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Abstract

Identifiability of the parameters is an important precondition for consistent es-
timation of models designed to describe empirical phenomena. Nevertheless,
many estimation exercises proceed without a preliminary investigation into the
identifiability of its models. As a consequence, the estimates could be essen-
tially meaningless if convergence to the ‘true’ parameters is not guaranteed in
the pertinent problem. We provide some evidence here that such a lack of iden-
tification is responsible for the inconclusive results reported in recent literature
on parameter estimates for a certain class of nonlinear behavioral New Key-
nesian models. We also show that identifiability depends on the subtle details
of the model structure. Hence, a careful investigation of identifiability should
preceed any attempt at estimation of such models.
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1 Introduction

Over the last two decades, models with certain deviations from completely rational

behavior have more and more become accepted in the economics profession. Exper-

imental economics has unearthed a plethora of behavioral ‘anomalies’ that are not

easily reconcilable with perfectly rational optimization and a large spectrum of ‘be-

havioral’ theories has been put forward to explain various phenomena and stylized

facts (e.g., Thaler, 2015; Akerlof and Shiller, 2010, to only quote Nobel laureates from

the behavioral community).

In recent times, behavioral components have also been incorporated into otherwise

relatively traditional macroeconomic models of the New Keynesian tradition, and

new models have been proposed that attempt to reconstruct macroeconomics from

a bottom-up approach based on the economic interactions of a large pool of agents.

Prominent examples of the first line of approach are the contributions by Anufriev

et al. (2013), Branch and McGough (2009, 2010), de Grauwe and co-authors (e.g.,

de Grauwe, 2011, 2012; de Grauwe and Ji, 2020) and Lines and Westerhoff (2010,

2012), among others. Leading examples of the second school are delli Gatti et al.

(2011) or Poledna et al. (2023).

The development of this new class of models has also brought the task of their

empirical validation to the fore. In order to compete on the same footing with tradi-
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tional Dynamic Stochastic General Equilibrium (DSGE) models, rigorous estimation

methods are required as well as appropriate tools for model selection in the presence

of a variety of different specifications of both traditional and behavioral macro mod-

els. Some research in this vein is already available with a bunch of papers exploring

various estimation methods for different versions of the de Grauwe (2012) version of

the behavioral New Keynesian (NKM) model (Grazzini et al., 2017; Jang and Sacht,

2016, 2021; Kukačka and Sacht, 2023), while fewer attempts at empirical validation

of more complex ones exist (e.g., delli Gatti and Grazzini, 2020).

Proper estimation requires certain conditions to be met by the model under

scrutiny, often called ‘regularity conditions’ in statistics and econometrics. Some

of these are easy to verify and hold for large classes of models. For example, most be-

havioral agent-based models are Markovian despite their often involved interactions

between agents, a feature that goes a long way already towards satisfaction of certain

sets of regularity conditions. A necessary condition that is needed in virtually every

validation exercise is identifiability of the parameters. Identification issues have re-

ceived some attention in the empirical DSGE literature. Canova and Sala (2009) were

the first to address problems of identification of certain parameters of DSGE models,

due to observational equivalence in the mapping of the structural parameters to the

coefficients of linear DSGE models. Conditions for identification of the parameters

of log-linearized DSGE models have been established later on by Iskrev (2010) and
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applied in a computational manner (checking satisfaction of the conditions for a large

set of parameter values) to the Smets and Wouters (2007) model.

One might hope that nonlinearity could resolve certain identification problems

as strict collinearity1 of two or more parameters would at most hold locally in a

nonlinear model when the two parameters enter in different ways in its nonlinear

functional components. From this example, one might hope that identification is to

a certain extent generic in models of the highly nonlinear format of most behavioral

or agent-based macro models.

There are, however, hardly any general results on conditions for identification of

parameters in nonlinear models. McManus (1992) has demonstrated that global iden-

tification is generic in a certain class of structural models with exogenous variables,

but otherwise, rigorous knowledge on identification of other model classes is virtually

non-existent. While the nonlinearity of behavioral models might make identification

of parameters a plausible property, it also, unfortunately, impedes a straight forward

formal analysis of the identifiability issue. As a consequence, practically all the avail-

able empirical work on validation of such models simply assumes identifiability or does

not even mention this issue. As it turns out, however, identifiability of its parameters

might indeed constitute a serious problem for certain behavioral macro models. Ex-

perimenting with different versions of the de Grauwe (2012) framework and different

estimation approaches, we virtually always encountered problems of non-convergence

1and, therefore, non-identifiability.
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to the ‘true’ values when conducting Monte Carlo simulations to assess the accuracy

of the estimates. Using a simple version of this model that had been estimated before

by Grazzini et al. (2017) and Zhang et al. (2023) we provide a detailed analysis of

this problem and try to shed light on the structural origin of the lack of identification

in this highly nonlinear set-up.

To explore the issue of identifiability of parameters we use a Markov Chain Monte

Carlo (MCMC) approach in this paper applying the adaptive adjustment of the pro-

posals that had already been adopted for financial agent-based models in Lux (2022).

As pointed out by Siekmann et al. (2012), MCMC can shed light on whether certain

parameters of a model are identified or not, and what particular obstacles exist to

their identification.

As a Bayesian approach, MCMC does not provide a point estimate of a parame-

ter, but an approximation of the parameters’ posterior given certain priors. Various

deficiencies could emerge in the attempt to implement this approach: The posterior

could settle down with its support being concentrated in the regions far off the ‘true’

parameter values, or the posterior could show little difference from the priors which

would indicate a lack of informativeness of the data with respect to the parameters.

Essentially, we find that many of the behavioral parameters of the New Keynesian

model of de Grauwe (2012) would require unrealistically large sample sizes to be iden-

tifiable with any satisfactory level of precision. For sample sizes typically available in
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macroeconomics, we find that the posteriors do not show much difference from the

priors, and for certain parameters, this even remains so for extremely large, unre-

alistic sample sizes (e.g., 20,000 observations). In single MCMC runs, the posterior

would often appear to be concentrated away from the values that have been used in

the simulation, while the degree of the mixing of the Markov chain (i.e., the num-

ber of accepted draws) is close to its theoretically optimal level. However, running

multiple chains with different initial conditions shows that such seemingly good per-

formance might be illusory reflecting the hovering of the chain within some limited

neighbourhood of a very flat likelihood function.

Somewhat surprisingly, the severity of these problems might differ a lot between

versions of the behavioral NKM that only differ slightly in their assumptions. In sec.

