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Abstract 

We re-examine the relationship between monetary policy and financial stability in a setting that allows for 

nonlinear, time-varying relationships between monetary policy, financial stability, and macroeconomic 

outcomes. Using novel machine-learning techniques, we estimate a flexible “nonlinear VAR” for the 

stance of monetary policy, real activity, inflation, and financial conditions, and evaluate counterfactual 

evolutions of downside risk to real activity under alternative monetary policy paths. We find that a tighter 

path of monetary policy in 2003-05 would have increased the risk of adverse real outcomes three to four 

years ahead, especially if the tightening had been large or rapid. This suggests that there is limited 

evidence to support “leaning against the wind” even once one allows for rich nonlinearities, intertemporal 

dependence, and crisis predictability. 
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1 Introduction

In a speech in 2013, Federal Reserve Governor Stein argued that, in the real-world setting of

an imperfect ability of supervisory and regulatory tools to promptly address rising financial

vulnerabilities, monetary policy has the potential advantage of “getting in all the cracks”

and, as such, it may be appropriate to use monetary policy to pursue financial stability

objectives. From a theoretical perspective, using monetary policy to “lean against the wind”

(LAW) of rising financial vulnerabilities trades off the potential benefit of reducing either the

likelihood of a crisis and/or the depth of a recession conditional on a crisis occurring with

dampened growth outside of crisis periods. A large empirical literature in the aftermath of

the Global Financial Crisis (GFC) of 2008 has evaluated the merits of LAW and has mostly

found the net benefits of LAW to be either small or even negative.

One potential criticism of this literature is that it makes a number of simplifying as-

sumptions in quantifying both the potential benefits of intervening to prevent the build-up

of financial vulnerabilities, as well as the potential costs of tightening monetary policy in

response to a build-up of financial vulnerabilities. In this paper, we take a first step in

addressing these shortcomings by considering a fully non-parametric, nonlinear specification

for the joint dynamics of monetary policy, financial stability, and macroeconomic outcomes.

This approach lets the data inform us about the intertemporal tradeoff (if any) between the

central tendency and the left tail of the distribution of real outcomes, and how the stance of

monetary policy affects the joint dynamics of financial conditions and downside risk to real

outcomes.

We first show that, consistent with the findings in the “outlook-at-risk” literature, all

else equal, tighter financial conditions increase downside risk to growth at near horizons but

reduce downside risk at the 2 – 3 year horizon. This suggests a potential role for LAW in the

nonlinear setting: more restrictive monetary policy tightens financial conditions, increasing

near-term risk to growth but reducing medium-term risk to growth. Such dynamics would

be consistent with the intuition that monetary policy may sometimes want to trigger a small,
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short recession to prevent the possibility of a financial crisis down the road.

However, when we evaluate counterfactuals with respect to the stance of monetary pol-

icy, we find that tighter monetary policy always increases the medium-term risk of adverse

real outcomes, even when starting from a relatively loose level of financial conditions. In

particular, a tighter path of policy in 2003 – 2005 would have substantially increased the

risk of adverse real outcomes 3 – 4 years ahead, especially so if the tightening had been

large or rapid. Examining how the effect of a counterfactual tightening of monetary policy

varies over time, we find that a tighter path of policy increases medium-term downside risk

to growth throughout the sample. Furthermore, tighter monetary policy modestly improves

near-term risks to growth only immediately following recessions.

How can we reconcile the findings from our counterfactuals with respect to monetary

policy tightening with the term structure of the counterfactuals with respect to tighter

financial conditions? We argue that tighter financial conditions reduce medium-term risks

to growth because monetary policy loosens in response to financial conditions. Instead, when

we evaluate the counterfactuals with respect to a tighter path of policy, we preclude monetary

policy from responding to the resulting financial conditions tightening. This further increases

upside risk to financial conditions and therefore downside risk to real activity.

Our results thus suggest that, once we take into account the endogenous response of mon-

etary policy to financial conditions, there is limited evidence to support LAW even in our

setting which allows for rich nonlinearities, intertemporal dependence, and crisis predictabil-

ity. Instead, the term structure of the predictive relationship between current financial

conditions and future downside risk to growth suggests a possible role for macroprudential

policies in mitigating financial instabilities.

We conclude by evaluating the contribution of monetary policy tightening in the most

recent tightening cycle (starting in March 2022) to downside risk to growth. We find that

monetary policy tightening meaningfully increased prospective tail risk to economic activity

in early 2022 but that the contribution of the tightening cycle to downside risk to growth
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has since abated. As of 2023Q4, the policy path projected in the December 2023 Summary

of Economic Projections (SEP) is close to our model’s forecast and has little incremental

effect on tail risk.

