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1 Quantitative model: additional results

In this section we present some additional results from the quantitative model. First,
we study the model state-dependence, i.e. how its implications vary as a function of
inflation, when inflation is driven by realizations of z as opposed to different levels of
R∗. Second, we present results for the symmetric model, which demonstrates that our
results are driven by the asymmetry. Third, we illustrate the implications of the model
for asymmetry. Fourth, we illustrate the implications of a different monetary policy rule.
And finally, we present comparative statics across risk aversion and the persistence of the
technology shock.

1.1 State-dependence

1.1.1 Impulse response function

Figure 1 presents generalized impulse responses (GIRFs) to a one-standard deviation
shock to productivity, conditional on inflation being initially low (2%, red line) vs. high
(4%, black dashed line).1 Here, the conditioning is effectively a conditioning on past pro-
ductivity shocks. The patterns are quantitatively similar to that of figure (6) in the main
text: when inflation is high, output and inflation are more responsive to a productivity
shock.

1.1.2 Macro-finance moments as a function of inflation

Figures 2 and 3 depict the macro-finance moments as a function of inflation (when infla-
tion is driven by z), and compares them to the ones of the main text (where differences
of inflation come from R∗, and correspond to different “equilibria” as opposed to “histo-
ries”). The statistics are calculated in the same way as the data: we simulate the model
and construct rolling windows (of length 72 periods), over each of which we calculate
the macro-finance moments and the mean of inflation. (We then average across many
simulations.) The main message from the two figures is that the two approaches generate
very similar implications. The one moment where a difference emerges is the volatility
of inflation and interest rates. This is because these variables are highly persistent, and
hence, for these, the short sample of the rolling windows lead to an estimate of standard

1The GIRF of a variable x for a shock e at horizon k defined as GIRF(x, s, k, e) = Et(x(t + k)|s(t) =
s + e) − Et(x(t + k)|s(t) = s) where s is the state. It reflects that in a nonlinear model, the response in
general depends on the size (and sign) of the shock e as well as the initial condition s - unlike in a linear
model. Moreover, the change in conditional expectation is not the same as the realization of a single path.
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Figure 1: Generalized impulse response functions in the baseline model.
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Figure 2: Macro-finance moments in the benchmark model when inflation is driven
by changes in inflation target (as in the main text) or by productivity shocks, 1/2. Red
triangles correspond to the main text calculation (inflation-target driven inflation), blue
line to the history-driven inflation.

deviation that is much smaller than the population (or ergodic) standard deviation.2 Fig-
ure 4 depicts the term premium as a function of inflation for the two approaches. Here
too they are similar. (The figure also includes results from sections 2 and 3 to be discussed
below.)

1.2 Asymmetry in price setting is the key parameter

This section presents further evidence that the asymmetry in price setting is the driving
force of our result. We show this by solving the model for ψ = 0, keeping all other pa-
rameters unchanged. As shown in tables 3 and 5 in the main text, the symmetric model

2Hence, if we were to adopt this approach as target, we might have to recalibrate the volatility of shocks.

5



0 2 4 6 8
-4

-3

-2

-1

0

0 2 4 6 8
0

10

20

30

40

50

0 2 4 6 8

rolling mean  (%)

4

6

8

10

0 2 4 6 8

rolling mean  (%)

0

1

2

3

4

5

Figure 3: Macro-finance moments in the benchmark model when inflation is driven
by changes in inflation target (as in the main text) or by productivity shocks, 2/2. Red
triangles correspond to the main text calculation (inflation-target driven inflation), blue
line to the history-driven inflation.
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has high, but nearly constant bond premia, and hence does not generate the predictabil-
ity evidence (Fama-Bliss regressions). To demonstrate where this comes from, figure 5
presents the impulse response function: the response of the economy to a productivity
shock is nearly constant - that is, unlike the benchmark model, there is no state depen-
dence. Finally, figures 6 and 7 reproduce our key experiment of changing the average
level of inflation through the inflation target, and show that the symmetric model gener-
ates almost no change in macro-finance moments as the average level of inflation changes.
Figure 4 shows this is true for the term premium as well. Overall, while this symmetric
model has attractive implications along many dimensions (e.g., a high average risk pre-
mium), it fails to reproduce the secular and cyclical changes in bond premia that are the
focus of this paper, because the market price of risk is nearly constant (and the bond risk
is nearly constant).

1.3 Asymmetry in the model

A direct way to illustrate the asymmetry implicit in the model, on the other hand, is to
look at the histograms of model variables (figure 8), which show a large positive skewness
for inflation and interest rates, and a large negative for output. In contrast, the histograms
of the symmetric model are approximately normally distributed.

As explained in the text, for small shocks the model is symmetric. Figure 9 com-
pares the impulse response function to large positive and negative shocks, namely three-
standard deviation shocks. For such large shocks, the model does exhibit some asymme-
try. The asymmetry, in fact, results from the nonlinearity - the effect of a 3-sd positive
shock is less than the sum of 3 one-sd shocks, as the elasticity of the economy to shocks
falls as z rises. Yet, even with such large (and unlikely) shocks, the amount of asymmetry
is not tremendous. Hence, we do not think that looking at asymmetric responses is the
right approach to test this model.