4, a small variation of the model of de Grauwe (2011, 2012) and de Grauwe and Ji

(2020) is presented for which all parameters seem to be identifiable with sufficiently

large samples although in this case as well, typical macroeconomic sample sizes do

not lead to major changes of the posterior compared to the prior. The difference

between both version boils down essentially to a somewhat less complex interaction

of the parameters of the reduced form of the model in terms of the lagged variables

and the propagation of shocks.

The plan of the remainder of this paper is as follows: Sec. 2 presents the behavioral

New Keynesian model proposed by de Grauwe (2012) for which meanwhile a certain
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body of literature exists that attempts its empirical validation. Sec. 3 shows the

results of Monte Carlo simulations using a Markov Chain Monte Carlo estimation

that provides evidence for a lack of identifiability of a model specification that has

been used by a number of other authors before. As it turns out, identification of

the behavioral parameters is at least very weak for reasonable sample sizes. While

there is some improvement for certain parameters with unrealistically large samples,

other parameters show no sign of convergence even for samples that exceed empirical

records by two orders of magnitude. Sec. 3 also discusses the possible origin of such

mis-specification. Sec. 4 shows that identification hinges on the precise details of

the model structure: A very closely related specification of the behavioral NKM with

only seemingly minor changes in the specification of the Taylor rule apparently does

suffer to a lower degree from the issues highlighted for the original specification. Sec.

5 estimates this version of the model for a long series of quarterly U.S. macro data.

As it turns out, this exercise does not provide much evidence for the relevance of the

specific behavioral elements that are characteristic of the present variant of behavioral

macro models. Sec. 5 concludes.

2 The Behavioral NKM model

We adopt the version of de Grauwe (2012) of a model of heuristic expectation for-

mation within an otherwise very conventional New Keynesian setting. The New
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Keynesian core of the model consists of its equations for the evolution of the output

growth rate (g), the inflation rate (π) and the interest rate (r):

gt = a1Egt+1 + (1− a1)gt−1 + a2(rt − Eπt+1) + ϵ1,t

πt = b1Eπt+1 + (1− b1)πt−1 + b2gt + ϵ2,t

rt = c1(πt − π∗) + c2gt + c3rt−1 + ϵ3,t

(1)

In system (1), the first equation is the IS relation with partially forward looking

behavior (E denoting expectations which are not necessarily ‘rational’ ones) and par-

tially backward looking dependency (habit persistence being one possible explanation

of such a structure). The second equation is the expectation adjusted Phillips curve

which (sluggish price adjustment serving as a potential explanation here) also comes

with a forward looking and a backward looking term. The third equation, finally,

is the Taylor rule. Parameters a1, a2, b1, b2, c1, c2, c3 are all expected to be positive

except for a2 which gives the usually negative effect of higher real interest rates on

consumption and investment. ϵ1,t, ϵ2,t and ϵ3,t are all random variables which in em-

pirical applications are assumed to be drawn from independent Normal distributions

with means all equal to zero and variances σ2
1, σ

2
2, σ

2
3. When assuming rational ex-

pectations, the forward looking terms in eqs. (1) would be fully endogenous, and this

relatively simple model would already leave us with 10 parameters to be estimated.

In de Grauwe (2012), the expectations are formed according to a popular discrete-
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choice formalization allowing the agents to select from two simple alternatives: They

either expect the fundamentals to govern the behavior of the macro variables and

predict their equilibrium values for next period, or use the last observation available,

i.e., gt−1 or πt−1 as forecasts for time t + 1. It is easy to see that when setting

(normalizing) the target value for the inflation rate as π∗ = 0, the only steady state

of the system is (g∗, π∗, r∗) = (0, 0, 0). Hence, the predictions are either Efgt+1 = 0 or

Eegt+1 = gt−1 as well as E
fπt+1 = 0 or Eeπt+1 = πt−1. What fraction of agents chooses

which forecast is determined by the fitness of the predictions f (for fundamentals)

and e (for extrapolation):

P
g
f,t =

exp(10γUf,t)

exp(10γUf,t) + exp(10γUe,t)
, P

g
e,t = 1− P

g
f,t

P π
f,t =

exp(10γWf,t)

exp(10γWf,t) + exp(10γWe,t)
, P π

e,t = 1− P π
f,t

(2)

with the superscript indicating the two variables growth rate g and inflation π for

which predictions are formulated, and the subscript denoting the fundamentalist and

extrapolative predictions at time t2.

The four fitness functions are determined as loss functions.

Uj,t = ρUj,t−1 − (Ejgt−1 − gt−1)
2

Wj,t = ρWj,t−1 − (Ejπt−1 − πt−1)
2

(3)

2The factor 10 in the exponential function follows previous authors and allows us to restrict the
prior for the parameter γ to the interval [0, 1].
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with Uj,t, Wj,t the fitness functions of prediction j (j = f, e) for the growth rate

and the inflation rate, respectively. Note that for a plausible sequence of predictions,

the functions P g
j,t and P π

j,t could last have been updated after the time t−1 realizations

of g and π have been observed. The predictions Egt−1 and Eπt−1 would then have

been be formulated in period t− 2 and would have used the most recent observations

then, i.e. gt−3 and πt−3.

The system of equations (1) to (3) is obviously a highly non-linear dynamic system

with stochastic components. It seems interesting to clarify more precisely the struc-

tural form of this system as to be able to refer to appropriate mathematical results

on the behaviour of estimates of its parameters. Note that while eqs. (1) have only

lags of order one, eqs. (3) introduce lags of order 3 in growth and inflation rates in

the extrapolative heuristic. Higher order lags can be transformed into first-order lags

by introducing auxiliary variables such as: ĝt = gt−1, g̃t = ĝt−1, π̂t = πt−1, π̃t = π̂t−1.

Hence, we can write the system as a first-order nonlinear system with eleven dy-

namic variables: gt, ĝt, g̃t, πt, π̂t, π̃, rt, Ue,t, Uf,t,We,t,Wf,t. We can further decompose

the variables into the observed and the latent ones writing the system’s law of motion

as

Yt+1 = f(Yt, Xt) +N(0,Σ),

Xt+1 = g(Xt, Yt)

(4)
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with Yt = (gt, ĝt, g̃t, πt, π̂t, π̃, rt) collecting the observable variables and Xt =

(Uf,t, Ue,t,Wf,t,We,t) the latent ones. The stochastic term, the multivariate Gaus-

sian N(0,Σ) in the first equation has non-zero variances only for gt, πt and rt, but

the covariance matrix has entries that also depend on the parameters of the contem-

poraneous effects in eqs. (1). A system of this type is denoted an observation-driven

system. A typical example in the econometrics literature of a model with this struc-

ture is the seminal GARCH model for the time evolution of the second moment of

financial assets. Note that the characteristic features of such a system are (i) stochas-

ticity in the observed variable, but not in the latent ones, (ii) feedback effects from

the observed to the latent variables.

