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Abstract 

This paper presents empirical evidence on the nature of idiosyncratic shocks to firms and discusses its 

role for firm behavior and aggregate fluctuations. We document that firm-level sales and productivity are 

hit by heavy-tailed shocks and follow a nonlinear stochastic process, thus departing from the canonical 

linear. We estimate a state-of-the-art model to flexibly capture the rich dynamics uncovered in the data 

and characterize the drivers of nonlinear persistence and non-Gaussian shocks. We show that these 

features are crucial to get empirically plausible volatility and persistence of micro-originated (granular) 

aggregate fluctuations. 
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1 Introduction

Firms are hit by idiosyncratic shocks of various nature and magnitude. The features of this

firm-level variation are crucial for many economic questions that relate to firm dynamics.1

Despite their importance, however, the statistical properties of firms’ fundamentals remain

elusive, especially when it comes to higher-order moments and rich time series processes.2

The vast majority of firm dynamics models assume that firm-level productivity follows an

AR(1) process with normal innovations, but potential departures from this benchmark are

likely to have substantial consequences. Rare, nonlinear, idiosyncratic shocks can even be-

come a source of aggregate fluctuations.

In this paper, we document that, even among relatively large, publicly listed, US firms,

firm-level sales and productivity substantially depart from standard AR(1) models with

Gaussian innovations. We find that heavy-tailed, extreme, shocks are a pervasive feature of

firm-level growth rates. Changes to revenue-based productivity are even more heavy-tailed

than sales, suggesting that firms are able to absorb some of these fundamental fluctuations.

In addition, we document substantial nonlinearities in persistence: firms can be hit by large

shocks that erase the impact of previous shocks. We estimate a model of productivity that

separates persistent and transitory shocks, is consistent with our empirical findings, and

helps us characterize their drivers. Finally, we show analytically and quantitatively how

non-Gaussianity and nonlinearities affect the importance of idiosyncratic (granular) shocks

for aggregate fluctuations. Simultaneously accounting for these features is crucial to obtain

empirically plausible volatility and autocorrelation of granular fluctuations.

Our starting point is an agnostic analysis of firm sales, using data from US Compustat.

We document that firm-level sales growth is very concentrated – relative to a Gaussian

benchmark – but exhibits heavy tails. Sales growth is fairly symmetric, but very large

changes of either sign are likely to occur: kurtosis is much higher than what implied by a

Gaussian distribution at all quantiles of firm sales, and especially high for small firms.

We then investigate the dynamics of firm sales. Following recent work on household

earnings by Arellano et al. (2017), we estimate quantile autoregressions and document that

the persistence of lagged firm sales is not constant in the size and sign of sales changes as

1For example, firm-level stochastic processes matter for the role played by input adjustment costs (e.g.,
Bloom (2009) and Roys (2016)), misallocation losses from financial frictions (see Moll (2014)), and in general
are key inputs to macroeconomic models with firm heterogeneity (e.g., Khan and Thomas (2008)). Moreover,
idiosyncratic shocks can even be a source of aggregate fluctuations (see Gabaix (2011), Di Giovanni et al.
(2014) Carvalho and Grassi (2019)).

2Complementary to our analysis, Salgado et al. (2019) show that the skewness of sales and productivity
growth is procyclical. A burgeoning literature has recently documented non-normality and nonlinearities in
household earnings dynamics (see Arellano et al. (2017) and Guvenen et al. (2021)): our analysis is indeed
inspired by this influential recent work.
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would be implied by a standard AR(1) process. In particular, the approach introduced by

Arellano et al. (2017) provides a measure of persistence of past shocks, often referred to as

the persistence of history. We find that such persistence is heterogeneous, with small firms

being hit by large positive shocks to their sales having the lowest persistence. This means

that a large positive shock hitting a small firm can wipe out the history of past negative

shocks. However, among large firms, good and bad past shocks exhibit similar persistence.

Firm sales clearly represent the combination of exogenous fundamental shocks and en-

dogenous inputs. We find that our findings on sales are not solely driven by endogenous

responses, as revenue-based labor productivity and revenue-based Total Factor Productivity

(TFP) do not seem to be characterized by either a AR(1) process or to face Gaussian inno-

vations. In fact, we find that TFP growth is even more concentrated and heavy-tailed than

labor productivity and, in turn, sales. Nearly half of TFP growth rates are less than 5% in

absolute value, 5 times more likely than if the data was normally distributed and more than

twice as likely than for sales growth. Rare, large, TFP changes of either sign occur: kurtosis

is larger than for sales. TFP growth exhibits mildly negative skewness among large firms,

but these firms seem to absorb left-tailed shocks given what we find for sales. An illustrative

exercise suggests that this is consistent with firms adjusting their inputs increasingly less as

the productivity shock becomes larger.3

TFP also exhibits nonlinear persistence of history: in fact, one that is more pronounced

than for sales, with double the range of estimated persistence values. In particular, we

find evidence of microeconomic disasters hitting large firms. Since this feature holds for

productivity but not for sales, it further confirms that large firms are equipped to absorb the

impact of disastrous negative shocks. In summary, we conclude that firms face fundamental

shocks that feature non-Gaussianity and nonlinearities.

In order to investigate further the drivers and the implications of our empirical results,

we estimate a rich, state-of-the-art, model of productivity dynamics, following work by Arel-

lano et al. (2017) and Arellano et al. (2021) on household earnings. The model features

both transitory and persistent components, and allows for non-Gaussianity and nonlinear

persistence of history, hence making it consistent with our empirical findings. The estimated

model indicates that both persistent and, especially, transitory shocks are non-Gaussian.

While a decomposition of this type is common in the household literature, transitory shocks

are often overlooked in firm dynamics. Our results suggest that they should be taken se-

riously, especially given the estimated degree of heavy-tailedness. Shocks of varying degree

3In complementary recent work, Fella et al. (2021) find that Spanish firm-level productivity exhibits non-
linearity and non-normality. They find that accounting for these productivity features alters the estimation
of capital adjustment costs.
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of persistence have been shown to be important for various aspects of firm dynamics, such

as input adjustment costs (Cooper and Haltiwanger (2006), Fella et al. (2021)), financial

frictions (Moll (2014)), insurance provision (Guiso et al. (2005)).

We focus on a different aspect: rare, large, idiosyncratic shocks as those we document

can be a direct source of aggregate fluctuations. Indeed, Gabaix (2011) supports his granular

hypothesis with many historical examples that are consistent with our empirical findings.

Among others, the major strike at General Motors in 1970, or natural disasters in the

U.S. (Barrot and Sauvagnat (2016)), Japan (Boehm et al. (2019)), and more generally rare

economic disasters (Barro (2006)).4 Large shocks can also be positive, such as those at

Walmart in 2002.5

Conceptual frameworks studying the granular hypothesis are typically static and feature

little or no discussion on the nature of the shocks. One exception is Carvalho and Grassi

(2019), who build a systematic framework linking firm dynamics and micro-originated fluc-

tuations; however, the nature of firm-level stochastic processes is not central to their conclu-

sions. To the best of our knowledge, we are the first to study the role played by non-Gaussian

shocks and nonlinear persistence for the granular hypothesis. We proceed in two steps.

First, we show analytically the role played by the heavy-tailed distribution of shocks

in a stylized theoretical setting. Intuitively, non-Gaussian shocks can provide a reason for

a heavy-tailed distribution of firm sizes, which is the typical cornerstone of the granular

hypothesis. Moreover, for a given size distribution, non-Gaussian shocks play an ambiguous

role for granular aggregate fluctuations, depending on whether heavier tails are coupled with

larger idiosyncratic variance, and thus greater aggregate volatility.

Second, we use our estimated model to quantitatively assess the importance of non-

Gaussianities and nonlinearities for granular fluctuations. To do so, we compute the volatility

and autocorrelation of the growth rate in an aggregate measure of TFP, generated by simu-

lating our baseline estimated model and four alternative models. Separating a transitory and

a persistent component of productivity, even in an AR(1) setup, increases aggregate volatility

towards the empirical counterpart, but at the expense of counterfactually negative autocorre-

lation. In contrast, modeling a single component with nonlinear persistence, using estimates

from empirical quantile autoregressions, makes the autocorrelation of aggregate TFP growth

rates excessively large. Adding Gaussian transitory shocks to this framework results in ex-

cessively high volatility and negative autocorrelation. It is only with our full model, which

4Other examples of large negative shocks are scandals that reduce firms’ profitability. For example, in
January 2016 55 E. Coli bacteria infections were linked to food served at Chipotle restaurants. Q1 2016
Chipotle revenues dropped 23%.

5Sterk et al. (2021) study high-growth, “gazelles”, startups, who make persistent contributions to aggre-
gate productivity growth.
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features nonlinear persistence and non-Gaussian transitory and persistent shocks, that we

can generate aggregate fluctuations that align with the data.

Our exercise thus suggests that non-Gaussian shocks as typically observed in the data are

associated with less volatile micro-originated aggregate fluctuations, compared to a Gaus-

sian counterpart. We therefore propose a new, empirically grounded, dampening channel,

complementary to, but conceptually distinct from, the size-variance tradeoff documented

by Stanley et al. (1996) and Yeh (2019). Our exercise also shows that nonlinearities and

non-Gaussianities need to be simultaneously accounted for; failure to do so generates coun-

terfactual behavior, not just at the firm level, but also in the aggregate.

