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Abstract
The time people spend traveling has far reaching implications for their health and for environmental 
outcomes. Urban planning paradigms – such as that of the “15-minute city” – have consequently endeavoured 
to bring key services and amenities to residents within a walkable or cycleable 15-20-minute distance. 
These efforts notwithstanding, the policy levers that influence travel-related time allocation remain 
poorly understood. Drawing on a panel of household travel data from Germany covering 2005 to 2020, 
the present study analyses the role of two such levers – bicycle/pedestrian paths and fuel prices – as 
determinants of time allocation across modes. We start with a descriptive analysis that identifies a stable 
average travel time expenditure ranging between 65 – 70 minutes for women and 75 – 80 minutes for 
men until 2020, when it dropped precipitously as COVID-19 spread. We subsequently estimate fractional 
response models to identify the influence of the policy variables on time expenditures across motorized, 
nonmotorized, and public transit modes. We complete the analysis by feeding the model estimates into the 
World Heath Organization’s on-line Health and Economic Assessment Tool (HEAT) to quantify the health and  
environmental impacts of the planned expansion of the bike path network in the city of Munich, comparing 
this with the impact of Germany’s recently introduced carbon tax on fuel. Both measures yield substantial 
benefits, with the implementation of the tax yielding a considerably higher benefit/cost ratio owing to its 
lower cost of implementation.
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1 Introduction

The formulation of policies that balance accessibility with environmentally be-

nign travel modes is among the more pressing challenges confronting urban plan-

ners. This challenge is particularly evident in Europe, where greenhouse gas

emissions from transportation are on the rise, increasing by almost 30% since

1990 (European Commission, 2020). Beyond its climate impacts, the European

Environmental Agency identifies transport as one of the main sectors contribut-

ing to emissions of local air pollutants. Exposure to fine particulate matter, as

generated from starting and operating a vehicle (Drozd et al., 2016; Frondel et al.,

2021), was estimated to cause about 417,000 premature deaths in Europe in 2018

(EEA, 2020).

Over the past three decades, European countries have introduced a variety of

demand-side measures to curb the transportation sector’s growing environmen-

tal footprint, most recently embodied in the EU’s Smart and Sustainable Mobility

Strategy (COM/2020/789 final). One such collection of measures, collectively

referred to as nature-based solutions (NbS), aim to integrate ecosystem services

and infrastructure in urban planning and thereby mitigate anthropogenic stres-

sors such as air and noise pollution. NbS are complemented by other planning

paradigms, such as that of the “15-minute city,” which places time as its focal

point, the objective being to encourage lifestyles that are physically active and

low-emissions by situating urban infrastructure and amenities such that people

can walk or cycle to any given activity within a time frame of 15-20 minutes (Al-

lam et al., 2022).

Achieving these objectives raises the question of what policy measures can

be availed to influence people’s travel time expenditure toward more active and

less polluting modes of travel. One line of inquiry focuses on the relationship

between urban form, physical activity (PA), and health and happiness. Physi-

cally active transportation, in particular, has been shown to improve air quality

and reduce various health impairments, including cardiovascular disease and di-

abetes (Woodcock et al., 2011; Maizlish et al., 2013; Stevenson et al., 2016), while
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outdoor PA contributes to mental well-being (Thompson Coon et al., 2011; Lahart

et al., 2019; Remme et al., 2021). As documented in a systematic review by Wood-

cock et al. (2011), several studies have quantified a dose-response relationship

between the time spent in non-vigorous physical activity and improved health,

highlighting the potential for urban planners to positively influence air qual-

ity and health through land-use planning that encourages nonmotorized modes

(Stevenson et al., 2016). Many such initiatives explicitly position NbS as a source

of betterment, recognizing the relationship between experiencing nature and be-

ing mentally and physically healthier. Fully exploiting this potential, however, is

currently hampered by limited understanding of how people’s mobility behavior

responds to variables over which policy-makers have leverage, such as transport

infrastructure and fuel costs, and then connecting these responses to health im-

pacts and environmental outcomes.

The present paper takes up this issue by drawing on household survey data

from Germany to model the determinants of travel time expenditures across modes.

Time is an important outcome in policy assessments of urban planning because

of its direct relevance for many dimensions of welfare. In this study, we are par-

ticularly interested in quantifying the effect of two regionally-measured policy

variables: the coverage of bicycle/pedestrian paths and the fuel price. Employ-

ing a theoretical framework adopted from Bhat and Misra (1999), the relation of

these variables to time allocation is framed as a utility maximization problem,

from which an empirical counterpart in the form of a fractional response model

is derived. We estimate the model using individual-level travel diary informa-

tion from the German Mobility Panel (MOP by the German acronym), identifying

the effect of the explanatory variables on time spent across several categories: at

home, at an out-of-home destination, and traveling, with the latter distinguished

by mode. This set-up allows us to gauge how changes in each of these categories –

expressed in minutes – connects to health and environmental outcomes by an in-

tegrative assessment that joins the econometric estimates with the World Health

Organization’s (WHO) Health Economic Assessment Tool (Kahlmeier et al., 2020)
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(referred to as HEAT).

Our work thereby builds on several studies – comprehensively reviewed by

Litman (2024) – that find that improved walking and biking conditions are pos-

itively associated with nonmotorized transport and transit use, and negatively

associated with car use (Buehler and Pucher, 2012; Guo and Gandavarapu, 2010;

Yang et al., 2021). The question of causality is an issue that looms large in such

research, particularly as regards the likely endogeneity of location choice: To the

extent that people choose where to live based on their transportation preferences,

studies that aim to estimate the effect of landscape features such as infrastructure

face the challenge of disentangling causation from correlation. Various identifica-

tion strategies have been employed to address this challenge, including compar-

ative analyses (Pucher and Buehler, 2006), instrumental variables (Holian, 2020;

Vance and Hedel, 2008), and sample selection models (Kayser, 2000; Frondel and

Vance, 2017). Cao et al. (2009) undertake a systematic review of such studies and

conclude that most find a statistically significant relationship between measures

of urban form and travel behavior, usually measured with respect to individual

modes. Focusing specifically on cycling, Mölenberg et al. (2019) review studies

that strive to causally infer the impacts of infrastructural interventions, and like-

wise conclude that the majority finds statistically significant effects. In the present

study, we employ an instrumental variable via the control function method to ad-

dress the potential endogeneity of our measure of bicycle/pedestrian paths. Fol-

lowing Duranton and Turner (2018), the instrument is derived from subterranean

measures of the earth’s surface, the expectation being that this is correlated with

transport infrastructure but not with travel decisions.