In our study, we rely on novel machine learning techniques that enable us to conduct

counterfactual exercises in a computationally parsimonious manner. These techniques allow

us to model jointly the dynamic evolution of monetary policy, financial conditions, inflation,

and real activity without imposing parametric assumptions on the nature of the dynamic

nonlinearities nor distributional assumptions on underlying shocks in the system. This flex-

ibility comes at the cost of not being able to construct uncertainty bounds around the

distributional impulse response functions (IRF) we estimate. We thus view this work as a

first step in studying the interplay between monetary policy, financial vulnerabilities, and

economic outcomes in a flexible nonlinear setting.

The rest of the paper is organized as follows. We describe our empirical approach in

Section 2. Section 3 then presents our main results on the counterfactuals with respect to

the net effect of monetary policy tightening. We evaluate the contribution of the current

tightening cycle to downside risk to growth in Section 4. We discuss the relationship to the

existing literature in Section 5. Section 6 concludes.

2 Empirical Approach

In this paper, we re-evaluate LAW in a setting that allows for nonlinear joint dynamics

between inflation, real activity, policy, and financial conditions. More specifically, we consider

a dynamic system of the form

~yt+1| past ∼ f ( ·| ~yt, . . . , ~yt−L) , (1)

where ~yt is the vector of our variables of interest and f is a conditional distribution function

that relates the past history of ~yt to future realizations of ~yt+1. The general functional form
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in equation (1) allows for both nonlinear, state-dependent shock amplification as well as

non-Gaussian features, and nests the more familiar linear Gaussian VAR

~yt+1 = B (L) ~yt + Σ1/2εt+1 ⇒ ~yt+1 | ~yt, . . . , ~yt−L ∼ N (B (L) ~yt,Σ) . (2)

The nonlinear model also nests more complex parametric and semi-parametric dynamics

such as a linear VAR with stochastic volatility

~yt+1 = B (L) ~yt + Σ
1/2
t εt+1 ⇒ ~yt+1 | ~yt, . . . , ~yt−L ∼ N (B (L) ~yt,Σt) , (3)

and a linear VAR with a non-Gaussian innovation distribution

~yt+1 = B (L) ~yt + εt+1 ⇒ εt+1 | ~yt, . . . , ~yt−L ∼ fθε (4)

for some distribution fθε . Adrian et al. (2021) show that, even when estimating just the

bivariate conditional joint distribution of real GDP growth and financial conditions, a fully

nonlinear model outperforms both a linear VAR with normal innovations and a linear VAR

with an arbitrary distribution for the innovations ε. We thus take the (possible) nonlinearity

of the joint dynamics between inflation, real activity, policy, and financial conditions as given

and let the data inform us on the shape of that nonlinearity.

While the nonlinear model is appealing from the perspective of allowing flexibility in the

dynamic interactions between policy, financial conditions, and real activity, direct estimation

of such dynamics is computationally infeasible. Instead, we use novel techniques from the

machine learning literature that allow us to easily sample from the non-parametric condi-

tional distribution of interest. We now describe these techniques and how we apply them to

evaluating the net benefits of LAW.

4



2.1 Application to studying leaning against the wind

We are interested in evaluating the impact of counterfactual paths of monetary policy on the

conditional distribution of real activity and other macroeconomic variables across different

forecast horizons. We will thus estimate the dynamic relation between 4 variables: real

activity, inflation, financial conditions, and the stance of monetary policy. We estimate the

model using quarterly data from 1971Q1 to 2019Q4 (so that our estimates are not influenced

by the evolution of the economy during the COVID-19 pandemic and in the aftermath of

the pandemic).

We measure real activity (ggapt) as the gap between the annualized quarterly growth

rate of GDP and the Laubach and Williams (2003) (LW) 2-sided estimate of trend growth,

and the stance of monetary policy (rgapt) as the gap between the real interest rate and

two-sided estimate of r∗t from LW. Inflation is measured as the annualized quarterly core

PCE inflation, πt. Following Adrian et al. (2019), we measure financial conditions (fcit)

using the Federal Reserve Bank of Chicago National Financial Conditions Index (NFCI). A

main advantage of the NFCI is that it includes measures of both quantities of credit and

prices of credit (and risky assets). This is particularly important in our setting given that

the literature on predictable financial crises (e.g Schularick and Taylor, 2012; Krishnamurthy

and Muir, 2017; Greenwood et al., 2022) has emphasized both expansions in the quantity of

credit and exuberance in pricing of credit as predictors of sharp economic downturns. Figure

A.4 plots the time series of all four variables for reference.

Define zt = {fcit, ggapt, πt} and xt = {rgapt, zt}. We partition the distribution

f(xt|xt−1, ..., xt−4) as

f(xt|xt−1, ..., xt−4) = f(rgapt|zt, xt−1)f(zt|xt−1, ..., xt−4). (5)

Notice that we assume f(rgapt|zt, xt−1) = f(rgapt|zt, xt−1, ..., xt−4), i.e. the distributional

“policy rule” only depends on contemporaneous variables and possibly one lag of variables,
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as in standard specifications of a Taylor rule. This way of partitioning the joint distribution

also reflects an assumption we will make in our policy experiments: changes to rgapt do not

contemporaneously affect zt. We separately estimate f(rgapt|zt, xt−1) and f(zt|xt−1, ..., xt−4).

