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Abstract 

The decentralized nature of blockchain markets has given rise to a complex and highly heterogeneous 

market structure, gaining increasing importance as traditional and decentralized (DeFi) finance become 

more interconnected. This paper introduces the DeFi intermediation chain and provides theoretical and 

empirical evidence for private information as a key determinant of intermediation rents. We propose a 

repeated bargaining model that predicts that profit share of Ethereum market participants is positively 

correlated with their private information, and employ a novel instrumental variable approach to show that 

a 1 percent increase in the value of intermediaries’ private information leads to a 1.4 percent increase in 

their profit share.  
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1 Introduction

Financial intermediation matches investors with entrepreneurs, allowing capital to be allo-
cated efficiently. Along intermediation chains, intermediaries help this matching process by
monitory, making markets, providing liquidity, improving risk sharing and managing inven-
tory (Leland and Pyle, 1977; Diamond and Dybvig, 1983; Diamond, 1984; Allen and Gale,
1997; Boot and Thakor, 1997; Diamond and Rajan, 2001). As capital moves along the in-
termediation chain, each intermediary takes a share of the transaction’s value as a fee for
their service. Understanding how these fees are determined—and how they change depend-
ing on market conditions—is crucial for understanding financial markets. If the fees are too
high, this creates a friction that prevents the entrepreneur from matching with investors.
Conversely, if the fees are too low, the intermediaries may withdraw from the market.

The prevalence of intermediation rents in financial markets have been widely documented
in the empirical literature (Green et al., 2007; Di Maggio et al., 2017; Hollifield et al., 2017;
Li and Schürhoff, 2019; Farboodi et al., 2019). However, identifying the source of these rents
empirically has proven challenging as the balance sheet of large financial intermediaries is
opaque and it is hard to acquire data about their comparative advantage.

In this paper, we use novel data from Decentralized Finance (DeFi) in the Ethereum
blockchain to provide a more precise empirical picture of how these intermediation rents are
driven by the intermediaries’ private information. Ethereum is the largest platform for DeFi,
and all transactions become public once they are appended to the blockchain. The large
amount of DeFi protocols generates a constant stream of arbitrage opportunities, which are
very quickly exploited by automated arbitrage bots deployed by arbitrageurs (entrepreneurs).
Because the blockchain is public, we can see these transactions once they are added to the
blockchain, as well as the associated transaction fees paid to intermediaries.

The study of DeFi intermediation in the Ethereum blockchain is not only interesting
because of the transparency of the underlying data, but also because of the growing inter-
connectedness between DeFi and the traditional financial system. The approval of Bitcoin
ETFs has already led to large asset managers holding tens of billions of dollars worth of
Bitcoin. If a similar ETF is approved for Ethereum’s native cryptocurrency Ether (ETH),
it could result in these traditional financial institutions becoming the dominant Ethereum
block proposers. This development would position them as crucial participants in the DeFi
intermediation chain that we examine in this paper. As the lines between traditional finance
and DeFi continue to blur, understanding the dynamics of intermediation in decentralized
markets becomes increasingly relevant for both academics and practitioners seeking to nav-
igate this evolving landscape.
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1.1 The Origin of DeFi Intermediation: The Need for Privacy

The key friction in DeFi intermediation is that arbitrageurs who find arbitrage opportu-
nities need to keep their transactions private before the transactions are appended to the
blockchain. That is, they need a way to have their transactions approved without first
broadcasting them to the entire network and facing the risk of being frontrun or having
the arbitrage opportunity stolen by an adversary. The risk of having a transaction stolen
is not only real, but ubiquitous due to the commodification of AI-driven frontrunning bots
(Robinson and Konstantopoulos, 2020).

This need for privacy leads to the rise of block builders as intermediaries. Arbitrageurs
who find an arbitrage can send their transactions directly to a block builder, who incorporates
them into an aggregate block. If these arbitrage transactions are valuable, arbitrageurs
usually pay an additional fee or direct payment to the builder in order to make sure the
builders incorporate their transactions into blocks. The total value that is generated by
adding a block to the blockchain—colloquially known as the block’s Maximum Extractable
Value (MEV)—is the sum of arbitrageur profits, transaction fees paid to the block builders,
and any direct payments sent by arbitrageurs to builders in order to incentivize them to add
their transactions to the block.

The next layer of intermediaries are block proposers, who are selected at random via the
proof-of-stake (PoS) consensus mechanism—with probability proportional to their stake of
ETH—to select a single block to be appended to the blockchain in a given round.1 Block
builders compete with each other to create the most valuable block they can and then
submit a (block, bid) pair to the block proposer, who chooses one winning block.2 In this
intermediation chain, the block proposer’s net revenue is equal to the bid of the winning
bidder, while the winning block builder’s net revenue consists of all transaction fees and
direct payments to them, minus the bid that they pay to the block proposer.

Because block proposers are selected at random with probability proportional to their
stake, proposers who have larger amounts of ETH obtain a much more consistent stream of

1As a brief note on terminology, we note here that the term block proposer is related to the technical
architecture of the Ethereum blockchain. Once proposers select a block, they propose it to a random small
group of attesters, who verify that all transactions in the block are valid and there is no double spending
in a block. From an economic point of view, the attesters do not receive any revenue related to DeFi
intermediation, and therefore we do not study them in this paper. We also highlight that the case where
a proposer’s selected block is not accepted by the attesters is extremely rare, and the attester mechanism
exists solely to ensure honest behavior by the proposer.

2This is a simplification which preserves the economic content. In practice, the builder submits a bid
(denominated in ETH), as well as a cryptographic commitment to the block. To prevent the proposer from
front-running transactions, the block is only revealed once the proposer has accepted the bid. We provide
more details in the Appendix.
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revenue than proposers with a very small amount of ETH. This leads to the final layer of
the intermediation chain, where ETH depositors pool their assets together into large staking
pools, and get a share of the profits that these pools obtain from proposing blocks.

This intermediation chain connects arbitrageurs and depositors through multiple layers
that preserve the privacy of the arbitrageurs’ transactions. If an arbitrageur sends their
transaction directly to a builder, only the arbitrageur and the builder will know of that
transaction until it gets appended to the blockchain. Throughout the chain, each node
receives a payoff for their service: arbitrageurs keep a large amount of their arbitrage profits,
but pay transaction fees to the builders. The builders pay the block proposers to ensure
their blocks are added to the blockchain. Finally, block proposers who represent staking
pools pay a large share of their revenues to the individual investors who pooled their ETH
with them.

Even though the Ethereum blockchain is permissionless and there is near free-entry into
intermediation, informational frictions and risk-sharing in DeFi lead to concentration among
intermediaries as demonstrated in Table 1. Of the 167 known builders, 3 capture more than
50% of all the builder revenue and blocks proposed. Similarly, even though there are 156,150
block proposers, five large staking pools capture more than 50% of all the proposer revenue
and blocks proposed.

The value of public and private information When arbitrageurs want to submit a
transaction, they can do it in one of two ways: broadcast it to the entire network of builders,
or submit it privately to a single builder. The first approach is valuable if a arbitrageur
wants their transaction to be appended to the blockchain quickly (i.e. in the next few
blocks). However, publicly broadcasting even a single leg of a valuable sequence of trades
would allow an adversary to swoop in and front-run that transaction, therefore reducing the
arbitrageur’s profit. For this reason, many transactions, including those related to valuable
arbitrage opportunities, are sent directly to specific block builders.