Our paper is closely related to three recent studies investigating heavy–tailed and non-

linear firm-level shocks. Jaimovich et al. (2023) focus on the implications for the stationary

distribution of firms and the effects of firm subsidies. Fella et al. (2021) discuss how non-

normalities influence the quantitative importance of capital adjustment costs. Salgado et

al. (2019) focus on the cyclicality of firm-level skewness. Complementary to these stud-

ies, we explore a novel dimension through which the nature of firm-level shocks matters:

micro-originated aggregate fluctuations.

The paper is organized as follows. In Section 2 we present our empirical results on

firm sales. Section 3 shows that TFP also follows a non-Gaussian and nonlinear stochastic

process. Section 4 estimates a model consistent with the empirical findings. Section 5 shows,

analytically and quantitatively, how non-Gaussianity and nonlinearities affect the granular

hypothesis. Section 6 concludes.

2 Non-Gaussianity and nonlinearities in firm sales

We start by documenting the empirical features of firm sales, using data from US Compustat

over the period between 1987 and 2017. We keep firms that remain in operation for at least

2 consecutive years and apply standard selection criteria. We focus on the manufacturing

sector but we show robustness to the whole economy in Appendix B.4. Appendix A provides

details on the sample. We regress the log of firm sales on industry dummies and a linear time

trend, and retain the residuals as our variable of interest. By doing so, we absorb observable

permanent differences and low frequency aggregate fluctuations. As such, our measures

can be thought as the combination of idiosyncratic shocks and heterogeneous sensitivities

to aggregate shocks, if any.6 For the remainder of the paper, when mentioning sales and

productivity we always refer to their residualized counterparts.

6For some further discussion on this, see Section 5. In Appendix B.6 we show how our results change if
we do not detrend our data.
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Figure 1: Distribution of one-year log sales changes

Notes: Empirical densities of residualized log sales changes between year t and t − 1 depicted in solid blue. The standard

deviation is 0.427, Kelley Skewness 0.052 and Crow-Siddiqui Kurtosis 6.457. Gaussian density with the same standard deviation

of data shown in dashed red. See main text for details on the data.

Figure 1 shows how the distribution of sales growth, measured as annual changes in

residualized log sales, is non-Gaussian. In the data there are far more extreme sales changes

than what is implied by a Gaussian distribution with the same standard deviation as in the

data. Indeed, sales growth displays high concentration and heavy tails. In the data, 22%

of the time sales growth is less than 5% in absolute value, compared to only 9% under the

Gaussian distribution. Two thirds of firms experience an annual sales growth rate smaller

than 20% in absolute terms; if the data was normally distributed, only one third of the

observations would experience these growth rates.

What are the features of this non-Gaussianity? To investigate this further, we look at the

skewness and kurtosis of sales growth, by quantiles of past sales.7 First, shocks are roughly

symmetric even for subsets of firms, as shown in Figure 2a. We report Kelley (1947) skewness,

defined as SK = (P90−P50)−(P50−P10)
P90−P10

. A positive Kelley Skewness implies that the right part of

the distribution (P50−P10) accounts for a larger share of the overall dispersion (P90−P10)

than the lower part. This seems to be particularly true for firms with low sales in t − 1,

although even for this group of firms the departure from symmetry is mild. These relatively

7The population skewness and kurtosis might be infinite with heavy-tailed data, see for instance Sarpietro
et al. (2022). Thus, we consider quantile-based measures of skewness and kurtosis, which are robust to the
existence of moments, and refer to them simply as skewness and kurtosis throughout the rest of the paper.
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small deviations from symmetry are in sharp contrast with substantially negative skewness

of household earnings growth that has been documented, among others, by Guvenen et al.

(2021). Our findings are instead consistent with the symmetric distribution of employment

growth rates among mature firms documented by Decker et al. (2016).

Kurtosis, rather than skewness, is the main driver of non-Gaussianity in firm sales growth.

As shown in Figure 2b, firms of different size all experience heavy tailedness of shocks. We

measure this with the Crow-Siddiqui measure of kurtosis, defined as KK = P97.5−P.25
P75−P25

, which

purges the measure from outliers. Kurtosis is highest at the bottom of the sales distribution

and is always higher than 5 for all other quintiles of past sales. These values are significantly

higher than the benchmark kurtosis of 2.906 for the standard Normal distribution. Even

the largest firms face sales growth that is twice as heavy-tailed as its Gaussian counterpart.

Large values of conditional kurtosis are common to previous findings on household earnings.

Our results are also consistent with German data on investment surprises, which display

excess kurtosis but no significant skewness, as showed by Bachmann et al. (2017). This

study interprets their findings as at least partly driven by fat-tailed underlying firm risk, a

conclusion that is consistent with our later findings on productivity.

Moreover, our findings on kurtosis do not hinge on specific aggregate conditions.8 Indeed,

kurtosis is above 4 for all years in our sample and high across all quintiles of past sales

even during recessions. We thus conclude that the heavy tailedness is a key feature of the

distribution of sales growth and represents a clear departure from normality.

We perform some robustness checks to validate our findings. First, we investigate whether

the departures from normality are driven by transitory changes only. Following Guvenen et

al. (2021), we consider a measure of persistent changes defined as the difference between two

3-year averages of residualized log sales as follows: ∆(ỹ) = ȳt−1,t+1 − ȳt−2,t−4, where ȳt−j,t−k

is the average of log sales over the period [t− j, t− k]. Through averaging before differenc-

ing, this alternative measure allows us to purge the effects of the transitory component of

sales changes. We repeat our analysis with this measure of persistent changes and obtain

qualitatively similar results, as shown in Appendix B.2. We find that persistent changes are

non-Gaussian, although they exhibit lower concentration and relatively less heavy-tailedness

compared to the benchmark measure of overall sales changes. As a second robustness check,

we repeat the analysis for the whole economy, besides manufacturing. Results are broadly

unchanged and shown in Appendix B.4; skewness departs little from Gaussian symmetry

and the distribution has heavier tails compared to the reference normal density, with kur-

tosis ranging from 4.8 to 7.5. Third, we restrict the sample by trimming relatively small

8For an analysis on how higher order moments of sales growth evolve over the business cycle see Higson
et al. (2002) and Bloom et al. (2018).
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Figure 2: Skewness and kurtosis of one-year log sales changes

(a) Kelley Skewness (b) Crow-Siddiqui Kurtosis

Notes: Observations are ordered by quantiles of the distribution of t − 1 residualized log sales (x-axis). For each quantile,

we show on the y-axis the Kelley Skewness of residualized log sales changes in Figure 2a and the Crow-Siddiqui Kurtosis in

Figure 2b.

firms.9 All the results are basically unaffected, suggesting that the differential behavior at

the bottom of the distribution is not driven by outliers. To conclude our robustness analy-

sis, we compute confidence bands via bootstrapping. The tight confidence bands shown in

Appendix B.5 confirm the precision and reliability of our findings.

Finally, we focus on the dynamics of firm sales. Following Arellano et al. (2017), we plot

a measure of persistence in the data in Figure 3. The figure shows the estimated average

derivative of the conditional quantile function of residualized log sales yi,t given yi,t−1.
10

Derivatives are taken with respect to yi,t−1 and evaluated at a given percentile of yi,t−1, and

at a given percentile of the shock. This derivative effect can be interpreted as a measure

of persistence in an autoregressive process for log sales. As such, it provides a measure of

persistence of past shocks, often referred to as the persistence of history. As discussed by

Arellano et al. (2017), a standard AR(1) process would deliver the same level of history

persistence for all firms, regardless of their past sales and/or shocks: in other words, a flat

three-dimensional figure. Figure 3, instead, shows some nonlinearities, with persistence of

firm sales history ranging from 0.76 to slightly above 1. History persistence is lowest for low-

sales firms hit by a large positive shock. Thus, a large positive shock to firms at the bottom

of the sales distribution can wipe out the history of past negative shocks (see the right end of

the graph). The opposite does not hold true: for high-sales firms hit by the smallest (most

9In particular, we drop firms with less than 10 employees, or either sales and total assets less than 100
thousand dollars. As such, we exclude about 3% of the firms relative to the baseline sample.

10As done in the literature, quantile functions are set as third-order Hermite polynomials.

7



Figure 3: Quantile autoregressions of log sales

Notes: Estimated average derivative of the conditional quantile function of residualized log sales yi,t given yi,t−1. Derivatives

are taken with respect to yi,t−1 and evaluated at a given percentile of yi,t−1, and at a given percentile of the shock. Details on

data and estimation of quantile functions in the text.

negative) shocks persistence is around 1. Hence, negative shocks do not cancel out the good

sales history of large firms. All these results are broadly unaffected when looking at the

whole economy (beside manufacturing) and at recession years.

The one-sided nonlinearity that we document for firm sales differs from recent findings

on household earnings by Arellano et al. (2017), with high-income households facing “micro

disasters”. It is possible that these micro disasters also hit large firms and make them exit

the market, thus eluding our selected sample. However, we believe that this channel should

play a limited role. First, publicly quoted firms are less likely to exit than all firms in the

population, thus making Compustat less prone to this selection issue. Second, we are also

keeping firms that stay in the sample for only two years, thus limiting selection as much

as possible. Third, we find that the probability of firm exit monotonically decreases with

past sales. As such, even if present, this selection issue is less likely to be relevant among

high-sales firms. Fourth, as we show next, large firms do face micro disasters – in the form

of fundamental shocks – but they seem to absorb them via input adjustment. As such,

persistence of history is more nonlinear for productivity than for sales.

