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Abstract 

Artificial intelligence (AI) is emerging as a transformative innovation with the potential to 

drive significant economic growth and productivity gains. This study examines whether AI is 

initiating a technological revolution, signifying a new technological paradigm, using the 

perspective of evolutionary neo-Schumpeterian economics. Using a global dataset combining 

information on AI patenting activities and their applicants between 2000 and 2016, our analysis 

reveals that AI patenting has accelerated and substantially evolved in terms of its 

pervasiveness, with AI innovators shifting from the ICT core industries to non-ICT service 

industries over the investigated period. Moreover, there has been a decrease in concentration 

of innovation activities and a reshuffling in the innovative hierarchies, with innovative entries 

and young and smaller applicants driving this change. Finally, we find that AI technologies 

play a role in generating and accelerating further innovations (so revealing to be “enabling 

technologies”, a distinctive feature of GPTs). All these features have characterised the 

emergence of major technological paradigms in the past and suggest that AI technologies may 

indeed generate a paradigmatic shift. 
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1. Introduction 

Artificial intelligence (AI) has been emerging as one of the most important innovations of 

recent decades, with the potential to fundamentally transform economic structures and societies 

at large (Brynjolfsson and McAfee 2011; Brynjolfsson and McAfee 2014; Agrawal et al. 2019). 

By featuring the properties of both a general-purpose technology (GPT) and a method of 

invention (Griliches 1957; Cockburn et al. 2019; Agrawal et al. 2024), it is increasingly 

expected to become a powerful driver of innovation, productivity gains and economic growth 

in the years and decades to come. Initial evidence is supporting the idea that machine learning 

and a constellation of related data science technologies share the features of a GPT (Cantner 

and Vannuccini 2021; Goldfarb et al. 2023), namely widespread application, scope for 

improvement, and complementarity with other technologies (Bresnahan and Trajtenberg 1995). 

By automating the generation of increasingly accurate predictions (Agrawal et al. 2019), AI 

may augment inventors and organisations at discovering new ideas (Jones 2022) while 

reducing risks and costs of innovation (Haefner et al. 2021), eventually counterbalancing the 

knowledge burden and enhancing the ability of finding new ideas (Jones 2009; Bloom et al. 

2020; Antonelli et al. 2023). A growing number of evidence documents the growing 

contribution of AI for scientific discoveries (Bianchini et al. 2022; Wang et al. 2023), firms’ 

innovation (Bouschery et al. 2023; Rammer et al. 2022; Verganti et al. 2020) and productivity 

gains (Czarnitzki et al. 2023; Damioli et al. 2021; Yang 2022).  

While these studies clearly indicate the potential of AI technologies to positively affect long-

term growth, it is an open question whether AI will have a comparable impact on welfare to 

those induced by the GPTs of the past, such the steam engine, electricity, the computer and the 

internet. Recent evidence suggests a “digitalisation paradox” whereby AI and related 

technologies may increase the complexity of performing R&D through new forms of routine 

(or “mundane”) tasks that, as data preparation and robots maintenance, are central to AI 

(Ribeiro et al. 2023). More fundamentally, a major challenge is that AI can exacerbate the 

market dominance of large “superstar” companies, which has been reflected in declining 

business dynamism (Decker et al. 2017) and increasing market power in the United States 

(Covarrubias et al. 2020; De Loecker et al. 2020) and worldwide (De Loecker et al. 2021). De 

Loecker et al. (2021) document that technology-driven productivity gains have been offset by 

raising market power leading to a net welfare loss in the United States economy between 1980 

and 2016. The larger capital intensity of AI as compared to other technologies (Besiroglu et al. 

2024) generates concerns that AI diffusion may lead to further market concentration, thereby 

limiting the impact on economic growth. Finally, the impact of AI technologies on the labor 

market is an open issue, where complementary and substitution effects can heavily affect both 

the level and the composition of the workforce, in terms of the required skills and tasks (see, 

for instance, Montobbio et al. 2022; Quoc Phu and Duc Hong 2022; Damioli et al. 2024; for a 

survey: Montobbio et al. 2023). 

In view of this debate, this study adopts the lens of the evolutionary/neo-Schumpeterian 

economics to investigate the extent to which AI is generating a technological revolution - i.e. 

the emergence of a new technological paradigm (Dosi 1982 and 1988; Freeman 1990; Freeman 
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and Louçã 2001) - or, by contrast, whether AI is a continuation of the trajectory of the digital 

revolution, based on the ICT paradigm initiated half a century ago1.  