All intermediaries are aware of transactions broadcast to the network, and store them
in a special data structure called the mempool. However, a given block builder will also
know all the transactions sent directly to them, which include the most valuable arbitrage
opportunities. This allows us to assign a value to private (public) information—the sum
of all fees in private (public) transactions, together with any direct payments to the block
builder. Even though these transactions are private before they are added to the blockchain,
once they are added we can observe both the transaction and the fee. Since we also observe
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Number of Builders Number of Proposers

167 221,534

Builder
Address Share of Total Builder Revenue Share of Blocks

beaverbuild.org 42.32% 25.05%
Titan Builder 14.63% 15.41%
builder0x69 13.69% 14.94%

Proposer
Entity Share of Total Proposer Revenue Share of Blocks

Lido 31.38% 31.75%
Coinbase 10.31% 10.20%
Kraken 5.53% 5.56%
Binance 5.20% 5.71%
Stakefish 4.61% 4.90%

Source: Dune Analytics

Table 1: The first panel reports the total number of block builders and proposers. The second
panel shows that the largest 3 block builders account for more than 50% of aggregate builder
revenue, and more than 50% of the number of blocks added to the Ethereum blockchain. The
third panel shows that the largest 5 block proposers account for more than 50% of aggregate
proposer revenue, and more than 50% of the blocks added to the Ethereum blockchain.

all the transactions broadcast to the network,3, we can distinguish the value of public and
private transactions.

The level of transparency and granularity in the data allows us to empirically test the
predictions of a bargaining model with private information. In a nutshell, we model the
determination of the profit shares of proposers and block builders in the context of a repeated
bargaining model with asymmetric exogenous bargaining powers but endogenous outside
options. In each period, the outside options of the block builder and proposer are determined
by their future opportunities if they do not agree on adding the block create by the block
builder to the blockchain in the current period.

We show that access to valuable private arbitrage transactions by builders—i.e., those ar-
bitrage transactions that are privately submitted to them by an arbitrageur— improves their
outside option as they are effectively the gatekeeper for the private arbitrage opportunity.
As such, private arbitrage transactions increase the profit share of the block builders while

3We are grateful to Professor Fan Zhang and the Secure Decentralized Systems Lab’s Mempool Guru
project for providing us with data about which transactions were and were not broadcast to the network
prior to being incorporated into a block.
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decreasing that of the proposers. On the other hand, the block revenue that is associated
with public arbitrage opportunities is widely accessible to the proposer through other block
builders. As such, none of the block builders can gain from the publicly available arbitrage
transactions and the proposers capture most of the corresponding revenue.

The main prediction of the model is that the block builder’s profit share from a block is
increasing in his private information. Figure 1 illustrates how this prediction is supported
by our data, with a strong positive relationship between the share of a block’s revenue that’s
due to private transactions, and the profit share of the builder.

However, a simple OLS regression to support this finding would introduce biases both
from simultaneity and omitted variables. Since the builder decides both the bid made to
the proposer—essentially determining their share of the revenue, as well as the transactions
that are included in the block, the private revenue share and the builder’s profit share are
determined simultaneously. Furthermore, there may be other properties of the block, such
as the total revenue, which affect the builder’s profit share.

To address biases from simultaneity and omitted variables, we introduce a novel instru-
mental variable approach that uses hacks of crypto institutions as an instrument for the
value of private information in a block. When an exchange or decentralized finance proto-
col’s assets get stolen through a hack, the attacker has incentives to be as inconspicuous as
possible: they do not want to reveal their IP address, the existence of the hack, or the source
of the funds. Furthermore, they may want to sell their stolen assets quickly, paying large
transaction fees to dispose of the assets. Therefore, hacks are likely to create valuable private
transactions, which increase the value of private information in a block, but not necessarily
the value of public information.

To instrument for the total revenue of the block, we use a dummy variable that is one
during days of major crises in the crypto markets, and zero otherwise. We identify two such
crises: the FTX bankruptcy unfolding from November 8, 2022 to November 12, 2022, and the
SVB run occurring between March 9th, 2023 and March 12th, 2023. These crypto crises led
to a large number of blockchain transactions, generating a large amount of revenue. As we
show in Section 3, both crypto hacks and crypto crises increase the value of the entire block
as well as the value of private information. However, hacks of crypto institutions increase
the value of private information by a much larger amount than they increase revenue, while
crypto crises increase revenue by a larger amount than the value of private information,
allowing the two instrumental variables to span our set of two explanatory variables.

Using this instrumental variable approach, we show in Section 3 that a 1% increase in
the value of private information leads to a 1.4% increase in the builder profit share. After
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Source: Dune Analytics and Mempool Guru Project

Figure 1: Block builder’s profit share as a function of the share of the block’s revenue that is
due private information. There is a strong positive relationship between the two variables.
This figure is generated with binscatter, using 20 bins.

controlling for the value of private information, the effect of larger block revenue on the
builder profit share is negative. This indicates that the builder’s market power is driven
exclusively from the value of their private information, and not from the total value of the
block they produce.

1.2 Related Literature

There is an extensive literature spanning different aspects of financial intermediation (see Le-
land and Pyle (1977), Campbell and Kracaw (1980), Diamond and Dybvig (1983), Diamond
(1984), Allen (1990), Allen and Gale (1997), Boot and Thakor (1997), Diamond and Rajan
(2001), as well as Gorton and Winton (2003) and references therein). There is also a wealth
of papers that empirically document the prevalence of intermediation rents in financial mar-
kets (Green et al., 2007; Di Maggio et al., 2017; Hollifield et al., 2017; Li and Schürhoff,
2019; Farboodi et al., 2019). We contribute to this literature by first distinguishing the role
of financial intermediaries in the most recent segment of the financial sector, the cryptocur-
rency market. Second, we identify private information as a source of intermediation rents in
this market.

Furthermore, our paper contributes to a fast-growing literature on blockchain technology.
Raskin and Yermack (2018) provide a preliminary overview of financial systems built on
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blockchains. Abadi and Brunnermeier (2018) and Biais et al. (2019) expand on consensus
mechanisms, focusing on proof-of-work.

Economics of Blockchain Technology There is a small but growing body of work that
studies the economics of Bitcoin, both theoretically and empirically. Athey et al. (2016),
Cong et al. (2021a), Pagnotta and Buraschi (2018) and Sockin and Xiong (2020) develop
alternative theoretical frameworks to study the decentralized Bitcoin network. Prat and
Walter (2021) provide an estimate of the computing power of Bitcoin network and Cong et
al. (2021b) study the effect of mining pools on energy consumption, which is a significant
input to proof-of-work consensus.

A number of papers consider the degree of decentralization in cryptocurrency markets.
Huberman et al. (2021) argue that the decentralized nature of Bitcoin network prevents
monopoly pricing. Alternatively, Ferreira et al. (2023) argue that the joint behavior of
miners, mining pools, and firms producing specialized mining equipment can lead to few
large firm capturing the governance of proof-of-work blockchains. Makarov and Schoar (2021)
provide a detailed analysis of the Bitcoin network and show that the Bitcoin ecosystem is
dominated by large and concentrated players. On the other hand, Cong et al. (2021c)
argue that, since individual miners can join multiple mining pools, the system can still be
decentralized. The authors apply the same argument to proof-of-stake systems. Capponi
et al. (2023) empirically study the effect of private information on aggregate welfare in a
proof-of-work environment and argue that private information enhances welfare.

In contrast with these papers, we focus on emergence of intermediation in a financial
sector built on proof-of-stake technology and study the concentration of this intermediated
market. We emphasize the influence of arbitrage opportunities, as documented in Makarov
and Schoar (2020), on the degree of market concentration, and show that the combination
of proof-of-stake consensus and smart contracts can lead to a high degree of concentration
in the Ethereum crypto intermediation market.

MEV in the Ethereum Blockchain The earliest paper to formalize MEV was Daian et
al. (2019), which began hinting at the threats to blockchain security and market efficiency it
posed. Gupta et al. (2023) show that integrated searcher-builders are more likely to capitalize
private arbitrage transactions at the head of a block in times of high centralized exchange
volatility, showing that the first transactions in a block are all but reserved for arbitrages
between centralized exchanges and decentralized exchanges. Heimbach et al. (2024) expand
on the heuristics proposed in Gupta et al. (2023) to classify arbitrages as either atomic, with
all transactions occurring on the blockchain, and non-atomic, with arbitrage transactions
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exploiting mispricing between centralized and decentralized exchanges. They show that
more than a fourth of the volume on the 5 most popular decentralized exchanges is due
to these non-atomic arbitrage transactions. Since centralized exchanges’ ledgers are not on
the blockchain, these kind of transactions rely on private information held by arbitrageurs.
They further show that only 11 such arbitrageurs are responsible for 80% of these non-atomic
arbitrage transactions.

