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Abstract

Slope coefficients in rank-rank regressions are popular measures of intergenerational mo-

bility. In this paper, we first point out two important properties of the OLS estimator in such

regressions: commonly used variance estimators do not consistently estimate the asymptotic

variance of the OLS estimator and, when the underlying distribution is not continuous, the

OLS estimator may be highly sensitive to the way in which ties are handled. Motivated by

these findings we derive the asymptotic theory for the OLS estimator in a general rank-rank

regression specification without making assumptions about the continuity of the underlying

distribution. We then extend the asymptotic theory to other regressions involving ranks

that have been used in empirical work. Finally, we apply our new inference methods to

three empirical studies. We find that the confidence intervals based on estimators of the

correct variance may sometimes be substantially shorter and sometimes substantially longer

than those based on commonly used variance estimators. The differences in confidence in-

tervals concern economically meaningful values of mobility and thus may lead to different

conclusions when comparing mobility across different regions or countries.
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1 Introduction

Regressions involving ranks are widely used in empirical work in economics. A notable example

is a rank-rank regression for measuring the persistence in socioeconomic status across gener-

ations. Dahl and DeLeire (2008) and Chetty et al. (2014) have been influential in promoting

this approach and a vast and fast-growing empirical literature is using such and related regres-

sions for the study of intergenerational mobility in different socioeconomic outcomes, countries,

regions, and time periods.1 The resulting measures are crucial inputs to broader political and

public debates about inequality, about the importance of the family and the neighborhood into

which children are born, and about how to create opportunities for children to rise out of poverty

(Mogstad and Torsvik (2023)). Beyond intergenerational mobility, regressions involving ranks

are used in a range of other areas such as behavioral economics (e.g., Huffman et al. (2022)),

development (e.g., Bagde et al. (2016)), education (e.g., Murphy and Weinhardt (2020)), health

(e.g., Grönqvist et al. (2020)), industrial organization (e.g., Cagé et al. (2019)), labor (e.g., Faia

and Pezone (2023)), migration (e.g., Ward (2022)), and urban economics (e.g., Lee and Lin

(2017)).

In its simplest form, a rank-rank regression in the intergenerational mobility literature con-

sists of performing two steps: first, rank a child’s and their parent’s socioeconomic status (say,

income) in their respective distributions and, second, run a regression of the child’s rank on

a constant and the parent’s rank. The slope coefficient in this regression is then interpreted

as a relative measure of intergenerational mobility. A small value of the slope indicates low

dependence of the child’s position in their income distribution on the parent’s position in their

income distribution, and thus high mobility. Applied work often assumes that the slope coeffi-

cient is equal to the rank correlation of the two incomes, which facilitates the interpretation of

its magnitude as a parameter taking values between minus one and one.

In this paper, we develop an asymptotic theory for the OLS estimator of such rank-rank

regressions and other regressions involving ranks.

First, we document two important properties of the OLS estimator in rank-rank regressions:

commonly used standard errors are not valid and, when the underlying distribution is not

continuous, then the OLS estimator may be highly sensitive to how ties in the ranks are handled.

We show that the homoskedastic and Eicker-White variance estimators are not consistently

estimating the asymptotic variance of the OLS estimator. In fact, their probability limits may

be too large or too small relative to the true asymptotic variance, depending on the shape

of the copula of the two variables to be ranked. As a consequence, inference based on these

commonly used variance estimators may be conservative or fail to satisfy coverage criteria. In

addition, when the underlying distribution is not continuous, then the regression estimand and

the statistical properties of the OLS estimator depend, sometimes crucially, on the way in which

1Some examples are Olivetti and Paserman (2015), Black et al. (2019), Abramitzky et al. (2021), Fagereng

et al. (2021), Nybom and Stuhler (2023), and Ward (2023). Recent surveys by Deutscher and Mazumder (2023)

and Mogstad and Torsvik (2023) provide numerous further examples and references.

2



ties are handled.

Second, we derive the asymptotic distribution of the OLS estimator in a general rank-rank

regression with covariates and without assumptions on whether the underlying distribution is

continuous or not. In the special case in which the distributions are continuous and there are

no covariates, the OLS estimator is equal to Spearman’s rank correlation, and our limiting

distribution coincides with that derived by Hoeffding (1948) for Spearman’s rank correlation. In

other regression specifications or when at least one of the marginal distributions is not continuous

(e.g., because of zero incomes or top-coding), then the OLS estimator is not equal to Spearman’s

rank correlation anymore and Hoeffding’s results do not apply. Importantly, in the case of non-

continuous distributions, the estimand and the estimator’s asymptotic distribution are both

sensitive to how ties are handled.

Third, we extend the asymptotic theory to other regressions involving ranks. For example, in

the empirical literature studying intergenerational mobility, rank-rank regressions are sometimes

run separately in different regions of a country, for instance in commuting zones within the U.S.,

but the ranks are computed in the national distribution rather than within the regions (e.g.,

as in Chetty et al. (2014), Acciari et al. (2022), Corak (2020)). This type of regression yields

rank-rank slopes for each commuting zone with ranks defined on a common scale. We cover such

clustered rank-rank regressions. Two further extensions treat the case in which the regression

involves a general, non-ranked, outcome variable and a ranked regressor (e.g., as in Murphy

and Weinhardt (2020)) and the case in which the regression involves a ranked outcome and a

general, non-ranked regressor (e.g., as in Abramitzky et al. (2021)). For all these extensions, we

derive the asymptotic distribution of the OLS estimator.

Fourth, for each of the regression models involving ranks, we propose a consistent estimator

of the true asymptotic variance of the OLS estimator. Software implementations of these are

provided in the R package csranks, which is available on CRAN. A Stata command is under

development.

Finally, we discuss three empirical applications in which we compare inference methods based

on our new variance estimators to those based on the commonly used variance estimators.

The first application is to Ward (2023), who studies intergenerational mobility in the U.S.

in terms of occupational status using PSID data. In this application, the confidence intervals

based on our new variance estimators are similar to those based on commonly used variance

estimators, except on a small subsample of parent-child cohort pairs in which the homoskedastic

variance estimator leads to conservative inference.

In the second application, we analyze the data from Asher et al. (2024), who studies inter-

generational mobility in India in terms of education. In this data set, the marginal distributions

of education are discrete, which generates ties in the ranks. Tied observations can be assigned a

range of possible ranks without changing the overall ranking. We find that the rank-rank slopes

are highly sensitive to which of these possible values for the rank are chosen. If the largest

possible is chosen, then the rank-rank slopes are very large (close to 1) for early birth cohorts

and then decline across cohorts to a value of 0.65, still a very large estimate. If the smallest
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possible value of the rank of tied observations is chosen, then the estimates remain roughly con-

stant at a low value around 0.4 across cohorts. The rank-rank slopes are therefore so sensitive

to the definition of the ranks that neither their trends across cohorts can be inferred nor can

one make confident comparisons with other countries like the U.S., where a comparable esti-

mate is 0.46. As we show, for discrete variables the rank-rank slope is not equal to Spearman’s

rank correlation. Interestingly, in this application, Spearman’s rank correlation is insensitive

to the definition of the ranks and roughly constant across birth cohorts at a value around 0.5.

Therefore, robust conclusions about relative mobility can be reached based on Spearman’s rank

correlation, but not based on rank-rank slopes.

For the third application, we design a simulation experiment calibrated to data analyzed

by Chetty et al. (2014, 2018); Chetty and Hendren (2018) to study intergenerational income

mobility in commuting zones in the U.S.. We find that our (correct) standard errors may be

substantially larger or smaller than those computed using the homoskedastic or Eicker-White

variance estimators. For some of the commuting zones, the latter standard errors may be

up to 60% too large or up to 20% too small. The differences in standard errors translate

into economically meaningful differences in confidence intervals. For instance, we find that

mobility in several commuting zones in California are significantly different from those in Italy

and Canada according to our inference method. In contrast, the homoskedastic and Eicker-

White variance estimators lead to confidence intervals that are conservative and include the

mobility values of Italy and Canada. Similarly, there are commuting zones in California whose

mobility is not significantly different from those in Norway and Canada according to our inference

method, but the homoskedastic variance is too small and leads to confidence intervals that do

not include Norway’s and Canada’s mobility values. Such comparisons of mobility across regions

and countries are common in the literature. To avoid misled conclusions, it may therefore be

important to conduct inference based on estimators of the correct variance.

The derivations of our theoretical results are based on the theory of U-statistics, as originally

developed in Hoeffding (1948) and comprehensively reviewed in Serfling (2002). Alternatively,

since our estimation problem is semiparametric, we could have derived the same results using

empirical process theory as, e.g., in Newey (1994). In addition, instead of letting the controls

enter the rank-rank regression in a separately additive fashion, we could consider a more flexible

specification, where the slope coefficient of the rank-rank regression depends on the controls

nonparametrically. For such a model, we would be able to obtain the asymptotic distribution

results using the theory of influence function adjustments, as developed in Chernozhukov et al.

(2022), or other semiparametric techniques. However, we focus on the simple, linear rank

regressions as they seem to be most relevant for empirical work.

Our paper contributes to the general literature on nonparametric rank statistics. Since the

literature is large, we provide here only some key references, referring an interested reader, for

example, to a recent review Chatterjee (2023). As mentioned above, Hoeffding (1948) derived the

asymptotic distribution for Spearman’s rank correlation in the case of continuous distributions.

Nes̆lehova (2007) defined rank correlation measures for noncontinuous distributions, using a
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specific way of handling ties, with the extension satisfying several intuitive axioms that any

measure of concordance between random variables should satisfy. Mesfioui and Quessy (2010)

extended the results of Nes̆lehova (2007) to cover the case of more than two variables. Genest

et al. (2013) studied the problem of estimating Spearman’s rank correlation in the multivariate

case with discontinuities. Ornstein and Lyhagen (2016) derived the asymptotic normality result

and the asymptotic variance formula for the Spearman’s rank correlation for variables with

finite support. We note here that these extensions are, although relevant, quite different from

our work. In particular, we study the OLS estimator in general regression specifications involving

ranks, which coincide with the Spearman’s rank correlation only in the special case of the rank-

rank regression when the marginal distributions are continuous and there are no covariates.

Otherwise, our estimands and estimators differ from those in the papers listed here.

Our work is also related to Klein et al. (2020), Mogstad et al. (2024) and Bazylik et al.

(2024), who also proposed inference methods involving ranks, but the key difference is that

they focused on inference on ranks of population parameters whereas we consider inference on

features of the distribution of ranked observations.

The paper is organized as follows. We conclude the introduction with a survey on how

empirical researchers in economics use regressions involving ranks. In the next section, we

show that commonly used OLS variance estimators are not consistent in the context of rank-

rank regressions and discuss how pointmasses in the marginal distributions affect inference. In

Section 3, we derive a general asymptotic theory for rank-rank regressions. In Section 4, we

provide three extensions, covering other regressions involving ranks which have been used in

empirical work. In Section 5, we present three empirical applications. All proofs are contained

in the online appendix.

1.1 Survey on the Use of Regressions Involving Ranks

Empirical researchers often transform variables into ranks before using them in a regression. To

document this practice, we used Google Scholar to search for articles published between January

2013 and February 2024 containing the words “rank” and “regression”.2 We restricted the search

to the journals American Economic Review (excluding comments, P&P), Journal of Political

Economy (excluding JPE Micro and JPE Macro), Quarterly Journal of Economics, and Review

of Economic Studies. We dropped all theoretical papers without an empirical application and

those that used the word “rank” in a different context, leading to a sample of 62 papers.

Many of the papers contain a large number of different regression specifications involving

ranks, but we only record which types of regressions (“rank-rank”, “level-rank”, “rank-level”),

which types of estimators (“OLS”, “TSLS”, “nonparametric”, “other”), and which types of stan-

dard errors occur in a paper. “Rank-rank” refers to a regression in which both the outcome and

at least one regressor have been transformed into ranks before running the regression. Similarly,

2With this search we may have missed papers that do not use the word “rank” to describe their transformation

of the variables, but rather words like “percentiles” or “deciles”.
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level-rank rank-level rank-rank

Panel A: type of estimator

OLS 28 16 21

TSLS 3 1 1

nonparametric 24 3 12

other 7 3 0

Panel B: type of standard error

homoskedastic/unknown 10 3 11

robust 7 5 0

clustered 18 6 5

other 0 2 1

none 27 7 17

total 62 23 34

Table 1: Number of (paper × estimator type × regression type × standard error type) combinations by type

of estimator and type of standard error. The sample consists of papers published between January 2013 and

February 2024 in American Economic Review, Journal of Political Economy, Quarterly Journal of Economics,

and Review of Economic Studies.

“level-rank” (“rank-level”) refers to a regression in which at least one regressor (only the out-

come) but not the outcome (none of the regressors) has been transformed into ranks. We obtain

a total of 119 (paper × estimator type × regression type × standard error type) combinations

in the sample. More details about the literature search can be found in Appendix A.

Table 1 categorizes the 119 observations by type of estimator (Panel A) and by type of

standard error (Panel B). First, consider the 34 observations involving rank-rank specifications.

The majority (21) was estimated by OLS. Many papers (10) did not specify which method

for the computation of standard errors was used. In most of these, we suspected the use of

homoskedastic variance estimators and thus grouped them together with the one paper that

explicitly indicated “homoskedastic” standard errors (“homoskedastic/unknown”). Many re-

gression results were presented without standard errors (17). Not a single paper employed

robust standard errors. Among the papers employing at least one rank-rank regression, the ma-

jority (about 75%) defined ranks in the sample in which the regression was run (as in Section 3

below). The remaining 25% employed clustered regressions (as in Section 4.1 below), in which

ranks are defined in a larger population.

Level-rank regressions occurred in 62 of the observations, most of them employing OLS (28),

but a substantial share (24) employed nonparametric methods. For these regressions, clustering

or not reporting standard errors was most common. Rank-level regressions occurred somewhat

less frequently in our sample (23).
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To gain some insight into the topics of the papers Figure 14 in the appendix shows the number

of times each top-level JEL-code appears on the papers that contain regressions involving ranks.

Labor and Demographic Economics (JEL codes starting with “J”) are the most frequent, but

health, education, public economics, and microeconomics are also listed as classifications by a

substantial share of the papers. Overall, the graph indicates that regressions involving ranks are

used in variety of subfields of economics.

2 Motivation

To motivate the subsequent theoretical developments, in this section we focus on rank-rank

regressions and show that commonly used inference methods for these regressions are not valid,

even in the simplest case when the underlying variables are continuously distributed and there

are no covariates. Then, we discuss how the presence of pointmasses affects the estimand and

the statistical properties of the OLS estimator.

2.1 Rank-Rank Regressions With Continuous Marginal Distributions

For concreteness, consider a child’s income Y and their parent’s income X. Suppose we are

interested in measuring intergenerational mobility by running a regression of the child’s income

rank on a constant and the parent’s income rank. The slope coefficient from this regression

reflects the persistence of the two generations’ positions in their respective income distributions.

A small value of the slope indicates low persistence and thus high mobility.

To simplify the discussion we start with the simplest possible rank-rank regression in which

there are no covariates and the two income distributions are continuous. Let F be the joint

distribution of (X,Y ) and let FX and FY be the corresponding marginals. Given an i.i.d.

sample {(Xi, Yi)}ni=1 from F , we run the rank-rank regression as follows. First, compute the

child’s income rank RX
i := F̂X(Xi) and the parent’s income rank RY

i := F̂Y (Yi), where F̂X and

F̂Y denote the empirical cdfs of X and Y . Then, run a regression of RY
i on a constant and RX

i .

The OLS estimator of the slope parameter can then be written as the sample covariance of RY
i

and RX
i divided by the sample variance of RX

i :

ρ̂ :=

∑n
i=1(R

Y
i − R̄Y )(RX

i − R̄X)∑n
i=1(R

X
i − R̄X)2

,

where R̄X and R̄Y are sample averages of RX
i and RY

i , respectively. Inference is then performed

by computing standard errors and confidence intervals based on the usual variance formulas for

the OLS estimator. Popular choices are the homoskedastic and robust variance formulas,

σ̂2hom :=
1
n

∑n
i=1 ε̂

2
i

1
n

∑n
i=1(R

X
i − R̄X)2

and σ̂2EW :=
1
n

∑n
i=1 ε̂

2
i (R

X
i − R̄X)2(

1
n

∑n
i=1(R

X
i − R̄X)2

)2 ,
where ε̂i := RY

i − β̂ − ρ̂RX
i for all i = 1, . . . , n and β̂ := R̄Y − ρ̂R̄X . The estimator σ̂2hom is

sometimes used when regression errors are believed to be homoskedastic whereas σ̂2EW is robust

to heteroskedasticity and is often referred to as the Eicker-White estimator.
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The OLS estimator ρ̂ is also often interpreted as Spearman’s rank correlation,

ρ̂S :=

∑n
i=1(R

Y
i − R̄Y )(RX

i − R̄X)√∑n
i=1(R

Y
i − R̄Y )2

∑n
i=1(R

X
i − R̄X)2

. (1)

Indeed, given that the marginal distributions FX and FY are both assumed to be continuous,

we have

ρ̂ = ρ̂S

√∑n
i=1(R

Y
i − R̄Y )2∑n

i=1(R
X
i − R̄X)2

= ρ̂S , (2)

with probability one.3 Thus, the OLS estimator of the rank-rank regression and Spearman’s

rank correlation are numerically identical in finite samples. As a result, they must have the

same asymptotic properties, which we now discuss.

First, it is well known that the probability limit of ρ̂S is

ρ = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3 = Corr(FX(X), FY (Y )), (3)

with C denoting the copula of the pair (X,Y ), i.e. C(x, y) := P (FX(X) ≤ x, FY (Y ) ≤ y) for all

x, y ∈ [0, 1]. Second, Hoeffding (1948) showed that

√
n(ρ̂S − ρ) →d N(0, σ2),

where

σ2 := 9V ar
(
(2FX(X)− 1)(2FY (Y )− 1) + 4ψX(X) + 4ψY (Y )

)
(4)

and

ψX(x) :=

∫
(F (x, y)− FX(x)FY (y))dFY (y), x ∈ R, (5)

ψY (y) :=

∫
(F (x, y)− FX(x)FY (y))dFX(x), y ∈ R. (6)

The main goal of this subsection is to point out that the OLS variance estimators σ̂2hom and σ̂2EW ,

which are commonly used in applied work, are not consistently estimating the true asymptotic

variance σ2. In consequence, inference based on these variance estimators may be misleading.

