16*(E[|U — V|))? <512E [|U — V[*].

Therefore, 02 <9 x 520E[|U — V|?], and so o2 /o? is bounded below from zero.

In turn, the case p < 0 can be treated similarly. The asserted claim follows. Q.E.D.

E.2 Proofs for Section 3

The proof of Theorem 1 relies on a few auxiliary results, which are presented below. As in the
main text, throughout this appendix, w € [0, 1] is fixed and the same in the definitions of Rx,
ﬁx, Ry, and Ey.

Proof of Theorem 1. By the Frisch-Waugh-Lovell theorem, the estimator p in (11) can alterna-

tively be written as

5o SRR - W) Y Ry (V) (Rx (X0) = Wi9) (41)
Z?:l(RiX - Wﬁ)Z Z?=1(RX (Xi) — Wi7)? 7

where
n -1 n
5= <Z WiW{> (Z Wi}A%X(Xi)> (42)
i=1 i=1

is the OLS estimator of a regression of Ry (X;) on W;. Therefore, using S Wi(Rx (X;) —
W/7) = 0 and replacing Ry (Y;) in the numerator of (41) by Ry (Y;) — pRx (X;) + pRx (Xi),

 Jr SRy (Y) — pRx(X0) (Rx (X3) ~ W/5)

V(g p) R ~ (43)
& i (Rx (X3) — W/7)?
Thus, by Assumption 3 and Lemmas 9 and 10,
== 2 (Ry (V) — pRx(X3) = WiB)(Rx (Xi) — W)
~ n i=1 YL pLvx 7 i X i Y
Vi(p—p) =" +op(l).  (44)

% Z?:I(RX(Xi) - Wz‘,:Y\)Z
Consider the numerator. Define Z; := (Y;, X;, W/)' for all i = 1,...,n and

f(Zi, Zj, Zy) == (1(Y;,Ya) = pI (X, Xi) — W B) (I( X, Xi) — Wi)
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for all 4,4,k = 1,...,n. Also, define h(Z;, Z;, Z)) :== 61 >ivinis . (Zivs Zias Zig), where the sum
is over all six permutations of the triplet (7,7, k), for all 7,5,k = 1,...,n. Note that h is a
symmetric function satisfying E[h(Z;, Z;, Zi)] = 0 whenever 1 < i < j < k < n. Moreover, let
Y1 be the set of triplets (4,7, k) in {1,...,n}3 such that all three elements are the same, X5 be
the set of triplet (4, j, k) in {1,...,n}3 such that two out of three elements are the same, and X3
be the set of triplet (i,7,%) in {1,...,n}3 such that all three elements are different. It is then
easy to check that for all [ = 1,2, 3,

Z f(ZhZ]vZk) = Z h(Zthazk)a

(i,j,k:)eEl (i,j,k)eZl
and so . .
N f(ZiZ.Zk) = Y WZi Zj, Z).
ij k=1 ij k=1
Therefore,
1~ = ~ .
— > (Ry(Y) = pRx (X:) = WiB)(Rx (Xi) = W)
i=1
1 < B
T3 > (1Y, Y) = pI (X4, Xi) = WiB) (I( Xy, Xi) — Wiv) + op(n~'/?)
ij k=1
1 _ 1< _
Tl Z f(Zi; Zj, Zk) + op(n 1/2) 3 Z MZi, Zj, Zy;) + op(n 1/2)
ivj k=1 ij k=1
—1
B <§> > WZi, Z, Z) + op(n V),
1<i<j<k<n

where the last line follows from the Lemma on p. 206 of Serfling (2002), whose application is
justified since E(h(Z;, Z;, Zx)?) < oo by Assumption 2. Furthermore, the results on p. 188
of Serfling (2002) imply that the U-statistic can be projected onto the basic observations. To

compute the projection, note that, for z = (y, z,w’)’,

E[f(Z1,2Z2,Z3) | Z1 = 2| = E[f(Z1, Z3, Z2)| Z1 = 7]

= (Ry(y) — pRx(z) — w'B)(Rx(z) — w'y) = hi(z, w,y),
Elf(Z2,21,23) | Z1 = 2| = E[f(Z3, 21, Z2) | Z1 = 7]

=E[(I(y,Y) = pl(z, X) = WB)(Rx (X) = W'y)] = ha(z,y),
E[f(Z2,Z3,21) | Zy = 2] = E[f(Z3, Z2, Z1) | Z1 = 7]

= E [(Ry(Y) — pRx(X) = W'B)(I(z, X) = W'y)] = ha(x).