In our main analysis, we use a simplified definition of private transactions, where a
transaction is private if it is not broadcast to the network before it appears on the blockchain.
This is a very simple and intuitive definition that can be measured precisely in the data, in
contrast with heuristic based definitions proposed by Gupta et al. (2023) and Heimbach et
al. (2024). In our robustness results, we use the more complex heuristic of Heimbach et al.
(2024) to show that our results also hold under their definition of private transactions.

There is also a body of theoretical literature which models the relationship between
public and private MEV and market volatility. Milionis et al. (2023b) model MEV as the
adverse selection to an automated market maker employed by DEXs and derives a closed
form solution to the theoretical amount of available MEV. Moreover, this solution shows that
the volume of private arbitrages is a direct function of token price volatility. Milionis et al.
(2023a) introduce trading fees into this framework and shows that fees reduces the amount of
available arbitrage profits based on the amount of time it takes to find a profitable arbitrage.

Crypto Crises and Arbitrage Liu et al. (2023) show that the Terra crash led to large
arbitrage oppportunities. While the Terra crash occurred before Ethereum’s switch to proof-
of-stake consensus, we use a similar observation to construct our instrumental variables.
We show that crypto crises—such as the FTX bankruptcy, the SVB collapse, and cyber-
attacks on crypto institutions and protocols—can be an exogenous shock that creates private
arbitrage opportunities. To the best of our knowledge, we are the first to use these crises as
instrumental variables in empirical analyses of DeFi.

The rest of the paper is organized as follows. Section 2 provides details of the block level
data from Ethereum blockchain that we use for our empirical analysis. Section 3 describes the
instrumental variable approach and presents the main empirical results. Section 4 proposes
a model to provide the economic mechanism that underlies the empirical findings. Section
5 provides a number of robustness exercises. Section 6 concludes.
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2 Data

We use Dune Analytics4 to obtain block-level data, the identity of the builder and proposer,
the MEV revenue for the block, and the revenue split between the builder and the proposer.
We use data from the Secure Decentralized Systems Lab’s Mempool Guru project (Yang et
al., 2023) to keep track of which transactions were broadcast to the network before being
appended to the blockchain, and which were not broadcast to the network. We classify
transactions broadcast to the network as public, and transactions not broadcast as private.

Let Bt denote the block added to the blockchain at time slot t. We consider the block to
be an MEV block if two conditions hold. First, the block builder is different than the block
proposer. Second, the last transaction of the block is issued from the block builder to the
block proposer. In our sample—which spans from the switch to proof-of-stake in September
15, 2022, to January 31, 2024—75.9% of the blocks satisfy both of these conditions, and are
considered MEV blocks.5

The key independent variable in our analysis is the value of private transactions in the
block generated at time t. We define private and public transactions as follows.

Definition 1.
Public Transaction A transaction in the block added at time t is public if is broadcast
to the network before time t, and is not a direct payment to the builder who built the block
generated at time t.
Private Transaction A transaction in the block added at time t is private if either it is not
broadcast to the network before time t or it is a direct payment addressed to the builder who
built the block generated at time t.

The key concept behind this definition is that public transactions are non-exclusive: any
builder can collect their value if they are chosen as the block builder at time t. Private
transactions, however, are exclusive: only the builders that know about them, or the builder
whom the payment is addressed to, can collect the value of these transactions.

Let Revt denote the total revenue from block t. Moreover, let ΠB,t and ΠP,t denote the
net profit of the block builder and proposer, respectively. The net profit for the builder,
ΠB,t, consists of the sum of direct payments they receive and priority gas fees,6 minus the
payment to the proposer at the end of the block. The net profit for the proposer, ΠP,t, is

4https://www.dune.com
5The total number of blocks in our sample is 3,588,414, and the number of blocks satisfying the MEV

conditions is 2,723,653. Of these, we remove 138 blocks that have zero revenue, to end up with 2,723,585
positive-revenue MEV blocks.

6Any Ethereum transaction must pay a base gas fee FeeBase to be included in the block. This fee is
always “burnt" and removed from the system, and is not part of the builder’s revenue. However, if the
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Mean Std. Dev. Min 5th Median 95th Max Skewness Kurtosis

Revt 0.14 1.52 0.00 0.02 0.06 0.37 691.96 225.07 76506.49
ΠB,t 0.01 0.40 -0.30 -0.00 0.00 0.02 386.27 474.65 366718.03
ΠP,t 0.14 1.39 0.00 0.02 0.05 0.35 691.96 254.00 95968.37
θB,t 0.03 0.08 -0.10 -0.02 0.01 0.16 1.00 4.66 32.36
θP,t 0.97 0.08 0.00 0.84 0.99 1.02 1.10 -4.66 32.36
logPrivatet 0.07 0.17 0.00 0.00 0.03 0.27 6.54 8.44 119.52
logPublict 0.03 0.05 0.00 0.01 0.02 0.07 5.20 24.48 1115.99
Hack Dummy 0.07 0.26 0.00 0.00 0.00 1.00 1.00 3.23 11.46
Crisis Dummy 0.02 0.14 0.00 0.00 0.00 0.00 1.00 6.95 49.32

Observations 2627618

Source: Dune Analytics and Mempool Guru Project

Table 2: Summary Statistics

the value of the block’s final transaction. The key dependent variables in our analysis are
the profit shares of the builder and proposer are denoted as θB,t =

ΠB,t

Revt
and θP,t =

ΠP,t

Revt
,

respectively.
Table 2 presents the summary statistics of the key variables. It shows that all profits

are highly skewed to the right, with the majority of blocks generating minimal revenue. On
average, a block generates 0.14 ETH in revenue, more than 90% of which is captured by the
proposer.

There are many blocks where the builder makes negative profits. This behavior is likely
to ensure that the builder’s block is chosen and is adopted as strategy to build market share:
by subsidizing proposers during regular periods, builders aim to dominate the market share
of proposed blocks, attracting arbitrageurs with lucrative arbitrage opportunities when they
arise, thereby securing blocks that yield positive profits.7 Our main analysis considers only
blocks where the builder profit share is greater than −10%, which represent 96.5% of the
blocks in our sample.8

transaction is valuable or important, the user who submits the transaction may choose to pay the builder
an excess gas fee FeeExcess, which is part of the builder’s revenue.

7Primarily empirical evidence support the outcome of this strategy. Results are available upon request.
8In Section 5, we show that our results also hold for the full sample, as well as a further restricted sample

that contains only blocks where the builder makes non-negative profits.
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3 Market Power in the Ethereum Intermediation Chain

In this section, we estimate how a block’s share of private revenue affects the builder’s profit
share. The simplest specification would be a regression of the form

θB,t = α + β logPrivatet + εt.

However, estimating this regression with OLS would introduce biases in three ways. First,
there is simultaneity bias because the block builder simultaneously decides their payment
to the proposer (determining θB,t) and the transactions that they want to insert into the
block. That is, the builder has to decide how much of their private information they want
to capitalize in during this block, and how much of that value they want to share with the
proposer. Second, there is an omitted variable bias because there are many characteristics
of the block which can affect θB,t which are not captured in the specification. The most
important variable that is missing from the specification is the revenue Revt of the block.
Finally, the specification above does not capture any relationships between builders and
proposers which may lead the builders to treat some proposers more or less favorably.

To address the potential for omitted variable bias and pre-existing relationships between
builders and proposers, we estimate the slightly more complicated regression (1):

θB,t = β logPrivatet + γ logRevt + ψi(t) + ηj(t) + φi(t),j(t) + εt. (1)

Including the revenue term allows us to capture the effect of both private information, as well
as the total revenue of the block. The fixed effects terms ψi(t), ηj(t), φi(t),j(t) capture relations
between the builders and proposers.