With stochastic elements present in the latent part as well, one would rather

speak of a general state-space model. Without feedback from the observed to the

latent variables, the noise could be interpreted as measurement noise since it would

not affect the hidden process Xt. Inspection of many behavioral or agent-based

models shows that they often share the particular structure of eqs. (4) (cf. Lux,

2021). A series of recent papers has investigated the statistical properties of maximum

likelihood estimation for observation-driven dynamic systems: Douc et al. (2013,

2015) demonstrates consistency of maximum likelihood for models with first-order

lag structures under certain regularity conditions, while Sim et al. (2021) generalize

these results to higher-order lag structures. However, the regularity conditions of
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these papers imply identifiability of the parameters, which might not be guaranteed

in practice.

In light of such promising theoretical behavior of general observation-driven mod-

els, recent Monte Carlo results reported in Zhang et al. (2023) on the above model

appear quite sobering. The authors report on two Monte Carlo studies for the esti-

mation of a 9-parameter version of the model (with c1, c2 and c3 fixed) using both

a sequential Monte Carlo (SMC) and a Markov-Chain Monte Carlo (MCMC) ap-

proach with a kernel-density approximation of the likelihood. They simulate the de

Grauwe (2012) model with T = 50, T = 300 and T = 400 observations (their Tables

3 and 4). While the authors interpret their results as evidence for the potential of

these approaches to recover the parameters of the model, a closer inspection of the

reported results shows that for most parameters, the estimation accuracy deterio-

rates with sample size (for SMC) or the accuracy appears virtually unaffected by

sample size (for MCMC). Both observations speak against consistent estimation of

the parameters of the model. I will show in the following that the likely reason is

a lack of identification of the parameters which indeed might unfortunately be more

widespread for behavioural models of a similar format than previously thought.
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3 Monte Carlo Simulations

We follow Grazzini et al. (2017) and Zhang et al. (2023) by adopting an MCMC

approach for the estimation of the parameters of the de Grauwe (2012) model. In

contrast to the previous applications, we do not, however, use any approximation to

the likelihood, but the conditional likelihood itself, i.e.,

Lθ,T = ΠT
t=2Pθ(Yt|Yt−1) (5)

with T: the length of the pseudo-empirical time series whose parameters we wish to

estimate, Yt = (gt, πt, rt) the observable parameters (including, of course, their lags),

Pθ(Yt|Yt−1) the conditional density of the observations at time t under the model with

parameter set θ, and the parameter set being θ = (a1, a2, b1, b2, σ1, σ2, σ3, ρ, γ) while

the parameters of the Taylor rule (c1, c2, c3) have been assumed to be known.

According to the quoted results of Douc et al. (2013, 2015) we have some reason to

assume that maximum likelihood is consistent for this model, provided the parameters

are uniquely identified. We could, then, also be confident that using the likelihood in

an MCMC setting, would lead to convergence to the posterior distribution. Denoting

the prior distribution of the parameters by p(θ), and the proposal distribution by

g(θξ|θξ−1) with ξ the sequential order of the generated Markov chain, we accept new
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proposals θ∗ with the probability

α(θ∗, θξ−1) = min{
Lθ∗,Tp(θ

∗)g(θξ−1|θ
∗)

Lθξ−1,Tp(θξ−1)g(θ∗|θξ−1)
, 1} (6)

For the prior distribution, we have used either the distributions for the different

parameters used by Zhang et al. (2023) before (mostly adopted from the DSGE

literature) or we have used mostly uniform priors over the same support as the more

traditional ones. Which set we used did not make much of a difference, at least for

the experiments with longer pseudo-empirical time series (as it should be as then

the added information from the time series should dominate the influence of the

prior). In our presentation of the Monte Carlo simulation runs below, we concentrate

on results based on uniform priors for all parameters as these nicely allow to infer

how much the posterior moves away from the prior, i.e., how informative the data

are for the parameters. The more traditional (strong) priors used in Grazzini et al.

(2017) and Zhang et al. (2023) come with certain restrictions of the parameters,

0 ≤ a1 ≤ 3, a2 ≤ 0, 0 ≤ b1, b2 ≤ 1, 0 ≤ γ, ρ ≤ 1, which we also mostly keep when

using the uniform priors for these variables. For the distribution of the proposals,

we used a fat-tailed multivariate Student t distribution with mean equal to the last

accepted set of parameters, degrees of freedom equal to 3 and the counterpart of

the variance-covariance matrix being adaptively adjusted on the base of the accepted

previous draws of the chain.
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The degree of adaptation is assumed to decrease with the length of the chain which

guarantees that adaptation does not get in the way of convergence to the posterior (cf.

Andrieu and Thomas, 2008). Adaptation of the proposal distribution in the MCMC

algorithm serves to guarantee a sufficient degree of mixing of the chain without any

necessary adjustment by hand, or trial and error. Results reported below demonstrate

that this algorithm indeed meets its target acceptance rate very precisely. The details

of the algorithm are explained in Appendix A.

This MCMC experiment is conducted for pseudo-empirical time series with length

T1 = 200, T2 = 2, 000 and T3 = 20, 000, the latter obviously going far beyond the size

of any real-life macroeconomic sample. As in Zhang et al. (2023), we fix all param-

eters at 0.5 except for a2 = −0.5 and c1 = 1.5. For the dynamic coefficients of the

three NKM equations of eqs. (1) this indeed amounts to values that are roughly

representative of estimates for models with rational expectations. The standard de-

viations of the random terms in eqs. 1 are all set equal to 0.1. The three parameters

of the Taylor rule are assumed to be known so that nine parameters remain to be

estimated, i.e. the set θ = {a1, a2, b1, b2, ρ, γ, σ1, σ2, σ3}. In what we document below

we have assumed uniform priors with support over [0, 1] for all behavioral parameters

except a2 for which a uniform distribution over [−1, 0] has been used. For the stan-

dard deviations (σ1, σ2, σ3) uniform priors over [0, 2] have been used. Results did,

however, not change significantly under more informative priors.
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As far as we can see, it has never been explored whether models like the one stud-

ied here would show nice convergence properties if only enough data were available.