To conclude, we have shown several statistical properties of firm sales that are inconsistent

with a simple random walk process with gaussian shocks, even in a fairly homogeneous

sample as Compustat. In the following sections, we investigate whether these departures

from linearity and Gaussianity mainly come from shocks or responsiveness. To do so, we

investigate whether our findings are solely driven by endogenous responses turning to two
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alternative productivity measures: Labor Productivity (LP) and Total Factor Productivity

(TFP).

3 Non-Gaussianity and nonlinearities in productivity

In this section we investigate whether the documented non-Gaussianity and nonlinearities in

firm sales are features of the distributions of more exogenous measures of firm performance,

or they are the result of peculiar ways in which firms’ inputs respond to fundamental shocks.

We look at two measures of productivity: revenue labor productivity and revenue-based

total factor productivity. We assume that firms operate with a Cobb-Douglas production,

using a composite measure of variable inputs, C, and capital stock, K. Then, for firm

i = 1, ..., N at time t = 1, ..., T , we estimate TFP as a residual of the revenue function as

follows:

zi,t = yi,t − βcci,t − βkki,t (1)

where yi,t is the log sales of firm i at time t, ci,t is the log of the variable input and

ki,t is the logged capital stock. Following the analysis by De Loecker et al. (2020), also

with Compustat data, we use cost of goods sold (COGS) for ci,t. This variable combines

all expenses directly attributable to the production of the goods sold by the firm; as such,

it includes not only labor costs, but also other inputs such as materials, intermediates, and

energy. Compustat does not provide a detailed breakdown of these inputs.11 We construct

the capital stock following Ottonello and Winberry (2020), as we discuss in Appendix A.

Since we do not observe firm-level prices, our TFP measure effectively combines idiosyncratic

technical efficiency shocks with demand shocks. With this caveat in mind, this remains the

relevant measure of fundamental shocks that affect firms’ revenues, as discussed by Decker

et al. (2020) and Blackwood et al. (2021).12 In order to estimate the revenue elasticities, βx,

with x = {c, k}, we follow Decker et al. (2020) and note that the first-order condition on a

given production input x from static profit maximization implies that βx equates the share

of that factor’s costs in total sales. We construct these ratios using industry-level data from

the KLEMS database constructed by the Bureau of Labor Statistics (BLS). Our revenue

elasticities are year-specific and industry-specific. The industry granularity we use is 3-digit

NAICS for the manufacturing sector and 2-digit for the whole economy. The first order

11Keller and Yeaple (2009) impute a measure of intermediate inputs, but this requires additional assump-
tions.

12See De Loecker and Goldberg (2014) for a discussion of output and input price heterogeneity in the
context of TFP estimation. DeVera (2023) use Portuguese data to disentangle productivity from demand
shocks: they find nonlinear persistence in either component, consistent with our results.
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condition pinning down revenue elasticities holds if there are no factor adjustment costs or

wedges; as is typically assumed in the literature (see for instance Decker et al. (2020)), we

require this condition to hold on average across firms within an industry. As suggested by

Syverson (2011), we further strengthen this argument by averaging the revenue elasticities

over 6-year windows. We choose this approach over some alternatives for TFP estimation to

avoid imposing restrictive assumptions on the stochastic process. In Section 4, we will then

introduce a state-of-the art model that best represents the relevant empirical features of our

TFP measure. In the literature, our TFP measure has been called TFPS (for “TFP-shares”),

as discussed by Decker et al. (2020).

As for sales, our baseline sample consists of firms operating in the manufacturing sector

from US Compustat over the period between 1987 and 2017, but we discuss robustness to

different sets of firms in Appendix B. As done for sales in the previous section, we regress the

log of firm productivity measures on industry dummies and a linear time trend and retain

the residuals as our variable of interest.

We document that growth rates (i.e., one-year log changes) of both productivity measures

display clear departures from non-Gaussianity, in the form of high concentration and heavy

tails. Indeed, firms typically experience small or no changes in productivity, but they are

occasionally hit by extreme, negative and positive, shocks. In fact, Table 1 reports how

these features are more markedly pronounced for productivity than for sales. Sales growth

less than 5% in absolute value has a 22% probability of occurring in the data, more than

twice as likely as if the data was normally distributed, with the same empirical standard

deviation. Changes in productivity are even more concentrated: nearly half of TFP growth

rates are less than 5% in absolute value, 5 times more likely than if the data was normally

distributed. In Appendix B.1 we show this concentration towards negligible growth rates is

compensated by the presence of rare and heavy-tailed events.

We further explore the features of this non-Gaussianity by investigating moments of

firm-level changes. We focus on TFP, but report similar results for labor productivity in

Appendix B.3. Figure 4a plots the standard deviation of firm-level one-year log-changes in

sales and TFP, for 5 quintiles of past sales. Both measures decay with size; this behavior

could be consistent with the fact that larger firms are more stable and established. Not

only they face less volatile sales, but also less disperse fundamental shocks. The standard

deviation of sales growth is slightly higher than for productivity, a feature consistent with

standard theoretical frameworks of firm decisions.

These results may suggest that sales inherit most of the underlying features of the pro-

ductivity process. However, we show that the picture is more complicated when we look at

higher order conditional moments of productivity changes, which lie at the core of our results

10



Table 1: Concentration of sales, labor productivity and TFPS growth rates

S : [−0.05, 0.05] [−0.10, 0.10] [−0.20, 0.20]

Data N (µx, σx) Ratio Data N (µx, σx) Ratio Data N (µx, σx) Ratio

Prob (|∆Sales| ∈ S) 21.9 9.4 2.3 41.7 18.4 2.3 66.9 35.9 1.9

Prob (|∆LP| ∈ S) 29.9 9.7 3.1 50.9 19.2 2.7 72.7 37.3 2.0

Prob (|∆TFP| ∈ S) 47.2 10.5 4.5 69.3 20.8 3.3 85.3 39.9 2.1

Note: One year changes in logged variables, using baseline sample as described in the text. Columns for N (µx, σx) refer to

draws, of size equal to the dataset, from a normal distribution with mean µx and standard deviation σx, where x denotes

the variable considered in each row. Standard deviations are 0.427, 0.413, and 0.384 for changes in log sales, LP, and TFP,

respectively.

on non-Gaussianity and nonlinearities. Specifically, we focus on quantile-based measures of

skewness and kurtosis as done for sales in Section 2. Figure 4b plots Kelley Skewness. Similar

to what shown for sales, there is little departure from symmetry. However, conditional skew-

ness of productivity growth falls more clearly with firm size, while the same is not true for

sales. Most importantly, large firms display negative tail risk in productivity, but symmetric

sales growth. This suggests that they are more likely to be hit by large negative productivity

shocks, but are better able to insure against them, thus avoiding large sale losses.

We also find that the heavy tails in sales growth are most likely driven by heavy-tailed

underlying exogenous shocks. Figure 4c displays Crow-Siddiqui kurtosis for our different

measures, conditional on past quantiles of sales. Departures from gaussianity are even more

pronounced for TFP than for sales. Firms at the bottom of the distribution are particularly

likely to face very large shocks, of either sign.

We perform several robustness checks to validate our findings and report them in Ap-

pendix B. As for sales, we confirm that non-Gaussianity is not entirely driven by a transitory

component of productivity growth. Indeed, we show that there are consistent departures from

non-Gaussianity when considering persistent changes in productivity, equivalent to ∆(ỹ) de-

scribed in the previous section. Our results are also robust to enlarging the sample to the

whole economy, besides manufacturing, and to excluding the smallest firms.

In summary, we conclude that firms face shocks that are fundamentally non-Gaussian,

and therefore what documented for firm sales is not solely the result of endogenous responses

to these shocks. In fact, firms behave in a way that reduces the degree of heavy tailedness

and asymmetry of their sales, relative to the shocks that they face. While investigating

this is beyond the scope of this paper, in Appendix C we estimate a simple reduced form

setup that can shed some light on these findings. We find that firms respond to shocks
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Figure 4: Conditional moments of firm-level one year log-changes

(a) Standard Deviation (b) Kelley Skewness

(c) Crow-Siddiqui Kurtosis

Notes: Solid-circled blue lines refer to the log of firm sales, and solid-diamond green lines to log TFP. For each measure,

observations are ordered by quantiles of the sales distribution of t − 1 (x-axis). For each quantile, we show on the y-axis the

Standard Deviation in Figure 4a, the Kelley Skewness in Figure 4b and Crow-Siddiqui Kurtosis in Figure 4c of log-changes.

increasingly less as the productivity change becomes of larger magnitude. This behavior is

broadly consistent with various economic models of firm behavior, such as those featuring

hiring costs and financial frictions.

Finally, we study the dynamics of productivity. We have previously shown how firm sales

depart from a standard AR(1) process and display lower persistence of history among small

firms being hit by large positive shocks. In other words, large positive shocks erase part

of the history of previous bad realizations for firms with low sales. We confirm that this

behavior seems to be inherent to fundamental shocks, rather than firm behavior, as shown

in the right panel of Figure 5. Moreover, we highlight the appearance of a nonlinear left

tail. Such behavior implies that very negative productivity shocks cancel the history of past

12



Figure 5: Quantile autoregressions

(a) Sales (b) TFP

Notes: Estimated average derivative of the conditional quantile function of residualized values yi,t given yi,t−1. Derivatives

are taken with respect to yi,t−1 and evaluated at a given percentile of yi,t−1, and at a given percentile of the shock. Details on

data and estimation of quantile functions in the text.

positive productivity shocks when hitting firms with highest productivity. An equivalent

mechanism has been highlighted for household earnings by Arellano et al. (2017); we show

it is also present among firms, albeit quantitatively more limited.13 Persistence of history is

more heterogeneous for TFP than for sales, ranging between 0.5 and 1.3.