1.4 Monetary Policy

Figure 10 illustrates the effect of changing the monetary policy rule on the distribution
of output, inflation, and interest rates. The most striking feature is that the distribution
of inflation loses most of its skewness, as does that of the interest rate to a lesser extent.
Conversely, output loses some of its negative skewness. Not visible in this figure is the
slight difference in the average level of output that is created by this policy change.
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10



0 2 4 6 8
-4

-3

-2

-1

0

0 2 4 6 8
10

20

30

40

50

0 2 4 6 8

rolling mean  (%)

0

10

20

30

40

0 2 4 6 8

rolling mean  (%)

0

5

10

15

20

Figure 7: Macro-finance moments in the symmetric model (black) and in the bench-
mark model (red triangles), 2/2.

11



A1. Policy rate - Symmetric cost

-10 -5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

B1. Inflation - Symmetric cost

-10 -5 0 5 10 15
0

0.05

0.1

0.15

C1. Output gap - Symmetric cost

-20 -10 0 10 20
0

0.02

0.04

0.06

0.08

A2. Policy rate - Asymmetric cost

5 10 15
0

0.5

1

1.5

B2. Inflation - Asymmetric cost

0 5 10
0

0.1

0.2

0.3

0.4

0.5

C2. Output gap - Asymmetric cost

-20 -15 -10 -5 0 5
0

0.05

0.1

0.15

Figure 8: Histogram of macroeconomic variables in the symmetric model (left panel) and
in the baseline model (right panel).

12



0 10 20 30

Quarter

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%

D. Policy rate

TFP: positive
TFP: negative

0 10 20 30
-2

-1.8

-1.6

-1.4

-1.2

-1

%

B. GDP

0 10 20 30

Quarter

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%

C. Inflation

0 10 20 30
-3.4

-3.2

-3

-2.8

-2.6

-2.4

%

A. TFP shock

Figure 9: Impulse response functions to positive and negative shocks with asymmetric
price adjustment costs. Impulse response to a three-standard deviation of productivity
innovations shock when the shock is positive (red solid line) vs. negative (black dashed
line). The responses to positive shocks are displayed with the reverse sign. The economy
is initially at the deterministic steady state.

13



A1. Policy rate -  = 5

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

B1. Inflation -  = 5

1 2 3 4 5
0

0.2

0.4

0.6

0.8

C1. Output gap -  = 5

-20 -10 0 10
0

0.02

0.04

0.06

0.08

0.1

A2. Policy rate - Benchmark (  = 2)

5 10 15
0

0.5

1

1.5

B2. Inflation - Benchmark

0 5 10
0

0.1

0.2

0.3

0.4

0.5

C2. Output gap - Benchmark

-20 -15 -10 -5 0 5
0

0.05

0.1

0.15

Figure 10: Histogram of macroeconomic variables in the model with ϕπ = 5 (left panel)
and in the baseline model (right panel).

14



Data Model α = 0 ρz = .92
Mean Sd Mean Sd Mean Sd Mean Sd

∆ log Y – 3.03 0.00 2.37 0.00 2.74 0.00 3.23
π 3.14 1.97 3.14 1.97 3.81 2.72 3.31 1.98
y$(1) 5.63 3.20 5.63 1.97 7.38 3.18 6.54 3.11
y$(40) 7.36 2.97 7.36 2.12 7.34 2.41 7.37 0.93
y(1) – – 2.37 0.34 3.51 0.52 3.11 1.31
y(40) – – 2.42 0.19 3.54 0.34 3.48 0.37
Stock return 8.12 16.32 8.98 16.08 3.87 38.78 3.96 20.67
tp(40) – – 0.02 0.21 0.01 0.01 0.39 0.08
tp$(40) – – 1.67 0.68 0.06 0.03 0.97 0.17
Skewness(π) 1.55 – 1.55 – 0.84 – 1.77 –
Prob(π < 1%) 1.71 – 1.78 – 11.0 – 0.00 –

Table 1: Comparative statics. As in table (3), columns 2-3 report the mean and stan-
dard deviation from U.S. data over the sample 1979q4-2008q4, and columns 4-5 report
the mean and standard deviation for the benchmark model. Columns 6-7 and 8-9 report
the same statistics respectively if α = 0 and if ρz = 0.92, respectively (while keeping all
other parameters at the benchmark values).

1.5 Comparative statics: risk aversion and of shock persistence

Table 1 shows the model moments when we set risk aversion to be low (α = 0), or when
we set a lower persistence of the technology impulse z (ρz = .92), together with the data
and benchmark model. Unsurprisingly, the low risk aversion model has a flat yield curve,
with very low and nearly constant risk premia, and the average stock return is close to the
average (log) yield on a risk-free bond. More interestingly, low risk aversion also increases
the mean and volatility of inflation. This is because with an unchanged monetary policy
rule, keeping the same R∗ (Taylor rule intercept) when the “neutral risk-free rate” has
gone up leads to more inflation. The lesson here is that monetary policy needs to offset
variation in the risk-free rate that is due to risk aversion.

The second comparative static we want to highlight is the lower persistence of tech-
nology shock. In this case, the real term premium increases significantly, since there is
now more predictable variation of growth. On the other hand, the total term premium
falls, as these shocks are less “scary” for investors. This suggests to us that a model with
more shocks may be do better at matching the data - some low persistence shocks help in
some dimensions, while higher persistence helps in others.
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2 Model extension: demand shocks

In this section, we extend the model to allow for “demand shocks” (on top of the pro-
ductivity shocks, or “supply shocks”, which we keep throughout). There are several mo-
tivations for considering this extension. First, demand shocks are typically found to be
important in accounting for macroeconomic fluctuations. Second, demand shocks gener-
ate a positive comovement between output and inflation, and hence can potentially con-
tribute to term premia, in particular in explaining a potential sign switch where bonds
become “hedges” and term premia negative (as they might have become in the 2000s).