Numerical explorations of the model of de Grauwe (2012) indicate that it exhibits

completely ‘harmless’ behavior in its ‘deterministic skeleton’ (i.e. with stochastic el-

ements switched off). For the parameter set used here as well as for all others we

tried (even extreme ones), there was stable convergence to the unique equilibrium

g∗ = π∗ = r∗ = 0, even with very fast convergence over very few periods after shocks

and irrespective of whether the Taylor principle (c1 > 1) of rational expectations

models was satisfied. No limit cycles, chaotic behavior or other ‘interesting’ dynam-

ics were ever observed, which have often been found to be characteristic features of

similar models with behavioral dynamics. Given this convenient behavior, we might

have even more reason to expect the model to behave well under attempts of its

empirical validation.

Table 1 and Figs. 1 through 3 show statistics for the posterior and graphical

illustrations of the Markov chains for the three different sample sizes. In each case,

we run the chain 10 times using different initial conditions over 2, 001, 500 steps in

each case with the first 1, 500 realizations obtained for warm up with a given variance-

covariance matrix of proposals θ∗ composed of all diagonal elements equal to 0.12.

Afterwards, adaptation has been initiated for the variance-covariance matrix of the

chain as explained in Appendix A. We can see from Table 1 that the acceptance rates
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are close to what is seen as optimal in MCMC (the adaptation targets an acceptance

rate of 0.234 as recommended in the literature). For the posteriors, the mean over

the set union of the last 1, 000, 000 data points of all ten sequences is given together

with the 95 percent credible interval, i.e. the 2.5 and 97.5 quantiles of the realizations

of the chain. Also shown is a popular diagnostic statistic for the convergence of the

Markov chain, the so called potential scale reduction factor R̂ proposed by Gelman

and Rubin (1992). This measure is based on a comparison of the variance of the

posteriors within samples and between samples, and is constructed in a way to be

limited from below by unity. A large scale reduction factor indicates insufficient

convergence signaling that longer simulations would be needed for convergence to

the target distribution, or that single runs have not sufficiently explored the target

distribution, and, therefore, their variances differ substantially from each other. Since

R̂ is a stochastic quantity, the table also shows its upper 95 percent bound (denoted

R95) computed on the base of the approximate distribution of R̂ derived by Flegal

et al. (2008). A typical recommendation is that R̂ should be below 1.1 for a Markov

chain to exhibit satisfactory convergence. In Figs. 1 to 3, we provide illustrations of

the development of the Markov chains of the behavioral parameters.

The results are dramatically poor: For the smallest sample size, T1 = 200, the

confidence diagnostic is often astronomically high for all behavioral parameters, indi-

cating that Markov chains of much longer sequences would be needed for convergence
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(if convergence could be achieved at all). Almost all behavioral parameters also have

credible 95 percent intervals for sample size T1 = 200, that are essentially identical

to those of their priors (a uniform distribution over the interval [0,1]). The only

exception is parameter b1 for which the credible 95 percent interval is concentrated

below its true value. The Markov chains in the bottom panel of Figs. 1 through

3 show that each chain is wandering around unsystematically without any apparent

attraction towards the “true” value. It is worth while to note that the reason for this

behavior does not lie in the construction of the chain. On the contrary, the adaptive

adjustment of the proposed distribution achieves an acceptance rate that is usually

considered optimal in the literature. As we will show below, this aimless movement

rather reflects the motion along a likelihood function which is extremely flat along

many dimensions. Having one or two orders more data at hand, T2 = 2, 000 or

T3 = 20, 000, improves many estimates gradually. For T2 = 2, 000, the improvement

is most pronounced for parameters a2 and b2, weaker for a1 and b1, and absent for ρ

and γ. For parameters a1 and b1, the different initialisations of the chain still lead to

distinctly different dynamic evolutions although they are now concentrated in a rel-

atively narrow interval around the true value. With large enough data T3 = 20, 000,

the chain appears to converge to a narrow interval for the four slope parameters of

the IS and Philipps curve. For parameters ρ and γ, no progress at all is observed even

for the largest sample size. This signals the clear danger that any naive estimation
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of one of these parameters of the model might just bring about any one of a number

of possible inconsistent estimates. The convergence diagnostic indicates this problem

by highlighting the lack of convergence even with very long samples, as none of the

behavioral parameters features a scale reduction factor that is anywhere close to its

target (of about 1.1)

The three variances of the random innovations appear well behaved with nicely

converging posteriors. Their R̂ statistics are hovering between 1 and 2, thus indicating

some tendency of convergence, but scope for improvements with still larger sequences.

While the chains of the innovation variances (not shown in the figures) typically

show less variability than those of the behavioral parameters even for small sample

sizes, they are nevertheless not identical across the 10 sequences: The intervals in

which they move appear slightly different, depending on the tendencies of the other

parameters which explains their not-fully-satisfactory convergence statistics.

Hence, practically all structural parameters are not identified in this model at

least for typical macroeconomic sample sizes of the order of 102 observations. For the

new (behavioral) parameters ρ and λ, not even a sample size of order 104 provides

for any improvement against our uninformative prior. One reason for this behavior

is a very flat gradient of the likelihood along many directions. This can even be seen

for a seemingly innocent parameter like σ1 for which we track the development of

partial likelihoods over different sample sizes, here extending the sample size even to
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T = 200, 000, in Fig. 4. As can be seen, the partial likelihood is almost flat over a

large range of values around the ‘true’ one. Fig. 5 shows a similar clear tendency for

a bivariate plot of the partial likelihood for γ and ρ (with the differences in likelihood

so small across a wide range of parameter values even for 200, 000 data points that

the global maximum is hard to spot). Fig. 6 shows a somewhat different behavior

in a bivariate plot of parameters a1 and a2 with a ridge at the true value a2 = −0.5

together with a low degree of sensitivity with respect to the other parameter, a1.