Our empirical methodology allows us to sample from the (estimated) conditional distribu-

tion f(xt|xt−1, ..., xt−4). To sample a history {xt, xt+1}, we exploit the Markovian structure

f(xt+1, xt|xt−1, ..., xt−4) = f(xt+1|xt, ..., xt−3)f(xt|xt−1, ..., xt−4). (6)

That is, we draw xt from the one-step ahead distribution given xt−1, ..., xt−4, then draw xt+1

from the one-step ahead distribution given xt, ..., xt−3. In this way, we can sample histories

{xt, ..., xt+H} of any length H. This gives us an estimate of the conditional distribution of

each variable (e.g. rgap) at any horizon h, f(rgapt+h|xt−1, ..., xt−4). We summarize these

“baseline” or estimated distributions, given initial conditions, by their 10th, 50th and 90th

percentiles, which we denote (e.g.) Qrgap
t+h|t−1(0.1), Qrgap

t+h|t−1(0.5), Qrgap
t+h|t−1(0.9).

In our experiments, we perturb this distribution – by changing initial conditions or shift-

ing the conditional distribution of rgapt – generating an “alternative” conditional distribution

of any variable at any horizon h. Again, we summarize these “alternative” distributions by

their percentiles Q̃rgap
t+h|t−1(0.1), Q̃rgap

t+h|t−1(0.5), Q̃rgap
t+h|t−1(0.9). Our figures plot “distributional

impulse response functions” showing the difference between the corresponding percentiles of

the h-quarters ahead distributions of each variable. For example, the difference in medians

of rgapt is defined as

∆Qrgap
t+h|t−1(0.5) ≡ Q̃rgap

t+h|t−1(0.5)−Qrgap
t+h|t−1(0.5),

and the corresponding “distributional IRF” plots ∆Qrgap
t+h|t−1(0.5) as a function of forecast

horizon h. Note that these differences of percentiles are not percentiles of differences; thus,

the effects on the various percentiles ∆Qrgap
t+h|t(0.1),∆Qrgap

t+h|t(0.5),∆Qrgap
t+h|t(0.9) need not be

ordered (i.e. the lines on the graph can cross), even though the percentiles of each underlying
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distribution are ordered.1 Also, the effect of any perturbation will depend nonlinearly on

both initial conditions and the magnitude of (e.g.) a shift in the distribution of rgapt. Finally,

when plotting IRFs of ggap and π, we report the difference in quantiles of the distribution

of annualized cumulative ggapt+h and πt+h, e.g. the distribution of 4
h+1

∑h
k=0 ggapt+k, rather

than the distribution of quarterly growth rates.

2.2 Wasserstein generative adversarial network (WGAN)

To estimate the conditional distributions given in equation (5) and evaluate joint dynamics

of variables of interest under policy counterfactuals, we need an empirical approach that

(i) allows us to flexibly estimate conditional distributions from the data and (ii) allows us

to easily simulate from the estimated distribution. Adrian et al. (2021) estimate a bivari-

ate nonlinear VAR using a non-parametric kernel approach, combined with discrete space

Monte Carlo to simulate multi-period ahead distributions. The discrete space Monte Carlo

approach, however, becomes computationally infeasible as more variables are added to the

nonlinear VAR. Instead, we rely on a conditional Wasserstein generative adversarial network

(WGAN) to estimate the joint dynamics.2

Intuitively, a WGAN chooses a distribution that is easy to simulate from (the “noise

distribution”, e.g., multivariate standard normal) and then passes each draw through a

(possibly) nonlinear function with the aim of capturing the key features of the actual data.

To achieve the latter goal, the functional form of this nonlinear function is “chosen” (i.e.,

estimated) in a way such that it is “hard” to statistically differentiate simulated samples from

the actual sample. How does it do so? It utilizes a mini-max game between a “generator”,

which produces simulated samples as discussed with the aim of mimicking the data, and

a “critic”, which endeavors to successfully discriminate between artificial samples and the

actual sample. To allow for a high degree of flexibility, the generator and the critic are

1 Since we estimate the full conditional distribution, our estimated percentiles do not cross by construction.
2 See Goodfellow et al. (2014) and Arjovsky et al. (2017) for the unconditional setting and Mirza and

Osindero (2014), Odena et al. (2017), Kocaoglu et al. (2017), and Liu et al. (2018) for the conditional
setting. For an econometric application, see Athey et al. (2021).
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modeled via neural networks which can accommodate general forms of nonlinear behavior.