To show that the estimators σ̂2hom and σ̂2EW are not consistent for σ2, we first derive proba-

bility limits for both estimators. To do so, define

Mkl := E[(FX(X)− 1/2)k(FY (Y )− 1/2)l], k, l ∈ {0, 1, 2, 3, 4}.

The following lemma provides the probability limits.

Lemma 1. Let {(Xi, Yi)}ni=1 be an i.i.d. sample from a distribution F with continuous marginals.

Then

σ2hom := plim
n→∞

σ̂2hom = 1− ρ2 (7)

3To see this, note that by continuity of the distributions, with probability one there are no ties in the data

and RY
1 , . . . , RY

n is just a reordering of RX
1 , . . . , XX

n .
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and

σ2EW := plim
n→∞

σ̂2EW = 144

(
M22 − 2ρM31 +

ρ2

80

)
. (8)

The proof of this result, as well as of all other results presented in this paper, can be found

in Online Appendix E.

An important special case of this lemma occurs when X and Y are independent, in which

case ρ = 0 and both probability limits are equal to the correct variance, σ2hom = σ2EW = σ2 = 1.

In general, however, the three variances are different. In fact, σ2hom and σ2EW can each be larger

or smaller than the correct variance σ2. Appendix B.1 shows that all three variances depend on

the joint distribution F only through its copula C. Therefore, whether and by how much the

variances are larger or smaller depends on the shape of the copula of child and parent incomes.

To illustrate this point we compare the three variances in three simple parametric families of

copulas.

Specifically, we compute the minimal and maximal differences σ2hom−σ2 and σ2EW −σ2 over

three families of copulas: the Gaussian, the Student-t (“t”), and a “quadratic” copula. In all

cases, we optimize over the parameters of the copulas so as to find the largest and smallest

difference in variances. Details of the specifications and solutions of the optimization problems

can be found in Appendix B.2.

Panels A and B in Figure 1 show the variances achieving the minimal and maximal differences

for the homoskedastic (“hom”) and the Eicker-White (“EW”) variances within the different

families of copulas. They also display the rank correlation ρ of the copulas that achieve the

optima. Within the t and the quadratic families, the correct variance σ2 may be substantially

larger than the hom and EW variances, up to about 70% larger. Within the Gaussian family

this is not possible, but the correct variance may be significantly smaller than the other two,

almost half as large. Within the quadratic and the t families, the correct variance may also be

smaller than the other two, but to a lesser extent than in the Gaussian family.

Interestingly, the minimal difference in variances is achieved for copulas that have rank

correlation close to zero whereas the maximal differences occur for copulas with high rank

correlation. To show that substantial differences in variances occur not only for very small or

very large rank correlations, the graphs also indicate the value of the three different variances

for the copula that matches the rank correlation of child and parent incomes in Los Angeles,

one of the commuting zones that we further analyze in Section 5.3. In the data by Chetty

et al. (2022a), Los Angeles has a rank correlation of 0.254. Since individual-level incomes are

not publicly available, we do not know the true copula of incomes in Los Angeles. The dots in

Figure 1 indicate the values of the correct, the hom, and the EW variances if the copula were

Gaussian, t, or quadratic. If it were Gaussian, the hom and EW variances would be slightly

larger than the correct one. If it were quadratic, however, the hom and EW variances would both

be substantially smaller than the correct variance. Finally, in the t family, the hom variance

would be substantially smaller than the correct variance, but the EW variance would be about

the same as the correct one.
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maximal difference minimal difference

Gaussian quadratic t Gaussian quadratic t

0.0

0.5

1.0

1.5

correct hom rho Los Angeles

Homoskedastic varianceA

maximal difference minimal difference

Gaussian quadratic t Gaussian quadratic t

0.0

0.5

1.0

1.5

correct EW rho Los Angeles

Eicker−White varianceB

Figure 1: Variances achieving minimal and maximal differences within different families of copulas. Specifications

and details can be found in Appendix B. “correct” refers to σ2, “hom” to σ2
hom, “EW” to σ2

EW , and “rho” to

the rank correlation of the copula achieving the optimized difference. The dots indicate the rank correlation in

Los Angeles and the implied variances for the particular copula within the parametric family that corresponds to

that rank correlation.

The variances σ2, σ2hom, and σ2EW are all bounded, and so mutual differences between them

are bounded as well. This is not true for ratios, however. The following lemma shows that if

we do not restrict the distributions F , the ratios σ2hom/σ
2 and σ2EW /σ

2 can both be arbitrarily

large. To emphasize the dependence of the variances on the joint distribution F of (X,Y ), we

use the notation σ2hom(F ), σ2EW (F ), and σ2(F ).

Lemma 2. There exists a sequence {Fk}k≥1 of distributions on R2 with continuous marginals

such that σ2hom(Fk)/σ
2(Fk) → ∞ and σ2EW (Fk)/σ

2(Fk) → ∞ as k → ∞.

An implication of this lemma is that the two variances σ2hom and σ2EW can be larger than the

correct variance by arbitrarily large factors. As the proof of the lemma reveals, the divergence

occurs under sequences of copulas approaching perfect dependence so that both variances tend

to zero, but the correct variance converges to zero at a faster rate than the variances σ2hom and

10



σ2EW .4

Given the result in Lemma 2, the next interesting question is how small the variances σ2hom
and σ2EW can be relative to the true variance σ2. The following lemma provides a partial answer

to this question in the case of σ2hom.

Lemma 3. There exists a constant c > 0 such that σ2hom(F )/σ2(F ) ≥ c for all distributions F

on R2 with continuous marginals.

By this lemma, the ratio σ2hom/σ
2 is bounded away from zero, so that σ2hom can be smaller

than σ2 only by a factor that is bounded from below by the constant c.5 However, it is important

to emphasize that this constant may be rather small. In particular, this constant is strictly

smaller than one, as there do exist distributions F such that σ2hom(F )/σ2(F ) < 1. For example,

we have already seen in Figure 1 that for simple well-known classes of copulas, like the t copula,

the hom variance may be substantially smaller than the correct variance. In the empirical

applications of Section 5, we also find that the hom variance may be substantially smaller than

the correct variance.

In conclusion, this subsection has shown that commonly used formulas for the estimation

of asymptotic variances, and thus also for standard errors, do not yield the correct asymptotic

variance of the OLS estimator in a rank-rank regression. In particular, the homoskedastic and

the Eicker-White standard errors may be too small or too large depending on the shape of the

copula. In consequence, confidence intervals may be too short or too wide, possibly leading to

under-coverage or conservative inference.

2.2 Rank-Rank Regressions With Noncontinuous Marginal Distributions

The well-established asymptotic theory for Spearman’s rank correlation described in the pre-

vious subsection crucially depends on the assumption that both marginals of the distribution

F are continuous. In empirical applications of rank-rank regressions, however, pointmasses are

common. For instance, incomes may be top-coded and there may be pointmasses at zero or

negative incomes (e.g. as in Chetty and Hendren (2018)).6 In addition, ranks may be computed

from discrete measures other than income, e.g., occupational status as in Ward (2023), human

capital as in de la Croix and Goni (2022), or years of education as in Asher et al. (2024). In

such cases, pointmasses in the marginal distributions (of Y and X) create ties in the ranks and

their presence changes inference in the rank-rank regression in at least three important ways: (i)

4The copulas leading to large ratios of the variances are not the same as those leading to large differences

between the variances. The large differences in Figure 1 are achieved when at least one of the variances is far

from zero whereas large ratios are achieved when both are close to zero. This explains why larger ratios than

those implied by Figure 1 are possible.
5We do not know whether a version of Lemma 3 holds for the EW variance σ2

EW but we would be surprised

if that were not the case.
6In fact, one of the commonly cited (Deutscher and Mazumder (2023), Mogstad and Torsvik (2023)) advantages

of studying the rank-rank relationship over other approaches such as estimating intergenerational elasticities is

that the rank-based approach is applicable in the presence of zero incomes.
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Figure 2: Estimates of the rank-rank slope ρ, and Spearman’s rank correlation by birth cohort and with 95%

marginal confidence intervals. The colors refer to different definition of ranks: “smallest rank” (ω = 0), “mid-

rank” (ω = 0.5), and “largest rank” (ω = 1). The dashed-lines indicate similar measures of mobility for the U.S.

and Denmark as reported in Asher et al. (2024).

the interpretation of the estimand in the rank-rank regression depends on whether there are ties

or not, (ii) the estimand varies with the way in which ties are handled, and (iii) the statistical

properties of the OLS estimator differ for different ways of handling ties. We now illustrate each

of these three points in more detail.

Interpretation of the estimand. In contrast to the continuous case, when there are point-

masses in the marginal distributions, the OLS estimator of the rank-rank slope is not equal to

Spearman’s rank correlation. This is because, as shown in (2), the rank-rank slope is equal to

Spearman’s rank correlation multiplied by the ratio of standard deviations of the ranks. For

continuous distributions, this ratio is equal to one, but in the presence of pointmasses the ratio

can take any value in (0,∞). Therefore, the slope coefficient of the rank-rank regression may

lie outside of the [−1, 1] interval and cannot be interpreted as a correlation. Researchers should

therefore be careful about whether they want to estimate Spearman’s rank correlation or the

rank-rank slope, and potentially adjust the rank-rank slope by the ratio of standard deviations.

Figure 2 illustrates this point. It is based on the data used in Section 5.2 in which we study

intergenerational mobility in India, using the data from Asher et al. (2024). In this case, Y and

X are (discrete) measures of years of education of a child and their parent, respectively. The left-

most panel shows estimates of the slope in a rank-rank regression for different birth cohorts of

children. These are estimates, not the estimands, but since the 95% confidence intervals (based

on our asymptotic theory in Section 3.1) are fairly narrow, the estimates provide insights into the

possible values of the corresponding estimands. Consider the estimates labelled “largest ranks”,

which refers to the constructions of ranks exactly as in Section 2.1 above. The panel in the

middle shows the corresponding estimates of Spearman’s rank correlation, and the right-most

panel shows the ratio of standard deviations from (2). Here, the differences between Spearman’s
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rank correlation and the rank-rank slopes are striking: the former is about 0.5 for all birth

cohorts while the rank-rank slope starts out at a value close to one for the 1950 birth cohort

and then declines to about 0.65 for the latest birth cohort. The reason for this difference is due

to the ratio of standard errors declining across birth cohorts. If Spearman’s rank correlation for

the 1950 cohort was a little higher, then multiplying it by the ratio of standard deviations, which

is close to 1.9, would lead to a rank-rank slope larger than one. This latter point illustrates the

fact that the rank-rank slope cannot be interpreted as a correlation when there are pointmasses

in the marginal distributions.

Sensitivity of the estimand to the definition of ranks. In the presence of pointmasses in

the marginal distributions, one can assign different ranks to tied observations without changing

the overall ranking. For instance, when 10 out of 100 observations are tied at the smallest value,

then one can assign each of them the rank 0.01 (“smallest rank”), all of them the rank 0.1

(“largest rank”), or any value in between. The coefficients in the rank-rank regression depend

on the specific way in which ranks are assigned to such tied observations.

To illustrate this point, consider the left-most panel in Figure 2 which shows the estimates

of the rank-rank slopes for three different definitions of the rank. As mentioned above these

are estimates, not the estimands, but since the 95% confidence intervals are fairly narrow,

the estimates provide insights into the possible values of the corresponding estimands. The

sensitivity of the rank-rank slope to the definition of the rank is striking. When the largest

ranks are employed, the rank-rank slope is very large and declining across cohorts, but for the

smallest ranks it takes small values and remains roughly constant across cohorts. Compared to

a similar rank-rank slope based on a more continuous measure of education in the U.S. (dashed

line), the rank-rank slopes in India may be larger or smaller depending on which definition of

the ranks is used.

The differences between the rank-rank slope and Spearman’s rho are also substantial: whereas

the first panel showed substantial sensitivity of the rank-rank slope to the definition of the ranks,

the Spearman’s rank correlation shown in the second panel is about 0.5 for all birth cohorts and

all definitions of the ranks. Equation (2) explains the reason for these difference: the rank-rank

slope is equal to Spearman’s rank correlation multiplied by the ratio of standard deviations of

the ranks. The third panel in Figure 2 shows the estimates of the ratios. Because the marginal

distributions of education vary substantially across birth cohorts, the ratios of the standard

deviations across birth cohorts. In addition, these ratios of standard deviations are very sen-

sitive to the way in which ties in the ranks are handled. In conclusion, the rank-rank slope’s

sensitivity to the definition of the ranks and its variation across birth cohorts is not inherited

from Spearman’s rank correlation, but rather from the ratio of standard deviations.

Sensitivity of the OLS estimator’s statistical properties to the definition of ranks.

In addition to the estimand, also the OLS estimator’s statistical properties depend on the way

in which ties in the ranks are handled. Since the estimand is sensitive to the definition of the
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ranks, so is the OLS estimator of these estimands. However, not only the probability limit and,

thus, the mean of the estimator, but also its asymptotic variance depends on the definition of the

ranks. This will be formally shown in Section 3.1. In consequence, standard errors for the OLS

estimator vary depending on how ties in the ranks are handled. In the first panel of Figure 2

this dependence manifests itself in the length of the confidence intervals, which are substantially

wider for the estimator based on the largest ranks compared to those based on the smallest

ranks.

Because of the sensitivity of the OLS estimator in rank-rank regressions, we recommend that

researchers check the robustness of their results with respect to the definition of the ranks.

2.3 Summary

The previous arguments can be summarized as follows:

1. Hoeffding (1948)’s derivation of the asymptotic distribution of Spearman’s rank correlation

yields the correct asymptotic distribution of the OLS estimator of the slope in a rank-rank

regression in the special case with continuous marginal distributions of Y and X and

without covariates.

2. Commonly used variance estimators for OLS regressions do not estimate this asymptotic

variance. They may be too small or too large depending on the shape of the copula of the

pair (X,Y ).

3. When at least one of the two marginal distributions of Y and X is not continuous or when

there are covariates in the regression, then Hoeffding’s theory does not apply. Importantly,

in the noncontinuous case, the rank-rank regression estimand, the OLS estimator, and its

asymptotic distribution are all sensitive to the specific way in which ties are handled.

The next section develops a general, unifying asymptotic theory for coefficients in a rank-

rank regression that allows for any definition of the rank, for continuous or noncontinuous

distributions, and for the presence of covariates.

3 Inference for Rank-Rank Regressions

3.1 Asymptotic Normality Result

In this section, we develop the asymptotic theory for the OLS estimator of a rank-rank regression.

The results apply to continuous and non-continuous distributions F . To deal with potential ties,

we consider a more general definition of the rank, in fact a class of ranks, indexed by a parameter

ω ∈ [0, 1]. Different definitions of the rank differ in the way in which they handle ties, but they

are all equivalent in the absence of ties.
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i 1 2 3 4 5 6 7 8 9 10

Xi 3 4 7 7 10 11 15 15 15 15

smallest rank: RX
i for ω = 0 0.1 0.2 0.3 0.3 0.5 0.6 0.7 0.7 0.7 0.7

mid-rank: RX
i for ω = 0.5 0.1 0.2 0.35 0.35 0.5 0.6 0.85 0.85 0.85 0.85

largest rank: RX
i for ω = 1 0.1 0.2 0.4 0.4 0.5 0.6 1 1 1 1

Table 2: example of three different definitions of ranks for a given sample. Bold columns indicate ties.

For a fixed, user-specified ω ∈ [0, 1], let F−
X (x) := P (X < x), I(u, v) := ω1{u ≤ v} + (1 −

ω)1{u < v}, and
RX(x) := ωFX(x) + (1− ω)F−

X (x), x ∈ R.

For an i.i.d. sample X1, . . . , Xn from FX , we then define the rank of i as RX
i := R̂X(Xi), where

R̂X(x) := ωF̂X(x) + (1− ω)F̂−
X (x) +

1− ω

n
, x ∈ R, (9)

is an estimator of RX(x) and F̂−
X (x) = n−1

∑n
i=1 1{Xi < x} is an estimator of F−

X (x). This

definition of the rank is such that an individual i with a large value of Xi is assigned a large

rank. If FX is continuous, then the probability of a tie among X1, . . . , Xn is zero and the rank

RX
i is the same for all values of ω. If FX is not continuous, then different choices of ω lead to

definitions of the rank that handle ties differently. For instance, if ω = 1 then RX
i = F̂X(Xi)

and tied individuals are assigned the largest possible rank. If ω = 1/2, then RX
i is the mid-rank

as defined in Hoeffding (1948), which assigns to tied individuals the average of the smallest

and largest possible ranks. Finally, ω = 0 leads to a definition of the rank that assigns to tied

individuals the smallest possible rank. Table 2 illustrates the different definitions of ranks in an

example with ties. The quantities FY , F
−
Y , RY and their estimators are defined analogously for

Y . We assume that ω is the same value in RX and RY , so that ranks are defined consistently

for both variables X and Y . Throughout the paper, this value of ω is fixed and chosen by the

researcher, so it does not appear as argument or index anywhere.

We consider the following regression model:

RY (Y ) = ρRX(X) +W ′β + ε, E

[
ε

(
RX(X)

W

)]
= 0, (10)

where W is a d-dimensional vector of covariates, ε is noise, and ρ, β are regression coefficients

to be estimated. In applications, W typically includes a constant, but our theoretical results

below do not require that. As already indicated in Section 2.2, the interpretation of ρ depends on

whether the marginal distributions of Y and X are continuous and, if at least one of them is not,

how ties are handled. However, in the model (10) there is one additional reason complicating

the interpretation of ρ, namely the presence of covariates: even if Y and X have continuous

marginal distributions, in the presence of covariates W that are correlated with X, ρ cannot be

interpreted as a rank correlation and, in particular, does not have to lie in the interval [−1, 1].7

7This can be seen by writing ρ as the covariance of residuals from partialling out W from the two ranks divided
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Letting {(Xi,Wi, Yi)}ni=1 be an i.i.d. sample from the distribution of the triplet (X,W, Y ),

we study the properties of the following OLS estimator of the vector of parameters (ρ, β′)′:(
ρ̂

β̂

)
=

(
n∑

i=1

(
RX

i

Wi

)(
RX

i W ′
i

))−1 n∑
i=1

(
RX

i

Wi

)
RY

i . (11)

To derive the asymptotic normality of ρ̂, we introduce the projection of RX(X) onto the covari-

ates:

RX(X) =W ′γ + ν, E[νW ] = 0, (12)

where ν is a random variable representing the projection residual, and γ is a vector of parameters.