What are the deeper structural reasons for the problems to identify the underly-

ing parameters of the behavioral NKM model? To get some clue to the structural

properties that impede recovery of the ‘true’ parameters, we express the dynamics

of the observable quantities yt, πt and rt in the form of a system of three difference

equations with time-varying parameters P g
e,t and P π

e,t for the weight of extrapolative

expectations that summarizes the effect of the latent behavioral part of eqs. (2) and

(3):

20

























gt

πt

rt























=
1

∆























1− a1 + a1P
g
e,t a2c1(1− b1 + b1P

π
e,t)− a2P

π
e,t a2c3

b2(1− a1 + a1P
g
e,t) (1− a2c2)(b1P

π
e,t + 1− b1)− a2b2P

π
e,t a2b2c3

(b2c1 + c2)(a1P
g
e,t + 1− a1) c1(b1P

π
e,t + 1− b1)− (b2c1 + c2)P

π
e,t c3













































gt−1

πt−1

rt−1























+
1

∆























σ1 a2c1σ2 a2σ3

b2σ1 (1− a2c2)σ2 a2b2σ3

(b2c1 + c2)σ1 c1σ2 σ3













































u1,t

u2,t

u3,t























¸

(7)

with ∆ = 1 − a2(b2c1 + c2). The system of eqs. (7) is obtained after eliminating

the contemporaneous effects (coming with parameters a2, b2, c1 and c2) on the right-

hand side of eqs. (1). In the second part, we express the stochastic terms in the

form of three random variates drawn independently from the standard Gaussian with

variance of unity. One may note that the presence of both contemporaneous and

lagged endogenous variables in eqs. (1) could already constitue an impediment to

full identification of all parameters. In a dynamic model with a full matrix of both

contemporaneous and lagged effects, the reduced form analogue to eqs. (7) would only

contain half as many effects as there are parameters to estimate. Hence, an infinite

set of parameter values would be observationally equivalent. The rich literature on
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structural VAR models is to a large part concerned with finding auxiliary conditions

that allow identification of such a priori over-parametrized models (cf. Baumeister and

Hamilton, 2021). In linearized DSGE models, the structured parameters are functions

of the ‘deep’ economic parameters, and a necessary condition for identification is that

the number of dynamic effects in the VAR representation is not smaller than the

number of deep parameters one wishes to estimate. While our model is nonlinear, in

a linearized version this condition would be met, since we have 9 dynamic effects on

the right hand side of eq. (7) for six parameters to be estimated from this structure

(a1, a2, b1, b2, γ and ρ).

The resulting system is indeed relatively close to a linear system since both P
g
e,t

and P π
e,t fluctuate around 0.5 as in the equilibrium, g∗ = π∗ = r∗ = 0, so that

none of both forecast heuristics has an advantage over the alternative. What we can

see is that just as in the case of certain DSGE models (Canova and Sala, 2009), the

dynamic coefficients of the system of difference equations are complex functions of the

structural parameters. Considering the variance-covariance matrix of the shock terms

one notes that it has non-zero entries throughout which consist also of more or less

complex functions of the ‘deep’ parameters. This means that the observed variability

of each observed variable depends on the shocks to all three endogenous variables.

Considering, for instance, the variance of output growth, we would maintain the same

variance with decreasing σ1 and similarly decreasing a2 (in absolute value, since a2 is
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negative by definition).

Other complex interactions between structural parameters could lead to similar

compensating changes. The very flat shape of the objective function for many pa-

rameters makes it easy to compensate for the higher/lower values of some parameters

by appropriate changes of others. This problem is exacerbated by a low sensitivity of

the objective function with respect to individual parameters even in the case where

the remaining ones assume their ‘true’ values. Fig. 4 shows, for instance, that the

partial likelihood shows very little sensitivity for all values of σ1 from half the ‘true’

one to at least twice this value. This flatness explains why large data sets are needed

to obtain a posterior distribution that differs significantly from the prior.

If P g
e,t and P π

e,t were linear functions of the parameters γ and ρ, eq. (7) would

constitute a linear VAR system of first order. Its nine dynamic effects would, then,

constitute the information to extract the six behavioral parameters, a1, a2, b1, b2, γ

and ρ, and the variance part would form a system of three equations to retrieve σ1,

σ2 and σ3. Even then, however, the nonlinearity and multiplicative form in which

the behavioral parameters enter the structural coefficients might make identification

cumbersome. For instance, the first and third entries of the second equation are

equal to their counterparts in the first equation multiplied by two. Hence, at least

for certain sets of parameters, the dynamic coefficients for gt and πt are close to

colinear. The same actually applies to the variance-covariance matrix. The nonlinear
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effects contributed by parameters γ and ρ might further confound these obstacles to

identification of the behavioral parameters.

Lack of identification does, however, not necessarily prevent the use of the model

for inference on the systematic part of the dynamic evolution. Viewing the shocks as

noise that conceals the systematic motion of yt, πt and rt, we can use the estimated

parameters for filtering the conditional expectations. In Fig. 7, we use the posterior

means of one of the 10 Markov chains for the case T1 = 200, for filtering conditional

expectations comparing the results with alternative ones obtained on the base of the

true parameters. As Fig. 7 shows, filtering with the mostly biased estimates leads

to almost the same result as filtering using the ‘true’ parameter values. As it turns

out, the filtered trajectories are virtually identical for both sets of parameters for the

inflation and growth rates. We can also see in the right-hand panels of the figure

that the filtered fractions of fundamentalists are quite close to the true ones (because

of the absence of noise in the state equation, with the ‘true’ parameter values one

retrieves the ‘true’ fractions of the heuristics). In the example shown here there is

often a slightly higher fraction of fundamentalists estimated with the ‘wrong’ set

of parameter values, but the filtered fluctuations of the relative fractions of both

heuristics are nicely aligned with those of the underlying sample.
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4 An Alternative Specification of the Behavioral

NKM Model

While only one specification of de Grauwe’s behavioral NKM model has been studied

above, we have encountered similar problems of identifiability of parameters in other

versions as well, using alternative formalizations of the forecast heuristics. This begs

the question whether we have to expect lack of identification to be an intrinsic defect

of behavioral macroeconomic models. It actually turns out that this is not necessarily

the case. A slightly different version of model (1) indeed leads to apparent identi-

fication with nice convergence properties of all parameters (including ρ and γ), still

using the behavioral components specified in eqs. (2) and (3).3

The only change we make to the model is to base the Taylor rule on expected

quantities, rather than contemporaneous deviations from target. The modification

follows Clarida et al. (2000) and appears even closer to the spirit of the baseline

‘rational’ NKM approach:

rt = c1(Eπt+1 − π∗) + c2Egt+1 + c3rt−1 + ϵ3,t (8)

3Kukačka and Sacht (2023) also develop a version of the model in which all parameters are identified.
However, they arrive at identification by fixing a large number of the parameters of the original
model and so, probably, remove most of the interference between parameters visible in eq. (7).
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Note that this version of the behavioral NKM assumes that the central bank

forms its expectations in the same way like the general public, i.e. using the discrete

choice formalization of eqs. (2) and (3). In a recent paper, de Grauwe and Ji (2023)

compare the efficiency of monetary policy between a behavioral NKM with forward-

looking Talor rule as in eq. (8) and the version based on current macroeconomic

data of the previous section. They find that eq. (8) is less effective in stabilizing

macroeconomic outcomes. One might not expect a priori that this version is easier to

estimate since, on the one hand, the change to expectations now makes the nonlinear

behavioral dynamics also enter into the determination of rt (which had been linear

before), and, on the other hand, the parameters assigned to these components, c1 and

c2, are not entering anyway in the estimation exercise.