Denoting h(z) = E[h(Z1, Za, Z3)|Z1 = z], we thus have h(z) = (h(z,w,y) +ho(x,y)+hs(x))/3,
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and so

n

-1
(”) > h(Zi,Z5,Zk) = %Zﬁ(&-) +op(n~?)

3 1<i<j<k<n i=1
n

1
= - Z {hl(XuVVi,Yi) + ho(X;,Y;) + h3(Xi)} +op(n~Y2).
i=1

Therefore, the central limit theorem (e.g., Theorem 9.5.6 in Dudley (2002)) implies that the
numerator of (44) is asymptotically normal with mean zero and variance E[(h;(X,W,Y) +
ho(X,Y) + h3(X))?]. By Lemma 9, the denominator of (44) converges in probability to o2, so
that Slutsky’s lemma yields the asserted claim. Q.E.D.

Proof of Lemma 4. First, we prove that

1O 1
- > (Hyi + Hyi + Hz)? — - D (i (Xs, Wi, Ya) + ho(X,, Vi) + hs(X3))?| = op(1).  (45)
i=1 =1
To do so, observe that E [(hi (X, W,Y) + he(X,Y) + h3(X))?] < oo by Assumption 2. Hence,
it follows from Lemma 11 that (45) holds if
1 n
Ry = n Z(Hh‘ + Hyi + Hz;i — ha (X3, W3, Vi) — ho(Xy, Vi) — hs(X3))® = op(1).  (46)

i=1
In turn, by the triangle inequality, R, < 9(Ri, + Ran + Rsy), where

1 « )

Ry = ;(Hu — h (X, Wi, Y7))?,
1 — )

Rgn = ; Z;(HQZ - hQ(XmY;)) )
1 n

Rn;:— Hl—h Xl 2.

B = ;( 3i — h3(X3))
We bound these three terms in turn.
Regarding Ry, we have E[|Ry (Y) — pRx(X) — W’B[*] < 0o and E[|Rx(X) — W'v|*] < oo

by Assumption 2. Also,
1 Y  ~pX 12 ron [
=3 (R = BRX = WIB) — (By (Y)) — pRx(X:) = W{B)| = or(1)
i=1
by Lemma 7, Theorems 1 and 5 and Assumption 2. In addition,

" = op(1)

% D BT = WiF) = (Rx(Xy) = Wiy)

by Lemmas 6 and 7 and Assumption 2. Hence, Ry, = op(1) by Lemma 12.
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Regarding Ry, we have by the triangle inequality that

VR < sup —Z (v, Y;) = pI(z, X;) = WiB) (RS — Wj3) — ha(z,y)
x,ye

< sup —Z (y.Y)) = pI(x,X;) = WIB) (R — W}7) — ha(x,y)
RIS

+ sup ’hz(w,y) — ha(,y)],
z,yeR
where

n

~ 1
j=1

Also, sup, ,cgr ‘ﬁg(:c,y) - hg(x,y)‘ = op(1) under Assumption 2 by Lemma 8 and the triangle
inequality. In addition, for all j = 1,...,n, denote Bj(z,y) = I(y,Y;) — pl(z, X;) — WJ’B,
E (x,y) :==1(y,Y;) — ﬁ[(az X ) W’B, for all z,y € R, Cj := Rx(X;) — Wiy, and 6]- = RJX -
W;7. Then sup, yecp 5 ZJ 1( i(2,y)—Bj(x,y))* = op(1) by Theorems 1 and 5 and Assumption
2; 711 > i1 (C —C;)* = op(1) by Lemmas 6 and 7 and Assumption 2; sup,, ,cp 1 > =1 Bi(z, y)t =