Among our key results, we find a stable average travel time expenditure rang-

ing between 65 – 70 minutes for women and 75 – 80 minutes for men until 2020,

when it dropped precipitously as COVID-19 hit. This stability notwithstand-

ing, we find substantial scope for policy to influence time allocation across travel

modes, identifying positive effects of both paths and fuel prices in increasing time

spent using nonmotorized travel. We complete the analysis by feeding the econo-
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metric estimates into HEAT to quantify the health and environmental impacts of

the city of Munich’s planned expansion of the bicycle/pedestrian path network,

and compare this with a price-based measure that, following Germany’s Climate

Action Programme 2030, currently levies a carbon tax of 10 cents per liter of fuel.

We find that both measures yield positive net benefits, but that the carbon tax has

a much higher benefit-cost ratio, driven largely by the relatively low administra-

tive costs of its implementation.

2 Data and Analytical Approach

2.1 Data

The main data source draws from the 2005-2020 waves of the German Mobility

Panel (MOP, 2024), a representative multi-year travel survey financed by the Ger-

man Federal Ministry of Transport and Digital Infrastructure and administered

by the Karlsruher Institut für Technologie. All members of participating house-

holds are surveyed daily for a period of one week over a maximum of three years

in the autumn. After three years, they exit the panel and are replaced by a new

cohort of households. We eliminate households who reported taking a vacation

during the survey period and we exclude trips taken by plane. Also, respondents

under 18 are excluded. The resulting estimation sample comprises 15,199 respon-

dents from 9,761 households. 6,315 respondents participate in one survey year,

4,715 in two, and 4,169 in all three, yielding 28,252 observations in total. To cor-

rect for the non-independence of repeat observations over multiple time points in

the data, the regression disturbance terms are clustered at the level of the individ-

ual, so that the estimates of the standard errors are robust to this survey design

feature.1

During the survey, respondents keep a travel diary that records the details

1We also ran the analysis on randomly selected subsets of the data that covered the entire
period and ensured that no person appeared more than once in the estimation sample, which
revealed the regression coefficients to be robust. The code for producing these and all other results
presented in the paper can be obtained from the corresponding author. The data can be obtained
from the Clearingstelle Verkehr at the German Aerospace Center (https://daten.clearingstelle-
verkehr.de/192/).
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of each trip, including the departure and arrival time, the mode used, the trip

purpose, and the distance traveled. Based on these entries, we calculate the time

spent traveling by mode, as well as the time spent at home and at an out-of-home

destination for all 1440 minutes of the day, from which we calculate the respec-

tive shares over the course of a 7-day week. These shares are presented in the top

panel of Table 1, along with a suite of socioeconomic and demographic control

variables in the lower panel. The variables home and away measure the share of

time spent at home or at an out-of-home destination,2 while motorized, nonmotor-

ized, and transit measure the share of time spent traveling by mode. Specifically,

motorized transport is by car or motorcycle, nonmotorized is by foot or bike, and

transit is by any mode of public transportation.

Table 1: Descriptive statistics

Variable Description Mean St. Dev

Home Share of minutes spent at home 0.766 0.126
Away Share of minutes spent at an out-of-home

destination
0.186 0.113

Nonmotorized Share of minutes spent on bicycle or walking 0.010 0.014
Motorized Share of minutes spent in cars or motorcycle 0.030 0.025
Transit Share of minutes spent in public transit 0.009 0.020

Path density Density of bike paths in residential zone 0.783 0.937
Fuel price Retail fuel price (10 cents/liter) 13.071 1.522
Female 1 = Female 0.514 0.500
Posths 1 = Has post high school degree 0.482 0.500
Full-time 1 = Respondent is full-time employed 0.366 0.482
Part-time 1 = Respondent is part-time employed 0.166 0.372
Age 66 1 = Respondent is 66 or older 0.276 0.447
Cars Number of cars in household 1.381 0.868
Low income 1 = Household in lowest 25% of income dis-

tribution
0.250 0.433

Number em-
ployed

Number of employed in household 1.069 0.908

Young kids 1 = kids younger than 9 in household 0.097 0.296
Porous Share of highly porous subsurface in resi-

dential zone
0.382 0.312

Figure 1 plots the point estimates and 95% confidence intervals of the daily av-

erage time spent traveling with any mode between 2005 and 2020, distinguished

by gender. Three features stand out. First, consistent with the hypothesis of a con-
2The category away includes trips such as Rundgänge, which are walks or cycling trips that

begin and end at home with no intermediate stop, i.e. walks, jogs and cycling tours.
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stant travel-time budget – whereby people across locations and time have been

observed to travel "70 minutes plus or minus ten" per day (Ahmed and Stopher,

2014), the time spent on daily travel has remained remarkably stable over the

years through 2019, a possible reflection of a physic limit on the amount of time

people are willing to travel (Metz, 2008). Second, with an average of 77 minutes

per day, men spend about 8 more minutes traveling than women, a difference

that is statistically significant at the 5% level. Last, the effects of the COVID-19

pandemic in 2020 are clearly visible. Both women and men decreased travel by

about 21 minutes.

Figure 1: Daily minutes of travel by women and men

The two key explanatory variables of interest are the fuel price and path den-

sity. The fuel price is obtained in a separate survey of the MOP carried out yearly

in the spring. Over a 6 week period, respondents record the price paid for fuel –

whether diesel or petrol – with each visit to the gas station. We use this data to

calculate the average fuel price by year and county recorded in the data, resulting

in a panel of regional diesel and petrol prices spanning 2005-2020. Households

owning an electric car, which comprise less than 1% of the sample, are not in-

cluded in the analysis. Using a household identifier, we merge the fuel prices

with the travel data recorded in the fall survey, assigning the petrol price if the
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household’s car stock is exclusively petrol and the diesel price if the household

has at least one diesel car.3 Households not owning a car, about 13% of the sam-

ple, are assigned the petrol price.4

The measure of path density is derived from shapefiles obtained from Open

Street Map (OSM, 2017) and merged with the MOP data using the open-source

software QGIS. This merge was facilitated by using indicators recorded in the

MOP for the 3-digit zip code and the county in which the household resides. The

average size of a 3-digit zip code is 532 square kilometers, while the average size

of a county is 814 square kilometers. To achieve a higher spatial resolution, we

intersected two shapefiles of the zip code and county boundaries and used the

polygons created by this intersection to identify the household’s location. This

process created a layer having a total of 1413 polygons across Germany, with

an average size of 253 square kilometers. Drawing on the data from OSM, we

then calculated the length in kilometers of bicycle/pedestrian paths per square

kilometer of the polygon, depicted in Figure 2, which also shows the location of

Munich covered in the case study below.