We have shown that firm-level productivity features non-Gaussian shocks and nonlinear

persistence. What statistical process is consistent with our findings and how can we use an

estimated model to learn about micro and macro fluctuations? This is what we investigate

in the next section.

4 A nonlinear model of productivity

The empirical evidence presented so far suggests that the dynamics of firm productivity

are characterized by a rich process. In this last part of the paper, we investigate further

its drivers and implications. In this section, we estimate a model of productivity that can

rationalize the empirically observed nonlinearities and non-Gaussian shocks. We use a state-

of-the-art framework and techniques proposed by Arellano et al. (2017) (thereafter, ABB)

and Arellano et al. (2021) (thereafter, ABBL) and leverage two main features. First, we

assume that the stochastic process of productivity is a combination of a persistent and a

transitory component, allowing us to disentangle the drivers of our empirical findings showed

13All the results presented in this section are qualitatively unchanged when considering all industries.
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so far. Second, we introduce potential nonlinearities in the persistence of shocks using a

quantile-based panel data framework.

Allowing for shocks of different degrees of persistence is not common in the study of firm

dynamics, where an AR(1) process for the log of productivity is typically assumed.14 This

stands in sharp contrast with the literature on household earnings dynamics, in which tran-

sitory and persistent shocks are typically separated, even in a standard framework without

nonlinearities.15 Persistence of idiosyncratic productivity is, however, of first-order impor-

tance for firm dynamics too. Among others, Moll (2014) shows how the persistence of

productivity shocks interacts with financial frictions and matters for the size and the speed

of aggregate transitions. Moreover, transitory and persistent shocks are likely to affect firms’

inputs differently, depending on the nature of their adjustment costs, and whether they face

a static or forward-looking input demand (see seminal work by Cooper and Haltiwanger

(2006) and a specific discussion by Roys (2016)). A further example of the importance of

this distinction can be found in the corporate finance literature: Décamps et al. (2016) show

how permanent and transitory cash-flow shocks are associated with very different corporate

policies. For instance, their relative importance substantially alters the cash–flow sensitivity

of cash.

Motivated by these considerations, we estimate the model proposed by ABB. Let oi,t

denote the residualized log of productivity, net of a linear time trend and industry effects,

of firm i at time t, where t = 1, ..., T and i = 1, ..., N . We model oi,t as the sum of a general

Markovian persistent component and a transitory innovation, as follows:

oit = ηit + ϵit (2)

We allow the persistent component ηit to follow a first-order Markov process:

ηit = Q(ηit−1, uit) (uit|ηit−1, ηit−2, ...) ∼ Uniform(0, 1), t = 2, ..., T (3)

where Q(ηit−1, uit) is the uit-th conditional quantile of ηit given ηit−1. The transitory

component, ϵit, has zero mean and is independent over time and of ηis for all s, s = 1, ..., T .16

We take from ABB the argument for identification, which relies on the literature on

14Guiso et al. (2005) and Roys (2016) are some notable exceptions, although both of these works do no
allow for any nonlinearities.

15In the earnings literature, the transitory-persistent time series structure can be dated back to Friedman
(1957) and MaCurdy (1982).

16Note that the process can be extended to allow for a higher order Markov process for η, a moving
average for ϵ, or to allow for unobserved time-invariant firm-specific effects. As noted in the literature, it is
not possible to disentangle measurement error from the transitory innovation without additional information.
We believe, however, that this should be less of a concern for our dataset – audited balance sheets – than
for survey data commonly used in the earnings literature.
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nonlinear models with latent variables (see Hu and Schennach (2008), Wilhelm (2015)).

This quantile-based model allows us to capture nonlinear persistence and conditional het-

eroskedasticity. In particular, it highlights a role for the persistence of histories. Consider a

shock uit to ηit−1; its impact on TFP depends on the shock occurring at time t + 1, uit+1,

whose impact on TFP will in turn depend on the shock occurring at time t + 2, and so on.

More formally, nonlinear persistence is:

ρ(ηit−1, τ) =
δQ(ηit−1, τ)

δη
(4)

which is a measure of the impact of ηit−1 on ηit and, as a result, on oit, when firm i is hit by

a shock uit that has rank τ .

Average nonlinear persistence across η is:

ρ(τ) = E
[δQ(ηit−1, τ)

δη

]
(5)

The ρ’s are measures of persistence of productivity histories. Here one can see how this

flexible model can allow the persistence of the shocks to the persistent component, ηit−1, to

depend on the size and sign of current and future shocks uit,uit+1... Within this framework

it is possible to analyze how unusual shocks to firm productivity can significantly reduce

or increase the persistence of past shocks. For instance, micro-disasters that wipe out the

memory of all past productivity shocks.17 We therefore study a framework in which unusual

shocks can occur, which wipe out the productivity effect of a series of past shocks. Similarly,

the persistence of current shocks is subject to the realization of future shocks.

We closely follow the estimation strategy proposed by ABBL. We specify the conditional

quantile function describing the process for the persistent component ηit using Hermite poly-

nomials. As a result, we write the expression in equation 3 as:

ηit = Q(ηit−1, τ) =
K∑

κ=0

aQκ (τ)φκ(ηi,t−1) (6)

where φκ denotes the basis of the Hermite polynomials and aQκ the corresponding coef-

ficients. In implementation, we follow ABBL and set K = 3. We define τl = l/(L + 1),

17Note that this nonlinear model nests the canonical (linear) model, typically used in the literature, as a
special case. The canonical model is obtained by restricting η to follow a random walk, i.e. ηi,t = ηi,t−1+νi,t.
In the canonical model, all shocks are associated with the same persistence, irrespective of the history of
a firm’s productivity. A shock νit enters ηit linearly with persistence ρ = 1, so that the shock transmits
entirely to oit, regardless of a firm’s past sequence of shocks to TFP.
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with L = 11, and specify the functions aQκ to be piecewise-linear in the interval [τ1, τL]. In

addition, we follow ABBL and treat aQ0 as quantiles of an exponential distribution in the

ranges (0, τ1] and [τL, 1). This introduces two tail parameters, those defining the exponential

distributions; we estimate each not only for ηi,t, but also for the transitory shock and for the

persistent component in the first period, ηi,0. Computationally, estimation is implemented

using the Sequential Monte Carlo methods proposed by ABBL. We defer to their paper for

an extensive discussion of the computational details of the algorithm.18

In the remainder of this section, we analyze the drivers of the empirically documented

nonlinearities in productivity through the lens of the estimated model. Figure 6 displays

estimates of the average derivative of the conditional quantile function of residualized log-

TFP. The top-left panel 6a reproduces the empirical persistence for the data, also showed

previously in Figure 5b. Persistence of productivity is far from homogeneous, as it depends

both on the initial level of productivity and the size of the productivity shock, and it ranges

between 0.5 and 1.3. The nonlinear model does a good job at replicating the empirical

patterns, as shown in Figure 6b. In Figure 6c, we show the derivatives of the conditional

quantile function for the persistent component of the estimated productivity process. The

nonlinear patterns of persistence are similar to those estimated for the entire productivity

process, although slightly less pronounced, suggesting a marginal role of transitory shocks

for nonlinear dynamics. Our estimates also shed light on the behavior of specific firms.

In Appendix E we show how large positive and negative shocks shocks to the persistent

component of productivity asymmetrically affected a large firm in the sample (Apple). This

case study provides an example of how micro disasters can erase the persistence of history.

Another important feature of the nonlinear model is that it allows for non-Gaussianity

of both components of the productivity process. As shown in Appendix E, we find that

both shocks are non-Gaussian, even when sorting firms by their productivity.19 Indeed,

even the most productive firms face persistent and transitory shocks that feature significant

departures from Gaussianity. We further explore this finding in the next section, which

investigates the aggregate importance of idiosyncratic productivity shocks.

18The Laplace tails assumption is only imposed in the implementation and can be relaxed and replaced
by a more heavy-type tails assumption. However, we do not pursue this idea here and follow instead the
same implementation strategy as suggested by ABB and ABBL.

19Reassuringly, the model is able to match well the conditional moments of productivity growth presented
in Section 3, as we show in Appendix E.
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Figure 6: TFP persistence in the data and in the model

(a) Data (b) Nonlinear model

(c) ηit, nonlinear model

Notes: Panels (a) and (b) plot the estimated average derivative of the conditional quantile function of oi,t given oi,t−1.

Derivatives are taken with respect to oi,t−1 and evaluated at a given percentile of oi,t−1, and at a given percentile of the

shock. Panel (a) is based on the Compustat data, while panel (b) is based on data simulated according to the nonlinear model,

with parameters set to their estimated values. Panel (c) shows the same object for the persistence component of the nonlinear

model, η. µ and σ are the average and standard deviation of the persistence of history in each panel.
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5 An analysis of micro-originated fluctuations

In this last section we revisit one reason why firm-level shocks may be very important for

macroeconomic fluctuations: the granular hypothesis first proposed by Gabaix (2011).20 In

a nutshell, if the firm size distribution is heavy-tailed, idiosyncratic firm-level shocks do not

average out, and shocks to large firms can explain a significant part of aggregate movements.

For instance, when firm sizes are distributed according to the Zipf-law, the central limit

theorem breaks down and diversification becomes of order 1/(lnN), with N being the number

of firms, rather than of 1/
√
N as in the case where firms sizes are normally distributed. As

a result, shocks to big firms matter and transmit to the aggregate.