Op(1) and %Z?:l C’J‘.1 = Op(1) by Assumption 2. Hence, by Lemma 12,

n

1 —~ Ea ~ o~
sup |- > Iy, Y;) = pI(x, X;) = WiB) (RS — WiA) — ha(,y)
PN ~
:sup z,y)Cj| < sup | — Bi(xz,y)C; — Bi(x,y)C;)? = op(1).
MZ Bj(x.9)Cj| < sup ng (2,0)Cj = Bj(a,9)C5)? = op(1)

Combining the presented bounds gives Ra, = op(1).
Regarding Rs,,, we have by the triangle inequality that

1< . ~ ~
VRan <sup |~ > (R} — PR = WiB)(I(2, X;) = Wi3) — hs(x)
j=1

zeR

1o . -~ JU ~
<sup|— Y (RY —pR; — WiB)(I(x, X;) — W[7) — ha(x)| + sup |hg(z) — hs(z)],

z€R nj:l z€R
where
1 n
= > (By(Yj) = pRx(X;) — WiB)(I(x, X;) — Wjy), forallz € R.
=1

Also, sup,.cg \ﬁg (£)—hs(x)| = op(1) under Assumption 2 by Lemma 8 and the triangle inequality.
In addition, for all j = 1,...,n, denote B; := Ry (Y;)—pRx(X;)— W’B, = RY—pRX W'ﬁ,
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Cj(z) = I(z, X;)-Wjn, (/Z’\](x) = I(z, X;)-Wj7, forall > € R. Then 1 ZJ 1(B —Bj)* =o0p(1)
by Theorems 1 and 5, Lemma 7, and Assumptlon 2; SUDLeR o Z]: (Cj(x) — Cj(z))* = op(1)
by Lemma 6 and Assumption 2; %Z?Zl B} = Op(1) and sup,eg 1 > i1 C;(z)* = Op(1) by

Assumption 2. Hence, by Lemma 12,

n

sup | = > (R = PRI = WiB) (I (@, X;) = W) = ha(a)
S j=1
15 A 1~ 5 A )
=sup|— » B;Cj(z)— B;Cj(x)| <sup,|— Z(B]Cj(m) — B;Cj(x))? = op(1).
zeR | = zeR \| i

Combining presented bounds gives Rs, = op(1).
Thus, (46) and hence (45) are satisfied. In turn, combining (45) with the law of large numbers

yields
% S (Hyi + Hai + Hyi)? —p E[(h (X, W,Y) + ha(X, Y) + ha(X))?). (47)

Also, 62 —p 02 by Lemma 9. The asserted claim now follows from combining these convergence

results with the continuous mapping theorem. Q.E.D.
Lemma 6. Under Assumptions 1 and 2, we have /n(y —v) = Op(1).

Proof. By (12) and (42),

Vi —v) = <:L > WiWiI> (\/15 > Wivi + Bx(X;) - RXQQ))) :
=1 =1

By the law of large numbers and Assumption 2, n=! > | W;W/ —p E[WW']. Also, by (12),
Assumption 2, and Chebyshev’s inequality, n~1/2 Yo Wiy = Op(1). In addition,

-1

" ~ -
s Do WilBx (X) - Ry (X) wZﬁ (X;, X))~ Bx(X0)) + op(n~"12)
- 7‘7
1< _
= a7 2 Wil = Bx(X0) w2§W ~ Rx(X0) + 0,(n ™),
1= =1 j#i

where E[|| Y7 Wi(w — Rx(Xy))|]] < >oiy E[|Wil]] = O(n) by Assumption 2 and

2

E ZZW (I(X;, Xi) — Rx(Xi)|| | =00

i=1 j#i

by Assumption 2 and results on p. 183 in Serfling (2002). Combining the presented bounds
gives the asserted claim. Q.E.D.