Along with the variables listed in the bottom panel of Table 1, the specification

is completed by state X year interactions, which serve to control for time-varying

influences spanning Germany’s 16 states over the 16-year coverage of the data.

2.2 Theoretical and econometric model

The decision of how to temporally space one’s daily activities is a resource al-

location problem, one that is subject to the constraint of a 24-hour day. Adopt-

ing a simple theoretical framework developed by Bhat and Misra (1999) to study

discretionary time allocation, we formalize this decision as one of allocating the

hours of the day between the time spent at home, the time spent at an out-of-

3To account for the changes in the price level between the spring, when the fuel price data
is recorded, and preceding fall, when the travel data is recorded, we apply a weight constructed
from a time-series of monthly fuel prices published by the fuel company Aral (2023). The price
series is additionally deflated using a consumer price index for Germany obtained from Destatis
(2023a).

4Members of these households may still engage in some amount of driving using a borrowed
car or one obtained through carsharing.
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Figure 2: Bike/pedestrian path density per square kilometer
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home destination, and the time spent traveling by motorized, non-motorized,

and public transit modes to maximize utility. This yields five categories of activi-

ties, indexed by j. Letting f j be the continuous share of time allocated to category

j, the utility function is assumed to take a logarithmic form written as:

Uj = αj ln( f j), αj > 0 (1)

where αj is a category-specific preference term. The functional form of Equation 1

is consistent with the assumption that increases in the time allocated to category

j increase utility at a decreasing rate. Two additional assumptions are made, the

first being that utility is additive, equal to the sum of the utilities from the five

individual categories. The second is that αj can be written as eβ jx, where x is a

vector of exogenous variables and β j is a vector of parameter estimates associated

with category j. Given these assumptions, the optimization problem is:

Maximize: U( f1, f2, f3, f4, f5) =
5

∑
j=1

eβ′jx

subject to
5

∑
j=1

f j = 1, f j > 0, j = 1, 2, 3, 4, 5.

(2)

The corresponding Langrangian function L is expressed as:

L =
5

∑
j=1

eβ′jx ln( f j) + λ

(
1 −

5

∑
j=1

f j

)
(3)

Taking the partial derivatives of the above function with respect to the shares

f j and the multiplier λ obtains the first-order conditions, comprising six equations

with six unknowns. Solving this system yields the optimum fractional allocation

of time to each category:

f ∗j =
eβ′jx

5
∑

h=1
eβ′hx

, (4)

The shares in Equation 4 add to one and are therefore interrelated; when one

share increases, at least one other necessarily decreases. The multinomial link

function can be used to create a quasi-likelihood model that allows for this cor-
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relation. Following Mullahy (2015), the model is estimated by maximizing the

log likelihood of a regular multinomial logit model using the shares as depen-

dent variables. We estimate the model with Stata 14.0 using the fmlogit package

authored by Buis (2023).

Among the explanatory variables included in vector x, path density is a poten-

tially endogenous measure given that people may settle near such infrastructure

based on their preference for (or aversion to) nonmotorized (motorized) trans-

port. To mitigate bias, we avail of an instrumental variable that is argued to be

correlated with path density but, conditional on the other covariates, uncorre-

lated with the outcome variable. Borrowing from Duranton and Turner’s (2018)

analysis of the effect of land use on car-dependency in the US, the instrument

measures variation in the composition of the subterranean aquifer. Data to con-

struct the instrument is taken from Germany’s Federal Institute for Geosciences

and Natural Resources (BGR, 2023), which publishes a shapefile that maps the

subterranean surface in four categories according to the degree of porosity. We

use this data to calculate the share of the household’s polygon of residence in the

highest category ("highly porous"), denoting the instrument as porous. Given that

bicycle/pedestrian paths are typically paved in urban areas, and urban areas are

predicted by the location of aquifers, we expect a positive correlation between

porous and path density, an expectation that is empirically verified below.

Owing to the nonlinearity of the fractional response model, estimation pro-

ceeds in two stages using the control function method. Stage one runs an OLS

regression of the endogeneous explanatory variable, path density, on all the ex-

ogenous variables, z, from which the residuals, v are obtained. Stage two runs

the fractional response model on path density, z and v. The coefficient on v serves

as a heteroskedasticity-robust Hausman test of the null hypothesis of exogeneity;

if statistically significant, exogeneity is rejected (Wooldridge, 2015). The stan-

dard errors are adjusted for the two-step estimation using bootstrapping, with

200 replications.
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2.3 Interface with HEAT

The estimates from the econometric model quantify the effects of the explanatory

variables on changes in time allocation, expressed in minutes. These changes

are entered in HEAT, which uses city-specific background data to calculate the

associated impacts on premature mortality and CO2 emissions. Figure 3 provides

an overview of HEAT and its link with the econometric model. The key user-

provided inputs are the changes in time spent with nonmotorized, motorized,

and public transport from a policy intervention, such as the expansion of the

bicycle path network, and the associated costs.5

Figure 3: Econometric/HEAT interface

HEAT’s calculation of changes in premature mortality recognizes that walking

and cycling confer a protective benefit through improved fitness but also expose

people to health-impairing air pollution. Based on a meta-analysis of the epi-

demiological literature, HEAT consolidates these effects and assigns relative risk

(RR) factors. The RR assigned to biking (walking) is 0.90 (0.89), meaning that cy-

5Other inputs, which are optional, include whether the transportation is in traffic or away
from traffic and the uptake period.
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clists (pedestrians) are 10% (11%) less likely to die from all causes combined than

a population of non-cyclists (non-pedestrians). These figures are then scaled by

the local volume of the respective mode and the exposure using data measured

at either the country or city level, depending on the scale of the intervention ana-

lyzed. A separate category for crash risk is assigned to cyclists based on the local

incidence of cycling and of fatal crashes. From these inputs, the health impacts

in terms of prevented premature deaths is calculated. HEAT further allows mon-

etizing these impacts with country-specific measures of the value of a statistical

life (VSL) based on a comprehensive review of VSL studies by the OECD (2012).