Finally, to address simultaneity, we use an instrumental variables approach with two
instrumental variables. Both IVs are dummy variables. The first dummy, Hackedt, is equal
to 1 if block t is appended to the blockchain on a day where there is a crypto protocol hack,
and 0 otherwise.9 The second dummy, Crisist is equal to 1 if block t is appended to the

9The list of hacks is obtained from DefiLlama (https://defillama.com), and we keep only hacks which
affected only the Ethereum chain.

11



blockchain during either the FTX or SVB crises.10 The first-stage specification is given by

logPrivatet = β̂1Hackedt + γ̂1Crisist + ψ̂1,i(t) + η̂1,j(t) + ̂φ1,i(t),j(t) + ε̂1,t;

logRevenuet = β̂2Hackedt + γ̂2Crisist + ψ̂2,i(t) + η̂2,j(t) + ̂φ2,i(t),j(t) + ε̂2,t.

Table 3 shows how these instrumental variables affect the value of private information
and revenue. We can see that private information increases more—-relative to revenue—
during hacks than during crises. Furthermore, the instruments are exogenous, since both
hacks and crypto crises are unexpected and not caused by the bargaining process between
builders and proposers.

(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0072∗∗∗ 0.0059∗∗∗ 0.0039∗∗∗ 0.0043∗∗∗
(0.0007) (0.0006) (0.0007) (0.0007)

Crisis Dummy 0.1208∗∗∗ 0.1236∗∗∗ 0.1300∗∗∗ 0.1289∗∗∗
(0.0092) (0.0099) (0.0093) (0.0100)

Constant 0.0715∗∗∗ 0.0985∗∗∗
(0.0022) (0.0020)

Observations 2607730 2277574 2607730 2277574
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results for our different 2SLS specifications. Columns (1)
and (2) show how logPrivate is affected by these instruments, with Column (1) having no fixed effects,
and Column (2) having builder, proposer and builder × proposer fixed effects. Columns (3) and (4) show
analogous results for logPublic, the log of the value of Public arbitrages in a given block. Columns (5) and
(6) show analogous results using logRev, the log revenue of the block. All standard errors are clustered at
the builder × proposer level.

Table 3: First Stage Regression Results

Results Table 4 shows the results of OLS and 2SLS regressions where θB,t is the dependent
variable, and logPrivatet, logRevt are the independent variables. Columns (1) and (2) show
the OLS results without and with builder × proposer fixed effects. Columns (3) and (4) show
the results from the instrumental variable regressions using the Hacks and Crises dummies

10The FTX crises occured between November 8 2022, and November 12 2022. The SVB crisis unfolded
between March 9 2023, and March 12 2023. Other crypto crises, such as the Terra crash, occurred before
the transition to proof of stake and are therefore not in our sample.
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Builder Profit Share θB,t
(1) (2) (3) (4)

OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.143∗∗∗ 0.111∗∗∗ 1.367∗∗∗ 1.484∗∗∗
(0.0138) (0.0149) (0.177) (0.235)

logRevt -0.0713∗∗∗ -0.0511∗∗∗ -1.240∗∗∗ -1.360∗∗∗
(0.00906) (0.00950) (0.175) (0.223)

Constant 0.0237∗∗∗ 0.0511∗∗∗
(0.00244) (0.00535)

N 2607730 2277574 2607730 2277574
F Statistic 583.25 127.22
Robust F Statistic 220.937 26.100
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when the builder profit share is the dependent
variable. Columns (1) and (2) show OLS results, without and with builder × proposer fixed effects,
respectively. Columns (3) and (4) show 2SLS results, without and with builder × proposer fixed effects,
respectively. All standard errors are clustered at the builder × proposer level. The instrumental variables
are Hackedt and Crisist.

Table 4: OLS and Two-Stage Least Squares Results

as instruments—again without and with builder × proposer fixed effects.11 The results
using instrumental variables and fixed effects are very strong, showing that a 1% increase in
the value of private arbitrages increases the builder’s revenue share by 1.4%. We highlight
that the coefficient on the revenue control is negative. This follows from a simple economic
intuition: since a block can contain multiple sources of revenue, many of which are public, a
larger revenue after accounting for private arbitrages will shift market power to the proposer,
and away from the builder.

4 Model: Information-Driven Market Power

In this section we provide a stylized model to illustrate the determination of profit shares
of the proposers and block builders in the DeFi interemediation chain. In order to clarify
the mechanism, we will abstract away from the rest of the DeFi intermediation chain and

11We use the commands reg, reghdfe, ivreg2 and ivreghdfe to compute each of these four columns. Note
that when using reghdfe or using ivreghdfe the constant is not reported because it is a normalization factor
chosen algorithmically to ensure all fixed effects have zero mean.
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restrict attention to the bargaining game between the proposers and block builders in the
process of building the blockchain.

We model the construction of the blockchain as an infinitely repeated game between two
types of agents— proposers and block builders. Time is indexed by t = 0, 1, . . ..There are
N proposers, indexed by n ∈ {1, ..., N}, each with stake wn. Motivated by the empirical
observation that proposers’ market shares of staked coins are very stable over time, we assume
that proposers’ stake is constant. There are M block builders, indexed by m ∈ {1, ...,M}.
Agents are profit maximizers and they do not discount the future.

In each period t, a proposer n is chosen among the N proposers via the proof-of-stake
consensus mechanism with probability ψn = wn∑N

i=1 wi
to add the next block to the blockchain.

Let Bm,t denote the block built by builder m at time t with total value Rm,t.12 We denote
the set of all the blocks created at time t by Bt = {Bm,t}m∈{1,...,M}.

At each time t, blocks are made up of three type of transactions: Normal transactions,
which have a low payoff and arise every period, and two types of arbitrage transactions that
are high payoff but arise rarely. Thus, the majority of time periods are normal periods with
no arbitrage opportunities. An arbitrage opportunity arises at small Poisson rate ρ � 1

per period, and disappears at Poisson rate ρd < 1 per period, where ρd � ρ. The arbitrage
opportunity is public with i.i.d. probability πu and private with complementary probability
πr = 1− πu. Public arbitrage transactions are identified by many different arbitrageurs and
thus are known to all block builders who all include it in their respective block. As such, a
public arbitrage transaction in period t is included in every Bm,t ∈ Bt.

Let “public blocks" denote all the blocks in a normal period or a in a period with public
arbitrages. For simplicity, assume all public blocks in period t have the same value R̂t. The
value R̂t varies across periods— low in normal periods, Rt, and high in periods with public
arbitrages, R̄t. Thus, R̂t ∈ {Rt, R̄t}.13 Table 2 documents that the distribution of block
revenue is strongly skewed to the right. Motivated by this empirical evidence, we assume
R̄t � Rt.

Alternatively, a private arbitrage that arrives in period t is identified by a single arbi-
trageur and picked up by a single builder, m̃, who incorporates it in his block Bm̃,t.14 In

12One can assume that there is fixed cost c > 0 associated with building a block. It does not change any
of the results and does not add any intuition, thus we set c = 0.

13Rt and R̄t can be random variables themselves, with different supports.
14The assumption that an arbitrageur with a private arbitrage offers his block to a single block builder

is consistent with the empirical pattern that block builders try to build market share in order to capture
arbitrageurs. It is also the optimal strategy for the arbitrageur, as it ensures a high profit for him while
almost certainly being added to the chain by safeguarding his information advantage.
As long as few arbitrageurs identify each arbitrage opportunity and few block builders incorporate each

arbitrage opportunity in their block, the same argument goes through.
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that sense, the private arbitrage opportunity is the “private information" of builder m̃. We
call Bm̃,t the “private block" at time t. Every other block at time t is a public block with low
total revenue, i.e., ∀ Bm,t ∈ Bt,m 6= m̃, we have Rm,t = Rt. For simplicity, assume the value
of a private arbitrage block is governed by the same random variable as a public arbitrage
block, and Rm̃,t = R̄t.