This section is a simple exercise to assess how demand shocks could affect our results.
The answer is nuanced. The main results appear robust - see for instance, figure 4 which
shows that as average inflation rises, the model with demand shocks also generates a
substantial increase in the term premium. As we explain below, this comes because while
the demand shock generates a positive covariance of inflation and output, the magnitude
of this covariance does not depend greatly on the level of inflation. As a result, the overall
covariance of inflation and output (reflecting both demand and supply shocks) is still
decreasing in the level of inflation, as we showed in the main text, since the effects of
supply shocks remain the same as in the baseline model. That said, some other results
change, at least in our current simple calibration. For instance, the volatility of output
may fall, rather than rise, with average inflation.

Since our main point does not require demand shocks, we chose to abstract from de-
mand shocks in the main text. (In particular, while a model with demand shocks does
better at matching some statistics such as the stock-bond covariance, it also raises some
novel issues - for instance, matching the average slope of the yield curve is more difficult
- the yield curve remained on average steep throughout the 2000s, even as the stock-bond
covariance became negative.) We also want to note that there is room for improvement in
this section, so these results could possibly change if we refine the model or the calibra-
tion.

2.1 Model

To incorporate demand shocks, we add a disturbance directly in the Euler equation. This
can be motivated (as in Fisher (2014)) as a time-varying convenience yield for bonds.
Under this interpretation, the only modification to the model is to the Euler equation,
which becomes:
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Et

[
ξ−1

t RtM$
t+1

]
= 1, (1)

where ξt is the liquidity process, reflecting “convenience” demand for bonds. We assume
that this process follows a log-normal AR(1):

log ξt = ρξ log ξt−1 + εξ,t, (2)

with εξ,t i.i.d N(0, σ2
ξ).

2.2 Parameters

To set the parameters, we follow a calibration approach similar to that of the benchmark
model in the main text. We set a number of parameters a priori as before, and set the per-
sistence of demand shocks to 0.9, a common value in the literature. We then calibrate the
same parameters we did in the main text (i.e., α,β,σz,ψ,Π,R$) as well as the new parame-
ter σξ to match the same statistics we did in the main text (i.e., the mean and volatility of
inflation, the mean of short-term and long-term interest rates, the skewness of inflation,
the probability that inflation is less then 1%) as well as an additional moment, the corre-
lation of output growth with the change of inflation. We choose this moment because it
captures the reduced-form Phillips correlation that is informative about the relative im-
portance of supply vs. demand shocks: inflation increases (resp. decreases) with output
if there are demand (resp. supply) shock. We match these moments nearly perfectly, as
shown in table 3. (The probability of inflation less than 1% is somewhat too high at 5% vs.
1.7% target.) The parameters used are shown in table 2. Matching the data now requires
much higher risk aversion, because demand shocks generate a negative slope.

2.3 Basic moments

Table 3 presents the basic moments. We see that the model generates still significant, but
smaller, volatility of the term premium, and of long-term interest rates. The model still
undershoots on GDP volatility.

2.4 Impulse responses

The impulse responses of selected macroeconomic variables to both productivity and de-
mand shocks are presented in figure 11. As in the text, we vary the inflation target so the
average inflation is high (4%) or low (2%). The patterns for the productivity shock are

17



Parameter Description Value

A. Taken from the literature

σ Preferences: inverse IES 2
υ Preferences: labor supply 1.5
χ Preferences: labor supply 40.66
ε Preferences: substitution across goods 7.66
ϕπ Monetary policy rule: weight on inflation 2
ϕy Monetary policy rule: weight on output 0.125
ρξ Shock: persistence of demand shock 0.9
ρz Shock: persistence of TFP 0.99
ϕ Adj. cost of prices: size parameter 78

B. Calibrated to match key moments

R∗ Monetary policy rule: intercept 1.0093
σz Shock: std. dev. of TFP innovation 0.643
σξ Shock: std. dev. of demand innovation 0.294
ψ Adj. cost of prices: asymmetry parameter 396
Π Adj. cost of prices: location parameter 1.012
β Preferences: subjective discount factor 0.9906
α Preferences: Epstein-Zin curvature (note: CRRA=169) -241

Table 2: Model parameters in the model with demand shocks. The time period is one
quarter.