The VSL for Germany is $4,308,000.

HEAT calculates changes in carbon emissions by assessing user-inputted modal

shifts from motorized travel and/or public transit to walking and/or cycling (or

vice versa) under the alternative policy scenarios. These changes in travel activity

are converted into saved carbon emissions by considering country-specific oper-

ational emissions and energy supply emissions. The former includes background

values on fuel splits, vehicle fleet composition, and ambient temperature, among

other factors, while the latter includes background values on well-to-tank emis-

sions for various transport fuels. The calculation also includes vehicle life-cycle

emissions that considers embedded carbon emission factors for materials and en-

ergy used in vehicle manufacturing. To monetize the changes in emissions for

Germany, HEAT assigns a social cost of carbon (SCC) that varies by year over the

time horizon of the analysis. In the present application, this value averages $182

per metric ton of CO2, slightly higher than the $180 figure used by the German

Environmental Agency (Löffler, 2021) and slightly lower than the preferred value

of $185 forwarded by Rennert et al. (2022).

3 Results

Table 2 presents the main coefficient estimates from two fractional response mod-

els, the latter distinguished by the application of the control function method to

instrument for path density. We explored two specifications for the modeling of
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path density, one in which we enter the variable linearly and one in which we ad-

ditionally include its square to allow for a nonlinear effect. Following Wooldridge

(2015), we also include the square of the residual. This latter specification recog-

nizes the possibility that the expansion of bike paths has a diminishing effect with

increased coverage. Having found the coefficients of path density and its square

to be jointly statistically significant across the Nonmotorized and Transit categories,

we focus on this quadratic specification in the discussion that follows.

The full set of model estimates, including those using the linear specification

of path density and those from the first-stage model, are presented in the appendix.

As expected, the first-stage model documents a positive and statistically signifi-

cant association between path density and porous (Table A.1). The F-statistic of the

model is 6228, far exceeding the threshold of 10 below which weak instruments

may be of concern (Staiger and Stock, 1997).

Noting that Home is the base category, the pattern of estimates in Table 2 com-

ports with intuition. Based on the estimates from Model I, increases in bike path

density are associated with higher time shares spent in the Away, Nonmotorized,

and Transit categories. In all three cases, the magnitude of the effect diminishes as

path density increases. A negative association is seen between path density and

motorized transportation, though with no evidence of a nonlinear effect. Fuel

prices likewise have a negative and statistically significant effect on motorized

transportation, contrasted by a positive effect on nonmotorized transportation.

Turning to Model II, which instruments for the variable path density, a chi-

square test indicates that the estimates of the residual terms are jointly significant

(χ̃2= 58.13), which suggests rejecting the null hypothesis of no endogeneity. Nev-

ertheless, the effect of controlling for the residuals on the other estimates appears

to be moderate. The estimates of the variable fuel price are statistically indistin-

guishable between Models I and II, while the difference in the effect of path density

between the models is more difficult to compare given the quadratic specification

of the variable. One basis for comparison is given by the implied saturation point,

when the estimated effect reaches zero. The saturation point for path density

13



equals 7.65 based on the estimates from Model II (calculated as βpath/-βpath2).

This value is slightly beyond the maximum value of 7.37 observed in the data,

which is recorded for the city of Munich. The corresponding value derived from

Model I equals 3.92, which is in the top 3% of values observed in the data. Taken

together, both models suggest that most towns in Germany have scope for elic-

iting additional active travel through the expansion of bicycle/pedestrian paths,

even if a handful are approaching (or may have exceeded) a saturation point.

Table 2: Select coefficients, fractional response model (FRM)

I II
FRM IV-FRM

Away
Path density 0.047∗∗∗ (0.010) 0.015 (0.014)
Path density2 -0.004∗ (0.002) -0.001 (0.003)
Fuel price -0.002 (0.005) -0.001 (0.005)
Residual 0.036∗∗ (0.013)
Residual2 -0.008 (0.005)
Nonmotorized
Path density 0.243∗∗∗ (0.021) 0.306∗∗∗ (0.029)
Path density2 -0.031∗∗∗ (0.004) -0.020∗∗ (0.006)
Fuel price 0.040∗∗∗ (0.012) 0.038∗∗∗ (0.011)
Residual -0.104∗∗∗ (0.025)
Residual2 -0.017 (0.010)
Motorized
Path density -0.110∗∗∗ (0.016) -0.113∗∗∗ (0.018)
Path density2 0.006 (0.004) -0.007 (0.006)
Fuel price -0.072∗∗∗ (0.006) -0.071∗∗∗ (0.007)
Residual 0.028 (0.017)
Residual2 0.024∗∗ (0.009)
Transit
Path density 0.395∗∗∗ (0.034) 0.510∗∗∗ (0.050)
Path density2 -0.041∗∗∗ (0.006) -0.080∗∗∗ (0.011)
Fuel price 0.031 (0.021) 0.029 (0.019)
Residual -0.060 (0.038)
Residual2 0.071∗∗∗ (0.016)
Control variables Yes Yes
State×Year Yes Yes
N 28252 28252
Bootstrapped standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Further insight into the effect sizes of the estimates can be gleaned by refer-

encing the conditional expectation for each equation:
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)
[
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] , j = 2, ..., J (5)

and differentiating to obtain the partial effect, PE, of the kth regressor on the jth

share:
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[
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]
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[
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·
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[
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(
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)]
[
1 + ∑J

h=2 e(β′
hxi)
]
 (6)

We multiply Equation 6 by 1440 to enable interpretation of the PE in terms of the

change in daily minutes resulting from a unit change in the explanatory variable.