However, as Table 2 and Fig. 8 show, all posteriors are converging in this case

to their ‘true’ underlying values with a high degree of precision already obtained for

intermediate sample sizes T2 = 2000. This experiment exemplifies that identification

of parameters is, in principle, possible with highly nonlinear behavioral models. Fig.

8 depicts the development of the Markov chains exemplarily for parameters γ and

ρ. Note that in this case, also the notoriously difficult parameters of the discrete

choice part are well identified although for the three-digit sample sizes common in

macroeconomics there is still not much improvement away from the prior. However,

for longer samples the precision of the posteriors of γ and ρ is about the same as that
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of the linear NKM parameters in this setting. The key to identification is probably

the simpler format of the reduced form of this system:
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(9)

In eq. (9), we see that, in particular, the variance-covariance matrix features less

involved expressions of the structural parameters. In this system, identification of

the shock variables could be done sequentially: First, σ3 is trivially obtained as the

standard deviation of conditional expectations of interest rates. With σ3 determined

in this way, the first row provides σ1 (if a2 were known) and the second row finally

identifies σ2 (if b2 were obtained from the dynamic coefficients). The relative ease of

identifying ρ and λ might stem from the fact that the dynamic coefficients for rt with

respect to gt−1 and πt−1 only depend on the Taylor reaction coefficients, multiplied

by the current fraction of extrapolators, which is mainly governed by parameters ρ
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and γ.4

5 An Empirical Application

We proceed with a heroic effort to estimate the parameters of the modified behavioral

NKM model of the previous section with empirical data. We use data on the output

gap, inflation rate based on the consumer price index and the federal funds rate over

the long time interval from 1954, quarter 3 to 2021, quarter 3, a total of 269 obser-

vations.5 The data are computed as percentage deviations form their steady state to

conform to the framework used in the previous sections. The data transformation fol-

lows the recipe of Pfeifer (2021) for the specifications of the data to be used in DSGE

models in order to align the observation equations with underlying theory. A slightly

shorter subset of these data has been used recently by Kukačka and Sacht (2023) in a

related study of a version of the de Grauwe’s behavioral NKM framework. As before,

we fix the parameters of the Taylor rule and attempt to estimate the remaining nine

parameters. A simple regression indicates a very high degree of auto-correlation in

4Iskrev (2010) shows the following necessary condition for local identification of the deep parameters
of linearized DSGE models: The Jacobian of the stacked elements of the matrices of the reduced
form (i.e., a format similar to the ones in eqs. (7) and (9)) has to have full column rank. The
Jacobian in this case is defined as the matrix of the derivatives of all the entries of the matrix
of structural parameters that are not independent of the ‘deep’ economic parameters with respect
to the latter. If we linearize the time-varying components of the structural matrices of eqs. (9)
assuming that P

g

e,t and Pπ
e,t are both functions of γ and ρ, and that the linear approximations of

the functions are not identical, we indeed can easily demonstrate that the so-defined Jacobian has
full column rank (i.e. rank equal to 9, the number of parameters to be estimated). For eqs. (7),
the rank of the Jacobian is less obvious.

5I am grateful to Stephen Sacht for providing me with the transformed data.
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the interest rate series of 0.97. In contrast, the correlation coefficients for the out-

put gap and for inflation are substantially below 0.1 both. The usual Taylor rule,

thus, has been adopted in its usual sluggish form with reaction coefficients multi-

plied by 1-c3. The two coefficients, thus, amount to c1 = 1.5 ∗ 0.03 = 0.045, and

c2 = 0.5 ∗ 0.03 = 0.015 in both cases. To estimate the posterior we used the same

uniform priors as in the Monte Carlo experiments, again together with 10 indepen-

dent sequences of adaptive MCMC with a total of 2,001,500 draws in each. Table 3

shows the results based on the last 1,000,000 draws of those 10 chains.

As can be seen from Table 3, adaptation works equally well for the empirical

series as with the articificial ones. Convergence of the chain appears fully satisfactory

under the Gelmin/Rubin criterion for parameters b1, b2 and σ3 and nearly so for a2,

σ1 and σ2. The convergence indeed appears even better than for any of our previous

Monte Carlo experiments. However, the two crucial behavioral parameters, γ and

ρ, are characterized again by credible 95 percent intervals that are not too different

from those of their uniform priors so that the data does not seem to provide much

information on these parameters. We also estimated a VAR(1) model for comparison

(with c1, c2 and c3 fixed as for the behavioral NKM) which seemed to fit the data

better than the behavioral model. Since the behavioral components in the NKM

appear to be without much relevance for the fit of the estimation, the dominance

of the VAR model is not surprising as the NKM without its nonlinear behavioral
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components would essentially be a restricted VAR model.

Comparing in-sample root mean-squared errors of the one-period-ahead predic-

tions of the variable, the behavioral NKM falls also behind the VAR(1) for the out-

put gap, but it predicts inflation marginally better. As Fig. 9 shows, the differences

are, indeed, tiny, and both competitors track the empirical data relatively well. Also

shown in this graph are the predicted fractions of agents using fundamentalist fore-

casts for g and π which for both macroeconomic variables show wide swings back

and forth. How informative these results are is, however, questionable as the two

parameters ruling the choice of heuristics, γ and ρ, are apparently not very precisely

identified by our estimation.

6 Conclusion

The present paper has highlighted that behavioral NKM models might suffer from

a lack of identifiability of their ‘deep’ parameters, at least for sample sizes common

in macroeconomics. These findings explain why a recent stream of literature that

attempts to estimate more or less identical versions of a specification proposed by

de Grauwe (2012) appear by and large inconclusive and without any obvious overall

tendency concerning the behavioral parameters that are retrieved from various em-

pirical applications of this framework. As it turns out, the particular version of the

model used in many papers suffer from a very flat likelihood, that prevents, in par-
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ticular, the identification of the new behavioral parameters, even if an unrealistically

large number of data were available. Since the present approach has been based on

the exact likelihood of the data, it seems unlikely that alternative estimations used

in the literature (that all used some form of approximation to the likelihood) would

perform better. Of course, one could resort to ‘strong’ priors as much of the empirical

DSGE literature does. However, as the results for small samples show, this would

basically amount to the admission that the data itself does not contribute anything

to the identification. Such an approach could easily become completely circular when

authors embark on using priors concentrated at estimates of previous papers which

themselves would have been the outcome of an estimation using uninformative data.