Lemma 7. Under Assumption 1, we have sup,cr |Rx (z)—Rx(z)| = op(1) and SUpycRr IRy (y)—
Ry (y)| = op(1).
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Proof. By the Glivenko-Cantelli theorem (e.g., Theorem 1.3 in Dudley (2014)), sup,cg \ﬁX(x) —
Fx(xz)| = op(1). Also, by the Glivenko-Cantelli theorem applied to —X;’s instead of X;’s,
SUP,cR |ﬁ)} (x) = Fx ()] = op(1). The first claim thus follows. The second claim follows from

the same argument. Q.E.D.

Lemma 8. Under Assumptions 1 and 2, we have

yeh LS T, Y (Rx (X))~ Wiy) — BTy, Y)(Rx (X) - W)l | =op(1),  (49)
ye i=1
sup | =3~ 1, Xi) (R (X,) = Wia) = B[l e, X)(Rx(X) - W) =op(1),  (19)
S i=1
sup |~ " (Ry (¥) = pRx (X)) = W/B)I (@, X)
r€ i=1
- El(Ry (¥) ~ plx (X) = W)@ X)) = op(D). 60

Proof. For any random variable A, let AT and A~ denote AT1{A > 0} and —A1{A < 0},
respectively. Then

yek %Z I(y, Vi) (Rx (Xs) = Wiyt = E[I(y,Y)(Rx (X) = W')*]| = 0p(1)
ye i=1

and
n

sup | 3 19 YO (R (X:) — W)™ = By, Y)(Rx(X) ~ W) )| = or(1)
ye i=1

by the argument parallel to that used in the proof of the Glivenko-Cantelli theorem (e.g., The-
orem 1.3 in Dudley (2014)). Combining these bounds gives (48). In turn, (49) and (50) follow

from the same argument. Q.E.D.

Lemma 9. Under Assumptions 1 and 2, we have

J RPN _

=S (Rx(X3) - WA)? >p El(Rx(X) = W] = o,
i=1

Proof. By Assumption 2 and the law of large numbers,

S (Rx(X3) — W) —p B[(Rx (X) ~ W')?]
=1
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Also, using an elementary identity a? — b = (a — b)? + 2(a — b)b, we have

n! Z WA =07ty (Rx (X)) — Wiy)?
=1
< % S (Rx(X,) ~ Rx (X)) — Wi + Wi)? 61)
=1
1230 (B (X0) — Rx(X0) — WA + Wi)(Rx(X) ~ W) (52)
=1

The term in (51) is bounded from above by

3 1o
=
S
!

:\w

< 2sup|Rx(z) — Rx(z)]> + 2|7 — 7|® x
r€ER

= op(1)

- Z_; WW!

by Lemmas 6 and 7 and Assumption 2. The term in (52) is bounded from above by

n 1/2 n 1/2
2 (ib Z(ﬁx(Xi) — Rx(X;) = Wi7 + W) ) <r,1¢ Z(RX(Xi) - Wz‘/W)Q) =op(1)

=1 =1

by the arguments above. The asserted claim thus follows. Q.E.D.

Lemma 10. Under Assumptions 1 and 2, we have

= (R (Y) — pRx (X)) (R (X,) ~ W73)
=1
\FZ — pRx(X:) — WB)(Rx (X;) — W/7) + op(1).

Proof. Using Y 1", Wi(Rx (X;) — W/7) = 0, we have

7= S (R (V) = oo (X)) (Rx(X) = W/3)
=1
1 <~ ~
= —= > (Ry(Yi) — pRx(X;) — W/B)(Rx(X;) — W}7)
\/ﬁ; Y pLvx X
IZ — pRx (Xi) = WiB)(Rx (X;) = W[7) = Rn
where
R, = \FZ — pRx(X;) — W/B)W!(F = 4) = Rin + Roy + Ray,
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with

Rai= —= S (B (¥i) = By (F)W/(5 )
i=1
1 & N
Ron = —= ) (pRx(Xi) = pRx (X:))Wi (7 —7)
Vi
1 n
R3p = — 5iWi,(:Y\ =)
oD
Consider each of these remainder terms separately. First,
| Rin| < sgp\Ry( y) — Ry (y)] x *Z IWill x VR =) = op(1)
Y

by Lemmas 6 and 7 and Assumption 2. Similarly, |Ra,| = op(1). Finally,

Zfz

by Lemma 6, Assumption 2, and Chebyshev s inequality. The asserted claim thus follows.
Q.E.D.