While the literature has typically focused on the firm size distribution, we investigate

what role the features of the shocks play for the granular hypothesis. First, we highlight

some key mechanisms in a stylized theoretical setting. Second, we discuss a quantitative

exercise that showcases the role of non-Gaussianity and nonlinearities for the volatility and

persistence of micro–originated aggregate fluctuations.

Our approach and interpretation of firm-level shocks are similar in spirit to Salgado

et al. (2019), who argue that business cycles can originate from fluctuating skewness of

idiosyncratic shocks. As in their framework, one might wonder whether the features of

the distribution of the idiosyncratic shocks derive endogenously from macro shocks rather

than being the sources of aggregate fluctuations. This decomposition is beyond the scope

of our paper. Conceptually, we effectively consider a world without aggregate shocks, where

aggregate fluctuations in productivity are solely generated by idiosyncratic shocks. Within

this setting, we study the role that the features of the distribution of firm-level shocks and

their dynamics play for aggregate fluctuations.

5.1 Non-Gaussian granular shocks

In this section, we investigate analytically the role played by the distribution of shocks for

the granular hypothesis. We consider a stylized setting that builds on Gabaix (2011). We

assume that there are N firms and each firm i produces a quantity Sit of consumption good

at time t. Then the firm growth rate is:

∆Sit+1

Sit

=
Sit+1 − Sit

Sit

= Uit+1 (7)

20There have been several recent empirical applications of this idea. Among others, see Amiti and
Weinstein (2018) on granular bank supply shocks and aggregate investment.
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where Uit+1 are uncorrelated random variables with mean 0 and variance σ (i.e., all firms are

assumed to have the same volatility). To see a parallel with the model introduced in Section 4,

note that the difference oit+1 − oit, where oit is defined in Equation (2), approximates ∆Sit+1

Sit

in Equation (7) for small ∆Sit+1

Sit
. Hence, Uit+1 approximates innovations to the components

ηit + ϵit in Equation (7).21

Aggregate GDP is Yt =
∑N

i=1 Sit and GDP growth is:

∆Yt+1

Yt

=
N∑
i=1

Uit+1
Sit

Yt

Under the assumption that the shocks Uit+1 are uncorrelated random variables, then the

standard deviation of GDP growth is:

σGDP =

(
N∑
i=1

σ2

(
Sit

Yt

)2
)1/2

(8)

Gabaix (2011) proposes the granular hypothesis by deriving the asymptotic behavior of

σGDP as N → ∞. He shows that, as N → ∞, if the size of firms, Sit, has a distribution with

finite variance, then the CLT applies, and the decay rate of the shocks is
√
N . Otherwise,

if the distribution of firms sizes has an infinite variance and potentially even infinite mean,

then the rate of decay is N1−1/ζ or lnN , respectively (a Pareto law distribution where the

Pareto exponent ζ is ≤ 2 (≤ 1) has infinite variance (mean)). Hence, granular shocks matter

for the aggregate when the distribution of sales has a power law behavior.

Is the granular hypothesis affected by non-Gaussianity in Uit+1 and how? In order to

answer this question, we analyze how the distribution of Uit+1 may alter the distribution of

Sit+1. From Equation (7), we can rewrite next-period sales as:

Sit+1 = Sit(1 + Uit+1) (9)

The tail behavior of next-period sales depends on the tail behavior of the two factors on

the right hand side of Equation (9). Let us assume that Si,t, which has positive support,

and Uit+1 are independent. To fix ideas, we consider different cases. If both Sit and Uit+1

are Pareto distributed, then Sit+1 will have a power tail behavior, i.e., Sit+1 will have a

Pareto-type tail, being regularly varying (RV) at ∞ in the upper tail.22 If, instead, Si,t has

21To make this parallel we have obviously assumed that S is a measure of productivity. For simplicity,
consider oit = ϵit. Then, Uit+1 = ϵit+1 − ϵit. If ϵit and ϵit+1 are uncorrelated and feature heavy tails, then
Uit+1 will also feature heavy tails by Remark 1.3.5 in Mikosch (1999).

22A random variable X is said to be regularly varying at ∞ with Pareto exponent α(X+) if, for any x > 0
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an exponential upper tail, then the power law-behavior of the tail of Uit+1 is enough to make

Sit+1 have a power tail behavior. As such, non-Gaussian shocks can provide a reason for

heavy-tailed size distributions. Finally, if Si,t is Pareto, then Si,t+1 will have a power law

behavior regardless of whether the distribution of Uit+1 has an upper heavy tail or not. To

establish these results, see, for instance, Proposition 1.3.9 in Mikosch (1999).

While non-Gaussianity of Uit+1 maintains that Sit+1 will have a power law behavior, it

is not obvious that Sit will dominate the power law behavior of Sit+1. The heaviness of the

tails and variance of Uit+1 might alter the features of the distribution of Sit+1. Thus, the

distribution of the error term might be relevant in shaping the distribution of Sit+1.

At this point, we may be tempted to conclude that non-Gaussianity is associated with

larger granular aggregate fluctuations. In addition to the effect of the tail features of Uit+1

on Sit+1, non-Gaussian shocks may increase the volatility of GDP, all other things being

equal. As an extreme case, if the distribution of the error term is such that the variance

does not exist (infinite σ), then also aggregate GDP growth volatility in Equation (8) will

be infinite. However, larger kurtosis is not necessarily coupled with larger variance. Heavy

tailed-ness of a distribution is not informative of its variance, and the latter is the crucial

statistic in Equation (8). Aggregate volatility could also be lower when modelling errors as

heavy- rather than thin-tailed.

This section illustrated how the features of the cross-sectional distribution of idiosyn-

cratic shocks affect the granular hypothesis. Even in this stylized setting, non-Gaussian

shocks play an ambiguous role for granular aggregate fluctuations. Several components have

been assumed away but may be important: among others, the correlation between firms’

size and the error term, its variance (Yeh (2019)), and the dynamics of the process of firms’

productivity. Given the complexity of these layers, in the next section we use numerical sim-

ulations to quantitatively assess the role of non-Gaussianities and nonlinearities for aggregate

volatility.

5.2 Quantitative exploration of granular shocks

In this section we use the estimates from our model – and other model alternatives – to

quantitatively highlight how the different nature of firm-level shocks matters for micro–

as t → ∞:

Prob(X > tx)

Prob(X > t)
→ x−α(X+)

.
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originated aggregate fluctuations.23 In particular, we construct the growth rate of aggregate

TFP as Gt = log 1
Nt

∑
i exp{oi,t} − log 1

Nt−1

∑
i exp{oi,t−1}, where oi,t is the simulated log of

TFP, for a firm i at time t, using model-estimated parameters. By dividing by the number of

firms N , we abstract from fluctuations along the extensive margin, which are not relevant for

our analysis. We consider five different models. First, a plain vanilla AR(1) such that oi,t+1 =

ρoi,t + νi,t+1, where innovations ν are normally distributed with variance σ2
ν . We estimate ρ

and σ2
ν with a standard minimum distance estimation technique proposed by Chamberlain

(1984).24 We obtain the following estimates: ρ̂ = 0.931 and σ̂2
ν = 0.076. Second, we add

Gaussian transitory shocks ε to the AR(1). This slightly increases the estimated persistence

to 0.937, and lowers σ̂2
ν to 0.069, with an estimated variance of transitory innovations σ̂2

ϵ =

0.107. Third, we estimate a model that only features a persistent component with nonlinear

persistence. To do so, we estimate quantile autoregressions as done for Figure 5, and then use

the estimated coefficients to simulate the sample of firms. Fourth, we estimate the flexible

model of Section 4, but assume Gaussian transitory shocks. In this setup, the variance of

transitory shocks is estimated to be much higher than for the AR(1), at 0.514. Finally, we

consider our full model.

For each of these models, we simulate a sample of firms starting from the empirical

distribution, and maintaining the structure of the data panel (i.e.: firm-specific spells). We

provide details of estimation and simulation in Appendix D. For each model, we compute

two objects of interest, which we report in Table 2. First, the volatility of Gt. This is the

typical measure in most research on the granular hypothesis, as we have discussed in the

previous section. Second, we also compute the one year autocorrelation of Gt. In recent

work, Carvalho and Grassi (2019) show that if there is a finite number of firms, rather than

a continuum, then the distribution of firms across productivity levels varies stochastically

over time. As a result, aggregate productivity also follows a stochastic process, even when

all shocks are idiosyncratic.

The standard AR(1) process generates non-zero volatility of aggregate TFP growth and

positive persistence, due to the finite number of firms and their fat-tailed productivity dis-

tribution. However, the volatility is lower than in the data. Results for this model are shown

23Strictly speaking, our TFP measures are not solely idiosyncratic shocks but also combine heterogeneous
sensitivities to aggregate shocks, as previously discussed. Regardless of their origin, however, this simulation
exercise treats these fluctuations as happening at the level of individual firms and then we aggregate them
up. We show that if the stochastic process of these firm-level fluctuations features nonlinearities and non-
Gaussianities, the implications for the resulting aggregate fluctuations are substantially different.