This game iterates back and forth with a user-chosen stopping rule to create the estimated

density. Although the density estimate is not available analytically, because of the structure,

sampling from it is (essentially) as easy as sampling from the noise distribution itself.

To make things concrete, consider the example where we are interested in the conditional

distribution of ~y given ~x. The results of the WGAN estimation is a function g(·, ~x; θ̂g) where

θ̂g are the estimated parameters. In our case, this is a large dimensional vector of estimated

parameters for our neural network.3 Then, if we draw u from the noise distribution, we

have that g(u,X0; θ̂g) is a draw from our estimate of the conditional distribution of ~y given

~x = X0. We can then repeat this many times. To build intuition, recall the linear Gaussian

VAR from the previous section. In this case, θg = {B (L) , vech(Σ)}, and

g (u, ~x; θg) = B (L) ~x+ Σ1/2u, (7)

so that simulation draws can be obtained using g
(
u, ~x; θ̂g

)
with u ∼ N (0, I).

As with other machine learning methods, implementation requires a number of choices of

tuning parameters. Where possible, we use the default choices for tuning parameters from

the wgan package.4 We tailor the remaining tuning parameters to our setting, in particular,

the modest sample size and large conditioning set. We use a batch size of one which gives the

critic a single observation to discriminate from the data each time it updates its parameters.

We then choose a generator dropout rate, maximum epoch, and the critic penalty term factor

by matching stylized facts about economic variables. In particular, we enforce that stronger

activity (higher ggap) predicts higher inflation and that monetary policy raises real rates

in response to stronger activity or higher inflation.5 Figure A.1 shows how the estimated

3 The estimated parameters are not, themselves, of interest.
4 See https://github.com/gsbDBI/ds-wgan. The wgan package is the replication package for Athey

et al. (2021). We use the default tuning parameters for the noise distribution (multivariate standard normal),
the neural network architecture (3 hidden layers with 128 nodes in each layer for both the critic and the
generator), the critic dropout rate, the critic steps, and the test set size. We also leave the parameters for
the stochastic gradient descent algorithm at their default choices.

5 Since we measure the policy stance in terms of the real-rate gap, then a tightening of real rates requires
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model satisfies these relations. The top row of Figure A.1 shows that the model satisfies a

conventional Phillips Curve relation between inflation and activity. In Panel (a) we show

Qπ
t|t−1(c) for different values of c where we fix all initial conditions xt−1, . . . , xt−4 except for

ggapt−1 which we allow to vary. All other variables are set to ggapt−s = rgapt−s = fcit−s = 0,

πt−s = 2 for s = 1, ..., 4. In Panel (b) we again fix all initial conditions except that we vary

ggapt−1 = . . . = ggapt−4. Both plots show that inflation is monotonically increasing with

activity. The bottom row of Figure A.1 shows the response of monetary policy to changes

in activity and inflation. Panels (c) and (d) shows Qrgap
t|t−1(c) for different values of c where

we fix zt and all initial conditions xt−1, . . . , xt−4 (as above) except we vary ggapt = ggapt−1

(left panel) or πt = πt−1 (right panel).

Finally, we note that uncertainty quantification for the method we use is currently in-

feasible, and so we are unable to report standard errors around our estimates of (e.g.) the

effect of monetary policy shocks on the 10th percentile of GDP.

3 Main Results

In this section, we report our main results. First, we show the term structure of the predictive

relationship between current financial conditions and future downside risk to growth. We

then show that the medium-termmedium-term downside risk to growth is higher under a

counterfactually tighter path of monetary policy during 2003 –2005. Finally, we show that

the adverse impact of tighter monetary policy on downside risk to growth is even larger if

the tightening were large or rapid.

3.1 Financial conditions and downside risk to GDP

Adrian et al. (2022) find that tight financial conditions reduce the median and 5th percentile

of real GDP growth in the near-term; however, at the 2-3 year horizon, tighter FCI predicts a

that nominal rates increase more than one for one (the Taylor principle).
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slight increase in the 5th percentile. If interpreted causally, this suggests a tradeoff: tighter

financial conditions reduce activity on average, but can potentially lessen the tail risk of

a financial crisis in the medium-term. Potentially then, by tightening financial conditions,

tighter monetary policy could reduce the tail risk of a crisis, albeit at the cost of lower

economic activity on average.

We first verify that Adrian et al. (2022)’s stylized fact, which they estimate using a linear

quantile regression methodology in a sample of 11 advanced economies, holds for the U. S.

according to our empirical methodology. Figure 1 plots distributional IRFs of all variables to

a shock of 0.5 to the NFCI fcit.
6 Under the baseline, we set all initial conditions as follows:

ggapt−s = rgapt−s = fcit−s = 0, πt−s = 2, for all lags s = 1, ..., 4, and ggapt = fcit = 0,

πt = 2. We then draw rt, xt+1, xt+2, ... from the estimated conditional distributions. Under

the alternative, we modify fcit to 0.5, keep ggapt, πt, and all lagged variables the same, and

draw rt, xt+1, xt+2, ... from the estimated distributions.