Such lack of identification is not a new phenomenon in the applied macroeconomic

literature: lack of identification has been observed in various specifications of DSGE

models (e.g. Canova and Sala, 2009) and adding appropriate conditions for identi-

fication of a-priori unidentified model structures is the overarching topic of much of

the recent literature on structural VAR models.

In behavioral NKM models, the issue of identifiability has been basically ignored.

The present paper shows that such an omission could lead to serious flaws of any

attempt at empirical validation of such models that essentially render their results

meaningless. Like in other areas, identifiability should, therefore, be addressed before

one proceeds to estimation proper.
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As an alternative specification of Sec. 4 shows, it depends on the exact details

of the model set-up (just like in DSGE models) whether a certain parameter of a

behavioral NKM are identified or not. Interestingly, at least with enough data, in the

forward-looking version of the model even the ‘very deep’ parameters of the discrete

choice component for the selection of forecast heuristics can be retrieved, with an

efficiency of the estimates that does not differ too much from that of the traditional

linear parameters of the three-equation model. However, even for such a well-behaved

specification, the scarcity of macro data (with three-digit samples used for estimation

of ten or more parameters) constitutes a serious limitation in practice.
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Figure 1: Markov chains for parameters a1 and a2 for the model defined by eqs. (1) to
(3) from simulations with length T1 = 200, T2 = 2, 000 and T3 = 20, 000. The lengths
of the MCMC experiments is 2,001,500 in all cases, but only every 100th entry is
displayed. The straight solid lines depict the ‘true’ parameters of the underlying
simulated samples.

33



Figure 2: Markov chains for parameters b1 and b2 from the same MCMC runs as in
Fig. 1.
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Figure 3: Markov chains for parameters γ and ρ for the same MCMC runs as in Figs.
1 and 2.
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Figure 4: Partial likelihood for parameter σ1 for different sample sizes from T = 200
to T = 200, 000.
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Figure 5: Partial likelihood for parameters γ and ρ for a sample with size T = 200, 000.
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Figure 6: Partial likelihood for parameters a1 and a2 for a sample with size T =
200, 000.
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Figure 7: Left-hand side: Filtered trajectories for output gap and inflation for both
estimated parameters (means of the posterior of one MCMC run for a sample of size
T1 = 200) and ‘true’ parameter values. The estimated parameters were: a1 = 0.531,
a2 = −0.728, b1 = 0.117, b2 = 0.601, σ1 = 0.125, σ2 = 0.107,σ3 = 0.100, ρ = 0.801,
and γ = 0.306.

Right-hand side: Filtered trajectories of one of the latent variables, the frac-
tion of fundamentalists in the heuristic predictions of the output gap, g, and the
inflation rate, π. Note that because of absence of stochastic terms in the equations
governing the transitions of latent states, using the ‘true’ parameters enables one to
retrieve exactly the time development of these variables.
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Figure 8: Markov chains for parameters γ and ρ for the model defined by eq. (8)
together with the remaining components of the behavioral NKM of de Grauwe (2012)
with simulation lengths T1 = 200, T2 = 2000, and T3 = 20, 000. The lengths of
the MCMC experiments is 2, 001, 500 in all cases, but only every 100th entry is
displayed. The solid straight lines depict the ‘true’ parameters of the underlying
simulated samples.
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Figure 9:
Left-hand side: Filtered trajectories (i.e., conditional expectations) of the observed
variables g and π for the estimated model (means of the posterior distribution shown
in Table 3) for U.S. quarterly data.

Right-hand side: Estimated fractions of fundamentalists in the heuristic pre-
diction of output gap, y, and inflation, π.
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Table 1: Posterior distribution of parameters

mean 95% credible int. R̂ R95

a1 T1 0.444 0.045 0.857 11.156 42.924
T2 0.445 0.222 0.659 4.794 19.108
T3 0.512 0.464 0.589 2.979 5.763

a2 T1 -0.706 -0.969 -0.194 8.441 33.634
T2 -0.515 -0.629 -0.432 3.143 7.067
T3 -0.501 -0.518 -0.481 2.044 2.852

b1 T1 0.200 0.024 0.499 4.655 8.657
T2 0.512 0.128 0.800 8.395 25.066
T3 0.522 0.442 0.583 2.718 5.888

b2 T1 0.606 0.035 0.907 10.086 29.983
T2 0.506 0.389 0.777 5.310 15.956
T3 0.495 0.468 0.528 2.009 3.139

σ1 T1 0.125 0.085 0.160 2.958 7.338
T2 0.102 0.095 0.115 2.618 4.605
T3 0.100 0.098 0.102 1.798 2.388

σ2 T1 0.109 0.088 0.130 1.994 3.022
T2 0.101 0.093 0.115 3.320 5.121
T3 0.100 0.098 0.102 1.833 2.497

σ3 T1 0.102 0.087 0.121 1.550 2.128
T2 0.101 0.097 0.105 1.195 1.376
T3 0.100 0.098 0.101 1.294 1.548

ρ T1 0.581 0.012 0.985 18.060 54.387
T2 0.606 0.014 0.926 9.338 22.731
T3 0.506 0.007 0.936 13.943 40.015

γ T1 0.498 0.017 0.947 14.639 42.224
T2 0.371 0.006 0.979 16.610 69.094
T3 0.317 0.025 0.845 9.332 34.237

logl T1 603.469 558.302 635.120 8.489 65.105
T2 6210.893 6130.096 6325.278 10.009 58.206
T3 62775.981 62501.214 63161.274 81.371 212.384

Acceptance rate:
T1 0.238
T2 0.237
T3 0.236

Note: The table shows the parameter estimates and maximized likelihood values for the de Grauwe
(2012) model obtained from the posterior distribution. The underlying samples consisted of simula-
tions of 2, 001, 500 data points each. The table includes the mean parameter estimates and the 95%
credible interval of the posterior distribution. Adaptation of the proposal variance was started after
1, 500 periods, while the last 1, 000, 000 observations were used to infer the posterior distribution. R̂
is the convergence diagnostic by Gelman and Rubin and R95 its 95% upper bound.