Evolutionary economists argue that technologies evolve by revolutions whereby new 

paradigms disrupt the trajectory of established ones. Simply put, a technological paradigm 

refers to a specific framework of technological knowledge (centred around a constellation of 

interdependent core technologies), problem-solving methods, and practices that dominate a 

particular field at a given time. A technological trajectory refers to the “normal” path of 

progress and development within a technological paradigm over time, representing the specific 

directions in which technology evolves, often characterized by incremental improvements and 

occasionally by radical (but not revolutionary and pervasive) innovations. As the paradigm 

matures, growth rates may slow until a new disruptive innovation wave initiates the next cycle. 

Central to this framework is the idea that sustained long-term economic growth is largely 

dependent on the emergence of new technological paradigms that disrupt old ones in a cyclical 

process of creative destruction driving major leaps in productivity. 

Historical examples support the view that the cyclical process by which new paradigms replace 

outdated ones has driven sustained economic growth in the last two and half centuries. James 

Watt's substantial improvements to the steam engine in the 1760s and 1770s led to the gradual 

emergence of a new paradigm characterized by mechanized manufacturing that disrupted 

traditional agrarian economies in what is known as the first industrial revolution. Innovations 

such as electricity, the internal combustion engine, and chemical manufacturing towards the 

end of 19th century gradually led to the establishment of a new paradigm characterised by mass 

production in what is known as the “Fordist” mode of production. Started in the second half of 

the 20th century with the development of the first mainframes, a new paradigm known as the 

digital revolution gradually imposed showing significant accelerations since the 1980s with the 

advent of personal computers, the internet, smartphone, etc. (Information and Communication 

Technologies: ICTs; see Freeman et al. 1982; Freeman and Soete 1987).  

Indeed, AI and related technologies are clearly embedded in the digital ICT paradigm, as their 

development and functionality fundamentally depend on digital technologies, information 

processing, and communication infrastructures. Using a sample of innovative European 

companies between 1995 and 2016, Igna and Venturini (2023) document of systematically 

larger probabilities of patenting in AI for companies that previously patented in ICT-related 

fields. This could explain the high concentration of AI patents (Dernis et al. 2019) and 

publications (Klinger and Stathoulopoulos, 2020, 2021) in few large firms with prior expertise 

in ICT.  

However, while it is obvious that the emergence of AI technologies is deeply rooted in the ICT 

paradigm, an interesting (and challenging) research question is assessing whether a qualitative 

change in the accelerated AI dynamic evolution can be detected, even in the early stages of the 

diffusion of these new technologies. In other words, is AI gradually departing from being a 

constituent part of the ICT trajectory and possibly originating a new paradigm? This research 

 
1 According to Dosi (1982), these are the proposed definitions of technological paradigm and technological 

trajectory: the former is “…a pattern of solution of selected technological problems, based on selected principles 

derived from natural sciences and on selected material technologies”” (ibidem, p. 152), while the latter is “…the 

pattern of normal problem solving activity (i.e. of progress) on the ground of a technological paradigm. " (ibidem, 

p. 152). While a new paradigm changes the "state of the art" and occurs every 50/60 years, a technological 

trajectory is the normal technological path of problem solving characterized by cumulativeness and irreversibility.  
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question is at the core of the present contribution; to our knowledge, this is the first paper to 

directly address this topic. 

In more detail, this paper exploits a global dataset combining information on AI patenting 

activities and their applicant entities in order to study the features of AI technologies during 

their emerging phase - namely between 2000 and 2016 - and to assess whether some dynamic 

patterns are detectable and whether evidence can be used to disentangle the core research 

question introduced above.  

The rest of the paper is organised as follows. Section 2 outlines the conceptual framework, 

Section 3 describes the empirical setting, Section 4 discusses the results, and Section 5 

concludes. 