24We choose the estimator that minimizes the distance between the theoretical autocovariances generated
by the model and the empirical autocovariances of productivity. We follow the recommendation of Altonji
and Segal (1996) of using the identity matrix to reduce the substantial small sample bias that can result
from choosing the optimal weighting matrix suggested by Chamberlain (1984).
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Table 2: Micro–originated fluctuations with different idiosyncratic processes

Data (I) (II) (III) (IV) (V)

σ (Gt)*100 0.073 0.013 0.053 0.012 0.218 0.016

CORR (Gt, Gt−1) 0.162 0.045 −0.161 0.448 −0.445 0.248

Note: We estimate each model on the baseline sample and simulate out of sample, maintaining the structure of the data panel.

We simulate each model 100 times, computing the variance and the autocorrelation of aggregate TFP growth rate for each

simulation, and then reporting medians across simulations. Details can be found in Appendix D.

in column (I). Adding a transitory, normally distributed, component, as done in column (II),

raises the volatility substantially, but introduces negative autocorrelation as this component

dominates the properties of the overall stochastic process.25 A similar pattern is observed in

column (IV), which embeds Gaussian transitory shocks in the fully flexible model: volatility

overshoots the data counterpart and the autocorrelation becomes even more negative. In

column (III), instead, we extend the standard AR(1) with nonlinear persistence. Volatility

is little affected. Aggregate growth rates are very persistent in this setup, as witnessed by

the autocorrelation. Note that nonlinearities do not necessarily imply higher persistence,

especially for the growth rate of aggregate TFP. Indeed, heterogeneity and aggregation can,

in principle, work in both directions.

Our full model, showed in column (V), delivers plausible aggregate moments. Aggregate

volatility undershoots what observed in the data but is closest to all other models except (II).

Differently from the latter, model (V) generates a positive autocorrelation that is close to

what seen in the data. It should be stressed that these aggregate moments are not explicitly

targeted; as such, we see the good performance of model (V) as an additional success of this

modeling framework, previously overlooked in the literature.

By comparing different models, our analysis shows how the nature of firm-level shocks

affects micro-originated aggregate fluctuations. Our findings underscore that both nonlinear-

ities in persistence and non-Gaussian shocks should be accounted for. In addition, transitory

and persistent components should be modeled separately. Although the dispersion and kur-

tosis of transitory shocks are substantially smaller than those of changes in the persistent

component, the results of this section still suggest that it is crucial to account for non-

gaussianities in both components. Failure to do so generates counterfactual behavior, not

just at the firm level, but also in the aggregate.26 We find that non-Gaussian shocks as

25In Appendix F we show these results analytically, in a simplified setting.
26The model of column (IV) tries to fit rare shocks by estimating an excessively large standard deviation of

the Gaussian distribution. This ends up dwarfing the persistent component, even when the latter is allowed
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typically observed in the data are associated with less volatile micro-originated aggregate

fluctuations, relative to a Gaussian counterpart. Importantly, this dampening channel is

separate from, but complementary to, the size-variance tradeoff recently put forward by Yeh

(2019).27 Moreover, nonlinear persistence, as estimated by our model, raises the persistence

of micro-originated aggregate fluctuations.

6 Conclusion

We have documented that sales and productivity of U.S. publicly listed firms follow a stochas-

tic process likely different from the canonical linear AR(1). Firms face heavy-tailed funda-

mental shocks and they partly absorb them through input adjustment. In addition, they

face nonlinear and heterogeneous persistence. We estimate a quantile-based panel data

framework borrowed from the literature on household earnings and show that it is a good

representation of firm-level dynamics.

Nonlinear dynamics can affect firm behavior in multiple ways. We have focused on one:

micro-originated (granular) aggregate fluctuations. While the literature on the granular

hypothesis has typically focused on the firm size distribution, we have investigated the role

played by the features of the shocks. Our analysis suggests that transitory and persistent

productivity shocks need to be modeled separately, and nonlinearities and non-Gaussianities

simultaneously accounted for; failure to do so generates counterfactual behavior, not just at

the firm level, but also in the aggregate. We hope that the findings in this paper spur further

research in the literature on semi-structural estimation approaches applied to firms.

to be non-gaussian and with nonlinear persistence.
27Note that in our data the variance of TFP growth rates also falls with firm size, as shown previously.

As such, this channel is incorporated in our simulations.
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Supplemental Appendix to

“Nonlinear Firm Dynamics”

by Davide Melcangi† and Silvia Sarpietro‡

A Data Appendix

Our data consists of yearly firm-level information from US Compustat, over the period

between 1987 and 2017. We exclude firms that are not incorporated in the US. Moreover,

we keep firms with positive assets, sales, and cost of goods sold. We exclude firms without

an industry classification (“unclassifiable firms”), as well firms whose Standard Industrial

Classification (SIC) is financial and real estate activities (6021 – 6799) or utilites (4900 –

4991). This does not affect our baseline results which use only the manufacturing sector (i.e.,

NAICS code starting with 3), but only additional results for the whole economy. Finally,

we keep firms that remain in operation for at least 2 consecutive years.1 This leaves us with

an unbalanced panel of 4360 firms and 51803 firm-year observations. We deflate sales, cost

of goods sold, and the capital stock by the GDP deflator. The capital stock is constructed

following Ottonello and Winberry (2020). For each firm, the first value of end of period

capital is set to the level of gross plant, property, and equipment (ppegt in Compustat). We

then compute the evolution of capital, from this period onwards, using changes of net plant,

property, and equipment (ppent). If a firm has a missing observation for ppent, we impute

its value with linear interpolation only if the missing observation has nonmissing values of

ppent in the previous and following year. Capital stock is the lag of the end-of-period capital

constructed as just described.

Revenue elasticities used in the calculation of TFPS are constructed using industry-level

data from the KLEMS database constructed by the BLS. The revenue elasticity for capital

is the ratio of capital cost and value of production, while for the variable input (cost of

goods sold) we divide the sum of costs of materials, labor, and energy, by the value of

production. Revenue elasticities are year-specific and industry-specific – 3-digit NAICS level

for the manufacturing sector, 2-digit when looking at the whole economy. The first order

†Federal Reserve Bank of New York. Email: davide.melcangi@ny.frb.org. The views expressed in this
paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of
New York or the Federal Reserve System.

‡Bologna University. Email: silvia.sarpietro@unibo.it.
1In unreported results we find that our results are little sensitive to the exclusion of firms with sales or

total assets less $100,000, or with less than 10 employees.
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Figure A.1: Distribution of one-year log changes

(a) Labor productivity (b) TFP

Notes: Empirical densities of log changes in labor productivity (left panel (a)) and TFP (right panel (b)) between year t and

t − 1 depicted in solid blue. In panel (a), the standard deviation is 0.413, Kelley Skewness 0.031 and Crow-Siddiqui Kurtosis

7.293. In panel (b), the standard deviation is 0.384, Kelley Skewness 0.017 and Crow-Siddiqui Kurtosis 9.236. Gaussian density

with the same standard deviation of data shown in dashed red. Baseline sample of manufacturing firms.

condition pinning down revenue elasticities holds if there are no factor adjustment costs or

wedges; as is typically assumed in the literature (see for instance Decker, Haltiwanger, Jarmin

and Miranda (2020)), we require this condition to hold on average across firms within an

industry. As suggested by Syverson (2011), we further strengthen this argument by averaging

the revenue elasticities over 6-year windows.

After constructing the log of TFPS as the revenue function residual – using sales, cost

of goods sold, the capital stock, and the revenue elasticities – we residualize it by regressing

TFPS on industry dummies and a linear time trend.

B Additional empirical results

B.1 Productivity distributions

Figure A.1 shows the empirical densities of one-year log changes in labor productivity and

TFP. We show how both measures are clearly not distributed in a gaussian way.

B.2 Persistent changes

In this section we report the results for persistent changes, as described in Section 2, In

particular, we consider the difference between two 3-year averages of our logged variables.
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Figure A.2: Distribution of persistent changes

(a) Sales (b) TFP

Notes: Empirical densities of persistent changes (∆(ỹ) = ȳt−1,t+1 − ȳt−2,t−4) in sales (left panel (a)) and TFP (right panel

(b)) depicted in solid blue. In panel (a), the standard deviation is 0.528, Kelley Skewness 0.147 and Crow-Siddiqui Kurtosis

4.856. In panel (b), the standard deviation is 0.367, Kelley Skewness 0.223 and Crow-Siddiqui Kurtosis 7.284. Gaussian density

with the same standard deviation of data shown in dashed red. Baseline sample of manufacturing firms.

First, we show the distributions. In Figure A.2a we show how the empirical density of these

persistent changes in sales is more concentrated than its gaussian counterpart, constructed

with the same standard deviation. Compared to the distribution of one-year log changes,

shown in Figure 1, the departures from non-Gaussianity are less pronounced, suggesting that

transitory shocks are also non-Gaussian.

A similar story applies to TFP, as shown in Figure A.2b. Figure A.3 confirms that

the main source of non-Gaussianity is heavy tailedness (kurtosis). In addition, small firms

display a much larger Crow-Siddiqui kurtosis of persistent changes in TFP, compared to

persistent changes in sales, in line with what shown for one-year changes.

B.3 Labor productivity

In this section we report higher order moments of log changes in labor productivity, as well as

quantile autoregressions, for the baseline sample discussed in Section 2 and 3. In Figure A.4

we show that the dispersion of changes in labor productivity falls as firms sales increase.

There is little asymmetry of labor productivity changes, except for a mild positive skewness

among smallest firms. Finally, labor productivity shocks are very heavy-tailed, with marked

departures from gaussianity.