As this calculation yields a unique PE for every observation i in the data, we

report the estimated average partial effects (APEs), APE = 1
N ∑N

i=1 PEijk.6 The

APE for a given explanatory variable across categories of the dependent variable

logically sums to zero, reflecting the constraint of 24 hours in the day.

Figure 4 presents the APEs for path density. The confidence intervals of the

instrumented estimates are generally larger, but in all cases overlap with the non-

instrumented estimates. A unit increase in the length of paths per square kilo-

meter is associated on average with a 3.8 minute increase in time spent on non-

motorized transportation per day. The non-instrumented estimate is lower at 2.5

minutes, but the difference is not statistically significant. Path density likewise

has a positive effect on time spent with transit, with the point estimates ranging

between 3.5 and 3.8 minutes. This possibly reflects complementarities between

rail and bike travel in Germany’s public transit system, where patrons can typi-

cally pay a surcharge to travel with their bicycle. More generally, it aligns with

the widely documented synergies between walkability and transit usage (Alsha-

lalfah and Shalaby, 2007; Ryan and Frank, 2009; Litman, 2024). Conversely, in-

creases in path density is negatively associated with motorized transportation,

with the reduction in daily time exceeding just over 5 minutes according to the

6In calculating the APE of path density, we adjust Equation 6 to accommodate the quadratic
specification, replacing instances of βk with (βk1 − 2βk2 path density), where βk1 is the coeffi-
cient of path density and βk2 is the coefficient of path density2.
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Figure 4: Average Partial Effect (APE) of bike path density

instrumented estimate.

Figure 5 presents the APEs for a 10-cent increase in the fuel price, which cor-

responds roughly to the carbon tax on fuel recently introduced by the German

government (see below). In this case, the point estimates and confidence inter-

vals of the two models are nearly identical. As with path density, increases in the

fuel price increase time spent on nonmotorized transport while decreasing time

on motorized transport, with estimates of about 0.58 and -2.93 minutes, respect-

fully.

Table 3: Elasticities of path density and fuel price with respect to time allocation

Home Away Nonmotorized Motorized Transit
Path density -0.003 0.007 0.207 -0.097 0.228
Fuel price 0.022 0.008 0.522 -0.886 0.378

To get a further sense of the magnitude of the estimates, Table 3 presents the

elasticities derived from the point estimates of the instrumented models in Fig-

ure 4 and Figure 5.7 A 10% increase in path density is associated with a roughly

2% increase in time with nonmotorized transport and with public transit, while

it is associated with about a 1% decrease in time spent with motorized transport.

7The elasticities are calculated by the product: APE ∗ (x̄/ȳ), where x̄ is the mean value of path
density (or fuel price) and ȳ is the mean number of minutes in the respective category.
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Figure 5: Average Partial Effect (APE) of fuel price

These findings are broadly in line with the literature exploring the link between

land-use factors and transportation. Many of these studies focus on vehicle kilo-

meters traveled (VKT) as it relates to various dimensions of density, finding elas-

ticities that typically fall well below 0.5 (see Table 7 and the associated discussion

in Litman (2024) for an overview). Turning to the fuel price, the derived elastic-

ities are larger, reaching nearly 0.9 for the motorized category. While these esti-

mates are on the high side of fuel price elasticities found in the literature, which

likewise focuses on VKT, they fall within the range of estimates from Germany

(Frondel et al., 2008; Keller and Vance, 2013). Frondel et al. (2012), for example,

obtain fuel price elasticities ranging between -0.56 and -0.81 using quantile re-

gression methods.

4 Benefit-cost ratios (BCRs) of Paths and Prices

Increases in cycling and walking from infrastructure and price-based interven-

tions result in economic benefits to society through different channels, two promi-

nent ones being reduced premature mortality and reduced carbon emissions. At

the municipal level, many cities in Germany have plans in place to increase the
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network of bicycle/pedestrian paths, while at the federal level, a carbon tax was

introduced in 2021 amounting to €25/ton, or roughly a 7 cent per liter increase in

the price of petrol, to be increased to €55/ton by 2025 (Wettengel, 2024). This sec-

tion undertakes a comparative analysis that quantifies the benefits of these two

measures for the city of Munich by linking the econometric estimates with the

WHO’s HEAT application. While we assess each measure individually, we note

that the intent is not to rank the superiority of one against the other. Indeed, the

ideal policy may well involve a combination of both policies to take advantage

of complementarities between them, an issue that goes beyond the scope of the

present analysis.

Munich has long taken a pioneering role in the promotion of urban bicycle

mobility tracing back to the first “Transport Development Plan – Bicycle Traffic

(VEP-R)” in 1986, which set the framework for an extensive network of bicycle

paths. By 2010, some 1,200 km of paths extended throughout the city connect-

ing greenspaces. More recently, the city council integrated a citizen petition for

more bicycle infrastructure into its new mobility strategy. To this end, the urban

development plan for 2040 foresees the creation of “green” and “blue” infrastruc-

ture as a means to reduce inner city congestion and heat. The total length of ex-

tended pedestrian and bicycle paths is expected to be 450 km, which will connect

both green spaces as well as the city center with outer districts (Landeshauptstadt

München, 2021).

The question arises as to the net benefits of this extension, taking into account

its impacts on health and carbon emissions, its costs, and the fact that Munich

already has a high density of paths. To answer this question, HEAT requires

baseline values of mode use and the changes therein that result from the inter-

vention. Referring to the descriptive statistics from the sample, people in Munich

travel a daily average of 18 minutes by bike or foot, 27.6 minutes by car, and 32.5

minutes by public transit. For the calculation that follows, we assume a ten-year

time horizon during which 200 of the planned 450 km of paths is to be initially

constructed. According to the point estimate of the econometric model evalu-
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ated using the APE for the city of Munich, each kilometer per square kilometer

increase in paths is associated with a roughly 2.36-minute increase in nonmotor-

ized travel per person per day, an effect we assume is uniform across the city.