With a slight abuse of notation, let pt denote the proposer selected, bt the block builder, Bt

the block added to the blockchain, and Rt denote the block’s revenue, in period t. Proposer
pt and block builder bt trade and divide the net block value with exogenous bargaining powers
(ξP , ξB) = (1− δ, δ),and endogenous outside options ΥP,t and ΥB,t for the proposer and the
block builder, respectively. The asymmetric bargaining powers can be simply derived from
a variation of an alternating-offer bargaining game a la Rubinstein (1982) played by the
proposer and block builder in virtual time within each period.15

The net value from adding block Bt to the blockchain is given by Rt, the total value
generated by block Bt, minus the sum of outside options of the block proposer and the
block builder, St = Rt − ΥP,t − ΥB,t. Consistent with the notation in Section 2, let ΠP,t

(θP,t) and ΠB,t (θB,t) denote the profit (profit share) of the proposer and builder in period t,
respectively. They are given by:

ΠB,t = δSt + ΥB,t,

ΠP,t = (1− δ)St + ΥP,t.

Table 2 shows that the mean block builder’s profit is very low, close to zero. As such, we
are particularly interested in the case where δ → 0, in which case ΠB,t and ΠP,t simplify to

ΠB,t = ΥB,t, (2)

ΠP,t = Rt −ΥP,t (3)

15To be precise, assume the proposer and the block builder play an alternating-offer bargaining game a
la Rubinstein (1982) in virtual time in each period t, and the block builder always makes the first offer.
The proposer and the block builder face probabilities of within-period trade-breakdown 1 − δ1 and 1 − δ2,
respectively. This implies δ = δ2(1−δ1)

1−δ1δ2 . Thus, in equilibrium, the initial block builder’s offer, i.e. the
observed bid of the block builder for each block, is set to achieve the profits implied by the bargaining game
with bargaining powers (ξP , ξB) = (1− δ, δ) and endogenous outside options (ΥP,t,ΥB,t).
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which in turn imply

θB,t =
ΥB,t

Rt

, (4)

θP,t =
Rt −ΥB,t

Rt

= 1− ΥB,t

Rt

(5)

Recall that block builder and proposer outside options, ΥB,t and ΥP,t, are equilibrium
outcomes that are determined endogenously. In turn, they determine the profit levels and
profit shares of the block builder and the proposer. Equations (2), (3), (4) and (5) highlight
the main intuition of the model— that the source of block builders’ revenue is their outside
option.

Proposition 1 summarizes the main theoretical results of the model that rely on this
intuition and tightly connect to the empirical patterns documented in Section 3.

Proposition 1 (Information-Driven Market Power). Existence of private arbitrage
transactions in a given block increase the profit share of the block builder and decreases that
of the proposer. Alternatively, higher total block revenue has the opposite impact on the profit
share of the block builder and the proposer, controlling for the value of private arbitrages.

The proof of proposition 1 shows that block builders’ outside option is governed by their
private information. We call this the information-driven market power of block builders. In
order to get some intuition for this result, it is most insightful to consider the determination
of the outside options.

First, assume period t is a period with only public blocks, i.e., with no private arbitrage
transactions. In this case, the selected proposer pt can choose any Bm,t ∈ Bt and none
of them has an advantage over the others. On the other hand, block builders cannot do
anything other than offering their block to proposer pt only in period t. In particular, any
block that is chosen as Bt and is added to the blockchain at time t includes the same set of
transactions. As such, all the other blocks in Bt lose their value as soon as Bt is added to
the blockchain. This implies that the block builder bt’s outside option is zero. Thus, for the
public blocks added to the blockchain Equations (2) and (3) reduce to

Πpublic
B,t = 0 (6)

Πpublic
P,t = R̂t (7)

Next, consider a period t when there is a builder with a private block, Bm̃,t and let n
denote the proposer who is chosen in period t, pt = n. Furthermore, let X denote the
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maximum profit that proposer n can obtain from existence of the private block Bm̃,t in the
future if he does not choose Bt = Bm̃,t. X is also the maximum that proposer n can extract
from the total revenue of the private arbitrage block Bm̃,t at time t if he decides to choose
Bt = Bm̃,t.

If proposer n does not choose the private block Bm̃,t in period t to add to the blockchain,
it remains in the pool of available blocks for future proposers, until the private arbitrage
opportunity disappears (at rate ρd). Meanwhile, as this private arbitrage transaction is not
included in any other bock, its corresponding value remains unexploited. Proposer n has
an i.i.d. probability ψn = wn∑N

i=1 wi
to be chosen each period after t. In each future period

τ > t that n = pτ , if block Bm̃,t is still available, n can obtain at most R̄t from choosing
Bτ = Bm̃,t. Finally, when n does not choose Bt = Bm̃,t, he chooses a public block with
normal transactions only in period t, with total value Rt. Thus, Equation (7) implies that
he receives Rt today. As such, an upper bound for X is given by(

1− ρd
ψn + ρd(1− ψn)

)
R̄t + Rt

Since Rt � R̄t,X < R̄t. In other words, proposer n is willing to leave profit ρd
ψn+ρd(1−ψn)

R̄t−
Rt for block builder m̃ in order to be able to add the block Bm̃,t in period t to the blockchain.
Thus, for a private block, using Equations (2) and (3) we have

Πprivate
B,t ≥ ρd

ψn + ρd(1− ψn)
R̄t − Rt + c ⇒ θprivate

B,t > 0 (8)

Πprivate
P,t ≤

(
1− ρd

ψn + ρd(1− ψn)

)
R̄t + Rt ⇒ θprivate

P,t < 1 (9)

Comparing Equation (6) with (8) and (7) with (9) clearly illustrate the opposite impact of
the private arbitrage opportunities on profit shares of block builders and proposers. It also
shows that higher block revenue leads to a higher share for the block builder only if the block
revenue comes from private arbitrages. All the rest of the block revenue is captured by the
proposer and thus increases his profit share, while decreasing the profit share of the block
builder. As such, Proposition 1 provides a consistent mechanism for the empirical findings
of Table 4.

Equation (8) also implies that shorter lived private arbitrage opportunities lead to a
higher profit share for the block builder. This is intuitive as it corresponds to a more limited
availability of the private arbitrage opportunity, which in turn makes the private information
of the block builder more valuable and improves his bargaining position.16

16It is worth mentioning that we have abstracted away from any relationship building between proposers
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5 Robustness

In this section we show the robustness of our empirical results in two dimension.
In Section 5.1 we change the sample of blocks in two different ways. First, we extend

the sample to include the blocks in which the block builder subsidizes the proposer at very
high rates. Second, we limit the sample only to blocks in which block builders make weakly
positive profits.

In Section 5.2 we use a more involved algorithm to measure builder’s private information.
In particular, we employ the heuristic introduced by Heimbach et al. (2024). This heuristic
classifies a transaction as a private arbitrage only if it is based on information that is not in
the blockchain.

Appendix B presents the results of these robustness estimation exercises. Importantly,
in every exercise all the instrumental variable regression coefficients have the same sign as
the baseline estimation and remain statistically significant.

5.1 Blocks With And Without Subsidies

In our main analysis, we removed blocks where the builder profit share was less than −10%,
consisting of about 3.5% of the sample, to prevent outliers from skewing the results. In
this section, we show our results hold when we don’t remove these blocks. We also show
that the results hold when we condition on the builder profit share being non-negative,
and when we use alternative definitions of private transactions. In each of these robustness
checks, we obtain a significant positive effect for the value of the builder’s private information
on their profit share. Furthermore, our instrumental variables based on crypto crises and
cyber-attacks remain strong throughout all our alternative specifications.