Consider the following regularity conditions:

Assumption 1. {(Xi,Wi, Yi)}ni=1 is an i.i.d. sample from the distribution of (X,W, Y ).

Assumption 2. The vector W satisfies E[∥W∥4] <∞ and the matrix E[WW ′] is non-singular.

Assumption 3. The random variable ν is such that E[ν2] > 0.

These are standard regularity conditions underlying typical regression analysis. Assump-

tion 3 requires that the rank RX(X) can not be represented as a linear combination of covariates.

Importantly, our regularity conditions do not require X and Y to be continuously distributed.

Under these conditions, we have the following asymptotic normality result.

Theorem 1. Suppose that (10)–(12) hold and that Assumptions 1–3 are satisfied. Then

√
n(ρ̂− ρ) =

1

σ2ν
√
n

n∑
i=1

{
h1(Xi,Wi, Yi) + h2(Xi, Yi) + h3(Xi)

}
+ oP (1) →D N(0, σ2),

where

σ2 :=
1

σ4ν
E
[
(h1(X,W, Y ) + h2(X,Y ) + h3(X))2

]
(13)

with σ2ν := E[ν2] and

h1(x,w, y) := (RY (y)− ρRX(x)− w′β)(RX(x)− w′γ),

h2(x, y) := E[(I(y, Y )− ρI(x,X)−W ′β)(RX(X)−W ′γ)],

h3(x) := E[(RY (Y )− ρRX(X)−W ′β)(I(x,X)−W ′γ)]

for all x ∈ R, w ∈ Rp, and y ∈ R.

As already mentioned above, the proof of this result, as well as of all other results presented

in this paper, can be found in Online Appendix E. In fact, Theorem 1 follows from a more

by the variance of one of the two residuals. Then, this ratio is not equal to the correlation of the ranks after

partialling out W because the standard deviations of the two residuals are not necessarily equal.
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general result, which we state in Online Appendix D (Theorem 5). The more general result

shows joint asymptotic normality for ρ̂ and β̂,

√
n

(
ρ̂− ρ

β̂ − β

)
=

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ), Σ := E[ψiψ
′
i],

and provides an explicit formula for ψi. The joint asymptotic distribution for ρ̂ and β̂ is useful

for empirical work in the intergenerational mobility literature. Suppose there are no covariates

so W only contains a constant. Besides the rank-rank slope, another popular measure of inter-

generational mobility (Deutscher and Mazumder (2023)) is the expected income rank of a child

given that their parent’s income rank is equal to some given value p:

θp := β + ρ p.

With the asymptotic joint distribution above, it is straightforward to compute standard errors

and confidence intervals for θp.

Theorem 1 has the following interpretation. If we knew the population ranks RY (Yi) and

RX(Xi), we would simply estimate ρ and β by an OLS regression of RY (Yi) on RX(Xi) and

W . The asymptotic variance of such an estimator for ρ would be given by E[h1(X,W, Y )2]/σ2ν ,

which is the familiar OLS variance formula. Without knowing the population ranks, however,

we have to plugin their estimators, and the extra terms in the asymptotic variance, represented

by h2(X,Y ) and h3(X), provide the adjustments necessary to take into account the noise coming

from estimated ranks. Importantly, the estimation error in the ranks is of the same order of

magnitude as that in the OLS estimator with known ranks. Therefore, the estimation error in

the ranks does not become negligible in large samples, not even in the limit as the sample size

grows to infinity.

The derivation of the asymptotic normality result uses standard techniques from the U-

statistic theory. To see this consider the case without covariates so that W only contains a

constant. Then, the OLS estimator of the slope can be written as

ρ̂ =
1
n

∑n
i=1(R

Y
i − R̄Y )(RX

i − R̄X)
1
n

∑n
i=1(R

X
i − R̄X)2

.

It is easy to show that the denominator converges in probability to σ2ν . The numerator is a

U-statistic because it is an average of terms involving RY
i and RX

i , which themselves are sample

averages. Under the above assumptions one can then verify the standard conditions for such a

U-statistic to be asymptotically normal (e.g., Serfling (2002)).

Remark 1 (Comparing the variance formulas in (4) and (13)). When both X and Y are

continuous random variables and W contains only a constant, the asymptotic variance formula

in (13) reduces to the classical Hoeffding variance formula in (4). Indeed, replacing X and Y

by FX(X) and FY (Y ) respectively, we can assume without loss of generality that both X and

Y are U([0, 1]) random variables, in which case ψX(x) in (5) reduces to∫ 1

0
(E[1{X ≤ x}1{Y ≤ y}]− xy)dy = E[1{X ≤ x}(1− Y )]− x/2 = x/2− E[1{X ≤ x}Y ].
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Similarly, ψY (y) in (6) reduces to y/2−E[1{Y ≤ y}X]. Hence, the variance in (4) simplifies to

σ2 = 144V ar(h(X,Y )), where

h(x, y) := xy − E[1{X ≤ x}Y ]− E[1{Y ≤ y}X], x ∈ R, y ∈ R, (14)

and it is straightforward to verify that h(x, y) coincides with h1(x,w, y)+h2(x, y)+h3(x) up to

an additive constant whenever X,Y ∼ U([0, 1]) and W contains only a constant. □

Remark 2 (Non-continuous distributions). The asymptotic normality result in Theorem 1 holds

for both continuous and noncontinuous distributions of Y and X. In the presence of pointmasses

in at least one of the distributions of Y and X, the estimands ρ and β depend on ω, i.e. on

the way in which ties are handled. Similarly, the asymptotic variance σ2 of the OLS estimator

derived in Theorem 1 depends on ω. Therefore, different ways of handling ties through different

choices of ω may affect not only the estimand and the estimator, but also the value of the

asymptotic variance. □

3.2 Consistent Estimation of the Asymptotic Variance

In this subsection, we propose an estimator of the asymptotic variance σ2 appearing in the

asymptotic normality result in Theorem 1 and show that it is consistent. In particular, we

consider the following plug-in estimator:

σ̂2 :=
1

nσ̂4ν

n∑
i=1

(H1i +H2i +H3i)
2,

where σ̂2ν := n−1
∑n

i=1 ν̂
2
i is an empirical analog of σ2ν = E[ν2], ν̂i := RX

i −W ′
i γ̂, and

H1i :=
(
RY

i − ρ̂RX
i −W ′

i β̂
) (
RX

i −W ′
i γ̂
)
,

H2i :=
1

n

n∑
j=1

(
I(Yi, Yj)− ρ̂I(Xi, Xj)−W ′

j β̂
) (
RX

j −W ′
j γ̂
)
,

H3i :=
1

n

n∑
j=1

(
RY

j − ρ̂RX
j −W ′

j β̂
) (
I(Xi, Xj)−W ′

j γ̂
)
,

for all i = 1, . . . , n. The following lemma shows that this simple plug-in estimator is consistent

without any additional assumptions.

Lemma 4. Suppose that (10)–(12) hold and that Assumptions 1–3 are satisfied. Then σ̂2 →P σ2.

Theorem 1 and Lemma 4 give the correct way to perform inference in rank-rank regressions.

For example, a (1 − α) × 100% asymptotic confidence interval for ρ can be constructed using

the standard formula (
ρ̂−

zα/2σ̂√
n
, ρ̂+

zα/2σ̂√
n

)
,

where zα/2 is the number such that P (N(0, 1) > zα/2) = α/2. Standard hypothesis testing can

be performed analogously.
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Remark 3 (Bootstrapping the distribution of
√
n(ρ̂− ρ)). In addition to performing inference

on ρ via a consistent estimator of the asymptotic variance σ̂2 in Lemma 4, one can also perform

inference by bootstrapping the distribution of
√
n(ρ̂ − ρ). Indeed, to show bootstrap validity,

observe that ρ = ρ(F ) is a smooth functional (Hadamard differentiable), and our estimator ρ̂

takes the plug-in form, ρ̂ = ρ(F̂ ). Therefore, given that the empirical distribution function

F̂ satisfies Donsker’s theorem, it follows from Theorem 3.1 in Fang and Santos (2019) that

the distribution of
√
n(ρ̂∗ − ρ̂), where ρ̂∗ is the estimator ρ̂ obtained on a bootstrap sample,

consistently estimates that of
√
n(ρ̂ − ρ); see also Bickel and Freedman (1981) for the original

result on bootstrapping von Mises functionals. □

4 Inference for Other Regressions Involving Ranks

Motivated by regressions that have been used in empirical work, especially in the intergener-

ational mobility literature, we provide three extensions of the asymptotic normality result in

Theorem 1. In particular, we consider (i) a rank-rank regression with clusters, where ranks are

computed in the national distributions rather than in the cluster-specific distributions, (ii) a

regression of a general outcome Y on the rank RX(X), and (iii) a regression of the rank RY (Y )

on a covariate X. For brevity of the paper, we keep the discussions of each extension relatively

short.

4.1 Rank-Rank Regressions With Clusters

In this subsection, we consider a population (e.g., the U.S.) that is divided into nG subpopula-

tions or “clusters” (e.g., commuting zones). We are interested in running rank-rank regressions

separately within each cluster. The ranks, however, are computed from the distribution of the

entire population (e.g., the U.S.). Chetty et al. (2014) has been influential in promoting these

kind of regressions for the analysis of mobility across regions, where the scale of the mobility

measure is fixed by the national distribution. The survey by Deutscher and Mazumder (2023)

provides more examples of empirical work running such regressions, for instance Corak (2020)

and Acciari et al. (2022).

Specifically, we consider the model

RY (Y ) =

nG∑
g=1

1{G = g}
(
ρgRX(X) +W ′βg

)
+ ε, E

[
ε

(
RX(X)

W

)∣∣∣∣∣G
]
= 0 a.s., (15)

where G is an observed random variable taking values in {1, . . . , nG} to indicate the cluster to

which an individual belongs. The quadruple (G,X,W, Y ) has distribution F , and we continue

to denote marginal distributions of X and Y by FX and FY . The quantities F−
X , F−

Y , RX(x),

and RY (y) are also as previously defined, so that RX(X), for instance, is the rank of X in

the entire population, not the rank within a cluster. So, in model (15), the coefficients ρg and

βg are cluster-specific, but the ranks RY (Y ) and RX(X) are not. In consequence, ρg cannot
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be interpreted as the rank correlation within the cluster g. Instead, in the intergenerational

mobility literature, the rank-rank slope is interpreted as a relative measure of mobility in a

region g, where its scale is fixed by the national population. Unlike the rank-rank slope in the

model without clusters, (10), the slopes ρg do not only depend on the copula of Y and X in a

cluster, but also on the marginal distributions of Y and X in the cluster. To see this note that

adding a fixed amount to every child and parent income in a cluster does not change the ranking

of children and parents within the cluster, but it may change the ranking of these individuals in

their national income distributions. In conclusion, the ρg may then also change.

We now introduce a first-stage projection equation similar to the one in (12), except that

the coefficients are cluster-specific:

RX(X) =

nG∑
g=1

1{G = g}W ′γg + ν, E[νW |G] = 0 a.s.. (16)

Let {(Gi, Xi,Wi, Yi)}ni=1 be an i.i.d. sample from the distribution of (G,X,W, Y ). Ranks are

computed using all observations, i.e. RX
i := R̂X(Xi) with R̂X(x) as in (9) and F̂X (F̂−

X ) the

(left-limit of the) empirical cdf of X1, . . . , Xn. The computation of the rank RY
i is analogous.

First, notice that an OLS regression of RY
i on all regressors, i.e. (1{Gi = g}RX

i )nG
g=1 and

(1{Gi = g}WX
i )nG

g=1, produces estimates (ρ̂g, β̂g)
nG
g=1 of (ρg, βg)

nG
g=1 that can be written as:(

ρ̂g

β̂g

)
=

(
n∑

i=1

1{Gi = g}

(
RX

i

Wi

)(
RX

i W ′
i

))−1 n∑
i=1

1{Gi = g}

(
RX

i

Wi

)
RY

i . (17)

Therefore, (ρ̂g, β̂g) can be computed by an OLS regression of RY
i on RX

i and Wi using only

observations i from cluster g. Similarly, γ̂g can be computed by an OLS regression of RX
i on

Wi using only observations i from cluster g. Note however, as explained above, that the ranks

RX
i and RY

i are computed using observations of X and Y from all clusters and thus the OLS

estimators across clusters are not independent.

The following are Assumptions 1–3 adapted to the model with clusters:

Assumption 4. {(Gi, Xi,Wi, Yi)}ni=1 is a random sample from the distribution of (G,X,W, Y ).

Assumption 5. The vector W is such that E[∥W∥4] <∞ and, for all g = 1, . . . , nG, the matrix

E[1{G = g}WW ′] is non-singular.

Assumption 6. The random variable ν is such that E[1{G = g}ν2] > 0 for all g = 1, . . . , nG.

As in the previous section, note that our assumptions do not require the marginal distribu-

tions FX and FY to be continuous. In addition, we introduce an assumption about the number

and size of the clusters:

Assumption 7. The number of clusters nG is a finite constant and P (G = g) > 0 for all

g = 1, . . . , G.
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Observe that if the number of clusters were to increase together with the sample size n, with

the number of units within each cluster being of the same order, the extra noise coming from

estimated ranks would be asymptotically negligible, and the standard OLS variance formula

would be applicable. The new result below applies to the case with a fixed number of clusters

so that the estimation error in the ranks is not negligible even in large samples. This scenario

seems reasonable, for instance, in our empirical application in which a cluster is a commuting

zone within a U.S. state because each of these states contains only a small number of commuting

zones relative to the sample size.

Under these four assumptions, we have the following extension of Theorem 1.

Theorem 2. Suppose that (15)–(17) hold and that Assumptions 4–7 are satisfied. Then for all

g = 1, . . . , G, we have

√
n(ρ̂g − ρg) =

1

σ2ν,g
√
n

n∑
i=1

{
h1,g(Gi, Xi,Wi, Yi) + h2,g(Xi, Yi) + h3,g(Xi)

}
+ oP (1) →D N(0, σ2g),

where

σ2g :=
1

σ4ν,g
E
[
(h1,g(G,X,W, Y ) + h2,g(X,Y ) + h3,g(X))2

]
with σ2ν,g := E[1{G = g}ν2] and

h1,g(ḡ, x, w, y) := 1{ḡ = g}(RY (y)− ρgRX(x)− w′βg)(RX(x)− w′γg),

h2,g(x, y) := E[1{G = g}(I(y, Y )− ρgI(x,X)−W ′βg)(RX(X)−W ′γg)],

h3,g(x) := E[1{G = g}(RY (Y )− ρgRX(X)−W ′βg)(I(x,X)−W ′γg)]

for all ḡ ∈ {1, . . . , nG}, x ∈ R, w ∈ Rp, and y ∈ R.

In Online Appendix D, we provide a joint asymptotic normality result for all regression

coefficients. Letting ρ̂ := (ρ̂1, . . . , ρ̂nG)
′, ρ := (ρ1, . . . , ρnG)

′, β̂ := (β̂′1, . . . , β̂
′
nG

)′, and β :=

(β′1, . . . , β
′
nG

)′, the appendix shows that

√
n

(
ρ̂− ρ

β̂ − β

)
=

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ), Σ := E[ψiψ
′
i], (18)

and provides an explicit formula for ψi. From this result, one can then easily calculate the asymp-

totic distribution of linear combinations of parameters. For instance, similarly as in the rank-

rank regression without clusters, a popular measure of intergenerational mobility (Deutscher

and Mazumder (2023)) is the expected rank of a child with parents at a given income rank p,

θg,p := βg + ρg p. (19)

The asymptotic distribution in (18) allows us to construct a confidence interval for θg,p for a

specific commuting zone g or simultaneous confidence sets across all commuting zones.

21



An estimator of the asymptotic variance σ2 is

σ̂2g :=
1

nσ̂4ν,g

n∑
i=1

(H1,g,i +H2,g,i +H3,g,i)
2,

where

σ̂2ν,g :=
1

n

n∑
i=1

1{Gi = g}(RX
i −W ′

i γ̂g)
2,

H1,g,i := 1{Gi = g}
(
RY

i − ρ̂gR
X
i −W ′

i β̂g

) (
RX

i −W ′
i γ̂g
)
,

H2,g,i :=
1

n

n∑
j=1

1{Gj = g}
(
I(Yi, Yj)− ρ̂gI(Xi, Xj)−W ′

j β̂g

) (
RX

j −W ′
j γ̂g
)
,

H3,g,i :=
1

n

n∑
j=1

1{Gj = g}
(
RY

j − ρ̂gR
X
j −W ′

j β̂g

) (
I(Xi, Xj)−W ′

j γ̂g
)

for all g ∈ {1, . . . , nG} and i = 1, . . . , n. One can prove consistency of this estimator using the

same arguments as those in the proof of Lemma 4.

4.2 Level-Rank Regressions

In this subsection, we consider a regression model with the level of Y as the dependent variable

and a rank as the regressor:

Y = ρRX(X) +W ′β + ε, E

[
ε

(
RX(X)

W

)]
= 0. (20)

Such a regression has been used, for instance, by Chetty et al. (2014) or Abramitzky et al.

(2021) who regress a child’s outcome like college attendance or teenage pregnancy on their

parent’s income rank. Another example is Chetty et al. (2011) in which wages are regressed on

the rank of a test score.

For the above regression, the OLS estimator takes the form(
ρ̂

β̂

)
=

(
n∑

i=1

(
RX

i

Wi

)(
RX

i W ′
i

))−1 n∑
i=1

(
RX

i

Wi

)
Yi. (21)

The following theorem derives asymptotic normality for ρ̂.

Theorem 3. Suppose that (12), (20), and (21) hold, that E[ε4] < ∞, and that Assumptions

1–3 are satisfied. Then

√
n(ρ̂− ρ) =

1

σ2ν
√
n

n∑
i=1

{
h1(Xi,Wi, Yi) + h2(Xi) + h3(Xi)

}
+ oP (1) →D N(0, σ2),

where

σ2 :=
1

σ4ν
E
[
(h1(X,W, Y ) + h2(X) + h3(X))2

]
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with σ2ν := E[ν2] and

h1(x,w, y) := (y − ρRX(x)− w′β)(RX(x)− w′γ),

h2(x) := E[Y − ρI(x,X)−W ′β)(RX(X)−W ′γ)],

h3(x) := E[(Y − ρRX(X)−W ′β)(I(x,X)−W ′γ)]

for all x ∈ R, w ∈ Rp, and y ∈ R.