Given that the size of Munich is 310 km2, this implies a (200/310)*2.36 = 1.52

minute increase in daily nonmotorized travel per person. We likewise use the

econometric estimates to arrive at the changes induced by the increase in bike

paths in motorized travel and public transit in Munich: -4.50 minutes and -0.59

minutes, respectively.8

Using these figures, HEAT calculates the number of prevented premature

deaths and reduced tons of CO2 over each year of the 10 year horizon. These

are monetized using the VSL and SCC values noted in Section 2.3, from which a

present value is calculated using a discount rate entered by the user. We enter the

default rate of 5%. Several other assumptions pertaining to the age bracket of the

affected population, local pollution exposure, crash risk, and other parameters

which can be modified by the user underpin the calculation; these are presented

in the appendix. We generally maintain the default values set by HEAT, though

in some cases we make adjustments, erring on the side of values that result in

a more conservative estimate of the net benefits.9 It also bears noting that the

benefits of additional bike paths are likely to be more moderate in Munich than

in most German cities because of its existing extensive network of paths (see Fig-

ure 2), a feature accounted for by the quadratic specification of path density in the

econometric model.

To obtain a benefit-cost ratio (BCR), it is necessary to submit an estimate of

costs, which are assumed to be incurred in full at the outset of the intervention.

We draw on figures from the European Cyclists Federation (ECF 2021), which

presents cost estimates of cycleways for different countries. The costs for Ger-

many range between €0.2 and €2 million per kilometer. Pursuant to a conserva-

8The negative effect for public transit may appear to contradict the positive APE for transit
appearing in Figure 4. The discrepancy owes to the nonlinear effect of path density. Inserting the
mean value of path density (0.78) into Equation 6 yields the positive effect on transit in Figure 4,
but inserting the higher value for Munich (7.37) yields a slightly negative effect.

9For example, the default value for the take-up time until a new steady-state is reached fol-
lowing the intervention is one year. We reset this to 5 years.
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tive estimate of the BCR, we enter the latter figure, converting this to dollars to

align with the currency used in HEAT. We make the simplifying assumption that

this money is raised from taxes that are specifically earmarked for the construc-

tion of bicycle/pedestrian paths.

The top panel of Table 4 presents the main outputs of HEAT for the path ex-

pansion scenario. We implement two runs with HEAT, assuming either that the

additional 1.52 minutes of nonmotorized travel is allocated completely to walk-

ing or completely to cycling.10 The calculated benefit in terms of prevented pre-

mature deaths is seen to be higher for walking than for cycling, which reflects

the narrower age bracket considered by HEAT for cyclists (20 – 64 versus 20 – 74

for walking). The reduced tons of CO2 is likewise somewhat higher for walking.

The total value of discounted benefits from walking amounts to $694 million. Di-

viding this figure by the total costs yields a benefit-cost ratio of 1.58. Were the

increase in paths to result exclusively in an increase in cycling, the BCR would be

lower at 1.07, but still indicative of a net positive benefit.

Table 4: Benefit-cost ratios (BCRs) from HEAT-calculations

Premature
deaths

prevented

CO2 reduced
metric tons

Benefits
millions $

Costs
millions $ BCR

Path expansion
Walking 185 957,251 694 440 1.58
Cycling 119 821,786 472 440 1.07

Fuel price increase
Walking 69 513,239 281 11.5 24.43
Cycling 45 443,749 195 11.5 16.96

The lower panel of Table 4 shows the outputs from HEAT when plugging

in the changes in time allocation associated with a 10-cent increase in the fuel

price, resulting in an additional 34.5 and 22.5 seconds of nonmotorized and public

transport, respectively, and 2.9 fewer minutes on motorized transport. Unlike

with the quadratic specification of path density, which allows the marginal effect

to depend on the level of the variable and thereby renders a unique value for each

locale, the linear specification of fuel price imposes the assumption of a uniform
10As the econometric model collapses these two categories, it is not possible to calculate a

combined estimate that reflects the shares of biking and walking.
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price response across Germany. We find that the increase in the fuel price yields

lower reduced premature deaths than the path expansion, a consequence of the

latter’s stronger absolute effect in increasing nonmotorized transport. Likewise,

it yields lower impacts on reduced carbon emissions. Together, these effects yield

lower estimates of the benefits, which vary between $281 and $195 million for the

walking and cycling scenarios, respectively.

To obtain the BCR, we assume that the costs of levying the tax are approxi-

mated as a percentage of the total revenue that the tax generates. As Pomerleau

(2021) suggests, there is little empirical evidence on the administrative burden of

a carbon tax, though she also notes that such taxes appear to have a relatively low

administrative cost-to-revenue ratio. She cites figures from Great Britain suggest-

ing this ratio to be on the order of 0.5%, which is somewhat higher than the 0.2%

that Peters and Kramer (2003) report for the federal fuel tax in the U.S.. Wachs

(2003) reports for the U.S. a share ranging between 1 and 2%. Recognizing that

Germany’s administrative costs may fall higher (or lower) than these figures, we

settle on a cost-to-revenue ratio at the high end of these estimates, at 2%. Taking

2% of Germany’s fuel tax revenue in 2022 and adjusting for the size of the tax

base in Munich, we arrive at a localized administrative cost of $11.5 million.11

The resulting BCR ranges from 24.43 for walking and 16.96 for cycling, orders of

magnitude higher than for the path increase, notwithstanding the lower mone-

tized benefits of the fuel price increase.

5 Conclusion

While it has long been recognized that physically active transportation confers

multiple benefits for mental and physical health (Litman, 2013), as well as for

the environment, the mechanisms underpinning this linkage and their relation

to policy instruments remain poorly understood. The forgoing analysis has at-

tempted to address this void through an exploration of everyday time use by

11Revenue from petrol and diesel taxes amounted to roughly €29.5 billion in 2022 (Destatis,
2023b). We assume that the share of Munich’s tax base is directly proportional to the share of of
Munich’s population in Germany, 1.77%. The average $/€ exchange rate in 2022 was 1.1.
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leveraging travel survey data from Germany, recognizing that how people al-

locate their time, and particularly the means by which they move about, has

far-reaching implications for welfare. The analysis proceeded in two steps, be-

ginning with the estimation of an econometric model that identified the deter-

minants of time allocation to different travel modes: motorized, nonmotorized

and public transit. Particular focus was directed at estimating the effects of bi-

cycle/pedestrian paths and fuel prices. To allow for non-linear effects, the vari-

able path density was modeled as a quadratic, thereby capturing the possibility

of a diminishing effect with increases in density. The second step fed the model

estimates, expressed in minutes, into the WHO’s Health Economic Assessment

Tool (HEAT) to facilitate an assessment of changes in premature mortality and

CO2 emissions under alternative scenarios for the city of Munich, from which a

benefit-cost ratio could be estimated.