Table 5 in Appendix B shows that there exist blocks where the builder gives a very large
subsidy to the proposer, with the largest subsidy being 56.13 ETH. This heavily skews the
builder profit share θP,t, with the share being highly negative for blocks with large subsidies.
We show in this subsection that our results apply even when we restrict ourselves to blocks
with a builder profit share θB,t ≥ −0.1, and when we restrict ourselves only to blocks with
non-negative builder profit share θB,t ≥ 0.

and block builders, which is what gives rise to the negative builder profit shares. Furthermore, this simplified
model does not address the determination of stakes of the proposers and the detailed interaction between
block builders and arbitrageurs. These simplifications are crucial to highlight the main mechanism that
gives rise to information-driven market power for block builders. We plan to incorporate the stylized model
in a full model of the DeFi Intermediation chain that includes arbitrageurs, block builders, proposers and
depositors and features inter-period dependencies. The full model includes optimal strategy of arbitrageurs
as well as depositors and determines M,N and {w1, · · · , wn} endogenously.
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The results for these specifications are shown in Tables 6 through 9 in Appendix B. Tables
6 and 7 show the first and second stage estimation results for the full sample. Alternatively,
Tables 8 and 9 show the results conditioned on θB,t ≥ 0. While the effect of private infor-
mation is slightly attenuated from 5.5 to around 1.5, all coefficients are still significant and
the instruments are still strong.

5.2 Alternative Definition of Private Information

In our main analysis, we use the simplest possible definition of private information, where a
transaction is private if and only if it is not broadcast to the network before being appended
to the blockchain. However, there may be many arbitrage opportunities trades—while sent
privately to a builder—are observed by many entrepreneurs. For example, any price dis-
crepancies between decentralized exchanges (DEXs) on the blockchain may be observed by
multiple entrepreneurs who have algorithms scanning the blockchain for such trades. Even
if we observe an arbitrageur sending such transactions privately to a builder, it is possible
that other arbitrageurs have sent them to other builders, making the arbitrage essentially
public.

As an alternative measure of private information, we use the heuristic introduced by
Heimbach et al. (2024), who consider only arbitrage transactions which are based on infor-
mation that is not in the blockchain. Under this heuristic, a group of transactions is private
if and only if one of the transactions involves a direct transfer to the builder, the transactions
do not appear in the public mempool, one of the transactions is a DEX swap as classified by
the ZeroMEV API,17, and the swap involves a token that is traded in a centralized exchange.

The intuition for this heuristic is that an arbitrage is private if it can only be discovered
using some private, off-chain signal. The vast majority of private arbitrages are arbitrages
between centralized exchanges (CEXs) and decentralized exchanges. A CEX-DEX arbitrage
takes advantage of mispricings quoted between two or more exchanges, but one is a central-
ized exchange whose prices and orders are off-chain. In contrast to DEX-DEX arbitrages,
its legs are not executed simultaneously, so there is inventory risk as the arbitrageur holds
the off-chain position. For this reason, an arbitrageur wants their public position to execute
as soon as possible and exclusively, so they will certainly include a direct payment to a
block builder and do so privately. Moreover, as only the on-chain leg is observable on the
blockchain, the strategy looks like a swap between two tokens, one of which is traded on a
centralized exchange.

17A DEX swap is an exchange of one token for another in a decentralized exchange. We use the ZeroMEV
API for a classification of swap transactions18
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Tables 10 and 11 show the first-stage and 2SLS regression results using the alternative
definition of private information. We can see that the instruments are still strong, the results
are significant, and there’s a positive effect for the value of private information. The only
qualitative difference is that all of our other regression results have a negative coefficient for
logRevt in all columns, while in Table 11 the OLS coefficient for logRevt is positive, and it
becomes negative only when using instrumental variables. The intuitive explanation for this
is that our definition of private arbitrage is much more restrictive, and many transactions
which would have been classified as private in our main analysis are no longer classified as
such. Therefore, a block with a large number of transactions has many other sources of
revenue for the builder that are not covered in the alternate definition of logPrivatet.

6 Conclusion

We examine the impact of private information on the profit shares of financial intermediaries
in Decentralized Finance (DeFi). Using novel DeFi transaction data, we find that the need
for privacy—driven by the commodification of AI frontrunners—leads to the emergence of
block builders as intermediaries, who capture a share of the block revenue by incorporating
private transactions into aggregate blocks.

Employing an instrumental variable approach using crypto crises and thefts of funds from
crypto institutions and protocols as instruments, we find that a 1% increase in the value of
private information leads to a 1.4% increase in the block builder profit share. We propose
a repeated bargaining model to provide an economics mechanism for our empirical findings.
This evidence highlights the crucial role of private information in determining the revenue
shares of intermediaries in decentralized financial markets. As traditional and decentral-
ized finance become more interconnected, understanding the dynamics of intermediation in
decentralized markets becomes increasingly relevant for both academics and practitioners.
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Appendix

A Institutional Details

The Bitcoin Blockchain and Proof-of-Work The bitcoin blockchain (Nakamoto (2008))
is both the first blockchain ever created, and the largest by market capitalization. The goal
of the blockchain is to achieve consensus about who owns how many units of a digital asset,
the bitcoin cryptocurrency (BTC). This consensus is established by a proof-of-work pro-
tocol, where (approximately) every 10 minutes a new block of transactions is “mined” and
appended to the blockchain. As a payment for their service, the miner receives both a mining
reward—reflected by the minting of new bitcoin which are credited to the miner’s balance—
and transaction fees paid by users who want their transactions included in the block. In
every one of these 10 minute intervals, there is competition among users to be the miner
and collect the rewards. In the most simple terms, the miner is the first user who can solve
a cryptographic puzzle—the solution of which can be verified by all other participants.19

Because there is a competition to mine the next block, the bitcoin blockchain essentially
has an all-pay auction every 10 minutes, where prospective miners perform trillions of com-
putations attempting to be the first to solve the cryptographic puzzle. This competition
is very wasteful and does not allow for high throughput of transactions. In addition, the
bitcoin blockchain has a drawback in that it only keeps track of bitcoin balances, but does
not have provisions for generating consensus on the balances of other assets.

The Ethereum Blockchain and Smart Contracts The Ethereum blockchain is the
second largest blockchain by market capitalization, and the largest blockchain that allows
the execution of general smart contracts (Buterin (2014)).20 The native cryptocurrency of
the Ethereum blockchain is Ether, or ETH for short.

Up until September 2022, Ethereum achieved consensus through a proof-of-work algo-
rithm, which immediately led to challenges for operating smart contracts at scale. Since
proof-of-work algorithms have very low throughput, the demand for smart contract oper-
ations was much larger than the available computing power of the Ethereum Virtual Ma-
chine,21 leading to high transaction fees and very volatile congestion charges.

19The consensus algorithm of bitcoin is more complex than described in this short paragraph, with
incentives designed to prevent participants from re-mining a block. Interested readers are directed to the
original bitcoin whitepaper in Nakamoto (2008).

20The Bitcoin blockchain allows the execution of a restricted set of smart contracts through bitcoin script,
but the feasible operations are very limited compared to the Turing-Complete Ethereum Virtual Machine.

21The bottleneck here is not the raw computing power of an individual node, but rather the amount of
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Proof-Of-Stake Consensus One way to address these challenges is a proof-of-stake al-
gorithm, where block proposers get chosen randomly with probability proportional to their
stake.22 To prevent a rogue block proposer from appending an invalid block to the blockchain
(e.g. one that has double spending), a small group of verifiers is also chosen at random. The
verifiers attest to the block’s validity. As long as the stake is sufficiently distributed, the
block proposer and verifiers will be independent with very high probability, and a valid
block will be added to the chain. Since only a very small fraction of participants needs to
be sampled to ensure the correctness of each new block, the amount of computation needed
to obtain consensus is vastly reduced.

Consensus Layer Yield In Ethereum, all participants who stake their ETH receive some
yield for accurately executing the consensus protocol. For every block, both the block pro-
poser and verifiers receive some reward (in ETH) for accurately participating in the protocol.
This reward varies depending on how much aggregate ETH has been staked, the time it takes
for the verifiers to produce their attestation of correctness, and of course, the correctness
of the proposed block. We define the Consensus Layer Reward as the expected payment
(in ETH) to the block proposer and verifiers for correctly participating in the consensus
protocol.