In Online Appendix D, we provide a joint asymptotic normality result for all regression

coefficients, i.e. we show that

√
n

(
ρ̂− ρ

β̂ − β

)
=

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ), Σ := E[ψiψ
′
i],

and derive the expression for ψi. A consistent estimator of the asymptotic variance can be

obtained by the plugin method, analogously to our discussion in Section 3.

4.3 Rank-Level Regressions

In this subsection, we consider a regression model in which the outcome variable has been

transformed into a rank, but the regressors are included as levels:

RY (Y ) =W ′β + ε, E [εW ] = 0, (22)

where, for simplicity of notation, we let the vector W absorb the regressor X. Examples of such

a regressions in applied work are Sharkey and Torrats-Espinosa (2017) who regress the income

rank on the crime rate and Ghosh et al. (2023) who regress income rank on a binary indicator

for whether a couple is in an isonymous marriage.

Denote by Wl the l-th element of W := (W1, . . . ,Wp)
′ and by W−l the vector of all elements

ofW except the l-th. The projection ofWl ontoW−l for any l = 1, . . . , p now takes the following

form:

Wl =W ′
−lγl + νl, E[νlW−l] = 0, (23)

where γ1, . . . , γp are (p−1)-dimensional vectors of parameters. For this model, the OLS estimator

takes the following form:

β̂ =

(
n∑

i=1

WiW
′
i

)−1 n∑
i=1

WiR
Y
i . (24)

We then have the following result.

Theorem 4. Suppose that (22)–(24) hold and that Assumptions 1 and 2 are satisfied. Then

√
n(β̂ − β) =

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ),
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where Σ := E[ψiψ
′
i], ψi := (ϕ1(Wi, Yi), . . . , ϕp(Wi, Yi)

′ for all i = 1, . . . , n,

ϕl(w, y) :=
1

σ2νl
[hl,1(w, y) + hl,2(y)] ,

σ2νl := E[ν2l ], and

hl,1(w, y) := (RY (y)− w′β)(wl − w′
−lγl),

hl,2(y) := E[(I(y, Y )−W ′β)(Wl −W ′
−lγl)],

for all w ∈ Rp and y ∈ R.

The theorem shows, in particular, that for the l-th element of β̂, we have

√
n(β̂l − βl) →D N(0, σ2βl

),

where

σ2βl
:=

1

σ4νl
E
[
(hl,1(W,Y ) + hl,2(Y ))2

]
,

and, like above, a consistent estimator of the asymptotic variance can be obtained by the plugin

method, analogously to our discussion in Section 3.

5 Empirical Applications

We illustrate our new inference methods in three empirical applications. Each of them analyzes

intergenerational mobility, but the applications vary in the socioeconomic outcome under study

and in the populations from which data are drawn. The first analyzes mobility in occupational

status in the U.S., the second mobility in education in India, and the third mobility in income

across U.S. neighborhoods.

5.1 Intergenerational Mobility in the U.S. – Occupational Status

In this section, we analyze intergenerational mobility in the U.S. as in Song et al. (2020) and

Ward (2023), who measure mobility by the rank-rank relationship between fathers’ and sons’

occupational status. We focus on cohorts covered by the PSID dataset used in Ward (2023).

Data. We use the PSID dataset from Ward (2023), including his construction of the Song

score (not his “adjusted” Song score), the measure of occupational status.

Econometric Specification. Our analysis deviates somewhat from that of Ward (2023). To

obtain a rank-rank regression model as in (10), we modify Ward’s regression in three ways.

First, we run a rank-rank regression separately for each subpopulation of father-son pairs within

which he computes ranks, i.e. within father-son birth cohort combinations. We remove father-

son cohorts with fewer than 20 observations. Second, we do not use sample weights. Third,

24



without covariates with covariates

19
60

19
70

19
80

19
60

19
70

19
80

1.0

1.1

1.2

1.3

son's cohort

method, father's cohort:

EW, 1920

EW, 1930

EW, 1940

EW, 1950

EW, 1960

hom, 1920

hom, 1930

hom, 1940

hom, 1950

hom, 1960

ratio of standard errors

Figure 3: Standard error of the indicated method divided by the correct standard error.

we do not average ranks over time. These three modifications to Ward (2023)’s regression

specification allow us to interpret the regression slopes as rank-rank regression slopes and the

model fits into (10). We estimate the rank-rank regression with and without the covariates used

by Ward (2023). Since the occupational status measure is a discrete variable, the rank-rank

slope we estimate is not a rank correlation (see Section 2.2). However, the occupational status

measure has many support points so that different definitions of the rank do not substantially

change estimates and standard errors. Therefore, we report results based on the largest ranks

(ω = 1). Results for the smallest ranks (ω = 0) are similar.

Results. For the different father-son cohorts, Figure 3 shows the ratios of the hom and EW

standard errors divided by the correct standard error. A ratio above (below) one means that

the hom or EW standard error is larger (smaller) than the correct one. The left (right) panel

reports ratios for the rank-rank regression without (with) covariates.

Some of the hom and EW standard errors are too small relative to the correct one, many are

close to the correct one, but a few are substantially larger than the correct one. For instance,

for the 1940-1980 father-son cohort, the hom standard error is up to 30% larger than the correct

one.

The differences in standard errors translate into differences in confidence intervals for the

rank-rank slope. Figure 4 shows 95% marginal confidence intervals for the rank-rank slope using

data on father-son pairs for which the father is in the 1940 cohort. Most hom and EW confidence

intervals are similar to the correct confidence interval, but for the son’s cohort of 1980 we see

some differences: the hom confidence sets are longer than the correct ones and lead to somewhat

conservative inference.

All confidence intervals are fairly wide, not permitting to draw tight conclusions about the

mobility within father-son cohort pairs.
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Figure 4: 95% marginal confidence intervals for the rank-rank slope for fathers in the 1940 cohort.

5.2 Intergenerational Mobility in India – Education

Asher et al. (2024) compute rank-based measures of mobility from data on children’s and parents’

years of education in India. Because education is observed on discrete points of support, they

partially identify rank-rank slopes for a latent, continuously distributed measure of education.

We complement their analysis by directly estimating rank-rank slopes from the observed, discrete

education data, highlighting the sensitivity of the rank-rank slope to the way in which ties are

handled, and by providing valid confidence intervals.

Data. We use the 2012 India Human Development Survey (IHDS) dataset from Asher et al.

(2024) and focus on the relationship between fathers’ and sons’ years of education.

Econometric Specification. For each birth cohort of the children, we estimate the rank-

rank slopes in (10) with W containing only a constant. Unlike Asher et al. (2024) we do not use

sample weights. Ranks are defined as in (9) with ω ∈ {0, 0.5, 1}.

Results. Fathers’ and sons’ education is observed on a small number of support points from

0 to 14; see Figure 15 in the Appendix. Because of this discreteness, we compare rank-rank

slope estimates with different ways of handling ties in the ranks. For each birth cohort and each

definition of the rank, Figure 5 shows estimates of the rank-rank slope ρ, of the expected child

rank θ0.25 as defined in Section 3.1, and of Spearman’s rank correlation.
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Figure 5: Estimates of the rank-rank slope ρ, expected child rank θ, and Spearman’s rank correlation by birth

cohort and with 95% marginal confidence intervals. The colors refer to different definitions of ranks: “smallest

rank” (ω = 0), “mid-rank” (ω = 0.5), and “largest rank” (ω = 1). The dashed-lines indicate similar measures of

mobility for the U.S. and Denmark as reported in Asher et al. (2024).

Consider the graph on the left, which shows estimates and confidence intervals for the rank-

rank slope. The estimates are very sensitive to the way in which ties are handled, particularly in

the earlier birth cohorts. For instance, using the largest rank (ω = 1) leads to a rank-rank slope

close to one with a relatively wide confidence interval. On the other hand, using the smallest

rank (ω = 0) leads to a rank-rank slope of 0.42. In the latest birth cohort (1985), the largest

and smallest ranks lead to rank-rank slopes of 0.65 and 0.42, still a substantial difference. For

the 1950 birth cohort, according to the estimates based on the smallest ranks, mobility in India

is higher than in the U.S. (i.e., the rank-rank slope is smaller), while the estimates based on the

largest ranks imply that India has extremely low mobility with a rank-rank slope about twice

as large as that of the U.S.. Also, based on the largest ranks, mobility in India has increased

(rank-rank slopes have decreased) across birth cohorts. According to the estimates based on the

smallest ranks, mobility has remained constant at a high level (low rank-rank slope). It is worth

emphasizing that, for a given birth cohort, the difference in estimates is due only to the way in

which ties in the ranks are handled, i.e. which value of ω is used. Otherwise, the estimator and

the data used are identical.

The graph in the middle shows estimates and confidence intervals for the expected child

rank conditional on the parents’ rank being equal to 0.25. The graph is qualitatively similar to

that of the rank-rank slope, except that all estimates lie above those for Denmark and the U.S..

Therefore, according to this measure, mobility in India appears to be higher than in Denmark

and the U.S., regardless of how ties are handled.

The graph on the right shows estimates and confidence intervals for Spearman’s rank correla-

tion for different ways of handling ties. Interestingly, the estimates and their confidence intervals

are almost insensitive to the way in which ties are handled. The estimates are close to 0.5 for
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all birth cohorts and all values of ω, and the confidence intervals are all very narrow. To see

why the estimates of the rank-rank slopes and of the Spearman’s rank correlation substantially

differ, recall that the rank-rank slope ρ̂ is equal to the Spearman’s rank correlation ρ̂S multiplied

by the ratio of standard deviations of the ranks:

ρ̂ = ρ̂S

√∑n
i=1(R

Y
i − R̄Y )2∑n

i=1(R
X
i − R̄X)2

.

For continuous marginal distributions of X and Y , the ratio of standard deviations is equal to

one, but when the marginal distributions are discrete, the ratio can take any value in (0,∞).

While Spearman’s rank correlation is almost insensitive to how ties are handled and barely

varies from birth cohort to birth cohort, the ratio of standard deviations is very sensitive to the

way in which ties are handled and does vary substantially across birth cohorts. The ratios of

standard errors is displayed in the right-most plot in Figure 2. When the smallest ranks (ω = 0)

are employed, then the ratio of standard errors is close to 0.8 for all birth cohorts, while for

the largest ranks (ω = 1), the ratio starts out at a value close to 1.9 for the 1950 birth cohort

and then decreases towards about 1.25 for the 1985 birth cohort. Overall, the patterns in the

ratios of standard errors mimics those found in the rank-rank slopes, while the Spearman’s rank

correlation remains close to 0.5 for all birth cohorts and all definitions of the ranks. Therefore,

the patterns seen in the rank-rank slopes across birth cohorts and their sensitivity to the way in

which ties are handled originate from the variation in the ratios of standard errors rather than

in Spearman’s rank correlation.

In this dataset, it seems possible to reach robust conclusions about the value of Spearman’s

rank correlation, namely it being close to 0.5 for all birth cohorts. On the other hand, the

rank-rank slope estimates are so sensitive to the definition of the ranks that they do not provide

robust conclusions about whether the trend across birth cohorts is increasing or decreasing, nor

whether the rank-rank slope in India is larger or smaller than that of the U.S..

Finally, Figure 6 shows the ratio of standard errors, i.e. the standard error of the indicated

method (“hom” or “EW”) divided by the correct standard error. A ratio above (below) one

means that the hom or EW standard error is larger (smaller) than the correct one. Both the

hom and the EW standard errors may be too large or too small relative to the correct standard

error, depending on how ties in the ranks are handled. For instance, for the smallest ranks,

both standard errors are larger than the correct one for all birth cohorts with the EW being

less conservative than the hom standard error. On the other hand, for the largest ranks, both

standard errors are two small relative to the correct standard error. For the 1950 birth cohort,

for instance, the EW standard error is about 20% too small and the hom standard error is about

10% too small.

5.3 Intergenerational Mobility in the U.S. – Income

In this section, we apply our new inference methods to the analysis of intergenerational mobility

in U.S. commuting zones (CZs) as in Chetty et al. (2014, 2018); Chetty and Hendren (2018).
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Figure 6: Standard error of the indicated method divided by the correct standard error. Each panel refers to a

different definition of ranks: “smallest rank” (ω = 0), “mid-rank” (ω = 0.5), and “largest rank” (ω = 1).

Since the micro-data are not publicly available, we design a simulation experiment calibrated to

the available information about commuting zones’ income distributions.

Suppose we are interested in learning about mobility in CZs of California. A local politician

in a given CZ of the state may be interested in estimating mobility in their own CZ. In that

case, she might run a rank-rank regression as in (10) using only data from that particular

CZ. Importantly, ranks for children and parents are therefore computed in their respective

distributions within that CZ. Second, a state-level politician may want to learn about mobility

in all CZs of their state and perhaps compare mobility across CZs. In that case, she might

want to run a rank-rank regression with clusters as in (15), where ranks are computed in the

distribution of the whole state.

We apply our new inference methods to both types of regressions on simulated data, where

the data-generating process has been calibrated to information from the CZs in California, and

compare the results to methods using the homoskedastic and Eicker-White variance estimators.

Subsequently, we show that the results from California are not special in the sense that similar

results are found in other U.S. states. Finally, we explore the impact of top- and bottom-

censoring of incomes on the estimators.

In both types of regressions, the CZ-specific regressions of the form (10) and the regression

with clusters as in (15), W contains only a constant. Both regressions produce rank-rank slopes

ρg for each CZ g. In addition, we compute the expected income rank of a child with parents at

the p-th rank, θg,p as defined in (19).

Data. From Chetty et al. (2022b), we obtain information about the CZ-specific marginal

income distributions for 709 CZs.8 Specifically, we obtain the CZ-specific mean and median for

8The information on the marginal income distributions is missing for some CZs, so we do not analyze all 741

CZs contained in the dataset by Chetty et al. (2022a).
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2011-12 for child family income of children in the 1980-82 birth cohorts and the CZ-specific mean

and median for 1996-2000 for the parent family income. In addition, we obtain CZ population

sizes from the 2000 census. From Chetty et al. (2022a), we obtain estimates of θg,p for two values

p = 0.25 and p = 0.75 for each CZ together with their standard errors.

Calibration. First, we calibrate a CZ-specific copula for children’s and parents’ income. To

this end, for each CZ g, we use the two estimates of θg,p for p = 0.25 and p = 0.75 to solve for

the implied estimate ρ̂g of the rank-rank slope ρg. We then consider two copula families, the

normal and the t copulas. For each family we find the copula that matches the observed rank

correlation ρ̂g.

Second, we calibrate CZ-specific marginal distributions for children’s and parents’ income.

For each CZ g we fit a log-normal distribution that matches the observed CZ-specific mean

and median incomes for children. Similarly, we fit a log-normal distribution that matches the

observed CZ-specific mean and median incomes for parents.

Finally, we calibrate CZ-specific sample sizes proportional to the observed CZ population

sizes.9

Simulation Exercise. We draw 1, 000 Monte Carlo samples for each CZ. On each Monte Carlo

sample, we estimate the two parameters of interest, ρg and θg,0.25. For each, we compute three

types of standard errors: the correct standard errors from Theorem 5 or Theorem 6, respectively,

the OLS standard error assuming homoskedasticity of the regression errors (“hom”), and the

Eicker-White (“EW”) standard error. In the rank-rank regression with clusters, the hom and

EW standard errors for θg, ρg are computed based on the residuals from CZ g.10 Ranks are

defined as in (9) with ω = 1.

5.3.1 Mobility Across CZs in a Single State

We start by performing inference about mobility in the CZs of a single state, California. As

indicated above, a local politician may be interested in estimating mobility in their own CZ

and, thus, may run a rank-rank regression as in (10) using only data from that particular CZ.

Similarly, a state-level politician may want to learn about mobility in all CZs of their state

and perhaps compare mobility across CZs. In that case, she might want to run a rank-rank

regression with clusters as in (15).

Figures 7 and 8 show results for these two types of regressions. They plot the ratios of the

hom and EW standard errors divided by the correct standard error. A ratio above (below) one

9We define a minimum (n := 2, 000) and maximum (n := 10, 000) sample size. Among all CZs in the U.S.,

the one with the smallest (largest) populations size is assigned n (n). All other CZs are assigned a sample size

between these two, proportional to their population size.
10An alternative approach would be to pool the residuals from all CZs to estimate the residual variance, similar

to the regression in (15). The results from this approach are similar to those without pooling residuals and are

not shown here.
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Figure 7: Separate rank-rank regression within each CZ: standard error of the indicated method divided by the

correct standard error.

means that the hom or EW standard error is larger (smaller) than the correct one.

For the normal copula, the hom and EW standard errors are larger than the correct one in

all CZs. In the separate rank-rank regressions, for the rank-rank slope ρg, the ratio of standard

errors is close to one, but for the expected income rank θg,0.25, the ratios are close to 1.6, i.e.

the hom and EW standard errors are about 60% too large. For the rank-rank regression with

clusters, the ratios are all fairly close to one except for θg,0.25 in Los Angeles, where the hom

and EW standard errors are slightly over 5% too large.

For the t copula, on the other hand, the hom standard error for the rank-rank slope may

be substantially (around 20%) smaller than the correct one. The hom standard error for the

expected income rank may be around 30% too large in the separate rank-rank regressions, but

up to 10% too small in the rank-rank regressions with clusters. The EW standard error may

also be substantially too large (about 40% too large in the separate regressions), but is never

too small.

The differences in standard errors translate into differences in confidence intervals. Figures 9

and 10 show 95% marginal confidence intervals for the mobility estimates based on the normal

and the t copulas. Figures 16 and 17 in the Appendix show the corresponding figures for the

rank-rank regression with clusters.

For the normal copula, confidence intervals for the rank-rank slope are similar across the

three methods. For the expected income rank, however, the confidence intervals based on hom

and EW variance estimators are substantially longer than those based on the correct variance

estimator, and thus lead to conservative inference. The difference in length of the hom and EW
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Figure 8: Rank-rank regression with clusters: standard error of the indicated method divided by the correct

standard error.

compared to the correct confidence intervals is economically meaningful in the sense that the

hom and EW confidence intervals include meaningful values of mobility that the correct intervals

exclude. For instance, the hom and EW confidence intervals for Modesto, San Jose, Santa Rosa,

and Santa Barbara all include Italy’s (Acciari et al. (2022) report a value of 0.445) and Canada’s

(Corak (2020) reports a value of 0.444) values of mobility, but the correct intervals are shorter

and exclude Italy’s and Canada’s values. Similarly, Cresent City’s hom and EW confidence

intervals include Australia’s value of mobility (Deutscher and Mazumder (2023) report a value

of 0.45), but the correct interval is shorter and does not include Australia’s value.