|R3n| S

x V@ =)l = op(1)

Lemma 11. For any vectors A = (Ay,...,A,) and A= (A, ..., A,), we have

n

ISy

=1

n

1~ 4 1, 4 1 ¢
< EZ(Ai — 4;)° +2J n;(Ai - Ai)2\l n;A?

i=1

Proof. We have

n

S - 4| =

=1

n

LS A - )i+ A

i=1 =1

)| < J ii(ﬁi - Ai)QJ % Zn:(zi +A4)°
=1

by the Cauchy-Schwarz inequality. Also,

J ii@ A= J ;i@ A +24:)2 < J;Z(ﬁ — 4?42

=1 i=1

by the triangle inequality. Combining these bounds gives the asserted claim. Q.E.D.

Lemma 12. For any vectors B = (By,...,B,), B = (El,...,én)’, C = (Cy,...,Ch), and
C= (61, .. .,én)’, we have

J - Z(Bici - B;iC;)* < (n Z(Bz - Bi)4> (n (Ci — Ci)4>

=1




Proof. For all i =1,...,n, we have

~

B;C; — BiC; = (B; — B;)C; + Bi(C; — C;) = (B; — B;)(C; — C;) + Ci(B; — B;) + Bi(Ci — C;).

3
3

— )2

:\H

i=1 z:l

I s o5 1< .
— “(Bi — B;)? — Y BXCi—C;)?
£\ S CHB B LS B )

by the triangle inequality. Applying the Cauchy-Schwarz inequality to each term on the right-
hand side of this bound yields the asserted claim. Q.E.D.

E.3 Proofs for Section 4
E.3.1 Proofs for Section 4.1

Proof of Theorem 2. Fix g € {1,...,ng} and let }~3 = 1{G; = g} R¥, RY = 1{G; = g} R,
and W, g = 1{G; = g}W;. Then, p, is the OLS estunator from a regression of RY on RX nd

WfL,g using all observations ¢ = 1,...,n. Therefore, as in the proof of Theorem 1,
L (szg — R (B, - Wi, 7)
2
> Zz 1 ( W/gfyg)
LY 1{Gi=g) (fzym — pRx (X)) (Rx(X0) = W3, )
—~ 2 )
% > e H{Gi =g} (RX(Xi) - Wi’%)

see (43). By Lemmas 13 and 14, we have

\/E(ﬁg —pg) =

Jn X G = g} (By (V) — po R (X0) = W18, ) (Rx(X0) = Wiy

E I G = g} (Rx () - W73,)

V(b — pg) =

Define Z; := (G;,Y;, X;, W/) for alli=1,...,n and
fo(Zi, Zj, Zi) == 1{G; = g} (1(Y},Y3) — pI(Xj, X3) — W B) (I(Xy, X;) — W)

119

for all 4,75,k = 1,...,n. Also, define hy(Z;, Z;, Z)) = 671 Zim’a is J9(Zirs Ziy, Ziy), where the
sum is over all six permutations (i1,2,73) of the triplet (,j,k). Note that h, is a symmetric

function satisfying E[hy(Z;, Z;, Z)] = 0 whenever 1 < i < j < k < n. Also, Assumption 5
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implies that E(hy(Z;, Z;, Zk)*) < co. Then, letting 2 := (g,y,z,w'),

Elfy(Z1,Z2,2Z3) | Z1 = 2| = E|f4(Z1, Z3, Z2)| Z1 = 2]
=1{g = g}(Ry (y) — pgRx () — w'By)(Rx(x) — w'yy)
= h1,4(9,7,w,9),

Elfy(Z2, 21, Z3) | Z1 = 2| = E[fo(Z3, Z1, Z2) | Z1 = 2]
=E[H{G = g}I(y.Y) — pl (2, X) = W'Bg)(Rx (X) — W'y,)]
= hag(z,y),