Data Model
E(π) 3.14 3.14
σ(π) 1.97 1.97
Skewness(π) 1.55 1.55
Prob(π < 1%) 1.71 5.03
E(y$(1)) 5.63 5.63
E(y$(40)) 7.36 7.36
ρ(∆π, ∆ log C) 0.1 0.11

Table 3: The table shows the data moments used for the calibration of the model with
demand shocks, and the corresponding model moments. Data moments are calculated
over the sample 1979q4-2008q4.
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Data Model
Mean Sd Mean Sd

∆ log(Y) – 3.03 0.00 2.37
π 3.14 1.97 3.14 1.97
y$(1) 5.63 3.20 5.63 1.97
y$(40) 7.36 2.97 7.36 2.12
y(1) – – 2.37 0.34
y(40) – – 2.42 0.19
tp(40) – – 0.02 0.21
tp$(40) – – 1.67 0.68

Table 4: Data and model moments in the model with demand shocks. Columns 2 and
3 report the mean and standard deviation from U.S. data over the sample 1979q4-2008q4.
Columns 4 and 5 report the mean and standard deviation for the model with demand
shocks. All statistics are reported in annualized terms.

similar to that in the main text. A demand shock generates lower inflation, lower GDP,
and lower interest rates. When inflation is high, prices are less sticky, and consequently
demand shocks have less impact on GDP and more on inflation, which is intuitive. In-
terestingly, the overall covariance of output and inflation remains basically unchanged.
Hence, the overall effect of demand shocks on our key result is limited - the results subsist
as long as there are productivity shocks.

2.5 Macro-finance moments as a function of average inflation

Finally, in figures 12 and 13 we conduct the main experiment of the paper: showing how
macro-finance moments change with average inflation. For clarity, we compare in these
figures the benchmark model (with productivity shocks only) to the model with demand
shocks (which, to be clear, includes both productivity and demand shocks). As noted
above, the results are mixed. The models does still very well on the volatility of inflation,
and is qualitatively right on many of the other moments. Some moments are quantita-
tively off. The most glaring discrepancy is that the volatility of output now falls, rather
than rise, with inflation. This is because while the effect of productivity shocks increase
with inflation, the effects of demand shocks decrease with inflation.
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3 Model extension: asymmetric wage rigidities

In this section, we present an extension of our model that incorporates both downward
nominal price and wage rigidities. In the paper, we focus on the case of price asymme-
tries, but in reality, both wages and prices are asymmetric. (Indeed, at the micro level, the
evidence for asymmetries is stronger for wages than prices.) As the figures below illus-
trate, introducing wage stickiness and wage asymmetries in the model allows to generate
many of the similar facts, while reducing the degree of asymmetry assumed for prices. (In
that sense, this shows that the asymmetry we assume for prices in the baseline model may
reflect asymmetry in wages.) (Here too, the results, while accurate and very supportive,
could be further improved.)

3.1 Model

We introduce wage stickiness as in Kim and Ruge-Murcia (2011), who build on Kim and
Ruge-Murcia (2009) and Erceg et al. (2000). Some sections that are essentially identical to
the baseline model are denoted with an asterisk in the subsection title. We kept them here
to make this section independent of the main text.

Composite labor

Firms use composite labor to produce intermediate differentiated goods. Composite labor
is created by aggregating a variety of differentiated labor indexed by h ∈ [0, 1] using a CES
technology

Nt =

(∫ 1

0
Nh

t
ϵw−1

ϵw dh
) ϵw

ϵw−1

, (3)

where εw determines the elasticity of substitution among differentiated types of labor. The
profit maximization problem is given by

max WtNt −
∫ 1

0
Wh

t Nh
t dh,

where Wh
t and Nh

t are the wage and quantity of differentiated labor of type h.
Profit maximization and the zero-profit condition give the demand for labor of type h

Nh
t =

(
Wh

t
Wt

)−ϵw

Nt, (4)
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and the aggregate wage level

Wt =

(∫ 1

0

(
Wh

t

)1−ϵw
dh
) 1

1−ϵw
. (5)

Final consumption goods*

To produce consumption goods, households buy and aggregate a variety of differentiated
intermediate goods indexed by i ∈ [0, 1] using a CES technology

Yt =

(∫ 1

0
Yt (i)

ϵ−1
ϵ di

) ϵ
ϵ−1

,

where ε determines the elasticity of substitution among intermediate goods. The profit
maximization problem is given by

max PtYt −
∫ 1

0
Pt (i)Yt (i) di,

where Pt (i) and Yt (i) are the price and quantity of intermediate good i.
Profit maximization and the zero-profit condition give the demand for differentiated

intermediate good i

Yt (i) =
(

Pt (i)
Pt

)−ϵ

Yt, (6)

and the aggregate price level

Pt =

(∫ 1

0
Pt (i)

1−ϵ di
) 1

1−ϵ

. (7)

Household h’s problem

There is a unit mass of households. Each household indexed by h ∈ [0, 1] provides type-h
labor and is competitively monopolistic in the labor market. It is costly to adjust wages.
Without loss of generality, we assume that households pay wage adjustment costs which
have a general form

Φh
t = Φ

(
Wh

t

Wh
t−1

)
Wh

t Nh
t ,

where Φ′ (·) > 0 and Φ′′ (·) > 0.
In this paper, we follow Kim and Ruge-Murcia (2009) and use the linex function to

model wage adjustment costs. Specifically,
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Φh
t = Φ

(
Wh

t

Wh
t−1

)
= ϕ

exp
(
−ψ

(
Wh

t
Wh

t−1
− Π

))
+ ψ

(
Wh

t
Wh

t−1
− Π

)
− 1

ψ2

 , (8)

where ϕw is the level parameter and ψw is the asymmetry parameter. If ψw > 0, the
wage adjustment cost is asymmetric. In particular, the cost to lower a wage is higher
than to increase it by the same amount. When ψw approaches 0, this function becomes a
symmetric quadratic function

Φ (x) =
ϕw
2
(
x − Π

)2 .