For the t copula, the hom confidence intervals for the rank-rank slope are too small while

the EW confidence intervals are almost identical to the correct ones. The difference in length

of the hom and the correct confidence intervals is economically meaningful in the sense that

the hom confidence intervals exclude meaningful values of mobility that the correct intervals

include. For instance, the hom confidence intervals for Redding and Mammoth Lakes imply

that mobility in these two CZs is significantly different from that in Germany (Bratberg et al.

(2017) report a rank-rank slope of 0.245) and Canada (Corak (2020) report a rank-rank slope

of 0.242) while the correct confidence intervals are longer and include Germany’s and Canada’s

values of mobility. Similarly, Santa Barbara’s hom confidence interval implies that mobility in

this CZ is significantly different from that in Norway (Bratberg et al. (2017) report a rank-rank

slope of 0.223) and Italy (Acciari et al. (2022) report a rank-rank slope of 0.220), but the correct

confidence interval includes Norway’s and Italy’s values of mobility.

Comparisons of mobility across countries are common in the literature (Deutscher and
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Figure 9: Separate rank-rank regression within each CZ: 95% marginal confidence intervals for the normal

copula.

Mazumder (2023)) and the above discussion shows that our new confidence intervals may lead

to different conclusions than those based on commonly used variance estimators.

5.3.2 Mobility Across CZs in All States

We now turn to the 709 CZs across all U.S. states. For the separate rank-rank regressions,

Figure 11 shows the histogram of ratios of standard errors across all CZs. Figure 18 in the

Appendix shows the corresponding figure for the rank-rank regression with clusters. Both figures

illustrate that the results for California are not special. In particular, as in California, most ratios

for the normal copula and the expected income rank parameter take values around 1.6, so that

most hom and EW standard errors are about 60% too large. Similarly, as in California, most

hom standard errors for the t copula and the rank-rank slope are about 20% too small.

5.3.3 The Impact of Censoring

In Section 2.2 and Remark 2, we have already argued that pointmasses in the marginal distri-

butions of income create ties in the ranks and that the way in which ties are handled has an

impact on the estimand and the statistical properties of the OLS estimator.

First, we study the impact of top- and bottom-censoring of the incomes on the estimand

ρ. To this end we draw a large sample (of size 106) from the (continuous) calibrated income
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Figure 10: Separate rank-rank regression within each CZ: 95% marginal confidence intervals for the t copula.

distribution of the CZ Los Angeles using the Gaussian copula. Then, parental incomes are

censored below (“bottom censoring”) or above (“top censoring”) at the q-th or the (1 − q)-th

quantile. We successively increasing q from zero to 0.25.

Figure 12 shows how the rank-rank slope and Spearman’s rank correlation change with the

amount of censoring q and with the way in which ties are handled.

Consider the first row of the figure. At q = 0 there is no censoring and the joint distribution

of incomes is continuous, so the rank correlation and the rank-rank slope are equal. With more

censoring (larger q), the joint distribution features larger pointmasses and the two estimands

diverge. Without censoring, the rank-rank slope is equal to 0.254 while with 25% top-censoring,

the rank-rank slope takes a value of 0.287. Among the ranking of all 709 commuting zones

(CZs) that we analyze, this change in mobility corresponds to Los Angeles moving from 59th

place to 134th place. This is a substantial change in mobility. Of course, 25% of the sample

being censored is an extreme case, but we see significant sensitivity of the rank-rank slope with

respect to q even for smaller values. In addition, discreteness stemming from sources other than

censoring may have similarly substantial impacts on the estimand.

While for top-censoring, the rank-rank slope increases with q, for bottom-censoring it de-

creases with q.

The first row of the figure shows the estimands for ω = 0, i.e. the smallest rank. The second

row shows the same estimands when ω = 1, i.e. largest ranks. The rank correlation is almost
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Figure 11: Separate rank-rank regression within each CZ: histograms of ratios of standard errors.

the same for the two definitions of the rank, but the rank-rank slope substantially changes.

Handling ties differently (ω = 1) than in the first row of the figure (ω = 0) means that Los

Angeles’ mobility measure drops from 0.254 without censoring to 0.218 with 25% top-censoring.

This change in mobility corresponds to Los Angeles moving from 59th place up to 20th place in

the ranking of all 709 CZs.

Second, the way in which ties are handled also impacts the statistical properties of the OLS

estimator of the rank-rank slope. Figure 13 illustrates this point by showing the estimated

distribution of the estimator for the two different definitions of the ranks for ω = 0 and ω = 1.

To create this graph, we simulated 10,000 samples of size 2,000 from the income distribution

calibrated to data from Los Angeles with 25% top-coding and the Gaussian copula. In Figure 12,

we have already seen how the estimand changes depending on whether ω = 0 or ω = 1. In

Figure 13, we see this reflected in the different means of the two distributions of the estimator.

In addition, however, the variance of the two estimators is also different. If ties are handled by

setting ω = 0, the variance is larger compared to the estimator’s variance when ω = 1.
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Figure 13: Estimated density of the OLS estimator of the rank-rank slope with two different ways of handling
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on simulated data from the income distribution calibrated to data from Los Angeles with 25% top-censoring.
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Appendix

A The Survey on the Use of Regressions Involving Ranks

We searched for papers on Google Scholar. For instance, to find articles in the Review of

Economic Studies, we used the search phrase “rank regression source:”Review of Economic

Studies”” and then restricted the years of publication to 2013 to present (February 2024 at the

time of the search). For the American Economic Review, we excluded Papers & Proceedings,

AER Insights, and comments. For the Journal of Political Economy, we excluded JPE Micro

and JPE Macro.

We then manually went through all search results, looking for the occurence of the word

“rank” in each paper. Many papers were immediately discarded if, for instance the word only

occurred in the context of “rank conditions” or in papers without an empirical analysis. For

each paper, we made a judgement about whether the regressor, the outcome variable, or both

in a regression had been transformed into ranks, classifying them as “rank-rank”, “level-rank”,

or “rank-level”. For papers containing at least one of these types of regressions, we then clas-

sified the type of estimator being used into the categories “OLS” (containing papers that ex-

plicitly state that OLS was used and those that didn’t explicitly state the method used, but

we judged to most likely have been OLS11), “TSLS”, “nonparametric” (e.g., kernel regression,

local-polynomial regression, bin-scatter), and “other” (e.g., probit, logit, regression discontinuity

designs). Next, we classified the methods used for computation of standard errors into the cat-

egories “homoskedastic” (papers explicitly stating that they used the textbook homoskedastic

error formula), “robust” (any estimator referred to as “robust” or “heteroskedasticity-robust”,

but does not contain the word “cluster”), “clustered” (any method whose description contains

the words based on the stem “cluster”), “unknown” (for cases in which we could not find any

description of the method used), “none” (for cases in which no standard errors were computed),

and “other” (e.g., bootstrap, permutation inference).

B Differences in Asymptotic Variances

B.1 Asymptotic Variances as Functionals of the Copula

Under the assumption that F is continuous, all three asymptotic variances analyzed in Section 2

can be written as functionals of the copula C. First, one can use results in Borkowf (2002) to

show that

σ2 = 144
{
−9θ21 + θ2 + 2θ3 + 2θ4 + 2θ5

}
(25)

11These are cases in which the paper contains a description of the form “. . . was regressed on . . . ” without any

further details.
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where

θ1 =

∫ 1

0

∫ 1

0
uvdC(u, v)

θ2 =

∫ 1

0

∫ 1

0
(1− u)2(1− v)2dC(u, v)

θ3 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(1− u− v̄ + C(u, v̄))(1− ū)(1− v)dC(u, v)dC(ū, v̄)

θ4 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
min{1− u, 1− ū}(1− v)(1− v̄)dC(u, v)dC(ū, v̄)

θ5 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
min{1− v, 1− v̄}(1− u)(1− ū)dC(u, v)dC(ū, v̄)

Second, since ρ = 12
∫ 1
0

∫ 1
0 C(u, v)dudv − 3, the homoskedastic asymptotic variance of the OLS

estimator can be written as

σ2hom = 1−
(
12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3

)2

. (26)

Finally, noticing that

Mkl =

∫ 1

0

∫ 1

0
(u− 1/2)k(v − 1/2)ldC(u, v),

it is clear that

σ2EW = 144

(
M22 − 2ρM31 +

ρ2

80

)
is a functional of C. Interestingly, all three variances depend on C, and only on C.
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B.2 Optimizing the Difference in Variances Within Families of Copulas

This section provides details on the calculations of the maximal and minimal differences of

variances presented in Figure 1. Specifically, we want to minimize and maximize the difference

σ2j −σ2 for j ∈ {hom,EW}. As shown in Appendix B.1, both variances depend on the copula C

of F , and only on C. To make this dependence explicit, we write σ2(C) and σ2hom(C). Consider

the maximization problem first. We want to solve

max
C∈C

σ2j (C)− σ2(C), (27)

where C is a family of copulas. We consider three families, the Gaussian family, the (Student-)t

family, and one with quadratic dependence.

Denote by Gθ the bivariate Gaussian copula with correlation θ (both variances are equal to

one, means are equal to zero). The Gaussian family is then defined as

CGaussian := {Gθ : θ ∈ [0, 1]}.

Let Tθ denote a (Student-)t copula with one degree of freedom and dependence parameter θ.

Then, the t family we consider is

Ct := {Tθ : θ ∈ [0, 1]}.

Finally, consider the following “quadratic” data-generating process. X ∼ U [−1/2, 1/2], Y =

1/2 + θX + (1− θ)X2 + ε, where ε ∼ N(0, 10−6). Denote by Fθ the joint distribution of (X,Y )

and by Qθ the copula of Fθ. Then, the quadratic family we consider is defined as

Cquadratic := {Qθ : θ ∈ [0, 1]}.

We want to solve (27) with C being replaced by each of the three families as well as the

corresponding minimization problem. These are optimization problems in the scalar parameter

θ ∈ [0, 1], which we solve by simulation combined with a grid search. First, we define an equi-

distant grid of [0, 1] of size 200. For each parameter value θ on this grid, we then draw 10, 000

samples of size 2, 000 from the bivariate copula in C with that parameter. Then, we compute

the value of the objective function in (27) for each of these draws and then average over all

Monte Carlo samples. Denote the maximizer θ on the grid leading to the largest value of the

objective function by θ∗. The left graph of panel A in Figure 1 then plots the magnitude of

σ2(Cθ∗) (“correct”), of σ
2
hom(Cθ∗) (“hom”) and the rank correlation ρ of the copula Cθ∗ in the

given parametric family.

The black dots are computed as follows. In the data from Section 5.3, Los Angeles has a

rank correlation of 0.254. For each of the parametric families, we can then find the parameter

value θLA ∈ [0, 1] so that the copula from that parametric family has a rank correlation equal

to 0.254. Besides the value of ρ, the dots then show the values of σ2(CθLA
) and σ2j (CθLA

) for

j ∈ {hom,EW}.
The right graph in panel A of Figure 1 plots the quantities for the copula that solves the

minimization problem corresponding to (27). Panel B of the figure shows the corresponding

graphs for the optimization problems with j = EW .
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C Additional Results for the Empirical Applications

C.1 Intergenerational Mobility in India – Education
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Figure 15: Count of observations for each pair of father and son years of education, by birth cohort of the son.

C.2 Intergenerational Mobility in the U.S. – Income

rho theta

Bak
er

sfi
eld
Chic

o

Cre
sc

en
t C

ity

Eur
ek

a

Fre
sn

o

Klam
at

h 
Fa

lls

Lo
s A

ng
ele

s

M
am

m
ot

h 
La

ke
s

M
od

es
to

Por
to

la

Red
din

g

Sac
ra

m
en

to

San
 D

ieg
o

San
 F

ra
nc

isc
o

San
 Jo

se

San
ta

 B
ar

ba
ra

San
ta

 R
os

a
Yu

m
a

Bak
er

sfi
eld
Chic

o

Cre
sc

en
t C

ity

Eur
ek

a

Fre
sn

o

Klam
at

h 
Fa

lls

Lo
s A

ng
ele

s

M
am

m
ot

h 
La

ke
s

M
od

es
to

Por
to

la

Red
din

g

Sac
ra

m
en

to

San
 D

ieg
o

San
 F

ra
nc

isc
o

San
 Jo

se

San
ta

 B
ar

ba
ra

San
ta

 R
os

a
Yu

m
a

0.40

0.42

0.44

0.46

0.48

0.2

0.3

0.4

method correct EW hom

confidence intervals of regression parameters (normal copula)

California

Figure 16: Rank-rank regression with clusters: 95% marginal confidence intervals for the normal copula.
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Figure 17: Rank-rank regression with clusters: 95% marginal confidence intervals for the t copula.
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Online Appendix

D Asymptotic Theory for All Regression Coefficients

D.1 Rank-Rank Regressions

In this section, we present the asymptotic theory for all coefficients in the rank-rank regression

model studied in Section 3:

RY (Y ) = ρRX(X) +W ′β + ε, E

[
ε

(
RX(X)

W

)]
= 0, (28)

where we had already introduced the equation projecting RX(X) onto the other regressors in

W :

RX(X) =W ′γ + ν, E[νW ] = 0. (29)

To study the asymptotic behavior of the coefficients β, we now also introduce some additional

projections. Let Wl denote an element of W := (W1, . . . ,Wp)
′ and by W−l the vector of all

elements of W except the l-th. We now introduce the projection of Wl onto RX(X) and the

remaining regressors W−l: for any, l = 1, . . . , p,

Wl = τlRX(X) +W ′
−lδl + υl, E

[
υl

(
RX(X)

W−l

)]
= 0, (30)

where τ1, . . . , τp are scalar constants and δ1, . . . , δp are (p− 1)-dimensional vectors of constants.

Assumption 8. For l = 1, . . . , p, the random variable υl is such that E[υ2l ] > 0.

Consider the OLS estimator in (11):(
ρ̂

β̂

)
=

(
n∑

i=1

(
RX

i

Wi

)(
RX

i W ′
i

))−1 n∑
i=1

(
RX

i

Wi

)
RY

i . (31)

Let σ2ν , h0,1 := h1, h0,2 := h2, and h0,3 := h3 be as defined in Theorem 1. For l = 1, . . . , p,

further define σ2υl := E[υ2l ],

ϕ0(x,w, y) :=
1

σ2ν
[h0,1(x,w, y) + h0,2(x, y) + h0,3(x)]

ϕl(x, y, w) :=
1

σ2υl
[hl,1(x,w, y) + hl,2(x, y) + hl,3(x)]

and

hl,1(x,w, y) := (RY (y)− ρRX(x)− w′β)(wl − τlRX(x)− w′
−lδl),

hl,2(x, y) := E[(I(y, Y )− ρI(x,X)−W ′β)(Wl − τlRX(X)−W ′
−lδl)],

hl,3(x) := E[(RY (Y )− ρRX(X)−W ′β)(Wl − τlI(x,X)−W ′
−lδl)].

Finally, let ψi := (ϕ0(Xi,Wi, Yi), ϕ1(Xi,Wi, Yi), . . . , ϕp(Xi,Wi, Yi))
′.

With the additional assumption and notation, one can derive the following joint asymptotic

normality result:
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Theorem 5. Suppose that (28)–(31) hold and that Assumptions 1–3, and 8 are satisfied. Then

√
n

(
ρ̂− ρ

β̂ − β

)
=

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ),

where Σ := E[ψiψ
′
i] and ψi’s are as defined above in this section.

Theorem 1 has already shown the asymptotic variance of ρ̂. Theorem 5 adds to that result

by providing the asymptotic variance for individual components of β̂: for all l = 1, . . . , p, we

have
√
n(β̂l − βl) →D N(0, σ2βl

),

where

σ2βl
:=

1

σ4υl
E
[
(hl,1(X,W, Y ) + hl,2(X,Y ) + hl,3(X))2

]
.

D.2 Rank-Rank Regressions With Clusters

In this section, we present the asymptotic theory for all coefficients in the rank-rank regression

model with clusters studied in Section 4.1:

RY (Y ) =

nG∑
g=1

1{G = g}
(
ρgRX(X) +W ′βg

)
+ ε, E

[
ε

(
RX(X)

W

)∣∣∣∣∣G
]
= 0 a.s., (32)

where we had already introduced the equation projecting RX(X) onto the other regressors in

W :

RX(X) =

nG∑
g=1

1{G = g}W ′γg + ν, E[νW |G] = 0 a.s.. (33)

To study the asymptotic behavior of the coefficients βg, we now also introduce some additional

projections. Let Wl denote an element of W := (W1, . . . ,Wp)
′ and by W−l the vector of all

elements of W except the l-th. We now introduce the projection of Wl onto RX(X) and the

remaining regressors W−l: for any, l = 1, . . . , p,

Wl =

nG∑
g=1

1{G = g}
(
τl,gRX(X) +W ′

−lδl,g
)
+ υl, E

[
υl

(
RX(X)

W−l

)∣∣∣∣∣G
]
= 0 a.s., (34)

where τl,g are scalar constants and δl,g are (p− 1)-dimensional vectors of constants.

Assumption 9. For l = 1, . . . , p and g = 1, . . . , nG, the random variable υl is such that

E[1{G = g}υ2l ] > 0.

Consider the OLS estimator in (17):(
ρ̂g

β̂g

)
=

(
n∑

i=1

1{Gi = c}

(
RX

i

Wi

)(
RX

i W ′
i

))−1 n∑
i=1

1{Gi = c}

(
RX

i

Wi

)
RY

i . (35)
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Let σ2ν,g, h0,1,g := h1,g, h0,2,g := h2,g, and h0,3,g := h3,g be as defined in Theorem 2. For

l = 1, . . . , p and g = 1, . . . , nG, further define σ
2
υl,g

:= E[1{G = g}υ2l ],

ϕ0,g(ḡ, x, w, y) :=
1

σ2ν,g
[h0,1,g(ḡ, x, w, y) + h0,2,g(x, y) + h0,3,g(x)]

ϕl,g(ḡ, x, y, w) :=
1

σ2υl,g
[hl,1,g(ḡ, x, w, y) + hl,2,g(x, y) + hl,3,g(x)]

and

hl,1,g(ḡ, x, w, y) := 1{ḡ = g}(RY (y)− ρgRX(x)− w′βg)(wl − τl,gRX(x)− w′
−lδl,g),

hl,2,g(x, y) := E[1{G = g}(I(y, Y )− ρgI(x,X)−W ′βg)(Wl − τl,gRX(X)−W ′
−lδl,g)],

hl,3,g(x) := E[1{G = g}(RY (Y )− ρgRX(X)−W ′βg)(Wl − τl,gI(x,X)−W ′
−lδl,g)].