With respect to time allocated to different travel modes and the implications

for health and the environment, the analysis revealed:

• Increases in bicycle/pedestrian paths and fuel prices have a statistically-

and economically significant effect in increasing time spent on nonmotor-

ized transport and decreasing time spent on motorized transport.

• An increase in paths additionally increases the time with public transport, a

possible reflection of synergies facilitated by the accommodation of bicycles

on public rail systems in Germany.

• Taking into account the construction costs and the upwards of $694 million

in benefits from reduced premature mortality and reduced carbon emis-

sions, the planned expansion of bicycle/pedestrian paths in Munich yields

a benefit-cost ratio (BCR) varying between 1.07 and 1.58.

• By comparison, the economic benefits of a 10 cent increase in the fuel price

results in more modest benefits reaching upwards of $281 million, but yields

a considerably higher BCR ranging between 16.96 and 24.43.

Taken together, the findings show that increases in bicycle/pedestrian paths and
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fuel prices not only result in substantial benefits, but do so in a cost-effective man-

ner. This especially applies to the fuel price owing to its modest administrative

costs. Indeed, the results suggest that the double-dividend sometimes ascribed to

carbon taxes (Pearce, 1991) – emissions reductions and revenue generation – may

warrant upgrading to a triple dividend when factoring in the health benefits that

emerge from higher levels of physically active travel.

Future research may further investigate the distributive aspects of the ben-

efits, including those associated with improvements in air quality (Wang et al.,

2023). Research into policy impacts on marginalized communities is of particu-

lar interest as these populations systemically face higher-than-average negative

environmental impacts (Bluhm et al., 2022).
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Appendices

A Full set of econometric estimates

The first stage estimates of the control function approach, which runs a linear
regression of path density on the full set of exogneous variables including the in-
strument, porous, is presented in Table A.1. As expected, porous has a positive
association with path density, which is statistically significant.

In the second stage, we extract the residuals from the first stage model, which,
along with their square, we include as an explanatory variable to control for the
endogeneity of path density in the fractional response model. The full set of re-
sults, labeled as IV-FRM, are presented in the second column of Table A.2. We
also explored models with a linear specification of the variable path density, pre-
sented in Table A.3, which confirm the direction of effects in Table A.2.

Table A.1: First-stage OLS model

(1)
Path density

Porous 1.071∗∗∗ (0.014)
Fuel price 0.033∗∗∗ (0.006)
Female 0.023∗ (0.009)
Cars -0.213∗∗∗ (0.006)
Low income -0.045∗∗∗ (0.011)
Posths 0.149∗∗∗ (0.009)
Number employed 0.059∗∗∗ (0.008)
Full-time 0.021 (0.014)
Part-time -0.034∗ (0.016)
Age 66 -0.017 (0.013)
Young kids 0.030 (0.015)
State×Year Yes
N 28252
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.2: Second stage fractional response model (FRM), full set of estimates
from Table 2

(1) (2)
FRM IV-FRM

Away
Path density 0.047∗∗∗ (0.013) 0.015 (0.014)
Path density2 -0.004 (0.003) -0.001 (0.003)
Fuel price -0.002 (0.006) -0.001 (0.006)
Residual 0.036∗∗ (0.012)
Residual2 -0.008 (0.005)
Female -0.067∗∗∗ (0.010) -0.066∗∗∗ (0.008)
Posths 0.050∗∗∗ (0.009) 0.055∗∗∗ (0.007)
Full-time 0.776∗∗∗ (0.017) 0.777∗∗∗ (0.013)
Part-time 0.360∗∗∗ (0.019) 0.359∗∗∗ (0.015)
Age 66 -0.397∗∗∗ (0.016) -0.398∗∗∗ (0.013)
Cars 0.024∗∗∗ (0.006) 0.016∗∗ (0.006)
Low income -0.035∗∗ (0.011) -0.037∗∗∗ (0.009)
Number employed 0.086∗∗∗ (0.009) 0.088∗∗∗ (0.008)
Young kids -0.079∗∗∗ (0.013) -0.078∗∗∗ (0.011)
Nonmotorized
Path density 0.243∗∗∗ (0.027) 0.306∗∗∗ (0.029)
Path density2 -0.031∗∗∗ (0.005) -0.020∗∗ (0.007)
Fuel price 0.040∗∗ (0.014) 0.038∗∗ (0.012)
Residual -0.104∗∗∗ (0.025)
Residual2 -0.017 (0.010)
Female -0.065∗∗ (0.022) -0.067∗∗∗ (0.016)
Posths 0.153∗∗∗ (0.021) 0.136∗∗∗ (0.017)
Full-time -0.167∗∗∗ (0.032) -0.168∗∗∗ (0.024)
Part-time -0.069∗ (0.034) -0.064∗ (0.028)
Age 66 -0.035 (0.030) -0.032 (0.025)
Cars -0.458∗∗∗ (0.016) -0.436∗∗∗ (0.015)
Low income -0.067∗∗ (0.025) -0.061∗∗ (0.021)
Number employed 0.090∗∗∗ (0.019) 0.084∗∗∗ (0.015)
Young kids 0.169∗∗∗ (0.031) 0.165∗∗∗ (0.027)
Motorized
Path density -0.110∗∗∗ (0.021) -0.113∗∗∗ (0.020)
Path density2 0.006 (0.005) -0.007 (0.005)
Fuel price -0.072∗∗∗ (0.007) -0.071∗∗∗ (0.006)
Residual 0.028 (0.017)
Residual2 0.024∗∗ (0.008)
Female -0.169∗∗∗ (0.013) -0.168∗∗∗ (0.010)
Posths 0.025∗ (0.013) 0.029∗∗ (0.011)
Full-time 0.651∗∗∗ (0.020) 0.651∗∗∗ (0.016)
Part-time 0.466∗∗∗ (0.023) 0.465∗∗∗ (0.018)
Age 66 -0.040∗ (0.019) -0.042∗∗ (0.016)
Cars 0.334∗∗∗ (0.009) 0.328∗∗∗ (0.008)
Low income -0.113∗∗∗ (0.015) -0.115∗∗∗ (0.013)
Number employed -0.115∗∗∗ (0.012) -0.113∗∗∗ (0.010)
Young kids 0.042∗ (0.019) 0.044∗∗ (0.016)
Transit
Path density 0.395∗∗∗ (0.044) 0.510∗∗∗ (0.055)
Path density2 -0.041∗∗∗ (0.008) -0.080∗∗∗ (0.011)
Fuel price 0.031 (0.024) 0.029 (0.022)
Residual -0.060 (0.044)
Residual2 0.071∗∗∗ (0.015)
Female -0.005 (0.036) -0.007 (0.026)
Posths 0.379∗∗∗ (0.039) 0.373∗∗∗ (0.030)
Full-time -0.142∗ (0.060) -0.143∗∗ (0.049)
Part-time -0.473∗∗∗ (0.064) -0.471∗∗∗ (0.055)
Age 66 -0.314∗∗∗ (0.051) -0.317∗∗∗ (0.045)
Cars -0.831∗∗∗ (0.034) -0.822∗∗∗ (0.029)
Low income 0.052 (0.041) 0.054 (0.034)
Number employed 0.501∗∗∗ (0.032) 0.497∗∗∗ (0.028)
Young kids -0.347∗∗∗ (0.076) -0.345∗∗∗ (0.056)
State×Year Yes Yes
N 28252 28252