Household h choose
{

Ch
t , Nh

t , Wh
t , Bh

t
}∞

t=1 to maximize the inter-temporal utility

Vh
t = (1 − β) u(Ch

t , Nh
t ) + βEt

(
(Vh

t+1)
1−α
) 1

1−α

with the flow utility

u (Ct, Nt) =
C1−γ

t
1 − γ

− χN1+η
t

1 + η
,

subject to the labor demand (4) and the budget constraint as described below.
If the parameters we use lead to a negative flow utility u(Ct, Nt), we define utility as:

Vh
t = (1 − β) u(Ch

t , Nh
t )− βEt

((
−Vh

t+1

)1−α
) 1

1−α

.

The budget constraint is:

PtCh
t + R−1

t Bh
t = Wh

t Nh
t

(
1 − Φh

t

)
+ Bh

t−1 + Dh
t + Th

t . (9)

Given W0 and B0. (10)

A symmetric solution to this optimization problem, i.e. Wh
t = Wt and Nh

t = Nt, implies a
New Keynesian Phillips curve for wages and the Euler equation (see derivation in section
3.6):
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0 = (1 − εw) (1 − Φ (Πw
t )) Nt − Φ′ (Πw

t )ΠwNt + εwχ
Nη+1

t

wtC
−γ
t

(11)

+Et

[
Mt,t+1

Φ′ (Πw
t+1
)
(Πw)2

Πt+1
Nt+1

]
,

Et

[
Mt,t+1

(
Rt

Πt+1

)]
= 1, (12)

where wt = Wt/Pt is the real wage; Πt = Pt/Pt−1 is gross inflation; Πw
t = Wt/Wt−1 is

gross wage inflation. Wage inflation and and the stochastic discount factor are given by

Πw
t =

wt

wt−1
Πt, (13)

Mt,t+1 = β

(
Ct+1

Ct

)−γ

 Vt+1[
Et

(
V1−α

t+1

)] 1
1−α


−α

, (14)

Note that when ϕ = 0 and εw → ∞, equation (11) becomes a standard marginal rate
of substitution between labor and consumption

χNη
t

C−γ
t

= wt.

Intermediate goods producer i′s problem*

There is a unit mass of intermediate goods producers that are monopolistic competitors.
Suppose that each intermediate good i ∈ [0, 1] is produced by one producer using the
technology

Yi
t = ZtNi

t , (15)

where α ≥ 0; Ni
t is composite labor input used by firm i; and

ln (Zt) = ρZ ln (Zt−1) + εZ,t, (16)

εZ,t ∼ i.i.d N
(

0, σ2
Z

)
.

Following Rotemberg (1982), we assume that each intermediate goods firm i faces
costs of adjusting prices in terms of final goods. The adjustment cost function is in a
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general form

Γt = Γ

(
Pi

t

Pi
t−1

)
Yt,

where Γ′ (·) > 0 and Γ′′ (·) > 0.
We also use the linex function to model price adjustment costs. Specifically,

Γ (x) = ϕp

exp
(
−ψp

(
x − Π

))
+ ψp

(
x − Π

)
− 1

ψ2
p

 , (17)

where ϕp, ψp are parameters that determines the level and the asymmetry of price adjust-
ment costs. If ψp > 0, the price adjustment cost is asymmetric. Particularly, the cost to
lower a price is higher than to increase it by the same amount. The linex function nests
the symmetric quadratic cost when ψp approaches 0, i.e. it becomes a quadratic function

Γ (x) =
ϕp

2
(
x − Π

)2 ,

which is popularly used in the ZLB literature.
The problem of firm i is given by

max
{Yi

t+j,Nt+j,Pi
t+j}

∞
j=0

Et

∞

∑
j=0

{
Mt,t+j

[(
Pi

t+j

Pt+j
Yi

t+j − wtNi
t

)
− Γ

(
Pi

t+j

Pi
t+j−1

)
Yt+j

]}
(18)

subject to its demand (6) and production function (15). In a symmetric equilibrium where
all firms choose the same price and produce the same quantity (i.e., Pi

t = Pt and Yi
t = Yt).

The optimal pricing rule then implies the New Keynesian Phillips curve,(
1 − ε + ε

wt

Zt
− ΠtΓ′ (Πt)

)
Yt + Et

(
Mt,t+1Πt+1Γ′ (Πt+1)Yt+1

)
= 0. (19)

Monetary policy*

The central bank conducts monetary policy by setting the interest rate using a simple
Taylor rule:

Rt = R∗
(

GDPt

GDP∗

)ϕy
(

Πt

Π∗

)ϕπ

(20)

where GDPt ≡ Ct denotes the gross domestic product (GDP); GDP∗ and Π∗ denote the
target GDP and inflation, respectively; R∗ denotes the intercept of the Taylor rule.
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Equilibrium systems

With the Rotemberg price setting, the aggregate output satisfies

Yt = ZtNt, (21)

As in the benchmark model, we assume that price and wage adjustment costs are
rebated to households. Hence, the aggregate resource constraint is given by

Ct = Yt (22)

The equilibrium system for the model consists of a system of six nonlinear difference
equations (11), (12), (13), (19), (20), (21), (22) for six variables wt, Ct, Rt, Πt, Πw

t , Nt, and
Yt.