Rconsensus = E[Reward from Participating in Consensus]

Since the probability of being chosen as a proposer or verifier is proportional to the
amount of ETH staked, the expected reward that one obtains from participating in the
protocol is also proportional to the amount of ETH one has staked. Therefore, this reward
can be interpreted as a yield on the staked Ether.

yconsensus =
E[Rconsensus]

Amount of ETH staked
.

Execution Layer Yield The most popular smart contracts on Ethereum are decentralized
finance applications, including Crypto-Collateralized stablecoins such as MakerDAO, and de-
centralized exchanges such as Uniswap and Curve. Any user of the Ethereum blockchain
can attempt to find arbitrage opportunities arising from these protocols. For example, an
underwater MakerDAO loan can be liquidated at fire sale prices, and the collateral can be

computing power needed to agree on the state of the blockchain at any given time, including the state of all
the smart contracts being executed.

22In practice, the participants in proof-of-stake algorithms use a decentralized pseudorandom number
generator, which is implemented with cryptographic tools to prevent any coalition below a given size from
biasing the random number generation process.
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immediately sold in a decentralized exchange at a higher price, yielding an instant arbi-
trage in two transactions.23 Similarly, price discrepancies among the hundreds of different
decentralized exchanges can lead to arbitrage opportunities.

Since the data on these applications is public, there can be many arbitrageurs competing
to exploit all of these arbitrage opportunities. This gives Ethereum block proposers some
power to decide who obtains these arbitrage profits. When determining the order of trans-
actions in a block, the block proposer can prioritize some arbitrageurs over others. The
extreme case of this is when the block proposer observes the incoming transactions and fron-
truns arbitrage opportunities that are suggested to them by potential arbitrageurs. In the
long run, this would dissuade the arbitrageurs from operating, or would lead to vertical inte-
gration between arbitrageurs and block proposers. In the data we don’t observe this vertical
integration. Instead, we see that there are specialized arbitrageurs—called block builders,
who share some of their surplus with the block proposers. This sharing of the surplus of
the execution layer reward gives the block proposers some expected income per block from
arbitrage opportunities. We define the Execution Layer Reward as the expected payment
to the block proposer (in ETH) from arbitrageurs for incorporating their transactions into
a block.

Rexecution = E[Block Proposer Reward from Arbitrage Opportunities]

Since the probability of being a block proposer is proportion the amount of ETH staked,
we can interpret this as a yield

yexecution =
E[Rexecution]

Amount of ETH staked
.

Maximal Extractable Value (MEV) The Maximal Extractable Value of a block repre-
sents the revenue that can be extracted from the ordering of transactions in a block, which
is in excess of revenue from the value of transactions alone. Figure 2 shows the time series
of MEV since the merge. We observe that the execution layer component is more volatile
than the consensus layer component.

MEV Searchers MEV searchers are automated arbitrageurs who identify mispricings
and the potential for near-riskless profit and bundle together transactions that, upon being
incorporated into the blockchain, execute their arbitrage strategy. The success of these

23The arbitrage is instant because the transaction that buys the collateral at fire sale prices and the one
that sells the purchased collateral in decentralized exchanges occur in the same block.
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Source: Dune Analytics

Figure 2: Daily Gas and MEV Revenue

strategies is contingent on immediately capitalizing on public and private information, so
their transactions carry high priority fees and even direct payments to builders in order to
guarantee their incorporation towards the front of the next block. Because the immediacy
and position of these transactions matter, their value is considered MEV.

The Market Inefficiencies of MEV The arbitrage opportunities in decentralized fi-
nance, combined with the decentralized consensus protocol of the Ethereum blockchain,
create economic inefficiencies. First, there may be competition among arbitrageurs to get
their transactions incorporated into blocks—and to prevent competitors from placing their
transactions. For example, an arbitrageur may pay transaction fees high enough to buy the
entire space in a block, preventing anybody else from interfering in their trades. Addition-
ally, there is a problem with frontrunning. If an arbitrageur finds a profitable trade and
submits it directly to a block proposer, there is no inherent reason besides reputation for
why the proposer can’t just clone the transaction and submit it themselves to collect the
profit. In the long run, this discourages arbitrageurs from participating in the market.

Proposer-Builder Separation To prevent frontrunning, members of the Ethereum com-
munity advocated for the principle of Proposer-Builder Separation (PBS). Under this princi-
ple, the builder who collects all the transactions in a block, including the profitable arbitrage
opportunities, is not the same as the block proposer who is chosen by the consensus protocol
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to propose the next block. Instead, there are multiple builders—in essence arbitrageurs—
who compete to build the most profitable block of transactions. The builders will collect all
the MEV of the block, and split this revenue with the proposer through a proposer fee—
essentially a bid that incentivizes the proposer to choose the builder’s block over all others.
In order to prevent frontrunning, the process through which these blocks are proposed is as
follows

• Block Builder’s Action Block builder i creates a block Bi. She submits a pair
(Bi, pi) to a relay, where pi is the proposed payment to the proposer.

• Relayer’s Action The relay j receives multiple pairs (Bi1 , pi1), ..., (Bin , pin). The relay
verifies that the blocks are valid (and potentially, that they don’t have transactions
from sanctioned Ethereum accounts), and chooses the highest bid (B∗j , p

∗
j) among the

valid block proposals.

Each relay j communicates (H∗j , p
∗
j) to the block proposer, where H∗j = H(B∗j ) is a

hash function of the block B∗j . Since the block proposer only observes a hash of the
block—and hash functions are essentially random—24 the block proposer at this time
learns nothing which would allow her to frontrun the arbitrage opportunities collected
in the block.

• Block Proposer’s Action The block proposer may either

1. choose a relay j∗ who “wins” the round—in which case the relay j∗ reveals the
block B∗j to the block proposer; or

2. the block proposer rejects all bids and proposes some “outside-option” block Bout

that they construct themselves.

• Payoffs The payoffs of the game are as follows

1. If the block proposer accepts the bid (H∗j , p
∗
j), she will receive a payoff of p∗j . The

block builder will receive both the consensus layer and execution layer reward.
We assume the relay is competitive, and receives zero payoff.25

24The technical term here is that a hash function is computationally hiding. Under widely accepted
computational assumptions such as the existence of one-way functions, the receiver of a message H∗

j would
have to do an astronomical amount of computation to recover an input B∗

j such that H(B∗
j ) = H∗

j . This is
also true if the received wanted to partially recover some bits from the input B∗

j .
25The assumption that relays are competitive seems to line up with the observed data. There are multiple

relays, and both block builders and block proposers can connect to more than one relay. Furthermore,
the code for relays is open-source, and therefore non-exclusive and non-rival. In practice, there is some

28



2. If the block proposer rejects all bids, she receives both the consensus layer and
execution layer rewards associated with Bout. In this case, the payoff to the block
builder is 0. In addition—as in the previous case—the relayer is assumed to be
competitive and has 0 payoff.

MEV-Boost In practice, there is open source software, called MEV-Boost, which imple-
ments this proposer-builder separation. After the transition to proof-of-stake, MEV-Boost
gained widespread adoption, with around 90% of blocks in Ethereum being selected through
MEV-Boost, and around 75% of all blocks having different builders and proposers. 26 The
most popular relay is the flashbots relay. However, it has recently faced increased compe-
tition from other relays. The main difference between flashbots and their competitors is
that flashbots will not accept any block that contains transactions with accounts sanctioned
by the Treasury’s Office of Foreign Asset Control (OFAC). Many other relays, including
Bloxroute-Max-Profit, do not take OFAC regulations into account when deciding which
blocks to accept.

B Robustness Regression Tables

In this Appendix, we show the robustness regression Tables described in Section 5. Table
5 shows summary statistics for the full sample. Tables 6 through 9 show our regressions
using different subsamples of our dataset. Tables 10 and 11 show the regressions using an
alternative definition of private information.

vertical integration between relayers and block builders, with flashbots and Bloxroute operating both block
builder bots as well as relays. Since the builders have to trust the relays not to frontrun them, there is an
informational advantage for blockbuilders to operate their own relaying software.