The bottom left panel of Figure 1 plots the response of the annualized cumulative change

in ggapt, h quarters out.7 Broadly in line with Adrian et al. (2022), tighter financial con-

ditions sharply reduce activity in the near-term, but increase the 10th percentile of GDP,

relative to baseline, after the 2-year horizon.

3.2 Effect of tighter monetary policy

Do these results imply that contractionary monetary policy can reduce downside risk to

GDP growth? To answer this question, we look at the 2003 – 2005 period. Starting with

Taylor (2007), many commentators have argued that loose monetary policy during this

period helped accelerate the housing boom and encouraged risk-taking, contributing to the

6 This is roughly the standard deviation of quarterly changes to NFCI in our sample. Recall that the
NFCI is standardized to have a full sample mean of 0 and standard deviation of 1.

7 For example, the blue line plots the effect of the NFCI shock on the 10th percentile of the distribution of
annualized cumulative ggapt+h, ∆Qggapt+h|t−1(0.1). ∆Qggapt+4|t−1(0.1) ≈ −0.6. This means the 10th percentile of

the distribution of GDP, 4 quarters ahead, is around 0.6 percent lower under the “alternative” distribution
following an FCI shock, relative to the “baseline” distribution with no shock.
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by adding a series of shocks to rgapt that cumulatively raise its conditional median value by

50bps per quarter, relative to the baseline distribution, i.e. after 4 quarters, the conditional

median of rgapt, Q̃
rgap
t+3|t−1(0.5), is 200bps above its baseline value Qrgap

t+3|t−1(0.5) (the orange

line in the top left panel of Figure 2 plots this shift in the median, ∆Qrgap
t+h|t−1(0.5)).9 This

increases the real interest rate gap from its initial value of -240bps to roughly zero (given

that the gap narrows slightly even under the baseline distribution).

Figure 2 plots distributional IRFs to this monetary policy shock. As expected, tighter

monetary policy leads to tighter financial conditions (top right panel). However, rather than

reducing the tail risk of GDP, this tightening shifts down the whole distribution, particularly

the left tail, at the 3-year horizon (blue line in bottom left panel).10 This is reminiscent

of Svensson (2017)’s argument that even if tighter policy reduces the probability of a crisis,

leaning against the wind is undesirable since it weakens economic activity conditional on a

crisis occuring. An important difference is that rather than imposing the tight parametric

restrictions in Svensson (2017)’s calibration exercise, we flexibly estimate the effect of policy

on the whole distribution of outcomes.

Given that tighter financial conditions predict less GDP tail risk in the medium-term,

why does tighter monetary policy fail to have a similar effect? One hypothesis is that, at

least according to our model, the relation between NFCI and GDP risk shown in Figure 1

reflects the endogenous response of monetary policy. The top right panel in Figure 1 shows

that real rates fall rapidly in response to tighter FCI, bottoming out around 6 quarters out;

lower real rates mitigate the effect of tighter FCI and potentially explain the increase in

GDP at the 3-year horizon. Thus, while ceteris paribus tighter financial conditions reduce

tail risk 3 years out – because they elicit looser monetary policy – tighter financial conditions

induced by tighter monetary policy increase tail risk. This endogenous response of monetary

9 Note that this is a different experiment than adding a series of consecutive 50bps shocks, given that in the
alternative scenario, rgapt endogenously responds to past shocks, in part via their effect on macroeconomic
outcomes. That said, the effect of a series of 50bps shocks is qualitatively similar.
10 The bottom right panel shows that our model, like linear VARs estimated with similar variables over a

similar period, suffers from a price puzzle: tighter monetary policy slightly increases inflation.
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show the joint evolution of ggap, NFCI, and rgap. While the top right panel shows that an

FCI shock is generally followed by a loosening of monetary policy, it does not show whether

this loosening occurs along histories associated with tail outcomes for ggap. Thus, it is not

clear whether this endogenous response of monetary policy is responsible for the increase

in the 10th percentile of GDP 3 years after an FCI shock. To investigate this further, we

perform the following conditioning exercise. We first calculate the 10th percentile path for

ggap under the baseline (no shock to financial conditions) and alternative (0.5 shock to

financial conditions) scenarios. The difference between these two paths is shown by the blue

line in the bottom left panel of Figure 1. We then consider all of the draws for the baseline

scenario and select only those for which ggap is sufficiently close to its 10th percentile path

under the baseline. We then calculate the median, 25th, and 75th percentiles of the other

variables (e.g., rgap) within this subset of draws. The median of rgap within this subset,

for example, can be interpreted as the median of rgap conditional on a tail scenario for

growth. We perform the same exercise in the alternative scenario, calculating the median,

25th and 75th percentiles of all variables, conditional on ggap being sufficiently close to its

10th percentile path under the alternative scenario. We then have the conditional median,

25th and 75th percentiles under the baseline and alternative scenarios. As in Figure 1, we

plot their differences, which are shown in Figure 3.