3.2 Calibration

We have three new parameters compared to the baseline model, that govern the size,
location and asymmetry of wage adjustment costs. For parsimony, we assume that the
location is the same as for price, and we set the size of the adjustment cost to a value
consistent with the literature (i.e., wages are stickier than prices). This leaves us with one
additional parameter ψw, and we use as additional moment to calibrate it the skewness
of wage growth, which is also significant in our sample.3

Table 5 presents the parameters, and the data targets and model moments used for
calibration are in table 6. We can see from this table that the model matches the data fairly
well.

3.3 Moments

Table 7 reports the basic moments. As in the baseline model, there is a large term pre-
mium, but the volatility is now lower.

3.4 Impulse responses

The impulse responses of selected macroeconomic variables to supply shocks in the model
with both price and wage asymmetry are presented in figure 14, where we vary the infla-

3Because this model is significantly more difficult to solve numerically, some of the results here are based
on parameter values that differ slightly from the baseline (because we have not yet updated this part), but
the differences should not be material.
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Parameter Description Value

A. Taken from the literature

σ Preferences: inverse IES 2
υ Preferences: labor supply 1.5
χ Preferences: labor supply 40.66
ε Preferences: substitution across goods 7.66
ϕπ Monetary policy rule: weight on inflation 1.75
ϕy Monetary policy rule: weight on output 0.065
ρz Shock: persistence of TFP 0.97
ϕp Adj. cost of prices: size parameter 70
ϕw Adj. cost of wages: size parameter 200

B. Calibrated to match key moments

R∗ Monetary policy rule: intercept 1.019
σz Shock: std. dev. of TFP innovation 0.643
ψp Adj. cost of prices: asymmetry parameter 280
ψp Adj. cost of wages: asymmetry parameter 350
Π Adj. cost of prices: location parameter 1.0099
β Preferences: subjective discount factor 0.991
α Preferences: Epstein-Zin curvature (note: CRRA=87) -120

Table 5: Model parameters in the model with both wage and price asymmetries. The time
period is one quarter.

Data Model
σ(∆ log Y) 3.03 3.03
E(π) 3.14 2.97
σ(π) 1.97 1.72
Skewness(πp) 1.55 1.56
Skewness(πw) 1.91 1.92
Prob(π < 1%) 1.74 6.67
E(y$(1)) 5.63 5.68
E(y$(40)) 7.36 7.25

Table 6: Data and model-based moments in the model with both price and wage asym-
metry. Data over the sample 1979q4-2008q4.
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Data Full sample
Mean Sd Mean Sd

∆ log(Y) – 3.03 0.00 3.15
π 3.14 1.97 2.97 1.73
y$(1) 5.63 3.20 5.68 2.46
y$(40) 7.36 2.97 7.25 1.05
y(1) – – 2.56 1.11
y(40) – – 3.16 0.29
tp(40) – – 0.59 0.11
tp$(40) – – 1.52 0.23

Table 7: Data and model moments in the model with both price and wage asymmetry.
Columns 2 and 3 give the mean and standard deviation from U.S. Data over the sample
1979q4-2019q4. Columns 4 and 5 give the mean and standard deviation using simulated
data from the model.

tion target so the average inflation is high (4%) or low (2%). As in the benchmark model,
the conditional covariance driven by supply shocks is dampened (or less negative) when
inflation is low, leading to smaller bond premium. However, the magnitude of the change
appears to be less than in the baseline model, which explains why there is less volatility
of the term premium.

3.5 Macro-finance moments with both wage and price asymmetries

Finally, figures 15 and 16 show our key experiment. Here too, varying inflation leads
macro-finance moments to vary in a substantial way.4 Overall, the model with price and
wage asymmetries seems to do quite well, surpassing in many dimensions the baseline
model, despite much lower asymmetries.

3.6 Deriving the wage Phillips Curve

Vh
(

Bh
t−1, Wh

t−1, Zt

)
= Max︸︷︷︸

{Ch
t ,Nh

t ,Wh
t ,Bh

t }


(1 − β)

(
(Ch

t )
1−γ

1−γ − χ
(Nh

t )
1+η

1+η

)
+β

(
Et

[(
Vh (Bh

t , Wh
t , Zt+1

))1−α
]) 1

1−α

 (23)

4Due to numerical difficulties, we have not yet been able to vary the level of inflation as much as in the
other calculations.
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Figure 14: Impulse response functions in the model with both price and wage asymmetry
at low and high inflation target.
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subject to

PtCh
t + R−1

t Bh
t = (1 + τw)Wh

t Nh
t

(
1 − Φh

t

)
+ Bh

t−1 + Dh
t + Th

t + ACh
t (24)

Nh
t =

(
Wh

t
Wt

)−ϵw

Nt (25)

where

Φh
t = Φ

(
Wh

t

Wh
t−1

)
= ϕw

exp
(
−ψw

(
Wh

t
Wh

t−1
− Π

))
+ ψw

(
Wh

t
Wh

t−1
− Π

)
− 1

ψ2
w

 . (26)

Let λh1
t and λh2

t be the Lagrangian multipliers for the budget constraint and the labor
demand at time t, respectively. The first-order conditions include

(Ct) : (1 − β)
(

Ch
t

)−γ
− Ptλ

h1
t = 0, (27)

(Nt) : − (1 − β) χ
(

Nh
t

)η
+ (1 + τw)Wh

t

(
1 − Φh

t

)
λh1

t − λh2
t = 0, (28)

(Wt) : 0 = β

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

Vh
w

(
Bh

t , Wh
t , Zt+1

)
(29)

(
(1 + τw) Nh

t

(
1 − Φh

t

)
− (1 + τw)Wh

t Nh
t

(
Φh

t

)′ 1
Wh

t−1

)
λh1

t − εw
Nh

t

Wh
t

λh2
t .