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.3: Second stage FRM with linear specification of path density

(1) (2)
FRM IV-FRM

Away
Path density 0.027∗∗∗ (0.006) 0.001 (0.011)
Fuel price -0.002 (0.006) -0.001 (0.006)
Residual 0.032∗∗ (0.012)
Female -0.067∗∗∗ (0.010) -0.067∗∗∗ (0.008)
Posths 0.051∗∗∗ (0.009) 0.056∗∗∗ (0.007)
Full-time 0.776∗∗∗ (0.017) 0.776∗∗∗ (0.013)
Part-time 0.361∗∗∗ (0.019) 0.359∗∗∗ (0.015)
Age 66 -0.398∗∗∗ (0.016) -0.398∗∗∗ (0.013)
Cars 0.023∗∗∗ (0.006) 0.016∗∗ (0.006)
Low income -0.035∗∗ (0.011) -0.037∗∗∗ (0.009)
Number employed 0.087∗∗∗ (0.009) 0.088∗∗∗ (0.008)
Young kids -0.079∗∗∗ (0.013) -0.078∗∗∗ (0.011)
Nonmotorized
Path density 0.095∗∗∗ (0.011) 0.204∗∗∗ (0.022)
Fuel price 0.041∗∗ (0.014) 0.038∗∗ (0.012)
Residual -0.130∗∗∗ (0.025)
Female -0.065∗∗ (0.022) -0.068∗∗∗ (0.016)
Posths 0.158∗∗∗ (0.021) 0.137∗∗∗ (0.017)
Full-time -0.170∗∗∗ (0.032) -0.171∗∗∗ (0.024)
Part-time -0.069∗ (0.034) -0.063∗ (0.028)
Age 66 -0.038 (0.030) -0.035 (0.025)
Cars -0.469∗∗∗ (0.016) -0.440∗∗∗ (0.015)
Low income -0.068∗∗ (0.025) -0.061∗∗ (0.021)
Number employed 0.092∗∗∗ (0.019) 0.084∗∗∗ (0.015)
Young kids 0.172∗∗∗ (0.031) 0.166∗∗∗ (0.027)
Motorized
Path density -0.088∗∗∗ (0.010) -0.112∗∗∗ (0.016)
Fuel price -0.072∗∗∗ (0.007) -0.071∗∗∗ (0.006)
Residual 0.030 (0.017)
Female -0.169∗∗∗ (0.013) -0.168∗∗∗ (0.010)
Posths 0.025 (0.013) 0.029∗∗ (0.011)
Full-time 0.651∗∗∗ (0.020) 0.652∗∗∗ (0.016)
Part-time 0.466∗∗∗ (0.023) 0.465∗∗∗ (0.018)
Age 66 -0.040∗ (0.019) -0.041∗∗ (0.016)
Cars 0.335∗∗∗ (0.009) 0.329∗∗∗ (0.008)
Low income -0.113∗∗∗ (0.015) -0.114∗∗∗ (0.013)
Number employed -0.115∗∗∗ (0.012) -0.113∗∗∗ (0.010)
Young kids 0.042∗ (0.019) 0.043∗∗ (0.016)
Transit
Path density 0.182∗∗∗ (0.017) 0.259∗∗∗ (0.041)
Fuel price 0.032 (0.024) 0.031 (0.022)
Residual -0.093∗ (0.046)
Female -0.006 (0.036) -0.007 (0.026)
Posths 0.387∗∗∗ (0.039) 0.372∗∗∗ (0.031)
Full-time -0.145∗ (0.060) -0.146∗∗ (0.049)
Part-time -0.472∗∗∗ (0.064) -0.468∗∗∗ (0.055)
Age 66 -0.319∗∗∗ (0.051) -0.318∗∗∗ (0.045)
Cars -0.848∗∗∗ (0.034) -0.829∗∗∗ (0.030)
Low income 0.053 (0.041) 0.057 (0.034)
Number employed 0.502∗∗∗ (0.032) 0.496∗∗∗ (0.028)
Young kids -0.342∗∗∗ (0.076) -0.342∗∗∗ (0.056)
State×Year Yes Yes
N 28252 28252
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B HEAT input data

Table B.4: Input data for HEAT

Biking Walking Default value
Age bracket 20-64 20-74 same
Proportion of age bracket 60% 70% same
Proportion excluded 10% 10% 0%
Temporal and spatial adjustment 0 0 same
Take-up time in years for active travel demand 5 5 1
Proportion of new trips 0 0 same
Proportion for transport 100% 100% 50%
Proportion in "traffic" 80% 80% 50%
Substituion of physical activity 0 0 same
All-cause mortality rate:
Number of deaths/100,000 inhabitants 274 480 same

PM2.5 concentration: 12 ug/m3 12 12 same
Fatality rate (fatalities per 100 million km) 1.1 1.6 same
Value of a statistical life $4,308,000 $4,308,000 same
Social cost of carbon per ton $182 $182 same
Discount rate 5% 5% same
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