26The data on MEV-Boost, including relay and block builder market shares, is obtained from Toni
Wahrstätter’s website https://mevboost.pics/, and is augmented with data from the individual relays’
websites.
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Mean Std. Dev. Min 5th Median 95th Max Skewness Kurtosis

Revt 0.14 1.49 0.00 0.02 0.05 0.36 691.96 229.03 79243.77
ΠB,t 0.01 0.40 -56.13 -0.00 0.00 0.02 386.27 472.18 369899.17
ΠP,t 0.13 1.36 0.00 0.02 0.05 0.35 691.96 257.98 99142.42
θB,t 0.01 0.90 -947.07 -0.06 0.01 0.15 1.00 -555.01 495297.49
θP,t 0.99 0.90 0.00 0.85 0.99 1.06 948.07 555.01 495297.57
logPrivatet 0.07 0.17 0.00 0.00 0.03 0.27 6.54 8.55 122.62
logPublict 0.03 0.05 0.00 0.01 0.02 0.07 5.20 24.77 1146.61
Hack Dummy 0.07 0.26 0.00 0.00 0.00 1.00 1.00 3.24 11.50
Crisis Dummy 0.02 0.14 0.00 0.00 0.00 0.00 1.00 6.88 48.39

Observations 2723585

Source: Dune Analytics and Mempool Guru Project

Table 5: Summary Statistics for the Full Sample

(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0076∗∗∗ 0.0063∗∗∗ 0.0045∗∗∗ 0.0048∗∗∗
(0.0007) (0.0006) (0.0007) (0.0007)

Crisis Dummy 0.1141∗∗∗ 0.1162∗∗∗ 0.1228∗∗∗ 0.1212∗∗∗
(0.0094) (0.0101) (0.0094) (0.0101)

Constant 0.0699∗∗∗ 0.0968∗∗∗
(0.0022) (0.0019)

Observations 2679416 2341828 2679416 2341828
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results with our full sample. Columns (1) and (2) show
how logPrivate is affected by these instruments, with Column (1) having no fixed effects, and Column (2)
having builder, proposer and builder × proposer fixed effects. Columns (3) and (4) show analogous results
for logPublic, the log of the value of Public arbitrages in a given block. Columns (5) and (6) show
analogous results using logRev, the log revenue of the block. All standard errors are clustered at the
builder × proposer level.

Table 6: Full Sample First Stage Regression Results
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(1) (2) (3) (4)
OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.154∗∗∗ 0.138∗∗∗ 3.004∗∗∗ 5.512∗∗∗
(0.0245) (0.0358) (0.771) (1.759)

logRevt -0.0449∗∗∗ -0.0401∗∗ -3.396∗∗∗ -5.886∗∗∗
(0.0137) (0.0193) (0.928) (1.908)

Constant 0.00176 0.128∗∗∗
(0.00333) (0.0359)

N 2679416 2341828 2679416 2341828
F Statistic 592.33 128.77
Robust F Statistic 230.179 24.570
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results with our full sample. Columns (1) and (2)
show OLS results, without and with builder × proposer fixed effects, respectively. Columns (3) and (4)
show 2SLS results, without and with builder × proposer fixed effects, respectively. All standard errors are
clustered at the builder × proposer level. The instrumental variables are Hackedt and Crisist.

Table 7: Full Sample OLS and Two-Stage Least Squares Results

Builder Profit Share θB,t
(1) (2) (3) (4)

logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0086∗∗∗ 0.0069∗∗∗ 0.0052∗∗∗ 0.0052∗∗∗
(0.0008) (0.0007) (0.0009) (0.0008)

Crisis Dummy 0.1406∗∗∗ 0.1440∗∗∗ 0.1493∗∗∗ 0.1494∗∗∗
(0.0161) (0.0182) (0.0163) (0.0184)

Constant 0.0801∗∗∗ 0.1081∗∗∗
(0.0030) (0.0028)

Observations 2134770 1862430 2134770 1862430
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results when θB,t ≥ 0. Columns (1) and (2) show how
logPrivate is affected by these instruments, with Column (1) having no fixed effects, and Column (2)
having builder, proposer and builder × proposer fixed effects. Columns (3) and (4) show analogous results
for logPublic, the log of the value of Public arbitrages in a given block. Columns (5) and (6) show
analogous results using logRev, the log revenue of the block. All standard errors are clustered at the
builder × proposer level.

Table 8: First Stage Regression Results when θB,t ≥ 0
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Builder Profit Share θB,t
(1) (2) (3) (4)

OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.160∗∗∗ 0.128∗∗∗ 1.586∗∗∗ 1.596∗∗∗
(0.0142) (0.0163) (0.164) (0.215)

logRevt -0.101∗∗∗ -0.0786∗∗∗ -1.455∗∗∗ -1.468∗∗∗
(0.00900) (0.00966) (0.162) (0.198)

Constant 0.0351∗∗∗ 0.0670∗∗∗
(0.00277) (0.00461)

N 2134770 1862430 2134770 1862430
F Statistic 441.75 113.99
Robust F Statistic 164.056 34.042
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when θB,t ≥ 0. Columns (1) and (2) show OLS
results, without and with builder × proposer fixed effects, respectively. Columns (3) and (4) show 2SLS
results, without and with builder × proposer fixed effects, respectively. All standard errors are clustered at
the builder × proposer level. The instrumental variables are Hackedt and Crisist.

Table 9: OLS and Two-Stage Least Squares Results where θB,t ≥ 0

(1) (2) (3) (4)
logPrivatet logPrivatet logRevt logRevt

Hack Dummy 0.0055∗∗∗ 0.0051∗∗∗ 0.0035∗∗∗ 0.0046∗∗∗
(0.0004) (0.0005) (0.0007) (0.0008)

Crisis Dummy 0.0582∗∗∗ 0.0580∗∗∗ 0.1486∗∗∗ 0.1451∗∗∗
(0.0059) (0.0069) (0.0108) (0.0119)

Constant 0.0174∗∗∗ 0.1003∗∗∗
(0.0013) (0.0020)

Observations 2242059 1933070 2242059 1933070
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows the first stage estimation results for our different 2SLS specifications. Columns (1)
and (2) show how logPrivate is affected by these instruments, with Column (1) having no fixed effects,
and Column (2) having builder, proposer and builder × proposer fixed effects. Columns (3) and (4) show
analogous results for logPublic, the log of the value of Public arbitrages in a given block. Columns (5) and
(6) show analogous results using logRev, the log revenue of the block. All standard errors are clustered at
the builder × proposer level.

Table 10: First Stage Regression Robustness Results Using Private Arbitrages
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Builder Profit Share θB,t
(1) (2) (3) (4)

OLS No FE OLS FE IV No FE IV FE

logPrivatet 0.106∗∗∗ 0.0847∗∗∗ 1.283∗∗∗ 0.964∗∗∗
(0.00937) (0.0110) (0.186) (0.226)

logRevt 0.0210∗∗∗ 0.0222∗∗∗ -0.464∗∗∗ -0.317∗∗∗
(0.00317) (0.00430) (0.0862) (0.102)

Constant 0.0234∗∗∗ 0.0513∗∗∗
(0.00251) (0.00660)

N 2242059 1933070 2242059 1933070
F Statistic 177.95 93.52
Robust F Statistic 63.502 25.051
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows our multivariate estimation results when the builder profit share is the dependent
variable. Columns (1) and (2) show OLS results, without and with builder × proposer fixed effects,
respectively. Columns (3) and (4) show 2SLS results, without and with builder × proposer fixed effects,
respectively. All standard errors are clustered at the builder × proposer level. The instrumental variables
are Hackedt and Crisist.

Table 11: OLS and Two-Stage Least Squares Using Private Arbitrages
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