In Figure A.5 we show that quantile autoregressions of log labor productivity suggest

that also this alternative measure of firm profitability has a markedly nonlinear persistence

3



Figure A.3: Conditional moments of firm-level persistent changes

(a) Standard Deviation (b) Kelley Skewness

(c) Crow-Siddiqui Kurtosis

Notes: Solid-circled blue lines refer to the log of firm sales, while solid-diamond green line to log TFP. For each measure,

observations ordered by quantiles of the distribution of ȳt−2,t−4 as defined in Figure A.2 (x-axis), where y is sales. For each

quantile, we show on the y-axis the Standard deviation of persistent changes (∆(ỹ) = ȳt−1,t+1 − ȳt−2,t−4) in Figure A.3a, the

Kelley Skewness in Figure A.3b and Crow-Siddiqui Kurtosis in Figure A.3c.

of history.

4



Figure A.4: Conditional moments of firm-level one year log-changes: labor productivity

(a) Standard Deviation (b) Kelley Skewness

(c) Crow-Siddiqui Kurtosis

Notes: Observations are ordered by quantiles of the sales distribution in t − 1 (x-axis). For each quantile, we show on the

y-axis the Standard Deviation in Figure A.4a, the Kelley Skewness in Figure A.4b and Crow-Siddiqui Kurtosis in Figure A.4c

of log-changes in labor productivity.
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Figure A.5: Quantile autoregressions of log labor productivity

Notes: Estimated average derivative of the conditional quantile function of residualized log labor productivity yi,t given yi,t−1.

Derivatives are taken with respect to yi,t−1 and evaluated at a given percentile of yi,t−1, and at a given percentile of the shock,

labelled τshock. Details on data and estimation of quantile functions in the text.
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Table A.1: Concentration of sales, labor productivity and TFPS growth rates: all industries

S : [−0.05, 0.05] [−0.10, 0.10] [−0.20, 0.20]

Data N (µx, σx) Ratio Data N (µx, σx) Ratio Data N (µx, σx) Ratio

Prob (|∆Sales| ∈ S) 21.6 9.3 2.3 41.9 18.5 2.3 67.5 35.7 1.9

Prob (|∆LP| ∈ S) 30.9 9.7 3.2 51.6 19.4 2.7 72.7 37.7 1.9

Prob (|∆TFP| ∈ S) 44.3 11.0 4.0 65.9 21.8 3.0 83.2 42.2 2.0

Note: One year changes in logged variables, sample of firms using all industries. Columns for N (µx, σx) refer to draws, of

size equal to the dataset, from a normal distribution with mean µx and standard deviation σx, where x denotes the variable

considered in each row. Standard deviations are 0.430, 0.411, and 0.357 for changes in log sales, LP, and TFP, respectively.

B.4 All industries

In this section we repeat the analysis of Section 3 for the whole economy. Table A.1 confirms

that the distributions of sales, labor productivity, and TFP growth rates are much more

concentrated than a Normal with the same empirical variance. In addition, concentration

is typically highest for TFP, which is arguably the more exogenous measure of fundamental

shocks.

We then turn, in Figure A.6, to conditional moments of those distributions. Our results

are similar to what shown for the manufacturing sector in Figure 4. Smaller firms face more

dispersion in TFP growth rates, and even more so in sales growth rates. Small firms face

shocks that are slightly positively skewed; in contrast, large firms display negative skewness

in TFP log changes, but this does not translate into similar asymmetries for sales. We

confirm that heavy tails in sales shocks are most likely driven by heavy-tailed underling

exogenous shocks. This is particularly true for firms at the bottom of the sales distribution.

Finally, we compute quantile autoregressions for this larger sample and confirm our main

results, as shown in Figure A.7. Firm sales depart from a standard AR(1) process and display

lower persistence of history among small firms hit by large positive shocks. This nonlinear

persistence is even more pronounced when looking at productivity, and a nonlinear left tail

appears. Quantitatively, nonlinearities are almost identical in this broader sample to what

shown for the manufacturing sector.

B.5 Confidence intervals

We bootstrap the baseline empirical sample, at the firm level, with replacement, and compute

for each bootstrapped sample the quantile autoregressions, conditional Kelley skewness and

conditional Crow-Siddiqui Kurtosis. The results showed in Figures A.8 and A.9 point to
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Figure A.6: Conditional moments of firm-level one year log-changes: all industries

(a) Standard Deviation (b) Kelley Skewness

(c) Crow-Siddiqui Kurtosis

Notes: Solid-circled blue lines refer to the log of firm sales, dash-dotted black line to the log of labor productivity, solid-diamond

green line to log TFP. For each measure, observations are ordered by quantiles of the sales distribution in t − 1 (x-axis). For

each quantile, we show on the y-axis the Standard deviation in Figure A.6a Kelley Skewness in Figure A.6b and Crow-Siddiqui

Kurtosis in Figure A.6c of log-changes. Firm-level data on all industries in the sample.

tight 95% pointwise confidence bands.

B.6 No Detrending

In section we repeat the analysis of Section 3 for data that has not been detrended – only

industry fixed effects are substracted from the variable of interest. As shown in Figure A.10

and A.11, the patterns are virtually identical to our baseline results.
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Figure A.9: Quantile autoregressions, 95% pointwise confidence bands

(a) Sales (b) TFP

Notes: See notes to Figure 5. Pointwise 95% confidence bands computed over 500 bootstrap replications. Nonparametric

bootstrap with replacement, clustered at the firm level.
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Figure A.10: Conditional moments of firm-level one year log-changes: no detrending

(a) Standard Deviation (b) Kelley Skewness

(c) Crow-Siddiqui Kurtosis

Notes: Solid-circled blue lines refer to the log of firm sales, dash-dotted black line to the log of labor productivity, solid-diamond

green line to log TFP. For each measure, observations are ordered by quantiles of the sales distribution in t − 1 (x-axis). For

each quantile, we show on the y-axis the Standard deviation in Figure A.6a Kelley Skewness in Figure A.6b and Crow-Siddiqui

Kurtosis in Figure A.6c of log-changes.
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Figure A.11: Quantile autoregressions: no detrending

(a) Sales (b) TFP

Notes: Estimated average derivative of the conditional quantile function of residualized values yi,t given yi,t−1. Derivatives

are taken with respect to yi,t−1 and evaluated at a given percentile of yi,t−1, and at a given percentile of the shock. Details on

data and estimation of quantile functions in the text.
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C Decaying responsiveness to productivity shocks

What type of firm responsiveness is consistent with the findings shown in Section 3? To shed

light on this, we come back to our simple production function in logs presented in Equation

(1). Then we take first differences, and assume that changes in the two inputs of production

respond to changes in TFP, such that ∆ci,t = ϕc∆zi,t and ∆ki,t = ϕk∆zi,t. Then:

∆yi,t = ∆zi,t + βcϕc∆zi,t + βkϕk∆zi,t (10)

where y and z denote the log of sales and TFPS, respectively. For simplicity, we set

ϕk = 0. We take ∆zi,t from the data and βc as the average estimate from our baseline

sample. With this we can back out ∆yi,t from Equation (10) for three examples for ϕc and

report the relevant moments, with their empirical counterparts, in Table A.2.2

In the first model, ϕc is the same for all firms and equal to 1, regardless of the sign and

the size of ∆z. This framework is consistent with the fact that the dispersion of sales growth

is higher than for productivity growth, as long as βcϕc > 0. With constant responsiveness,

however, the Crow-Siddiqui measure of TFP growth is exactly the same as the one for sales

growth. This is at odds with our empirical findings, not just in the entire sample, but also

conditional on each quintile of sales.

In order to qualitatively match the fact that productivity growth displays heavy-tailed

events more often than sales growth, we consider two alternative structures for ϕc. We assume

a flexible dependence of this sensitivity to productivity shocks, such that ϕc = γ1e
γ2|∆z|. Since

the conditional skewness of sales changes is close to zero for nearly all quantiles of firm sales,

we maintain a symmetric structure of ϕc, but our reasoning can easily be extended to loadings

γ2 that differ by the sign of productivity shocks. When γ2 < 0, firms adjust their variable

input c increasingly less as the productivity change becomes of larger magnitude; we label

this case decaying response. As shown in Table A.2, choosing γ1 = 1 and γ2 = −1 allows

us to qualitatively match what we observe in the data. Not only sales growth remains more

dispersed than productivity growth, but it also has a smaller Crow-Siddiqui kurtosis. Not

surprisingly, the increasing response features the opposite, and counterfactual, pattern.

This simple exercise suggests that not only firms face non-Gaussian and heavy-tailed

fundamental shocks, but they also most likely respond to them by adjusting inputs with

double exponential responsiveness. Our suggestive evidence is inconsistent with a simple,

frictionless, model in which firms choose labor by setting the marginal product equal to an

aggregate wage. That framework would be akin the ”constant response” model presented

2In this example we consider all firms, but the intuition can be tailored to each of the quintile-specific
result previously shown.
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Table A.2: Shocks vs responsiveness

Standard Deviation Crow-Siddiqui

Sales TFP ratio Sales TFP ratio

Data: all firms 0.427 0.384 1.11 6.457 9.236 0.699

Constant response 0.644 0.384 1.677 9.236 9.236 1

Decaying response 0.436 0.384 1.135 7.956 9.236 0.861

Increasing response 295.033 0.384 768.315 11.359 9.236 1.230

Note: Baseline sample of manufacturing firms as described in Section 2. In the first row, Sales and TFP refer to log changes

in residualized sales and TFP, as described in the main body. The last three rows use empirical TFP growth – which is hence

the same across models – and obtains sales growth by fitting Equation 10 with different parameter values as discussed in the

text.

in Table A.2. Moreover, that model predicts that employment is a convex function of TFP.