(Bt) : β

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

Vh
B

(
Bh

t , Wh
t , Zt+1

)
− R−1

t λh1
t = 0. (30)
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The envelope theorem implies:

∂Vh (Bh
t−1, Wh

t−1, Zt
)

∂Wh
t−1

≡ Vh
w

(
Bh

t−1, Wh
t−1, Zt

)
(31)

=

(
(1 + τw)Wh

t Nh
t

(
Φh

t

)′ Wh
t(

Wh
t−1

)2

)
λh1

t (32)

∂Vh (Bh
t , Wh

t−1, Zt
)

∂Bh
t−1

≡ Vh
B

(
Bh

t−1, Wh
t−1, Zt

)
= λh1

t (33)

From equations (27) and (28)

λh1
t =

(1 − β)
(
Ch

t
)−γ

Pt
; λh1

t+1 =
(1 − β)

(
Ch

t+1
)−γ

Pt+1
;

λh2
t = − (1 − β) χ

(
Nh

t

)η
+ (1 + τw)Wh

t

(
1 − Φh

t

) (1 − β)
(
Ch

t
)−γ

Pt

Equation (29) can be simplified to

0 =

(
(1 + τw) Nh

t

(
1 − Φh

t

)
− (1 + τw)Wh

t Nh
t

(
Φh

t

)′ 1
Wh

t−1

)
(1 − β)

(
Ch

t
)−γ

Pt

−εw
Nh

t

Wh
t

(
− (1 − β) χ

(
Nh

t

)η
+ (1 + τw)Wh

t

(
1 − Φh

t

) (1 − β)
(
Ch

t
)−γ

Pt

)

+β

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

×

(1 + τw) Nh
t+1

(
Φh

t+1

)′(Wh
t+1

Wh
t

)2
 (1 − β)

(
Ch

t+1
)−γ

Pt+1
,
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0 =

(
(1 + τw) Nh

t

(
1 − Φh

t

)
− (1 + τw) Nh

t

(
Φh

t

)′ Wh
t

Wh
t−1

)

+εwχ

(
Nh

t
)η+1

Wh
t

Pt(
Ch

t
)−γ − εw (1 + τw) Nh

t

(
1 − Φh

t

)

+β

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

×

(1 + τw) Nh
t+1

(
Φh

t+1

)′(Wh
t+1

Wh
t

)2
 (Ch

t+1
)−γ(

Ch
t
)−γ

Pt

Pt+1
,

0 = (1 + τw) (1 − εw) Nh
t

(
1 − Φh

t

)
− (1 + τw) Nh

t

(
Φh

t

)′ Wh
t

Wh
t−1

+ εwχ

(
Nh

t
)η+1

wh
t
(
Ch

t
)−γ(34)

+β

(
Ch

t+1
)−γ(

Ch
t
)−γ

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

×

(1 + τw) Nh
t+1

(
Φh

t+1

)′(Wh
t+1

Wh
t

)2
 Pt

Pt+1
, (35)

Equation (30) becomes

0 = β

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

λh1
t+1 − R−1

t λh1
t (36)

0 = β

 Et
[(

Vh (Bh
t , Wh

t , Zt+1
))]

(
Et

[(
Vh
(

Bh
t , Wh

t , Zt+1
))1−α

]) 1
1−α


−α

(1 − β)
(
Ch

t+1
)−γ

Pt+1

− (1 + it)
−1 (1 − β)

(
Ch

t
)−γ

Pt
(37)
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In a symmetric equilibrium the optimal wage setting becomes the wage Phillips curve:

0 = (1 − εw) (1 − Φt) Nt − Φ′
tΠ

w
t Nt + εw

χ

1 + τw

Nη+1
t

wtC
−γ
t

(38)

+Et

[
Mt,t+1

(
(1 + τw)

(Φt+1)
′ (Πw

t+1
)2

Πt
Nt+1

)]
,

and the optimality condition for bonds satisfies:

Et

[
Mt,t+1

(
Rt

Πt+1

)]
= 1, (39)

where wt = Wt/Pt is the real wage, Πw
t = Wt/Wt−1 is the gross wage inflation, Πt =

Pt/Pt−1 is the gross (price )inflation rate, and the stochastic discount factor is given by

Mt,t+1 = β

 (V (Wt, Zt+1))(
Et

[
(V (Wt, Zt+1))

1−α
]) 1

1−α


−α (

Ct+1

Ct

)−γ

. (40)
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4 Additional Empirical Results

Tables 8, 9, and 10 present some robustness analysis for the results of section 6 of the
paper. Each table corresponds to a different horizon h equal to 4, 8 or 12 quarters. Specifi-
cally, we estimate equation (28) from the main text, but with the following modifications:
first, removing the quadratic time trend; second, changing the measure of inflation Zt for
the interaction variable. (We always use the same price measure as outcome variable.) In
our baseline specification, we used the 2-year PCE inflation. Instead, we show what hap-
pens if we use either the 1-year or 3-year PCE inflation, or the 2-year core PCE inflation.