Finally, let ψi,g := (ϕ0,g(Gi, Xi,Wi, Yi), ϕ1,g(Gi, Xi,Wi, Yi), . . . , ϕp,g(Gi, Xi,Wi, Yi))
′ and ψi :=

(ϕ0,1(Gi, Xi,Wi, Yi), . . . , ϕ0,nG(Gi, Xi,Wi, Yi), ϕ1,1(Gi, Xi,Wi, Yi), . . . , ϕ1,nG(Gi, Xi,Wi, Yi), . . .)
′.

With the additional assumption and notation, one can derive the following joint asymptotic

normality result:

Theorem 6. Suppose (32)–(35) hold and that Assumptions 4–7, and 9 are satisfied. Then:

√
n

(
ρ̂− ρ

β̂ − β

)
=

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ),

where Σ := E[ψiψ
′
i] and ψi as defined in this section.

Theorem 2 already shows the asymptotic variance of ρ̂g. Similarly, for the l-th component

of β̂g, denoted by β̂l,g, we have

√
n(β̂l,g − βl,g) →D N(0, σ2βl,g

),

where

σ2βl,g
:=

1

σ4υl,g
E
[
(hl,1,g(G,X,W, Y ) + hl,2,g(X,Y ) + hl,3,g(X))2

]
.

D.3 Regression of a General Outcome on a Rank

In this section, we present the asymptotic theory for all coefficients in the rank-rank regression

model studied in Section 4.2:

Y = ρRX(X) +W ′β + ε, E

[
ε

(
RX(X)

W

)]
= 0, (36)

with the projection equations (29) and (30). Consider the OLS estimator in (21):(
ρ̂

β̂

)
=

(
n∑

i=1

(
RX

i

Wi

)(
RX

i W ′
i

))−1 n∑
i=1

(
RX

i

Wi

)
Yi. (37)
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Let σ2ν , h0,1 := h1, h0,2 := h2, and h0,3 := h3 be defined as in Theorem 3. For l = 1, . . . , p,

further define σ2υl := E[υ2l ],

ϕ0(x,w, y) :=
1

σ2ν
[h0,1(x,w, y) + h0,2(x) + h0,3(x)]

ϕl(x, y, w) :=
1

σ2υl
[hl,1(x,w, y) + hl,2(x) + hl,3(x)]

and

hl,1(x,w, y) := (y − ρRX(x)− w′β)(wl − τlRX(x)− w′
−lδl),

hl,2(x) := E[(Y − ρI(x,X)−W ′β)(Wl − τlRX(X)−W ′
−lδl)],

hl,3(x) := E[(Y − ρRX(X)−W ′β)(Wl − τlI(x,X)−W ′
−lδl)].

Finally, let ψi := (ϕ0(Xi,Wi, Yi), ϕ1(Xi,Wi, Yi), . . . , ϕp(Xi,Wi, Yi))
′.

With the additional notation, one can derive the following joint asymptotic normality result:

Theorem 7. Suppose (29), (30), (36), and (37) hold and that Assumptions 1–3, and 8 are

satisfied. Then:

√
n

(
ρ̂− ρ

β̂ − β

)
=

1√
n

n∑
i=1

ψi + oP (1) →D N(0,Σ),

where Σ := E[ψiψ
′
i] and ψi as defined in this section.

Theorem 3 already shows the asymptotic variance of ρ̂. Similarly, for the l-th component of

β̂l we have
√
n(β̂l − βl) →D N(0, σ2βl

),

where

σ2βl
:=

1

σ4υl
E
[
(hl,1(X,W, Y ) + hl,2(X,Y ) + hl,3(X))2

]
.

E Proofs

E.1 Proofs for Section 2

Define the sample counterpart to Mkl:

M̂kl :=
1

n

n∑
i=1

F̂X(Xi)−
1

n

n∑
j=1

F̂X(Xj)

kF̂Y (Yi)−
1

n

n∑
j=1

F̂Y (Yj)

l

.

Before proving Lemma 1, we state and prove the following auxiliary lemma.

Lemma 5. Let (Xi, Yi), i = 1, . . . , n, be an i.i.d. sample from a distribution F with continuous

marginals. Then M̂kl =Mkl + op(1) for (k, l) ∈ {(0, 2), (2, 0), (2, 2), (3, 1), (4, 0)}.
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Proof. Define P̂Xi := F̂X(Xi)− 1
n

∑n
j=1 F̂X(Xj), P̃Xi := FX(Xi)− 1

n

∑n
j=1 FX(Xj), and PXi :=

FX(Xi)−E[FX(X)]. Similarly, define P̂Y i, P̃Y i, and PY i. Also, let Rn := max{supx∈R |F̂X(x)−
FX(x)|, supy∈R |F̂Y (y) − FY (y)|}. Note that by the Glivenko-Cantelli theorem (e.g., Theorem

1.3 in Dudley (2014)), Rn = op(1). We will use this bound, as well as the elementary identity

a2 − b2 = (a− b)2 + 2(a− b)b, several times without referring to them explicitly.

First, consider

M̂20 =
1

n

n∑
i=1

P̂ 2
Xi =

1

n

n∑
i=1

F̂X(Xi)
2 −

(
1

n

n∑
i=1

F̂X(Xi)

)2

.

Using the law of large numbers, we have

1

n

n∑
i=1

F̂X(Xi)
2 =

1

n

n∑
i=1

FX(Xi)
2 +

1

n

n∑
i=1

(F̂X(Xi)
2 − FX(Xi)

2)

= E[FX(X)2] + op(1) +
1

n

n∑
i=1

(F̂X(Xi)− FX(Xi))
2 +

2

n

n∑
i=1

(F̂X(Xi)− FX(Xi))FX(Xi)

= E[FX(X)2] + op(1).

Furthermore,(
1

n

n∑
i=1

F̂X(Xi)

)2

=

(
1

n

n∑
i=1

FX(Xi) +
1

n

n∑
i=1

(F̂X(Xi)− FX(Xi))

)2

= (E[FX(X)] + op(1))
2 .

Therefore, we have shown M̂20 =M20 + op(1). Analogously, M̂02 =M02 + op(1).

Second, consider

M̂22 =
1

n

n∑
i=1

P̂ 2
XiP̂

2
Y i =

1

n

n∑
i=1

(
P̂ 2
Xi − P̃ 2

Xi

)
P̂ 2
Y i +

1

n

n∑
i=1

(
P̂ 2
Y i − P̃ 2

Y i

)
P̃ 2
Xi +

1

n

n∑
i=1

P̃ 2
XiP̃

2
Y i

=: An +Bn + Cn.

Here,

An =
1

n

n∑
i=1

(
P̂ 2
Xi − P̃ 2

Xi

)
P̂ 2
Y i

=
1

n

n∑
i=1

(
P̂Xi − P̃Xi

)2
P̂ 2
Y i +

2

n

n∑
i=1

(
P̂Xi − P̃Xi

)
P̃XiP̂

2
Y i

=
1

n

n∑
i=1

F̂X(Xi)− FX(Xi)−
1

n

n∑
j=1

(
F̂X(Xj)− FX(Xj)

)2

P̂ 2
Y i

+
2

n

n∑
i=1

F̂X(Xi)− FX(Xi)−
1

n

n∑
j=1

(
F̂X(Xj)− FX(Xj)

) P̃XiP̂
2
Y i,
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and so

|An| ≤ 4R2
n

1

n

n∑
i=1

P̂ 2
Y i − 2Rn

1

n

n∑
i=1

P̃XiP̂
2
Y i = op(1)

since |P̂Y i| ≤ 1, |P̃Xi| ≤ 1. Also, by an analogous argument, Bn = op(1). In addition,

Cn =
1

n

n∑
i=1

P̃ 2
XiP̃

2
Y i

=
1

n

n∑
i=1

(
P̃ 2
Xi − P 2

Xi

)
P̃ 2
Y i +

1

n

n∑
i=1

(
P̃ 2
Y i − P 2

Y i

)
P 2
Xi +

1

n

n∑
i=1

P 2
XiP

2
Y i

=
1

n

n∑
i=1

(
P̃Xi − PXi

)2
P̃ 2
Y i +

2

n

n∑
i=1

(
P̃Xi − PXi

)
PXiP̃

2
Y i

+
1

n

n∑
i=1

(
P̃Y i − PY i

)2
P 2
Xi +

2

n

n∑
i=1

(
P̃Y i − PY i

)
PY iP

2
Xi +

1

n

n∑
i=1

P 2
XiP

2
Y i

=
1

n

∑
i=1

P̃ 2
Y i

 1

n

n∑
j=1

(FX(Xj)− E(FX(X)))

2

+
2

n

∑
i=1

PXiP̃
2
Y i

 1

n

n∑
j=1

(FX(Xj)− E(FX(X)))


+

1

n

n∑
i=1

P 2
Xi

 1

n

n∑
j=1

(FY (Yj)− E(FY (Y )))

2

+
2

n

n∑
i=1

PY iP
2
Xi

 1

n

n∑
j=1

(FY (Yj)− E(FY (Y )))


+

1

n

n∑
i=1

(FX(Xi)− E[FX(X)])2(FY (Yi)− E[FY (Y )])2

=M22 + op(1)

by the law of large numbers and the bounds |P̃Y i| ≤ 1, |P 2
Xi| ≤ 1, and |PY i| ≤ 1.

Third, consider

M̂31 =
1

n

n∑
i=1

P̂ 3
XiP̂Y i =

1

n

n∑
i=1

(
P̂ 3
Xi − P̃ 3

Xi

)
P̂Y i +

1

n

n∑
i=1

(
P̂Y i − P̃Y i

)
P̃ 3
Xi +

1

n

n∑
i=1

P̃ 3
XiP̃Y i

=: Dn + En + Fn.

Using the elementary identity a3 − b3 = (a− b)3 + 3ab(a− b), we have

Dn =
1

n

n∑
i=1

(
P̂ 3
Xi − P̃ 3

Xi

)
P̂Y i =

1

n

n∑
i=1

(
P̂Xi − P̃Xi

)3
P̂Y i +

3

n

n∑
i=1

(
P̂Xi − P̃Xi

)
P̂XiP̃XiP̂Y i.

Then, continue the proof similarly as for M̂22.

Finally, consider

M̂40 =
1

n

n∑
i=1

P̂ 4
Xi =

1

n

n∑
i=1

(
P̂ 2
Xi − P̃ 2

Xi

)
P̂ 2
Xi +

1

n

n∑
i=1

(
P̂ 2
Xi − P̃ 2

Xi

)
P̃ 2
Xi +

1

n

n∑
i=1

P̃ 2
XiP̃

2
Xi.

Then, continue the proof similarly as for M̂22. Q.E.D.
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Proof of Lemma 1. Consider first the estimator for homoskedastic regression errors σ2hom. We

have

1

n

n∑
i=1

ε̂2i =
1

n

n∑
i=1

[
RY

i − R̄Y − ρ̂(RX
i − R̄X)

]2
=

1

n

n∑
i=1

(RY
i − R̄Y )2 − ρ̂2

1

n

n∑
i=1

(RX
i − R̄X)2

=
1

n

n∑
i=1

F̂Y (Yi)−
1

n

n∑
j=1

F̂Y (Yj)

2

− ρ̂2
1

n

n∑
i=1

F̂X(Xi)−
1

n

n∑
j=1

F̂X(Xj)

2

= M̂02 − ρ̂2M̂20 =M02 − ρ2M20 + op(1) =M02(1− ρ2) + op(1)

where the second-to-last equality follows from Lemma 5 and the last one from noting that

M20 =M02. Similarly,

1

n

n∑
i=1

(RX
i − R̄X)2 =M02 + op(1),

and so (7) follows.

Next, consider the Eicker-White estimator σ2EW . Similarly as above, we have

1

n

n∑
i=1

ε̂2i (R
X
i − R̄X)2 =

1

n

n∑
i=1

[
RY

i − R̄Y − ρ̂(RX
i − R̄X)

]2
(RX

i − R̄X)2

=
1

n

n∑
i=1

(RY
i − R̄Y )2(RX

i − R̄X)2

− 2ρ̂
1

n

n∑
i=1

(RY
i − R̄Y )(RX

i − R̄X)3

+ ρ̂2
1

n

n∑
i=1

(RX
i − R̄X)4

=
1

n

n∑
i=1

F̂Y (Yi)−
1

n

n∑
j=1

F̂Y (Yj)

2F̂X(Xi)−
1

n

n∑
j=1

F̂X(Xj)

2

− 2ρ̂
1

n

n∑
i=1

F̂Y (Yi)−
1

n

n∑
j=1

F̂Y (Yj)

F̂X(Xi)−
1

n

n∑
j=1

F̂X(Xj)

3

+ ρ̂2
1

n

n∑
i=1

F̂X(Xi)−
1

n

n∑
j=1

F̂X(Xj)

4

= M̂22 − 2ρ̂M̂31 + ρ̂2M̂40 =M22 − 2ρM31 + ρ2M40 + op(1),

where the last equality follows from Lemma 5. Similarly,(
1

n

n∑
i=1

(RX
i − R̄X)2

)2

=M2
20 + op(1),

52



and so (8) follows by noting that M20 = 1/12, and M40 = 1/80. Q.E.D.

Proof of Lemma 2. Let a ∈ (0, 1) be a constant and let F be the cdf of a pair (X,Y ) of U([0, 1])

random variables such that

Y =

a−X, if 0 ≤ X ≤ a,

X, if a < X ≤ 1.

Then

E[1{X ≤ x}Y ] =

ax− x2/2, if 0 ≤ x ≤ a,

x2/2, if a < x ≤ 1.

and

E[1{Y ≤ y}X] =

ay − y2/2, if 0 ≤ y ≤ a,

y2/2, if a < y ≤ 1.

Hence, given that X > a if and only if Y > a, the function h in (14) satisfies

E[h(X,Y )] = E
[(
X(a−X)− (aX −X2/2)− (a(a−X)− (a−X)2/2)

)
1{X ≤ a}

]
= E[−(a2/2)1{X ≤ a}] = −a3/2

and

E[h(X,Y )2] = E

[(
X(a−X)− (aX −X2/2)− (a(a−X)− (a−X)2/2)

)2
1{X ≤ a}

]
= E[(a2/2)21{X ≤ a}] = a5/4.

Therefore, given that σ2 = 144V ar(h(X,Y )) by the discussion in a remark after Theorem 1, it

follows that

σ2 = 144(E[h(X,Y )2]− (E[h(X,Y )])2) = 36(a5 − a6)

On the other hand, by Lemma 1,

σ2hom = 1− ρ2 = 1− (12E[XY ]− 3)2 = −8− 144(E[XY ])2 + 72E[XY ]

= −8− 144

(
1

3
− a3

6

)2

+ 72

(
1

3
− a3

6

)
= 4(a3 − a6).

In addition, tedious algebra shows that

M22 =
1

80
− a3

6
+
a4

3
− a5

6
, M31 =

1

80
− a3

8
+
a4

4
− 3a5

20
, ρ = 1− 2a3.

Thus, by Lemma 1,

σ2EW = 144

((
1

80
− a3

6
+
a4

3
− a5

6

)
−
(

1

40
− 3a3

10
+
a4

2
− 3a5

10
+
a6

2
− a7 +

3a8

5

)
+

(
1

80
− a3

20
+
a6

20

))
= 144

(
a3

12
− a4

6
+

2a5

15
− 9a6

20
+ a7 − 3a8

5

)
.
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Combining these bounds, we obtain that σ2hom/σ
2 → ∞ and σ2EW /σ

2 → ∞ as a → 0, yielding

the asserted claim. Q.E.D.

Proof of Lemma 3. Let F be any distribution with continuous marginals and let (X,Y ) be a pair

of random variables with distribution F . Letting FX and FY denote the corresponding marginal

distributions, it follows that U := FX(X) and V := FY (Y ) are both U([0, 1]) random variables.

Also, F (X,Y ) = C(U, V ), where C is the copula of F . In addition, ρ = Corr(FX(X), FY (Y )) =

12E[UV ]− 3.

Consider first the case ρ ≥ 0. By Lemma 1,

σ2hom = 1− ρ2 = (1− ρ)(1 + ρ) ≥ 1− ρ = 4− 12E[UV ]

= 4− E[12UV − 6U2 − 6V 2 + 6U2 + 6V 2]

= 4 + 6E[(U − V )2]− 6E[U2]− 6E[V 2] = 6E[(U − V )2].

On the other hand, by (4),

σ2/9 = V ar

(
(2U − 1)(2V − 1) + 4

∫ 1

0
(C(U, v)− Uv)dv + 4

∫ 1

0
(C(u, V )− uV )du

)
≤ 2E

[(
(2U − 1)(2V − 1) + 4

∫ 1

0
(U ∧ v − Uv)dv + 4

∫ 1

0
(u ∧ V − uV )du− 1

)2
]

(38)

+ 2E

[(
4

∫ 1

0
(C(U, v)− U ∧ v)dv + 4

∫ 1

0
(C(u, V )− u ∧ V )du

)2
]
. (39)

Here, observe that∫ 1

0
(U ∧ v − Uv)dv =

U − U2

2
and

∫ 1

0
(u ∧ V − uV )du =

V − V 2

2
.

Thus, the expression in (38) is equal to

2E
[
(4UV − 2U2 − 2V 2)2

]
= 8E

[
(U − V )4

]
≤ 8E

[
(U − V )2

]
.