 

2. Conceptual framework 

Some previous studies might suggest that AI is a natural progression within the ICT paradigm 

rather than a distinct one, representing a gradual evolution of software capabilities that benefit 

from increased processing power, data storage and management capabilities, greater data 

availability, and algorithmic advancements, while not disruptively departing from it. Emerging 

evidence from patenting activity (Lee and Lee 2021, Santarelli et al. 2023) and plant-level 

management practices (Cetrulo and Nuvolari 2019) supports this "continuation" view. In 

contrast, some distinctive features of AI support the idea that AI may constitute the core 

technology underpinning the emergence of a new distinct paradigm, often labelled as the fourth 

industrial revolution (Schwab 2017). AI is fundamentally different from ICT technologies in 

that its core capability – making predictions (Agrawal et al. 2019) – differs from those of the 

computer – computing (Bresnahan 1999; Nordhaus 2007) – and the internet – i.e. managing 

information (Goldfarb and Tucker 2019). Obviously enough, these distinctive features of AI 

technologies are even more evident after the arrival of the generative AI algorithms, such as 

ChatGPT. Moreover, as already mentioned, AI has the features of both a GPT and method of 

invention, which imply large cross-sectoral and cross-functional application and large 

integration with research and development activities, suggesting that AI may establish a new 

set of technological actors, rules, practices, and potentials, just as observed in the past when 

new paradigms emerged. Pointing towards this direction, Igna and Venturini (2023) showed 

that differences are widening in the drivers of innovation in the fields of AI and ICT. 

More in general, technological trajectories and paradigms (Dosi 1982 and 1988) focus on 

continuities and discontinuities in technological innovation. A paradigmatic change results 

from the interplay of scientific advances, economic factors, institutional conditions, and 

unresolvable problems along an earlier trajectory. Moreover, the broader concept of “techno-

economic paradigm” (Perez 1983; Freeman and Perez 1988; Freeman 1994) is based on the 

realization that technological evolution is cyclical by nature, where extended periods of gradual 

accumulation are (rarely) punctuated by radical and disruptive changes. In this framework, the 

diffusion of radically new technologies with the emergence of a new technological paradigm 

brings about the need for fundamental socio-economic changes that should be widely spread 

across the society. This interaction initially implies a “mismatch” between the potentialities of 

the new technologies and the inadequacy of the current institutional setting; this mismatch often 

leads to a productivity slowdown (the so-called Solow’s paradox, Solow 1987), which can be 
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solved only through a substantial upgrading of the societal and institutional framework 

(“match”) (see Draka et al, 2007). 

Freeman and Louca (2001) and Perez (2010) consider the age of ICTs as the latest techno-

economic paradigm, based on a bundle or constellation of innovations (including 

microelectronics and the PC, software, telecommunication and internet); the organizational 

innovation embedded in the networking firm and the new institutions shaping the other pillars 

of a National System of Innovation (NSI): education, finance and policy (Nelson 1993). 

Indeed, identifying the emergence of a new techno-economic paradigm in real-time is 

challenging, as clarity often comes in retrospect (Von Tunzelmann et al. 2008). Historically, 

the emergence of new paradigms has been characterised by turmoil, with technology and 

market shares widely distributed among many actors, frequent entry and exit of companies, 

and mismatching between radically new technological solutions to become standards and 

lagging institutional structures, as mentioned above.  

Several aspects distinguish a new technological paradigm from path-dependent and cumulative 

changes along a technological trajectory (David 1985; Ruttan 1997).  

Firstly, the emergence of a new technological paradigm is marked by a significant departure 

from the previous paradigm. New paradigms introduce a constellation of radically novel 

technologies that involve technological revolutions; in turn, these changes imply "unlearning" 

established patterns of technological solutions and embracing fundamentally new approaches. 

In contrast, incremental changes along a technological trajectory typically involve adding new 

technologies to improve, refine, or complement existing ones in a cumulative manner. This 

distinction highlights the disruptive nature of paradigmatic shifts compared to the incremental 

nature of trajectory evolution. 

Secondly, a key feature of a paradigmatic shift is the fact that the core technologies of a new 

technological paradigm become increasingly pervasive, widespread and deeply integrated into 

various economic activities. These technologies exemplify the characteristics of GPTs, namely 

disruptive innovations that diffuse broadly across the economy and generate further 

innovations (“enabling technologies”), impacting multiple sectors and market structures. The 

pervasive nature of GPTs underscores their broad applicability and transformative potential, 

distinguishing them from more narrowly focused technological advancements within an 

ongoing technological trajectory. 