In contrast, our findings suggest that not only employment is likely a concave function of

fundamental shocks, but also that the log of employment is concave in the log of TFP.3 The

investigation of the exact source of these relationships is beyond the scope of this paper and

the findings of Table A.2 should be treated as suggestive. However, we speculate that this

behavior can be seen as broadly consistent with various economic models of firm behavior.

For example, hiring costs may limit the extent to which firms are able to reap the benefits

of large productivity shocks, reducing their ability to hire more workers. Financial frictions,

especially of the type directly constraining labor inputs, could also generate a similar pattern.

These frictions are likely to be relevant for small firms: in line with this, these firms display

the largest kurtosis gap. On the way down, firing costs would also be consistent with this

behavior. Looking back at earlier results, this would rationalize why large firms are more

likely to face negative tail risk in productivity, but are able to absorb those and thus face

symmetric changes in sales.

D Computational Appendix

We follow Arellano et al. (2017) and Arellano et al. (2021) to estimate the nonlinear hidden

quantile model. To do so, we use a stochastic EM algorithm that consists of two steps: 1)

drawing the latent components of the model (ηit and ϵit), 2) updating the model parameters

given the latent draws. To perform step 1), we follow Arellano et al. (2021) and use a

3In many models of household behavior, such as Carroll and Kimball (1996), consumption is a concave
function of wealth, implying that dollar-for-dollar MPCs fall with the size of a transitory income shock. Our
findings suggest that a similar pattern may apply to firms too, and even to growth rates of employment.
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Sequential Monte-Carlo (SMC) sampling method.4 The simulation step is run in parallel

across firms to simplify the estimation of the model with unbalanced data. For step 2), as in

Arellano et al. (2017), we update the parameters using quantile regressions, after modelling

all conditional quantile functions as linear quantile specifications at a grid of 11 equidistant

percentiles. For additional details, see Arellano et al. (2017) and Arellano et al. (2021).

We estimate the 5 models described in Section 5.2 on the baseline sample of manufac-

turing firms, using residualized and detrended log TFP as discussed in the main body. The

parameters for the AR(1) models – with and without transitory shocks – are estimated by

minimizing the distance between the theoretical autocovariances generated by the model and

the empirical autocovariances of productivity. We use an identity matrix. We repeat the esti-

mation for 100 initial conditions and keep the estimated parameters associated with the best

goodness of fit (the sum of squared deviations). For model (III), the one that only features

nonlinear persistence, we follow Arellano et al. (2017) and estimate quantile autoregressions

of residualized log TFP, specifying quantile functions as third-order Hermite polynomials.

Model (V) is estimated as described above; model (IV) follows the same structure, adjusting

the log-likelihood to assume that transitory shocks follow a Gaussian distribution.

The simulations in Section 5.2 work as follows, using the estimated parameters. We start

from the firm’s first empirical observation. We also follow the data in the firm-specific spells –

i.e., how long a firm remains in operation. Each model is simulated 100 times. Out-of-sample

simulations of models III–V can, rarely, result in explosive behavior of a small number of

firms.5 To deal with this, we restrict the support of model-simulated log TFP to be the same

as in the data: any firm that hits the bounds in the simulation is dropped. This amounts

to between 0.02% (model V) and 1.63% (model IV) of all firms in the sample and less than

0.1% of firm–year observations. An alternative approach, winsorizing productivity at the

bounds at each time period in the simulation, delivers qualitatively similar results.6 We

compute the volatility over time and the one-year autocorrelation of aggregate TFP growth

rates in each of the simulated panel dataset, for each model, and report the medians across

simulations in Table 2 of Section 5.2.

4The use of this sampler instead of the Metropolis-Hastings employed by Arellano et al. (2017) is justified
by numerical stability.

5An alternative to out-of-sample simulations is to use the SMC sampling method in the simulations, as
in ABBL. This latter approach delivers a qualitative similar ordering across models, and a much better fit
to the data for model (V). As such, our out-of-sample simulations can be seen as conservative.

6These restrictions can find justification through a procedure that accounts for path dependence in
simulating firms’ growth. This procedure would assign a history-dependent probability of converging towards
a long-run firm-value. Given our data, we expect the probability of diverging to decrease, with history-
dependent rates, as firms keep growing.
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E Additional estimation results

Departures from normality and the ability of the model to match the data can be visual-

ized looking at how conditional moments of the distribution of changes of log productivity

residuals vary with firm sales. Figures A.12a, A.12b, and A.12c report the patterns of con-

ditional dispersion, skewness, and kurtosis in the data, as documented in Section 3, and in

the model. The model does a very good job at matching conditional dispersion and kurtosis,

and a fair job with regard to skewness too, although it misses the mildly negative skew-

ness for productive firms. Figure A.13 plots the histogram of the persistent and transitory

components of log productivity as estimated by the model discussed in Section 4. We then

obtain the histograms of the estimated components of log productivity by past quantiles

of the distribution of simulated TFP and report them for the top and bottom quantiles in

Figure A.14.

In Figure A.15, we show the evolution of TFP and its estimated persistent component

for a specific large and productive firm, Apple. In 2006, Apple’s productivity grew as much

as in the top 5% of all firms in the sample for that year. The model estimates that this

productivity boost was mostly driven by the persistent component and led to a subsequent

sustained productivity growth. In 2012, Apple’s productivity dropped sharply.7 Again, the

model assigns that even to the persistent component. In line with the results showed in

Figure 6c of Section 4, the model suggests that negative shocks hitting productive firms

will erase part of the persistence of histories. Indeed, Apple’s productivity growth has been

sluggish thereafter.

F Some insights on the effects of the model’s features

on the aggregates

Consider the following linear AR(1) model for the TFP of a firm i at time t, with i = 1, ..., N :

oi,t+1 = ρoi,t + νi,t+1, where innovations ν are normally distributed with variance σ2
ν . Define

the aggregated TFP G̃t =
∑

i oi,t−
∑

i oi,t−1 =
∑

i(oi,t−oi,t−1). We are interested in assessing

the importance of ρ and σ2
ν on the variance and autocorrelation of G̃t. Let us assume that

oi,t are i.i.d., which is an unappealing assumption that we make here only to illustrate the

7That productivity change was in the bottom 5% of the distribution for that year.
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Figure A.12: Conditional moments of residualized log TFP: model vs data

(a) Conditional standard deviation (b) Conditional skewness

(c) Conditional kurtosis

Notes: Blue lines refer to the Compustat data, while dashed-dotted green lines to data simulated according to the nonlinear

model, with parameters set to their estimated values. Dashed red lines show the moments if the process was Gaussian.
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Figure A.13: Distribution of productivity components in the model

(a) Persistent component η (b) Transitory component ϵ

Notes: Model estimated on the baseline sample of manufacturing firms, as discussed in Section 4. Histogram of model-simulated

persistent – left panel – and transitory – right panel – components of log productivity.

Figure A.14: Distribution of productivity components in the model by top and bottom
quantiles of TFP

(a) Persistent component η (b) Transitory component ϵ

Notes: Model estimated on the baseline sample of manufacturing firms, as discussed in Section 4. Histogram of model-simulated

persistent – left panel – and transitory – right panel – components of log productivity, by top and bottom past quantiles of the

simulated TFP distribution.
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Figure A.15: Evolution of productivity components for Apple

mechanisms. Let us also assume that ρ < 1. For the variance of G̃t, we get:

V ar(G̃t) = V ar

(∑
i

(oi,t − oi,t−1)

)
=
∑
i

V ar(oi,t − oi,t−1)

=
∑
i

V ar (−(1− ρ)oi,t−1 + νi,t) = N

(
(1− ρ)2

σ2
ν

1− ρ2
+ σ2

ν

)
= 2N

σ2
ν

1 + ρ

For the first order autocovariance of G̃t, we get:

Cov(G̃t, G̃t−1) = Cov

((∑
i

(oi,t − oi,t−1)

)
,

(∑
i

(oi,t−1 − oi,t−2)

))
= NCov ((−(1− ρ)ρoi,t−2 − (1− ρ)νi,t−1 + νi,t)) , ((−(1− ρ)oi,t−2 + νi,t−1))

= N

(
−(1− ρ)σ2

ν

1 + ρ

)
Second, we consider a model that also features a Gaussian transitory component as follows:

oi,t+1 = ηi,t+1 + εi,t+1, where ηi,t+1 = ρηi,t + νi,t+1, and innovations ν and ε are normally

distributed with respective variances σ2
ν and σ2

ε . Under the same assumptions considered
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above, it is possible to show that now:

V ar(G̃t) = V ar

(∑
i

(oi,t − oi,t−1)

)
=
∑
i

V ar(oi,t − oi,t−1)

=
∑
i

V ar (−(1− ρ)ηi,t−1 + νi,t + εi,t − εi,t−1)

= 2N

(
σ2
ν

1 + ρ
+ σ2

ε

)
Thus, as expected ε increases the volatility of G̃t. As for the first order autocovariance of

G̃t, we now get:

Cov(G̃t, G̃t−1) = Cov

((∑
i

(oi,t − oi,t−1)

)
,

(∑
i

(oi,t−1 − oi,t−2)

))

= N

(
(1− ρ)2ρ

σ2
ν

1− ρ2
− (1− ρ)σ2

ν − σ2
ε

)
= N

(
−(1− ρ)σ2

ν

1 + ρ
− σ2

ε

)
Thus, as expected ε decreases the autocorrelation of G̃t.
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