The bottom left panel shows the differences in percentiles for ggap. By construction,

all three of these lines are almost exactly equal to the blue line in the bottom left panel of

Figure 1. The top right panel shows the difference in rgap with and without the FCI shock,

again conditioning on outcomes where ggap is at its 10th percentile. Consistent with our

conjecture that monetary policy plays a key role in the response of growth to tightening

financial conditions, the distributional IRF for rgap is sharply negative around 4 quarters

out. Following a tightening of financial conditions, monetary policy loosens more aggressively

when downside outcomes for growth are realized, as compared to the policy response to weak

growth in the absence of an FCI shock. Furthermore, the policy response to the FCI shock
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3.3 How do the speed and magnitude of policy tightening matter?

One might worry that the adverse effects of the monetary tightening scenario above arise

because of its large magnitude and rapid pace (four consecutive 50bps increases). Perhaps

a smaller or more gradual tightening might induce different dynamics for tail risk. In prin-

ciple, our nonlinear VAR allows for this possibility. We therefore consider four alternative

experiments in which we vary the magnitude of tightening (four consecutive 25bps or 100bps

hikes, rather than 50bps) and its pace (eight 25bps hikes or two 100bps hikes, rather than

four 50bps hikes). The right panel of Figure 4 plots the response of the 10th percentile of

annualized cumulative ggapt; the left panel plots the median real rate gap.

Increasing the magnitude of the policy tightening – from 25bps per quarter (blue line in

left panel), to 50bps (orange line), to 100bps (green line) – deepens and frontloads the decline

in the left tail of GDP (shown by the corresponding lines in the right panel). Increasing the

pace of the tightening while keeping its total magnitude (200bps) fixed produces a similar

effect – compare the purple (eight 25bps hikes), orange (four 50bps hikes) and red (two

100bps hikes) lines in the right panel. But while a more moderate and gradual pace of hikes

has less harmful effects on tail risks, it never reduces risk.

We have focussed on the period preceding the GFC in our exercises. Since our model is

nonlinear and state-dependent it is possible that these results are unrepresentative of other

time periods in our sample. Figure A.2 in the Appendix shows a time series of ∆Qggap
t+h|t−1(c)

for c ∈ {0.1, 0.5} and h ∈ {4, 8, 12}, where we vary t over the sample. In Panel (a) each

observation corresponds to the effect of a cumulative 200 basis point policy tightening over 4

quarters on median cumulated ggap at various forecast horizons starting at a different period

t. Panel (b) is constructed in the same way but showing the response of the 10th percentile

rather than the median. The observations at t = 2004Q1 correspond to the distributional

IRFs shown in the bottom left panel in Figure 2 at horizons of 4, 8, and 12 quarters. The

charts show that this policy tightening experiment never meaningfully increases either the

median or the left tail of GDP, and it often has a substantial negative effect. Thus, for any
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4 The recent policy cycle through the lens of the model

We have seen that according to our model, the pace and magnitude of policy tightening

affect macroeconomic outcomes, particularly tail risks, in a nonlinear fashion. Given the

unprecedented pace of the tightening cycle over the past two years, it is natural to ask what

effect the path of policy – both the realized path in our sample, and the expected future

path as projected in the December 2023 SEP medians – had on the evolution of tail risks.

We do so as follows.

To construct a projected path of rgapt beyond 2023Q4 when our sample ends, we take

the median SEP participant’s projection for the end of year federal funds rate for 2024Q4,

2025Q4 and 2026Q4. To construct real rates, we subtract SEP median projections of Q4/Q4

core PCE inflation at these horizons. We assume the LW estimate of r∗ remains constant

at its 2023Q4 value of 1.12. We linearly extrapolate the Q4 values of rt − r∗t for intervening

quarters. In what follows, for convenience we refer to the realized path of rgapt extended by

these SEP projections as the “FOMC path”.

For each quarter t=2022Q2,...,2023Q4, we use realized values through quarter t as initial

conditions. The top-left panel in Figure 5 shows the evolution of the h-quarter ahead 10th

percentile of annualized cumulative ggapt under the baseline distribution for h = 4, 8, 12.