Elfy(Zy,Z3,21) | Zs = z) = E|fg(Z3, Z2, Z1) | Z1 = 2]
= E [1{G = g}(Ry(Y) — pgRx(X) — W'By)(I(z, X) — W'y,)]
= h34(),

we can argue as in the proof of Theorem 1 that
1 @ =~ ~ =~
- > 1{Gi=g} (RY(Yi) — pgRx(X;) — Wi’ﬁg) (RX(Xi) - Wi’Vg)
i=1
1 n
= > { g (Xi, Wi, Y0) + hag (X0, Y5) + hag (X0) | + 0p(n™"1?).
i=1
The remainder of the proof then follows that of Theorem 1. Q.E.D.
Lemma 13. Under Assumption 5, we have for any g =1,...,ng,
Y 1{Gi = g} (R (Xi) = WiA3,)* = p E[1{G: = g}(Rx(X) = W'yy)* = o7,
i=1
Proof. Similar to that of Lemma 9. Q.E.D.
Lemma 14. Under Assumption 5, we have for any g =1,...,ngq,
- ~ ~ =~ I
7 > W{Gi = g} (Ry (V) — pyRx (X)) (Rx (Xi) — W/F,)
i=1
1 ~ ~ ~
= o 2 1{Gi = g} (By (Vi) — pyRx(X) = WiBy) (Rx (Xi) = Wing) + op (D).
i=1
Proof. Similar to that of Lemma 10. Q.E.D.

E.3.2 Proofs for Section 4.2

Proof of Theorem 3. As in the proof of Theorem 1,

~

LS (Y Ry (X)) (Bx(X2) — WA
n(op—p) = v _ .
V=) TS0 (Rx(X) — W)
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By Lemmas 9 and 15, we have
oy T = pRYCX) — W) (R () — W)
p—p ~
%Zizl(RX( Xi) — Wj7)?
Define Z; := (Y;, X;, W/) for alli=1,...,n and

+op(1). (54)

f(Zi, Zj, Z) = (Yi — pI(X;, Xi) — Wi B) (I(Xy, Xi) — W)
for all 4,5,k = 1,...,n. Also, define h(Z;, Z;, Zy) := 67! Zil,iz,ig f(Zi,, Ziy, Ziy), where the

sum is taken over all six permutations (iy,i2,43) of the triplet (4,4, k). Since E[¢*] < oo and
Assumption 2 imply E[h(Z;, Z;, Z)?] < 0o, we can argue as in the proof of Theorem 1 to show
that

1< =~ =~
- > (Vi — pRx(X;) — WiB)(Rx(X;) — W}y)
1 n
-3 {hl(Xi, Wi, Y;) + ha(X;) + hg(Xi)} Fop(n~V?) (55)
i=1
where for z = (z,y,w')’, we define
E[f(Zi, Zj, Zy) | Zi = 2] = E|f(Zi, Zx, Z;)| Z; = 2]

= (y — pRx(z) — w'B)(Rx(z) — w'y) = hi(z,w,y),
Elf(Zj,Zi, Zy) | Zi = 2| = E[f(Zk, Zi, Z;) | Z; = 2]

=E[(Y = pI(z,X) = WB)(Rx(X) = W'y)] = ha(z),
Ef(Zj, Zk, Z:) | Zi = 2] = E|f(Zk, Z}, Z:) | Zi = 2]

= E[(Y = pRx(X) = W'B)(I(z, X) = W'y)] = ha(x)

Combining (54) with (55) then implies the desired result by the same argument as that in the
proof of Theorem 1. Q.E.D.