Thirdly, the innovations spurring a new technological paradigm are often led by new 

companies, with young firms replacing incumbents with outdated capabilities (the 

Schumpeterian "creative destruction": Schumpeter 1912). Indeed, innovators in the core 

technologies of a new paradigm are often innovative startups and young firms, more adept at 

navigating the new paradigm. Therefore, the advent of a new technological paradigm is 

characterized by an increase in competition, lower market concentration rates, instability in the 

innovation ranking and the dominance of entrepreneurial industries (“Schumpeter Mark I”: see 

Winter 1984; Malerba and Orsenigo 1996; Klepper 1997; Breschi et al. 2000). This 

“entrepreneurial regime” contrasts with a “routinized regime” (“Schumpeter Mark II”), where 

a relatively stable technological environment see innovations generated by established firms; 
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indeed, when a technological paradigm establishes into a consolidated technological trajectory, 

larger and mature incumbents tend to dominate the innovation scenario2.  

 

3. Data, sample and methods 

To gain a comprehensive view on the changes in the innovative landscape of AI technologies 

from a global perspective, this study exploits a large-scale, world-wide, and micro-level 

database of 23,915 applicants holding at least one AI patent in the period 2000-2016. 

Drawing upon the methodology firstly developed in Van Roy et al. (2020) and further refined 

in Damioli et al. (2024) for the selection of AI patents, our study employs a keyword-based 

search to identify AI-related patents by scanning titles and abstracts3. This method aligns with 

previous research in the field of AI and robotics (Keisner et al. 2015; De Prato et al. 2019; 

European Commission 2018; Cockburn et al. 2019; WIPO 2019; Bianchini et al. 2023; Calvino 

et al. 2023). Some of these scholars utilised keyword searches in combination with specific 

technological classes to isolate relevant patents (Keisner et al. 2015; Cockburn et al. 2019; 

WIPO 2019; Calvino et al. 2023). Our approach does not impose any limits on predefined 

technological classes due to AI technologies' pervasive nature; as a potential GPT, AI spans 

numerous scientific disciplines and technological fields (Bianchini et al. 2022; WIPO 2019; 

see also previous sections).  

The data collection process relied on the Spring 2018 release of the PATSTAT worldwide patent 

database, maintained by the European Patent Office. This database was examined using text-

mining tools to identify all DOCDB patent families featuring our AI-related keywords in their 

titles or abstracts. Employing the DOCDB simple family, which groups together patent 

applications that cover identical technical content, effectively reduces the risk of double 

counting by consolidating multiple filings of the same invention into a single count (detailed 

methodology described in Van Roy et al. 2020). Following the extraction of these patents, we 

retrieved from the Bureau van Dijk Electronic Publishing (BvD) ORBIS database essential 

accounting data on applicants that applied for AI patents. Using patent application numbers, 

we traced applicants in the ORBIS Intellectual Property database and retrieved their non-AI 

patent applications along with geographic and economic data from the ORBIS Companies 

database. The data collection process is visually summarised in Figure A1 in Appendix A. 

A limitation of the resulting dataset is that, by integrating the PATSTAT database with the 

ORBIS Companies database for firm-level analysis, it inherits the different coverage of ORBIS 

across countries (see Bajgar et al. 2020; Hallak and Harasztosi 2019; Gal 2013; Kalemli-Özcan 

et al. 2024). In particular, as shown in Table A2 in Appendix A, it underrepresents applicants 

based in the United States (US)4. Nevertheless, a manual check of company names indicates 

that our sample includes all US AI leaders that could come to our mind. For instance, our 

 
2 A number of other features characterising the emergence of a new paradigm are not studied in this analysis, as 

they require information not available to the authors, and are left for future research. In particular, new paradigms 

are associated with radical product innovations that disrupt existing markets and create new ones, while 

cumulative changes along a trajectory involve the dominance of process innovation and incremental innovations 

that enhance the existing products. 
3 Our set of keywords, used in the mentioned previous studies, is detailed in Table A1 of Appendix A and reflects 

a comprehensive review of the existing related literature. 
4 Instead, our dataset fully takes into account AI patenting by Asian countries, with particular reference to the 

consolidated roles of Japan and South Korea and the emerging leading role of China. 
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inspection confirms the presence of companies such Amazon, Apple, Meta, Microsoft, Netflix, 

Nvidia, IBM, and Tesla.  

A second limitation is that our data coverage is constrained to AI patenting activities from 2000 

to 2016. Therefore, our data availability allows to investigate the dynamic patterns of AI 

technologies in their emerging phase (Van Roy et al. 2020). 