This baseline distribution is constructed by conditioning on realized data on zt through

quarter t and rgapt through quarter t− 1, but not the subsequent path of rgap, and instead

drawing from the conditional forecast distribution. Importantly, here “baseline” denotes the

model’s forecast conditional on information until date t, not the rate path that actually

realized. In early 2022, the model sees substantial downside risk across all three forecast

horizons. As we move through 2022 into 2023, near-term downside risk recedes (the blue

line rises), whereas tail risk generally worsens at the three year horizon. This likely reflects

two competing forces: the model sees better than expected realizations of growth, which

reduces near-term risks, but also sees a tighter than expected path of policy, which increases

medium-term risks.
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5 shows the difference between the median value of rgapt h quarters out under the FOMC

path and the baseline forecast, starting from each quarter t, for h = 4, 8, 12. Initially, the

model expects substantially less tightening than actually occurred, especially at shorter hori-

zons; that is, relative to the baseline, the FOMC path reflects a substantial and frontloaded

tightening of policy. As we move through 2022 and the model sees the tightening that has

already occurred, the difference between its future projections and the FOMC path narrows.

As of 2023Q4, the median path projected by the model is broadly similar to the FOMC

path.

The top-right panel of Figure 5 shows the effect of the FOMC path, relative to baseline,

on the 10th percentile of cumulative annualized ggapt, starting from t=2022Q2 to 2023Q4.

For example, the green line shows that as of t=2023Q1, ∆Qggap
t+12|t−1(0.1) ≈ −3.0. That is,

from the perspective of 2023Q1, the additional policy tightening embodied in the subsequent

FOMC path, relative to the model’s forecast based on 2023Q1 information, reduced the 10th

percentile of annualized GDP growth over the subsequent 3 years by 3 percent. Since tighter

policy affects activity with long lags according to the model, the substantial policy tightening

represented by the FOMC path increases tail risks only modestly at a 1-year horizon. At

a 2- and 3-year horizon, however, this tightening substantially increases tail risk from the

perspective of early 2022. As we move into 2023 and the amount of future expected tightening

diminishes (bottom left panel), it increases tail risk at a 2 or 3 year horizon less and less

(orange and green lines in top right panel). By 2023Q4, the near-term FOMC path is broadly

similar to the model’s baseline median forecast, and so the effect on medium-term tail risk

is negligible. The effect of the FOMC path on the 90th percentile of financial conditions

(bottom right panel) is a rough mirror image of its effect on the left tail of GDP: upside

risk to NFCI is associated with downside risk to GDP. Broadly speaking then, the model

sees the recent tightening cycle as an ex-ante risky bet – arguably a bet worth taking, given

elevated inflation – which has (so far) paid off ex-post.
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5 Discussion and Relation to Existing Literature

Overall, the results in Figures 2–4 suggest that leaning against the wind may have adverse

consequences for downside risk to growth even in a nonlinear setting. This stands in contrast

with recent findings in Grimm et al. (2023), who argue that persistently loose monetary policy

leads to elevated financial crisis risks. There are a number of reasons why our exercise and

theirs may come to different conclusions.

First, Grimm et al. (2023) consider much longer periods of “low for long” monetary

policy (5 year average deviations of r from r∗) than the policy tightening experiments we

study, and find significant effects at a longer horizon (5-10 years out). However, given the

results of the experiments reported in Figure 4, it is unlikely that a prolonged (5 year) but

shallow monetary policy tightening would reduce downside risk. Second, while Grimm et al.

(2023) study the effect of policy on the probability of financial crises (and find no effect on

the probability of “normal” recessions), we study its effect on downside risk more broadly,

which may arise from either financial crises or normal recessions. Also, given the potentially

nonlinear relationship between real activity, policy stance and financial conditions, the effects

of monetary policy tightening and loosening may be asymmetric. That is, it is possible in

a “nonlinear VAR” for a “Goldilocks” principle to apply, where both excessively tight and

excessively loose policy increase financial crisis risk.

Finally, and perhaps most importantly, Grimm et al. (2023) and the majority of papers

on predictable financial crises rely on long-history international panel data. While these data

have the advantage of covering multiple periods of crises and/or loose policy, the connection

between the monetary policy stance and financial conditions in the rest of the world likely

differs from that in the U.S. For example, the literature on the global financial cycle (Rey,

2015, and the subsequent literature) emphasizes that there is a large degree of comovement

in global asset prices, so that local financial conditions are less affected by local monetary

policy than is the case in the U.S. The effect of monetary policy on the evolution of financial

conditions and downside risks to growth may thus be fundamentally different in the rest
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of the world than in the U.S. Boyarchenko and Elias (2024) further show that there is a

global component to downside risk to growth, with a tightening in global credit conditions

predicting increased downside risk to domestic growth across a number of economies.

More broadly, our paper brings together the literature on leaning against the wind with

the literature on outlook-at-risk. In a seminal paper, Svensson (2017) argues that the net

benefits of LAW are likely to be small both because tighter monetary policy has a substantial

impact on unemployment if a crisis does not materialize and only a small effect on the prob-

ability of a crisis in the medium run. In the context of growing evidence on the predictability

of financial crises (see e.g. Schularick and Taylor, 2012; Mian et al., 2017; Krishnamurthy

and Muir, 2017; Richter et al., 2021; Greenwood et al., 2022, and the subsequent literature),

the negative conclusion of Svensson (2017) on LAW seems counterintuitive: if a policy maker

can detect the build-up of financial vulnerabilities in real time, how can monetary policy be

ineffective in mitigating the rising downside risks to real activity?