To bound (39), we claim that

|C(u, v)− u ∧ v| ≤ P (|U − V | ≥ |u− v|). (40)

Indeed, if u ≤ v, then

C(u, v)− u ∧ v = E[1{U ≤ u}1{V ≤ v}]− E[1{U ≤ u}1{U ≤ v}]

= E[1{U ≤ u}(1{V ≤ v} − 1{U ≤ v})] = −E[1{U ≤ u}1{V > v}],

and so (40) follows. On the other hand, if u > v, then

C(u, v)− u ∧ v = E[1{U ≤ u}1{V ≤ v}]− E[1{V ≤ u}1{V ≤ v}]

= E[1{V ≤ v}(1{U ≤ u} − 1{V ≤ u})] = −E[1{V ≤ v}1{U > u}],
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and so (40) follows as well, yielding the claim. Thus,∫ 1

0
|C(u, v)− u ∧ v|dv ≤

∫ 1

0
P (|U − V | ≥ |u− v|)dv

≤ 2

∫ 1

0
P (|U − V | ≥ t)dt ≤ 2E[|U − V |]

and, similarly, ∫ 1

0
|C(u, v)− u ∧ v|du ≤ 2E[|U − V |].

Hence, the expression in (39) is bounded from above by

2× 162(E[|U − V |])2 ≤ 512E
[
|U − V |2

]
.

Therefore, σ2 ≤ 9× 520E[|U − V |2], and so σ2hom/σ
2 is bounded below from zero.

In turn, the case ρ < 0 can be treated similarly. The asserted claim follows. Q.E.D.

E.2 Proofs for Section 3

The proof of Theorem 1 relies on a few auxiliary results, which are presented below. As in the

main text, throughout this appendix, ω ∈ [0, 1] is fixed and the same in the definitions of RX ,

R̂X , RY , and R̂Y .

Proof of Theorem 1. By the Frisch-Waugh-Lovell theorem, the estimator ρ̂ in (11) can alterna-

tively be written as

ρ̂ =

∑n
i=1R

Y
i (R

X
i −W ′

i γ̂)∑n
i=1(R

X
i −W ′

i γ̂)
2

=

∑n
i=1 R̂Y (Yi)(R̂X(Xi)−W ′

i γ̂)∑n
i=1(R̂X(Xi)−W ′

i γ̂)
2

, (41)

where

γ̂ =

(
n∑

i=1

WiW
′
i

)−1( n∑
i=1

WiR̂X(Xi)

)
(42)

is the OLS estimator of a regression of R̂X(Xi) on Wi. Therefore, using
∑n

i=1Wi(R̂X(Xi) −
W ′

i γ̂) = 0 and replacing R̂Y (Yi) in the numerator of (41) by R̂Y (Yi)− ρR̂X(Xi) + ρR̂X(Xi),

√
n(ρ̂− ρ) =

1√
n

∑n
i=1(R̂Y (Yi)− ρR̂X(Xi))(R̂X(Xi)−W ′

i γ̂)

1
n

∑n
i=1(R̂X(Xi)−W ′

i γ̂)
2

. (43)

Thus, by Assumption 3 and Lemmas 9 and 10,

√
n(ρ̂− ρ) =

1√
n

∑n
i=1(R̂Y (Yi)− ρR̂X(Xi)−W ′

iβ)(R̂X(Xi)−W ′
iγ)

1
n

∑n
i=1(R̂X(Xi)−W ′

i γ̂)
2

+ oP (1). (44)

Consider the numerator. Define Zi := (Yi, Xi,W
′
i )

′ for all i = 1, . . . , n and

f(Zi, Zj , Zk) :=
(
I(Yj , Yi)− ρI(Xj , Xi)−W ′

iβ
)
(I(Xk, Xi)−W ′

iγ)
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for all i, j, k = 1, . . . , n. Also, define h(Zi, Zj , Zk) := 6−1
∑

i1,i2,i3
f(Zi1 , Zi2 , Zi3), where the sum

is over all six permutations of the triplet (i, j, k), for all i, j, k = 1, . . . , n. Note that h is a

symmetric function satisfying E[h(Zi, Zj , Zk)] = 0 whenever 1 ≤ i < j < k ≤ n. Moreover, let

Σ1 be the set of triplets (i, j, k) in {1, . . . , n}3 such that all three elements are the same, Σ2 be

the set of triplet (i, j, k) in {1, . . . , n}3 such that two out of three elements are the same, and Σ3

be the set of triplet (i, j, k) in {1, . . . , n}3 such that all three elements are different. It is then

easy to check that for all l = 1, 2, 3,∑
(i,j,k)∈Σl

f(Zi, Zj , Zk) =
∑

(i,j,k)∈Σl

h(Zi, Zj , Zk),

and so
n∑

i,j,k=1

f(Zi, Zj , Zk) =
n∑

i,j,k=1

h(Zi, Zj , Zk).

Therefore,

1

n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

iγ)

=
1

n3

n∑
i,j,k=1

(
I(Yj , Yi)− ρI(Xj , Xi)−W ′

iβ
)
(I(Xk, Xi)−W ′

iγ) + op(n
−1/2)

=
1

n3

n∑
i,j,k=1

f(Zi, Zj , Zk) + op(n
−1/2) =

1

n3

n∑
i,j,k=1

h(Zi, Zj , Zk) + op(n
−1/2)

=

(
n

3

)−1 ∑
1≤i<j<k≤n

h(Zi, Zj , Zk) + op(n
−1/2),

where the last line follows from the Lemma on p. 206 of Serfling (2002), whose application is

justified since E(h(Zi, Zj , Zk)
2) < ∞ by Assumption 2. Furthermore, the results on p. 188

of Serfling (2002) imply that the U-statistic can be projected onto the basic observations. To

compute the projection, note that, for z = (y, x, w′)′,

E[f(Z1, Z2, Z3) | Z1 = z] = E[f(Z1, Z3, Z2)|Z1 = z]

= (RY (y)− ρRX(x)− w′β)(RX(x)− w′γ) = h1(x,w, y),

E[f(Z2, Z1, Z3) | Z1 = z] = E[f(Z3, Z1, Z2) | Z1 = z]

= E
[
(I(y, Y )− ρI(x,X)−W ′β)(RX(X)−W ′γ)

]
= h2(x, y),

E[f(Z2, Z3, Z1) | Z1 = z] = E[f(Z3, Z2, Z1) | Z1 = z]

= E
[
(RY (Y )− ρRX(X)−W ′β)(I(x,X)−W ′γ)

]
= h3(x).

Denoting h̃(z) = E[h(Z1, Z2, Z3)|Z1 = z], we thus have h̃(z) = (h1(x,w, y)+h2(x, y)+h3(x))/3,
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and so(
n

3

)−1 ∑
1≤i<j<k≤n

h(Zi, Zj , Zk) =
3

n

n∑
i=1

h̃(Zi) + oP (n
−1/2)

=
1

n

n∑
i=1

{
h1(Xi,Wi, Yi) + h2(Xi, Yi) + h3(Xi)

}
+ oP (n

−1/2).

Therefore, the central limit theorem (e.g., Theorem 9.5.6 in Dudley (2002)) implies that the

numerator of (44) is asymptotically normal with mean zero and variance E[(h1(X,W, Y ) +

h2(X,Y ) + h3(X))2]. By Lemma 9, the denominator of (44) converges in probability to σ2ν , so

that Slutsky’s lemma yields the asserted claim. Q.E.D.

Proof of Lemma 4. First, we prove that∣∣∣∣∣ 1n
n∑

i=1

(H1i +H2i +H3i)
2 − 1

n

n∑
i=1

(h1(Xi,Wi, Yi) + h2(Xi, Yi) + h3(Xi))
2

∣∣∣∣∣ = oP (1). (45)

To do so, observe that E
[
(h1(X,W, Y ) + h2(X,Y ) + h3(X))2

]
< ∞ by Assumption 2. Hence,

it follows from Lemma 11 that (45) holds if

Rn :=
1

n

n∑
i=1

(H1i +H2i +H3i − h1(Xi,Wi, Yi)− h2(Xi, Yi)− h3(Xi))
2 = oP (1). (46)

In turn, by the triangle inequality, Rn ≤ 9(R1n +R2n +R3n), where

R1n :=
1

n

n∑
i=1

(H1i − h1(Xi,Wi, Yi))
2,

R2n :=
1

n

n∑
i=1

(H2i − h2(Xi, Yi))
2,

R3n :=
1

n

n∑
i=1

(H3i − h3(Xi))
2.

We bound these three terms in turn.

Regarding R1n, we have E[|RY (Y )− ρRX(X)−W ′β|4] < ∞ and E[|RX(X)−W ′γ|4] < ∞
by Assumption 2. Also,

1

n

n∑
i=1

∣∣∣(RY
i − ρ̂RX

i −W ′
i β̂)− (RY (Yi)− ρRX(Xi)−W ′

iβ)
∣∣∣4 = oP (1)

by Lemma 7, Theorems 1 and 5 and Assumption 2. In addition,

1

n

n∑
i=1

∣∣(RX
i −W ′

i γ̂)− (RX(Xi)−W ′
iγ)
∣∣4 = oP (1)

by Lemmas 6 and 7 and Assumption 2. Hence, R1n = oP (1) by Lemma 12.
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Regarding R2n, we have by the triangle inequality that

√
R2n ≤ sup

x,y∈R

∣∣∣∣∣∣ 1n
n∑

j=1

(I(y, Yj)− ρ̂I(x,Xj)−W ′
j β̂)(R

X
j −W ′

j γ̂)− h2(x, y)

∣∣∣∣∣∣
≤ sup

x,y∈R

∣∣∣∣∣∣ 1n
n∑

j=1

(I(y, Yj)− ρ̂I(x,Xj)−W ′
j β̂)(R

X
j −W ′

j γ̂)− ĥ2(x, y)

∣∣∣∣∣∣
+ sup

x,y∈R

∣∣∣ĥ2(x, y)− h2(x, y)
∣∣∣ ,

where

ĥ2(x, y) :=
1

n

n∑
j=1

(I(y, Yj)− ρI(x,Xj)−W ′
jβ)(RX(Xj)−W ′

jγ), for all x, y ∈ R.

Also, supx,y∈R

∣∣∣ĥ2(x, y)− h2(x, y)
∣∣∣ = oP (1) under Assumption 2 by Lemma 8 and the triangle

inequality. In addition, for all j = 1, . . . , n, denote Bj(x, y) := I(y, Yj) − ρI(x,Xj) − W ′
jβ,

B̂j(x, y) := I(y, Yj)− ρ̂I(x,Xj)−W ′
j β̂, for all x, y ∈ R, Cj := RX(Xj)−W ′

jγ, and Ĉj := RX
j −

W ′
j γ̂. Then supx,y∈R

1
n

∑n
j=1(B̂j(x, y)−Bj(x, y))

4 = oP (1) by Theorems 1 and 5 and Assumption

2; 1
n

∑n
j=1(Ĉj−Cj)

4 = oP (1) by Lemmas 6 and 7 and Assumption 2; supx,y∈R
1
n

∑n
j=1Bj(x, y)

4 =

OP (1) and
1
n

∑n
j=1C

4
j = OP (1) by Assumption 2. Hence, by Lemma 12,

sup
x,y∈R

∣∣∣∣∣∣ 1n
n∑

j=1

(I(y, Yj)− ρ̂I(x,Xj)−W ′
j β̂)(R

X
j −W ′

j γ̂)− ĥ2(x, y)

∣∣∣∣∣∣
= sup

x,y∈R

∣∣∣∣∣∣ 1n
n∑

j=1

B̂j(x, y)Ĉj −Bj(x, y)Cj

∣∣∣∣∣∣ ≤ sup
x,y∈R

√√√√ 1

n

n∑
j=1

(B̂j(x, y)Ĉj −Bj(x, y)Cj)2 = oP (1).

Combining the presented bounds gives R2n = oP (1).

Regarding R3n, we have by the triangle inequality that

√
R3n ≤ sup

x∈R

∣∣∣∣∣∣ 1n
n∑

j=1

(RY
j − ρ̂RX

j −W ′
j β̂)(I(x,Xj)−W ′

j γ̂)− h3(x)

∣∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣∣ 1n
n∑

j=1

(RY
j − ρ̂RX

j −W ′
j β̂)(I(x,Xj)−W ′

j γ̂)− ĥ3(x)

∣∣∣∣∣∣+ sup
x∈R

|ĥ3(x)− h3(x)|,

where

ĥ3(x) :=
1

n

n∑
j=1

(RY (Yj)− ρRX(Xj)−W ′
jβ)(I(x,Xj)−W ′

jγ), for all x ∈ R.

Also, supx∈R |ĥ3(x)−h3(x)| = oP (1) under Assumption 2 by Lemma 8 and the triangle inequality.

In addition, for all j = 1, . . . , n, denote Bj := RY (Yj)−ρRX(Xj)−W ′
jβ, B̂j := RY

j −ρ̂RX
j −W ′

j β̂,
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Cj(x) := I(x,Xj)−W ′
jγ, Ĉj(x) := I(x,Xj)−W ′

j γ̂, for all x ∈ R. Then 1
n

∑n
j=1(B̂j−Bj)

4 = oP (1)

by Theorems 1 and 5, Lemma 7, and Assumption 2; supx∈R
1
n

∑n
j=1(Ĉj(x) − Cj(x))

4 = oP (1)

by Lemma 6 and Assumption 2; 1
n

∑n
j=1B

4
j = OP (1) and supx∈R

1
n

∑n
j=1Cj(x)

4 = OP (1) by

Assumption 2. Hence, by Lemma 12,

sup
x∈R

∣∣∣∣∣∣ 1n
n∑

j=1

(RY
j − ρ̂RX

j −W ′
j β̂)(I(x,Xj)−W ′

j γ̂)− ĥ3(x)

∣∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣∣ 1n
n∑

j=1

B̂jĈj(x)−BjCj(x)

∣∣∣∣∣∣ ≤ sup
x∈R

√√√√ 1

n

n∑
i=1

(B̂jĈj(x)−BjCj(x))2 = oP (1).

Combining presented bounds gives R3n = oP (1).

Thus, (46) and hence (45) are satisfied. In turn, combining (45) with the law of large numbers

yields

1

n

n∑
i=1

(H1i +H2i +H3i)
2 →P E[(h1(X,W, Y ) + h2(X,Y ) + h3(X))2]. (47)

Also, σ̂2ν →P σ2ν by Lemma 9. The asserted claim now follows from combining these convergence

results with the continuous mapping theorem. Q.E.D.

Lemma 6. Under Assumptions 1 and 2, we have
√
n(γ̂ − γ) = OP (1).

Proof. By (12) and (42),

√
n(γ̂ − γ) =

(
1

n

n∑
i=1

WiW
′
i

)−1(
1√
n

n∑
i=1

Wi(νi + R̂X(Xi)−RX(Xi))

)
.

By the law of large numbers and Assumption 2, n−1
∑n

i=1WiW
′
i →P E[WW ′]. Also, by (12),

Assumption 2, and Chebyshev’s inequality, n−1/2
∑n

i=1Wiνi = OP (1). In addition,

1√
n

n∑
i=1

Wi(R̂X(Xi)−RX(Xi)) =
1

n3/2

n∑
i,j=1

Wi(I(Xj , Xi)−RX(Xi)) + op(n
−1/2)

=
1

n3/2

n∑
i=1

Wi(ω −RX(Xi)) +
1

n3/2

n∑
i=1

∑
j ̸=i

Wi(I(Xj , Xi)−RX(Xi)) + op(n
−1/2),

where E[∥
∑n

i=1Wi(ω −RX(Xi))∥] ≤
∑n

i=1E[∥Wi∥] = O(n) by Assumption 2 and

E

∥∥∥∥∥∥
n∑

i=1

∑
j ̸=i

Wi(I(Xj , Xi)−RX(Xi))

∥∥∥∥∥∥
2 = O(n3)

by Assumption 2 and results on p. 183 in Serfling (2002). Combining the presented bounds

gives the asserted claim. Q.E.D.

Lemma 7. Under Assumption 1, we have supx∈R |R̂X(x)−RX(x)| = oP (1) and supy∈R |R̂Y (y)−
RY (y)| = oP (1).
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Proof. By the Glivenko-Cantelli theorem (e.g., Theorem 1.3 in Dudley (2014)), supx∈R |F̂X(x)−
FX(x)| = oP (1). Also, by the Glivenko-Cantelli theorem applied to −Xi’s instead of Xi’s,

supx∈R |F̂−
X (x) − F−

X (x)| = oP (1). The first claim thus follows. The second claim follows from

the same argument. Q.E.D.

Lemma 8. Under Assumptions 1 and 2, we have

sup
y∈R

∣∣∣∣∣ 1n
n∑

i=1

I(y, Yi)(RX(Xi)−W ′
iγ)− E[I(y, Y )(RX(X)−W ′γ)]

∣∣∣∣∣ = oP (1), (48)

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I(x,Xi)(RX(Xi)−W ′
iγ)− E[I(x,X)(RX(X)−W ′γ)]

∣∣∣∣∣ = oP (1), (49)

sup
x∈R

∣∣∣∣ 1n
n∑

i=1

(RY (Yi)− ρRX(Xi)−W ′
iβ)I(x,Xi)

− E[(RY (Y )− ρRX(X)−W ′β)I(x,X)]

∣∣∣∣ = oP (1). (50)

Proof. For any random variable A, let A+ and A− denote A1{A ≥ 0} and −A1{A < 0},
respectively. Then

sup
y∈R

∣∣∣∣∣ 1n
n∑

i=1

I(y, Yi)(RX(Xi)−W ′
iγ)

+ − E[I(y, Y )(RX(X)−W ′γ)+]

∣∣∣∣∣ = oP (1)

and

sup
y∈R

∣∣∣∣∣ 1n
n∑

i=1

I(y, Yi)(RX(Xi)−W ′
iγ)

− − E[I(y, Y )(RX(X)−W ′γ)−]

∣∣∣∣∣ = oP (1)

by the argument parallel to that used in the proof of the Glivenko-Cantelli theorem (e.g., The-

orem 1.3 in Dudley (2014)). Combining these bounds gives (48). In turn, (49) and (50) follow

from the same argument. Q.E.D.

Lemma 9. Under Assumptions 1 and 2, we have

1

n

n∑
i=1

(R̂X(Xi)−W ′
i γ̂)

2 →P E[(RX(X)−W ′γ)2] = σ2ν .