The resulting sample encompasses 23,915 AI innovators, which we define as the entities that 

applied for at least one AI-related patent family between 2000 and 2016. AI innovators applied 

for slightly more than 100 thousand AI patent families and almost 6.5 million non-AI ones 

(Table 1). AI patenting strongly accelerated over time, driven by an even steeper growth of the 

number of AI innovators, with a corresponding decline in the number of AI families each AI 

innovator applied for on average. Non-AI patenting also grew but at a much more moderate 

pace, indicating an increase in the degree of specialization in AI patenting, which in turn can 

reflect a change in patenting behavior of early AI innovators as time goes by and/or a different 

patenting behavior of the applicants that started patenting in AI later in the period. These 

changes were stark. Comparing the 2000-2005 and the 2011-2016 sub-periods, AI innovators 

increased by 338%, AI patent families they applied for by 276%, non-AI ones by 15%, the ratio 

between AI and non-AI patent families by 227%, while the number of AI patent families every 

AI innovator applied for declined on average by 25%. 

In the next section we analyse the dynamics of various indexes typically used to measure 

economic and technological dynamism, which we compared over time. Having in mind our 

main research question and the perspectives discussed at the end of the previous section, we 

focus on:  

i) changes in industry composition of AI innovators, with a particular focus on the 

relative importance of ICT core industries in order to measure a potential departure 

from the ICT paradigm;  

ii) changes in measures of the concentration of AI patenting - namely concentration 

ratios indicating the share of AI patent families applied for by the top n AI 

innovators - and Spearman rank correlations5 of AI innovators (in order to assess 

the stability/instability of innovative hierarchies);  

iii) changes in innovative entry rates, defined as the number of applicants patenting in 

AI for the first time over the total number of AI innovators in the same year, and in 

the characteristics of AI innovators, namely year of foundation (or most recent 

consolidation) and number of employees; 

iv) changes in overall innovative activity as a consequence of patenting in AI, to assess 

the possible enabling role of AI technologies (a distinctive feature of GPTs). 

 

 

 
5 Spearman rank correlation, often denoted as Spearman's rho (ρ), is a non-parametric measure of the strength and 

direction of the association between two ranked variables. It is computed as 𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2−1)
, where 𝑑𝑖

2 indicates 

the difference between the ranks of each AI innovators in two consecutive years. 
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Table 1. Patent activity of AI innovators 

Period 

Applicants with 1+AI 

patent families 
 AI patent families 

 
AI patent families 

per patenting 

entity 

 Non-AI patent families 
 Ratio 

AI/non-AI 

patent 

families 
Number 

Yearly % 

change 

 
Number 

Yearly % 

change 

  Number 
Yearly % 

change 

 

2000 804   2,372   3.0  343,771   0.007 

2001 879 9.3  2,715 14.5  3.1  352,847 2.6  0.008 

2002 871 -0.9  2,704 -0.4  3.1  347,394 -1.5  0.008 

2003 901 3.4  2,777 2.7  3.1  349,223 0.5  0.008 

2004 922 2.3  2,848 2.6  3.1  370,073 6.0  0.008 

2005 1,056 14.5  3,220 13.1  3.0  382,250 3.3  0.008 

2006 1,214 15.0  3,603 11.9  3.0  372,544 -2.5  0.010 

2007 1,352 11.4  3,866 7.3  2.9  375,901 0.9  0.010 

2008 1,625 20.2  4,515 16.8  2.8  385,425 2.5  0.012 

2009 1,912 17.7  4,803 6.4  2.5  359,245 -6.8  0.013 

2010 2,131 11.5  5,595 16.5  2.6  373,957 4.1  0.015 

2011 2,560 20.1  6,668 19.2  2.6  390,467 4.4  0.017 

2012 3,245 26.8  8,301 24.5  2.6  419,099 7.3  0.020 

2013 3,535 8.9  9,038 8.9  2.6  420,946 0.4  0.021 

2014 3,660 3.5  10,122 12.0  2.8  411,022 -2.4  0.025 

2015 5,279 44.2  14,242 40.7  2.7  425,432 3.5  0.033 

2016 5,531 4.8  14,205 -0.3  2.6  402,193 -5.5  0.035 
             

Total 2000-2016 23,915  101,594  4.2  6,481,789  0.016 
             

% change between 

2000-2005 and 2011-2016 
338.2 

 
276.1 

 
-24.6 

 
15.1 

 
226.9 

     