One potential criticism of Svensson (2017) is that it considers LAW in a highly simplified

setting, with a deterministic impact of monetary policy tightening on both the average level

of unemployment and future crisis probability. The subsequent LAW literature has relaxed a

number of the assumptions implicit in Svensson (2017). For example, Schularick et al. (2021)

consider the effect of discretionary leaning against the wind in response to rising levels of

credit in the economy, and find that a one percentage point tightening in the policy rate

on average increases crisis probability by 2 percentage points 1 to 2 years out. Similarly,

Brandão-Marques et al. (2021) and Ajello and Pike (2022) consider the effect of monetary

policy on downside risk to growth in a quantile regression setting and find no to slightly

detrimental effect of monetary policy tightening on risks in the economy.

In contrast to the empirical literature on LAW, the theoretical literature is more opti-

mistic on the net benefits of LAW. Gourio et al. (2018) argue that the answer to whether or

not LAW is beneficial depends on the source of the shocks that monetary policy responds to.

Monetary policy that systematically responds to excess credit growth lowers average financial
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crisis probability, at the cost of larger amplitudes of “normal” business cycles. In the same

spirit, Adrian and Duarte (2018) argue that optimal monetary policy responds to financial

vulnerabilities in an economy in which financial conditions affect the conditional distribution

of future real outcomes, even if financial stability itself is not an objective of monetary pol-

icy. Boissay et al. (2021) likewise argue that, when financial crises are endogenous, a central

bank that moves from an inflation targeting framework to one that targets also an output

gap and an index of financial fragility achieves a lower probability of financial crises. Ajello

et al. (2019) also find that, once monetary policy takes into account the uncertainty around

the point estimates of the relationship between credit conditions, economic outcomes, and

financial crises, the optimal policy responds more aggressively to financial instability.

6 Conclusion

We study the benefits and costs of leaning against the wind – that is, changing the con-

duct of monetary policy in response to a build-up of financial vulnerabilities – in a flexible,

non-parametric model of the dynamic interactions between monetary policy, financial con-

ditions, and macroeconomic outcomes. We find that downside risk to growth increases in

response to a counterfactual tightening of the path of monetary policy, suggesting that LAW

is detrimental even once one allows for rich nonlinearities, intertemporal dependence, and

crisis predictability.

Our conclusions are subject to a number of caveats. First, we are using a reduced form

model to predict the effect of changes in policy. In doing so, we are effectively assuming

that a tighter path of policy is equivalent to a sequence of contractionary monetary policy

“shocks”; our measure of the stance of policy is only one-dimensional, and we neglect the role

of expected future policy or explicit forward guidance. Furthermore, we effectively identify

the response of our variables of interest to a monetary policy shock using timing restrictions:

we assume that within a period, rgapt reacts to zt, but not vice versa. This assumption is
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vulnerable to all the same critiques as in a linear VAR setting, especially since our system

includes a financial variable (NFCI) which may respond contemporaneously to policy. Of

course, in linear VAR models, the literature has considered various alternative identification

approaches to circumvent this and other issues; we view our approach as a first step to

studying monetary policy shocks in our rich nonlinear framework.

Second, the counterfactual exercises we conduct are subject to the usual Lucas critique.

A monetary policy that systematically reacts to loose financial conditions would likely fun-

damentally change the relationship between monetary policy and downside risk to growth.

For example, Adrian and Duarte (2018) consider the conduct of monetary policy by a central

bank facing an economy in which financial conditions affect the conditional distribution of

future real outcomes. In that economy, the optimal monetary policy rule always depends

on financial vulnerabilities (as well as the output gap, inflation, and the natural rate), even

when financial conditions themselves are not a target of monetary policy.

Finally, our estimates are subject to the usual caveats on the distinction between the

effects of monetary policy surprises, realized monetary policy stance, and monetary policy

rules. The overall conduct of monetary policy may affect the buildup of financial vulner-

abilities through its impact on households’, firms’, and investors’ policy expectations and

investment and consumption decisions made conditional on those expectations. Thus, for

example, households in Grimm et al. (2023) are able to borrow more, with higher house

prices, because monetary policy is systematically loose. Estimating the effect of changes in

the conduct of monetary policy on the buildup of financial vulnerabilities, however, remains

challenging due to the paucity of changes in the conduct of monetary policy, the simultaneous

impact of an evolving regulatory environment, and the rare nature of financial crises.
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Figure A.4. Time Series of Variables. This figure presents time series plots for our four variables of
interest over the common sample 1971Q1–2023Q4.
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