Regarding the quadratic time trend, as we explained in the main text, its main effect
is to reduce the magnitude of standard errors by removing some low-frequency variation
in the GDP and inflation series. Looking across the two outcomes (GDP and price level)
and three tables (different horizons h), its effect on the point estimates is usually limited.
Regarding the alternative inflation measures, they matter relatively little for the key co-
efficient of interest γh (with perhaps one or two exceptions out of 18 cases (across the
three tables) where the coefficient becomes smaller). Overall, the results are stable with
respect to these changes. As in the main text, the results are only statistically significant at
h equal to 4 or 8 quarters, but the signs and magnitudes remain economically meaningful
in almost all cases even for h=12 quarters.
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Baseline No time trend 2y Core 3y 1y

Real GDP

βz,h 0.25** 0.30* 0.40*** 0.29** 0.26**
s.e. (0.12) (0.16) (0.12) (0.12) (0.12)
t-stat 2.13 1.92 3.26 2.37 2.28

γh 0.13*** 0.14*** 0.10** 0.13** 0.08***
s.e. (0.03) (0.04) (0.04) (0.05) (0.03)
t-stat 4.75 3.79 2.26 2.41 2.95

Obs. 256 256 232 252 260

Core PCE price index

βz,h -0.06 -0.04 -0.11 -0.09 -0.01
s.e. (0.06) (0.06) (0.09) (0.07) (0.05)
t-stat -0.92 -0.65 -1.27 -1.30 -0.22

γh -0.09*** -0.06* -0.09** -0.08** -0.07***
s.e. (0.03) (0.03) (0.03) (0.03) (0.02)
t-stat -3.40 -1.78 -2.55 -2.47 -3.29

Obs. 236 236 232 236 236

Table 8: The table reports the estimates of βz,h and γh from equation (28) in the main
text, for horizon h = 4 quarters, for y = log GDP (top panel) or the log core PCE index
(bottom panel), for different specifications: the baseline, reported in the main text (col-
umn 1); the same, but omitting the quadratic time trend (column 2); and using either the
2-year core inflation, the 3-year inflation, or the 1-year inflation as measure of initial in-
flation πt, rather than the 2-year inflation as in the baseline (columns 3-5). The sample is
1953q1:2019q4. Standard errors are Newey-West with 8 lags.
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Baseline No time trend 2y Core 3y 1y

Real GDP

βz,h 0.47*** 0.56** 0.46*** 0.50*** 0.49***
s.e. (0.16) (0.25) (0.14) (0.14) (0.17)
t-stat 3.03 2.28 3.27 3.55 2.93

γh 0.08 0.10 0.11 0.07 0.01
s.e. (0.06) (0.07) (0.07) (0.08) (0.06)
t-stat 1.36 1.45 1.49 0.96 0.17

Obs. 252 252 228 248 256

Core PCE price index

βz,h -0.01 0.04 -0.08 -0.05 0.05
s.e. (0.09) (0.10) (0.12) (0.10) (0.09)
t-stat -0.09 0.39 -0.67 -0.47 0.52

γh -0.12** -0.05 -0.13** -0.10* -0.09**
s.e. (0.05) (0.06) (0.07) (0.06) (0.04)
t-stat -2.58 -0.80 -2.02 -1.80 -2.02

Obs. 232 232 228 232 232

Table 9: The table reports the estimates of βz,h and γh from equation (28) in the main
text, for horizon h = 8 quarters, for y = log GDP (top panel) or the log core PCE index
(bottom panel), for different specifications: the baseline, reported in the main text (col-
umn 1); the same, but omitting the quadratic time trend (column 2); and using either the
2-year core inflation, the 3-year inflation, or the 1-year inflation as measure of initial in-
flation πt, rather than the 2-year inflation as in the baseline (columns 3-5). The sample is
1953q1:2019q4. Standard errors are Newey-West with 8 lags.
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Baseline No time trend 2y Core 3y 1y

Real GDP

βz,h 0.17 0.29 0.30 0.18 0.17
s.e. (0.17) (0.29) (0.19) (0.17) (0.18)
t-stat 0.98 1.01 1.59 1.08 0.96

γh 0.11 0.14 0.08 0.11 0.04
s.e. (0.08) (0.09) (0.10) (0.09) (0.07)
t-stat 1.44 1.52 0.80 1.19 0.49

Obs. 248 248 224 244 252

Core PCE price index

βz,h 0.11 0.20 0.04 0.08 0.14
s.e. (0.16) (0.15) (0.17) (0.15) (0.16)
t-stat 0.67 1.32 0.24 0.53 0.88

γh -0.10 0.01 -0.10 -0.06 -0.08
s.e. (0.07) (0.10) (0.09) (0.08) (0.06)
t-stat -1.55 0.06 -1.15 -0.83 -1.38

Obs. 228 228 224 228 228

Table 10: The table reports the estimates of βz,h and γh from equation (28) in the main
text, for horizon h = 12 quarters, for y = log GDP (top panel) or the log core PCE in-
dex (bottom panel), for different specifications: the baseline, reported in the main text
(column 1); the same, but omitting the quadratic time trend (column 2); and using either
the 2-year core inflation, the 3-year inflation, or the 1-year inflation as measure of initial
inflation πt, rather than the 2-year inflation as in the baseline (columns 3-5). The sample
is 1953q1:2019q4. Standard errors are Newey-West with 8 lags.
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