Proof. By Assumption 2 and the law of large numbers,

1

n

n∑
i=1

(RX(Xi)−W ′
iγ)

2 →P E[(RX(X)−W ′γ)2].
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Also, using an elementary identity a2 − b2 = (a− b)2 + 2(a− b)b, we have∣∣∣∣∣n−1
n∑

i=1

(R̂X(Xi)−W ′
i γ̂)

2 − n−1
n∑

i=1

(RX(Xi)−W ′
iγ)

2

∣∣∣∣∣
≤ 1

n

n∑
i=1

(R̂X(Xi)−RX(Xi)−W ′
i γ̂ +W ′

iγ)
2 (51)

+

∣∣∣∣∣ 2n
n∑

i=1

(R̂X(Xi)−RX(Xi)−W ′
i γ̂ +W ′

iγ)(RX(Xi)−W ′
iγ)

∣∣∣∣∣ . (52)

The term in (51) is bounded from above by

2

n

n∑
i=1

(R̂X(Xi)−RX(Xi))
2 +

2

n

n∑
i=1

(W ′
i γ̂ −W ′

iγ)
2

≤ 2 sup
x∈R

|R̂X(x)−RX(x)|2 + 2∥γ̂ − γ∥2 ×

∥∥∥∥∥ 1n
n∑

i=1

WiW
′
i

∥∥∥∥∥ = oP (1)

by Lemmas 6 and 7 and Assumption 2. The term in (52) is bounded from above by

2

(
1

n

n∑
i=1

(R̂X(Xi)−RX(Xi)−W ′
i γ̂ +W ′

iγ)
2

)1/2(
1

n

n∑
i=1

(RX(Xi)−W ′
iγ)

2

)1/2

= oP (1)

by the arguments above. The asserted claim thus follows. Q.E.D.

Lemma 10. Under Assumptions 1 and 2, we have

1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi))(R̂X(Xi)−W ′
i γ̂)

=
1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

iγ) + oP (1).

Proof. Using
∑n

i=1Wi(R̂X(Xi)−W ′
i γ̂) = 0, we have

1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi))(R̂X(Xi)−W ′
i γ̂)

=
1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

i γ̂)

=
1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

iγ)−Rn

where

Rn :=
1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi)−W ′
iβ)W

′
i (γ̂ − γ) = R1n +R2n +R3n
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with

R1n :=
1√
n

n∑
i=1

(R̂Y (Yi)−RY (Yi))W
′
i (γ̂ − γ)

R2n :=
1√
n

n∑
i=1

(ρRX(Xi)− ρR̂X(Xi))W
′
i (γ̂ − γ)

R3n :=
1√
n

n∑
i=1

εiW
′
i (γ̂ − γ)

Consider each of these remainder terms separately. First,

|R1n| ≤ sup
y∈R

|R̂Y (y)−RY (y)| ×
1

n

n∑
i=1

∥Wi∥ × ∥
√
n(γ̂ − γ)∥ = oP (1)

by Lemmas 6 and 7 and Assumption 2. Similarly, |R2n| = oP (1). Finally,

|R3n| ≤

∥∥∥∥∥ 1n
n∑

i=1

εiWi

∥∥∥∥∥× ∥
√
n(γ̂ − γ)∥ = oP (1)

by Lemma 6, Assumption 2, and Chebyshev’s inequality. The asserted claim thus follows.

Q.E.D.

Lemma 11. For any vectors A = (A1, . . . , An)
′ and Â = (Â1, . . . , Ân)

′, we have∣∣∣∣∣ 1n
n∑

i=1

(Â2
i −A2

i )

∣∣∣∣∣ ≤ 1

n

n∑
i=1

(Âi −Ai)
2 + 2

√√√√ 1

n

n∑
i=1

(Âi −Ai)2

√√√√ 1

n

n∑
i=1

A2
i .

Proof. We have∣∣∣∣∣ 1n
n∑

i=1

(Â2
i −A2

i )

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

(Âi −Ai)(Âi +Ai)

∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(Âi −Ai)2

√√√√ 1

n

n∑
i=1

(Âi +Ai)2

by the Cauchy-Schwarz inequality. Also,√√√√ 1

n

n∑
i=1

(Âi +Ai)2 =

√√√√ 1

n

n∑
i=1

(Âi −Ai + 2Ai)2 ≤

√√√√ 1

n

n∑
i=1

(Âi −Ai)2 + 2

√√√√ 1

n

n∑
i=1

A2
i

by the triangle inequality. Combining these bounds gives the asserted claim. Q.E.D.

Lemma 12. For any vectors B = (B1, . . . , Bn)
′, B̂ = (B̂1, . . . , B̂n)

′, C = (C1, . . . , Cn)
′, and

Ĉ = (Ĉ1, . . . , Ĉn)
′, we have√√√√ 1

n

n∑
i=1

(B̂iĈi −BiCi)2 ≤

(
1

n

n∑
i=1

(B̂i −Bi)
4

)1/4(
1

n

n∑
i=1

(Ĉi − Ci)
4

)1/4

+

(
1

n

n∑
i=1

C4
i

)1/4(
1

n

n∑
i=1

(B̂i −Bi)
4

)1/4

+

(
1

n

n∑
i=1

B4
i

)1/4(
1

n

n∑
i=1

(Ĉi − Ci)
4

)1/4

.
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Proof. For all i = 1, . . . , n, we have

B̂iĈi −BiCi = (B̂i −Bi)Ĉi +Bi(Ĉi − Ci) = (B̂i −Bi)(Ĉi − Ci) + Ci(B̂i −Bi) +Bi(Ĉi − Ci).

Hence, √√√√ 1

n

n∑
i=1

(B̂iĈi −BiCi)2 ≤

√√√√ 1

n

n∑
i=1

(B̂i −Bi)2(Ĉi − Ci)2

+

√√√√ 1

n

n∑
i=1

C2
i (B̂i −Bi)2 +

√√√√ 1

n

n∑
i=1

B2
i (Ĉi − Ci)2

by the triangle inequality. Applying the Cauchy-Schwarz inequality to each term on the right-

hand side of this bound yields the asserted claim. Q.E.D.

E.3 Proofs for Section 4

E.3.1 Proofs for Section 4.1

Proof of Theorem 2. Fix g ∈ {1, . . . , nG} and let R̃X
i,g := 1{Gi = g}RX

i , R̃Y
i,g := 1{Gi = g}RY

i ,

and W̃i,g := 1{Gi = g}Wi. Then, ρ̂g is the OLS estimator from a regression of R̃Y
i,g on R̃X

i,g and

W̃i,g using all observations i = 1, . . . , n. Therefore, as in the proof of Theorem 1,

√
n(ρ̂g − ρg) =

1√
n

∑n
i=1

(
R̃Y

i,g − ρgR̃
X
i,g

)(
R̃X

i,g − W̃ ′
i,gγ̂g

)
1
n

∑n
i=1

(
R̃X

i,g − W̃ ′
i,gγ̂g

)2
=

1√
n

∑n
i=1 1{Gi = g}

(
R̂Y (Yi)− ρgR̂X(Xi)

)(
R̂X(Xi)−W ′

i γ̂g

)
1
n

∑n
i=1 1{Gi = g}

(
R̂X(Xi)−W ′

i γ̂g

)2 ,

see (43). By Lemmas 13 and 14, we have

√
n(ρ̂g − ρg) =

1√
n

∑n
i=1 1{Gi = g}

(
R̂Y (Yi)− ρgR̂X(Xi)−W ′

iβg

)(
R̂X(Xi)−W ′

iγg

)
1
n

∑n
i=1 1{Gi = g}

(
R̂X(Xi)−W ′

i γ̂g

)2 + oP (1).

(53)

Define Zi := (Gi, Yi, Xi,W
′
i )

′ for all i = 1, . . . , n and

fg(Zi, Zj , Zk) := 1{Gi = g}
(
I(Yj , Yi)− ρI(Xj , Xi)−W ′

iβ
)
(I(Xk, Xi)−W ′

iγ)

for all i, j, k = 1, . . . , n. Also, define hg(Zi, Zj , Zk) := 6−1
∑

i1,i2,i3
fg(Zi1 , Zi2 , Zi3), where the

sum is over all six permutations (i1, i2, i3) of the triplet (i, j, k). Note that hg is a symmetric

function satisfying E[hg(Zi, Zj , Zk)] = 0 whenever 1 ≤ i < j < k ≤ n. Also, Assumption 5
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implies that E(hg(Zi, Zj , Zk)
2) <∞. Then, letting z := (ḡ, y, x, w′)′,

E[fg(Z1, Z2, Z3) | Z1 = z] = E[fg(Z1, Z3, Z2)|Z1 = z]

= 1{ḡ = g}(RY (y)− ρgRX(x)− w′βg)(RX(x)− w′γg)

= h1,g(ḡ, x, w, y),

E[fg(Z2, Z1, Z3) | Z1 = z] = E[fg(Z3, Z1, Z2) | Z1 = z]

= E
[
1{G = g}(I(y, Y )− ρgI(x,X)−W ′βg)(RX(X)−W ′γg)

]
= h2,g(x, y),

E[fg(Z2, Z3, Z1) | Zi = z] = E[fg(Z3, Z2, Z1) | Z1 = z]

= E
[
1{G = g}(RY (Y )− ρgRX(X)−W ′βg)(I(x,X)−W ′γg)

]
= h3,g(x),

we can argue as in the proof of Theorem 1 that

1

n

n∑
i=1

1{Gi = g}
(
R̂Y (Yi)− ρgR̂X(Xi)−W ′

iβg

)(
R̂X(Xi)−W ′

iγg

)
=

1

n

n∑
i=1

{
h1,g(Xi,Wi, Yi) + h2,g(Xi, Yi) + h3,g(Xi)

}
+ oP (n

−1/2).

The remainder of the proof then follows that of Theorem 1. Q.E.D.

Lemma 13. Under Assumption 5, we have for any g = 1, . . . , nG,

n−1
n∑

i=1

1{Gi = g}(R̂X(Xi)−W ′
i γ̂g)

2 →P E[1{Gi = g}(RX(X)−W ′γg)
2] = σ2ν,g.

Proof. Similar to that of Lemma 9. Q.E.D.

Lemma 14. Under Assumption 5, we have for any g = 1, . . . , nG,

1√
n

n∑
i=1

1{Gi = g}(R̂Y (Yi)− ρgR̂X(Xi))(R̂X(Xi)−W ′
i γ̂g)

=
1√
n

n∑
i=1

1{Gi = g}(R̂Y (Yi)− ρgR̂X(Xi)−W ′
iβg)(R̂X(Xi)−W ′

iγg) + oP (1).

Proof. Similar to that of Lemma 10. Q.E.D.

E.3.2 Proofs for Section 4.2

Proof of Theorem 3. As in the proof of Theorem 1,

√
n(ρ̂− ρ) =

1√
n

∑n
i=1(Yi − ρR̂X(Xi))(R̂X(Xi)−W ′

i γ̂)

1
n

∑n
i=1(R̂X(Xi)−W ′

i γ̂)
2

.
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By Lemmas 9 and 15, we have

√
n(ρ̂− ρ) =

1√
n

∑n
i=1(Yi − ρR̂X(Xi)−W ′

iβ)(R̂X(Xi)−W ′
iγ)

1
n

∑n
i=1(R̂X(Xi)−W ′

i γ̂)
2

+ oP (1). (54)

Define Zi := (Yi, Xi,W
′
i )

′ for all i = 1, . . . , n and

f(Zi, Zj , Zk) :=
(
Yi − ρI(Xj , Xi)−W ′

iβ
)
(I(Xk, Xi)−W ′

iγ)

for all i, j, k = 1, . . . , n. Also, define h(Zi, Zj , Zk) := 6−1
∑

i1,i2,i3
f(Zi1 , Zi2 , Zi3), where the

sum is taken over all six permutations (i1, i2, i3) of the triplet (i, j, k). Since E[ε4] < ∞ and

Assumption 2 imply E[h(Zi, Zj , Zk)
2] <∞, we can argue as in the proof of Theorem 1 to show

that

1

n

n∑
i=1

(Yi − ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

iγ)

=
1

n

n∑
i=1

{
h1(Xi,Wi, Yi) + h2(Xi) + h3(Xi)

}
+ oP (n

−1/2) (55)

where for z = (x, y, w′)′, we define

E[f(Zi, Zj , Zk) | Zi = z] = E[f(Zi, Zk, Zj)|Zi = z]

= (y − ρRX(x)− w′β)(RX(x)− w′γ) = h1(x,w, y),

E[f(Zj , Zi, Zk) | Zi = z] = E[f(Zk, Zi, Zj) | Zi = z]

= E
[
(Y − ρI(x,X)−W ′β)(RX(X)−W ′γ)

]
= h2(x),

E[f(Zj , Zk, Zi) | Zi = z] = E[f(Zk, Zj , Zi) | Zi = z]

= E
[
(Y − ρRX(X)−W ′β)(I(x,X)−W ′γ)

]
= h3(x)

Combining (54) with (55) then implies the desired result by the same argument as that in the

proof of Theorem 1. Q.E.D.

Lemma 15. Under Assumption 2, we have

1√
n

n∑
i=1

(Yi − ρR̂X(Xi))(R̂X(Xi)−W ′
i γ̂)

=
1√
n

n∑
i=1

(Yi − ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

iγ) + oP (1).

Proof. Using
∑n

i=1Wi(R̂X(Xi)−W ′
i γ̂) = 0, we have

1√
n

n∑
i=1

(Yi − ρR̂X(Xi))(R̂X(Xi)−W ′
i γ̂)

=
1√
n

n∑
i=1

(Yi − ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

i γ̂)

=
1√
n

n∑
i=1

(Yi − ρR̂X(Xi)−W ′
iβ)(R̂X(Xi)−W ′

iγ)−Rn
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where

Rn :=
1√
n

n∑
i=1

(Yi − ρR̂X(Xi)−W ′
iβ)W

′
i (γ̂ − γ) = R1n +R2n

with

R1n :=
1√
n

n∑
i=1

εiW
′
i (γ̂ − γ)

R2n :=
1√
n

n∑
i=1

(ρRX(Xi)− ρR̂X(Xi))W
′
i (γ̂ − γ)

By the same arguments as in the proof of Lemma 10, we have |R1n| = oP (1) and |R2n| = oP (1)

and the desired result follows. Q.E.D.

E.3.3 Proofs for Section 4.3

Proof of Theorem 4. As in the proof of Theorem 1,

√
n(β̂l − βl) =

1√
n

∑n
i=1(R̂Y (Yi)− βlWl,i)(Wl,i −W ′

−l,iγ̂l)

1
n

∑n
i=1(Wl,i −W ′

−l,iγ̂l)
2

with

γ̂ =

(
n∑

i=1

W−l,iW
′
−l,i

)−1( n∑
i=1

W−l,iWl,i

)
.

By Lemmas 16 and 17, we have

√
n(β̂l − βl) =

1√
n

∑n
i=1(R̂Y (Yi)−W ′

iβ)(Wl,i −W ′
−l,iγl)

1
n

∑n
i=1(Wl,i −W ′

−l,iγ̂l)
2

+ oP (1). (56)

Define Zi := (Yi,W
′
i )

′ for all i = 1, . . . , n,

f(Zi, Zj) :=
(
I(Yj , Yi)−W ′

iβ
)
(Wl,i −W ′

−l,iγl)

for all i, j = 1, . . . , n, and h(Zi, Zj) := 2−1(f(Zi, Zj) + f(Zj , Zi)) for all i, j = 1, . . . , n. Since

Assumption 2 implies E[h(Zi, Zj)
2] <∞, we can argue as in the proof of Theorem 1 that

1

n

n∑
i=1

(R̂Y (Yi)−W ′
iβ)(Wl,i −W ′

−l,iγl) =
1

n

n∑
i=1

{
hl,1(Wi, Yi) + hl,2(Yi)

}
+ oP (n

−1/2) (57)

where for z = (y, w′)′, we define

E[f(Zi, Zj) | Zi = z] = (RY (y)− w′β)(wl − w′
−lγl) = hl,1(w, y),

E[f(Zj , Zi) | Zi = z] = E
[
(I(y, Y )−W ′β)(Wl −W ′

−lγl)
]
= hl,2(y).

Combining (56) with (57) then implies the desired result by the same argument as that in the

proof of Theorem 1. Q.E.D.

66



Lemma 16. Under Assumption 2, for each l = 1, . . . , p, we have σ2νl > 0 and

n−1
n∑

i=1

(Wl,i −W ′
−l,iγ̂l)

2 →P E[(Wl −W ′
−lγl)

2] = σ2νl .

Proof. Since it follows from Assumption 2 that σ2νl > 0, the proof is similar to that of Lemma

9. Q.E.D.

Lemma 17. Under Assumption 2, for each l = 1, . . . , p, we have

1√
n

n∑
i=1

(R̂Y (Yi)− βlWl,i)(Wl,i −W ′
−l,iγ̂l) =

1√
n

n∑
i=1

(R̂Y (Yi)−W ′
iβ)(Wl,i −W ′

−l,iγl) + oP (1).

Proof. Similar to that of Lemma 10. Q.E.D.

E.4 Proofs for Appendix D

Proof of Theorem 5. Fix l = 1, . . . , p. As in the proof of Theorem 1,

√
n(β̂l − βl) =

1√
n

∑n
i=1(R̂Y (Yi)− βlWl,i)(Wl,i − τ̂lR̂X(Xi)−W ′

−l,iδ̂l)

1
n

∑n
i=1(Wl,i − τ̂lR̂X(Xi)−W ′

−l,iδ̂l)
2

,

where (
τ̂l

δ̂l

)
=

(
n∑

i=1

(
R̂X(Xi)

W−l,i

)(
R̂X(Xi) W ′

−l,i

))−1 n∑
i=1

(
R̂X(Xi)

W−l,i

)
Wl,i.

Further, again by the same arguments as those in the proof of Theorem 1,

1√
n

n∑
i=1

(R̂Y (Yi)− βlWl,i)(Wl,i − τ̂lR̂X(Xi)−W ′
−l,iδ̂l)

=
1√
n

n∑
i=1

(R̂Y (Yi)− ρR̂X(Xi)−W ′
iβ)(Wl,i − τlR̂X(Xi)−W ′

−l,iδl) + oP (1)

=
1√
n

n∑
i=1

{
hl,1(Xi,Wi, Yi) + hl,2(Xi, Yi) + hl,3(Xi)

}
+ oP (1)

and
1

n

n∑
i=1

(Wl,i − τ̂lR̂X(Xi)−W ′
−l,iδ̂l)

2 →P σ2vl .

Combining these results with the central limit theorem and Slutsky’s lemma gives the asserted

claim. Q.E.D.

Proof of Theorem 6. Similar to that of Theorem 2, based on the same relationship as that

between Theorem 5 and Theorem 1. Q.E.D.

Proof of Theorem 7. Similar to that of Theorem 3, based on the same relationship as that

between Theorem 5 and Theorem 1. Q.E.D.
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