Lemma 15. Under Assumption 2, we have

\FZY pRx (X)) (Rx(X;) — WiA)

= Z — pRx (X;) = W{B)(Rx (X;) — Wiv) + op(1).
Proof. Using Y " Wi(Rx(X;) — W!q) = 0, we have

= (¥ pRx (X)) (Rx (X)) ~ W)
=1
IZ — pRx (X;) — W]B)(Rx (X;) — W{A)

~vnl Z — pRx(X;) = WA)(Rx (X;) — W/n) — Ry
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where
1

n

Ry := —= > (Yi = pRx(Xi) = WIB)W/(A = 7) = Rin + Ran
=1

R

with

1
Rip = —=) eW/{~—")
Vi

Rop = \}ﬁ ZZI@RX(XQ — pRx (X)W — )

By the same arguments as in the proof of Lemma 10, we have |Ri,| = op(1) and |Ra2,| = op(1)
and the desired result follows. Q.E.D.
E.3.3 Proofs for Section 4.3

Proof of Theorem 4. As in the proof of Theorem 1,

(G — 8 T Y (By (V) = BW) (Wi = Wy A1)
n{pr—pr) = 7 =
% > im1 (Wi — Wll,ﬂl)Z

with i o,
7= (Z Wl,iW/z,z) (Z Wz,z'Wz,¢> .
i=1 i=1
By Lemmas 16 and 17, we have
S (Ry (Y:) — WiB) (Wi — W7, )

V(B — ) = L (Wi — W', A1)?

Define Z; := (Y;,W/) for alli =1,...,n,

S

+op(1). (56)

f(Zs, Z5) = (1(Y;,Y:) = WiB) (Wi — Wy )
for all 4,5 = 1,...,n, and h(Z;, Z;) := 27Y(f(Zi, Z;) + f(Z;, Z;)) for all i,j = 1,...,n. Since

Assumption 2 implies E[h(Z;, Z;)?] < oo, we can argue as in the proof of Theorem 1 that

i;(ﬁY(YE) —WiB) (Wi — W'y m) = 711; {hl,l(Wiy Yi) + hl,g(Yi)} +op(n~Y?)  (57)
where for z = (y,w’)’, we define

E[f(Zi, Zj) | Zi = 2] = (Ry (y) — w'B)(wy — wlym) = hi1(w,y),

E[f(Z;,Z:) | Zi = 2] = E [(I(y,Y) = W'B) (Wi = WL )] = hua(y).

Combining (56) with (57) then implies the desired result by the same argument as that in the
proof of Theorem 1. Q.E.D.
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Lemma 16. Under Assumption 2, for each l =1,...,p, we have ng >0 and

0t (Wi — W2 A% —p E(Wi— Wm)? = o2
=1

Proof. Since it follows from Assumption 2 that a,%l > 0, the proof is similar to that of Lemma
9. Q.E.D.

Lemma 17. Under Assumption 2, for each l =1,...,p, we have
I &~ = . 1 < =
T 2By (V) = BiWi)(Wos = W03 = = > (B (Vi) = WiB) (Wi = WLy ) + 0p(1).
i=1 i=1
Proof. Similar to that of Lemma 10. Q.E.D.

E.4 Proofs for Appendix D
Proof of Theorem 5. Fix [ =1,...,p. As in the proof of Theorem 1,

Sy (By (V) — BiW3) (Wi — AlRx (X0) = W7,.81)
% Z?:l(m,i - ﬁEX(XZ) - Wl_l’igl)Q

_ L
1) (3o () (7 : " (Rx(X)
(5) - (Z< v)f/l ) (Rx(x3) W_l,i)> Z( W )m

i=1 i=1

1
V(B — ) = vr

)

where

Further, again by the same arguments as those in the proof of Theorem 1,

]. " =~ P ~
T 2By (Y = BIW10) (Wi = T (X) = W 100
=1

~

(Ry (Yi) — pRx (X;) = W/B) (Wi — nRx(X;) = W' ;0)) + op(1)

M=

1

.
I

{hu(Xz’, Wi, Ys) + hi2( X5, Y:) + hl,3(Xi)} +op(1)

Sl= 5=
NE

1

-.
Il

and
1o = ~
— > (Wi = RRx (X)) = Wy ;6)* —p oy,
i=1
Combining these results with the central limit theorem and Slutsky’s lemma gives the asserted

claim. Q.E.D.

Proof of Theorem 6. Similar to that of Theorem 2, based on the same relationship as that
between Theorem 5 and Theorem 1. Q.E.D.

Proof of Theorem 7. Similar to that of Theorem 3, based on the same relationship as that
between Theorem 5 and Theorem 1. Q.E.D.
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