Table 2: Posterior distribution of parameters

mean 95% credible int. R̂ R95

a1 T1 0.429 0.185 0.862 7.025 16.323
T2 0.521 0.463 0.595 1.816 9.954
T3 0.500 0.486 0.516 1.128 1.274

a2 T1 -0.451 -0.695 -0.206 4.478 14.881
T2 -0.500 -0.534 -0.466 1.469 2.632
T3 -0.499 -0.511 -0.489 1.413 1.774

b1 T1 0.512 0.065 0.829 7.061 212.309
T2 0.511 0.444 0.591 2.264 5.008
T3 0.501 0.483 0.522 1.592 2.326

b2 T1 0.402 0.146 0.567 4.617 21.892
T2 0.501 0.472 0.529 1.286 1.611
T3 0.500 0.490 0.510 1.236 1.473

σ1 T1 0.106 0.091 0.130 1.683 2.624
T2 0.100 0.096 0.105 1.362 1.664
T3 0.100 0.099 0.102 1.569 2.004

σ2 T1 0.112 0.095 0.133 1.544 2.186
T2 0.101 0.097 0.106 1.596 2.051
T3 0.100 0.099 0.102 1.387 1.705

σ3 T1 0.099 0.085 0.113 1.411 1.800
T2 0.101 0.097 0.106 1.474 1.852
T3 0.100 0.099 0.101 1.143 1.279

ρ T1 0.487 0.009 0.976 17.368 87.211
T2 0.448 0.175 0.637 5.365 26.125
T3 0.495 0.463 0.522 1.367 2.257

γ T1 0.296 0.066 0.730 9.145 81.956
T2 0.476 0.409 0.535 1.534 2.995
T3 0.503 0.480 0.530 1.369 1.916

logl T1 497.596 458.244 524.842 2.863 7.233
T2 5243.478 5165.910 5390.909 13.029 499.840
T3 52886.368 52530.816 53192.006 73.453 119.080

Acceptance rate:
T1 0.236
T2 0.237
T3 0.238

Note: The table shows the parameter estimates and maximized likelihood values for the modified de
Grauwe (2012) model obtained from the posterior distribution. The underlying samples consisted of
simulations of 2, 001, 500 data points each. The table includes the mean parameter estimates and
the 95% credible interval of the posterior distribution. Adaptation of the proposal variance was
started after 1, 500 periods, while the last 1, 000, 000 observations were used to infer the posterior
distribution. R̂ is the convergence diagnostic by Gelman and Rubin and R̂ its 95% upper bound



Table 3: Posterior distribution of parameters for empirical data

mean 95% credible int. R̂ R95

a1 0.431 0.093 0.689 2.652 4.070

a2 -0.087 -0.239 -0.009 1.124 1.458

b1 0.687 0.518 0.851 1.037 1.094

b2 0.064 0.026 0.102 1.003 1.006

σ1 0.912 0.816 1.036 1.237 1.478

σ2 0.476 0.430 0.526 1.121 1.245

σ3 0.204 0.186 0.224 1.008 1.017

γ 0.748 0.039 0.968 3.219 3826.961

ρ 0.413 0.050 0.866 1.492 2.212

logl -482.666 -494.176 -475.289 2.456 3.585

logl(VAR(1)): -453.795

Acceptance rates: for MCMC estimation of behavioral MKM: 0.231

In-sample
RMSEs:

BNKM VAR(1)

g 0.952 0.901

π 0.467 0.478

r 0.204 0.199

Note: The table shows the parameter estimates and maximized likelihood values for the empirical
US data under the modified de Grauwe (2012) model obtained from the posterior distribution.
The underlying samples consisted of simulations of Markov chains of 2, 001, 500 data points each.
The table includes the mean parameter estimates and the 95% credible interval of the posterior
distribution. Adaptation of the proposal variance was started after 1, 500 periods, while the last
1, 000, 000 observations were used to infer the posterior distribution. R̂ is the convergence diagnostic
by Gelman and Rubin and R95 its 95% upper bound. The bottom part of the table compares the
root mean squared errors (RMSEs) of conditional expectations of the state variables obtained from
the behavioral NKM and a VAR(1) process.
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Appendix A

Adaption of the Proposal Distribution in Markov

Chain Monte Carlo

Satisfactory performance of an MCMC estimation requires a sufficiently high (but

also not too high) acceptance rate of the proposals. To define a priori a distribution

of the proposals that provides for a reasonable acceptance rate is challenging as accep-

tances depend on the properties of the unknown posterior distribution. Many applied

papers, therefore, include a more or less extended ‘experimental’ part in which differ-

ent distributions of the proposals are tested before moving to the estimation proper.

The statistics literature has developed a more systematic approach towards selection

of an appropriate proposal distribution, namely Adaptive Markov Chain Monte Carlo

as proposed by Andrieu and Thomas (2008) and Rosenthal (2011). Their proposed

algorithms use iterative adjustments of the proposal distribution ‘on the fly’ using the

statistical features of those proposals that have already been accepted. One would,

then, for instance, update the mean µξ and variances Σ̂ξ of the proposal distribution
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as follows:

µξ+1 = µξ + γξ+1(θξ+1 − µξ)

Σ̂ξ+1 = Σ̂ξ + γξ+1((θξ+1 − µξ)(θξ+1 − µξ)
T − Σ̂ξ).

(A1)

The degree of adaption, identified by the factor γξ, is required to vanish asymptotically

to guarantee converge of the chain. In order to optimally scale the variance-covariance

matrix, one adds a scale factor λ when drawing new proposals θ∗, using λΣ̂ξ instead

of Σ̂ξ from eqs. A1 which also undergoes adaptation as the chain evolves:

ln(λξ+1) = ln(λξ) + γξ+1(αξ − α∗). (A2)

This approach allows to target a particular acceptance rate, α∗, which for some toy

examples has been found to be equal to 0.234. We also adopt this target here. As can

be seen in Tables 1 through 3 this adaptive adjustment works well with the artificial

and empirical data. Fig. A1 shows the typical oscillatory convergence of λξ that has

been observed in all our applications. We also experimented with higher targets such

as α∗ = 0.4. While these could also be achieved, the resulting Markov chain showed

no superior performance compared to the baseline case (confirming the conjecture

that the acceptance rate should also not be too high).

It remains to report one subtle detail: To avoid that the variances of the proposal

distribution get stuck at zero during the transient adjustment, a small fraction of
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Figure A1: Development of the scale adjustment factors λ of the distribution of
proposals for the 10 MCMC runs of the original de Grauwe model formalized by eqs.
1 through 3 with sample size T1 = 200.

the initial variance-covariance matrix has been added, i.e. Σ̂ξ + ϵΣ̂0, where Σ0 is the

variance that has been used in the initial phase of 1, 500 draws without adaption. For

Σ0, a diagonal matrix with all elements on the main diagonal equal to 0.01 has been

used.
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