Notes: yearly non-AI patent families, as well as the resulting total 2000-2016 and % change between 2000-2005 and 2011-2016, include non-AI patent families of all 23,915 applicants 

making 1+ AI patent in the period, independently on aa applicant making or not AI patent families in the considered year. 
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4. Results 

 

4.1 AI and the ICT paradigm 

We use the main industry classification of applicants to examine the integration of AI patenting 

within ICT industries. From 2000 to 2016, about 38% of AI patent families were filed by 

entities in core ICT industries, with 27% in ICT manufacturing (computers, electronics, optical 

products, electrical equipment) and 11% in ICT services (publishing, audiovisual and 

broadcasting, telecommunications, IT, and other information services).6 Other significant 

industries include machinery manufacturing (13%), transport equipment (9%), and scientific 

research and development (10%). AI patenting is also notably prevalent in service industries, 

accounting for 39% of total AI patents, compared to only 15% of non-AI patents filed by AI 

innovators in service industries. 

 

Figure 1. AI and non-AI patent families by industry of applicant AI innovator, 2000-2016 

 

Notes: Table A3 in Appendix A1 provides the concordance between industry classes used in this graph and NACE Rev 2.0 

2-digit classes. 

 

However, Figures 2 and 3 reveal significant changes in the industry composition of AI 

innovators over time, which are not apparent in the static snapshot provided by Figure 1. AI 

patents filed by companies in core ICT industries decreased from around 50% in the early 

2000s to about 35% by the mid-2010s. This decline is entirely due to a drop in AI patents from 

ICT manufacturing companies, which fell from over 35% in the early 2000s to below 25% by 

the mid-2010s. Meanwhile, the fraction of AI patents in core ICT services remained stable at 

around 11%. Moreover, there was a significant increase in AI patents from applicants in non-

core ICT service industries, rising from about 12% in the early 2000s to 36% in 2016, when 

 
6 See Table A3 in the Appendix for the concordance between industry classes used in Figure 1, 2 and 3, and NACE 

Rev 2.0 2-digit classes. 
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nearly half (49%) of AI patents were from service industries. Non-AI patent families showed 

similar trends but with more subtle changes. 

 

Figure 2. AI and non-AI patent families shares by broad industry class of applicant AI 

innovator 

 
Notes: AI innovators are 23,915 applicants who applied for at least 1 AI patent in the period. Table A3 in Appendix A1 provides 

the concordance between broad industry classes used in this graph and NACE Rev 2.0 2-digit classes. 

 

To gain a more detailed understanding of these changes, Figure 3 compares shares of AI 

innovators between the 2000-2005 and 2011-2016 periods for more granular industry classes. 

Significant increases were observed in the education industry (from 3% to 8%), reflecting the 

growing role of universities and other scientific institutions in AI innovation; in R&D and 

professional services (from 7% to 11%), highlighting increased AI usage in research and 

development activities; and in trade industries (from 3% to 6%), indicating the rising 

importance of AI in e-commerce. Conversely, the largest decrease was in ICT core 

manufacturing (from 35% to 25%), followed by transport equipment manufacturing (from 13% 

to 7%) and machinery manufacturing (“equipment” from 16% to 11%). 

Overall, the sectoral composition of AI innovators has shifted from being heavily rooted in the 

ICT paradigm in the early 2000s to becoming increasingly prevalent across non-ICT service 

industries by the mid-2010s, so revealing an increasing rate of pervasiveness. 
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Figure 3. Change in industry shares of AI and non-AI patent families of AI innovators 

between 2000-2005 and 2011-2016 

 
Notes: AI innovators are 23,915 applicants who applied for at least 1 AI patent in the period. Table A3 in Appendix A1 provides 

the concordance between industry classes used in this graph and NACE Rev 2.0 2-digit classes. 

 

4.2 Concentration of AI innovation  

This subsection analyses the evolution of the concentration of AI patenting among AI 

innovators. Patent distributions are typically highly skewed, with a few applicants accounting 

for a large share of total patents. In the case of AI, the top 50 (10) innovators, representing 0.2% 

(0.04%) of total AI innovators, filed 29% (12%) of total AI patent families in the sample. 

Figure 4 illustrates the evolution of concentration ratios, measuring the share of patent families 

accounted for by top AI innovators each year7, both in AI and non-AI fields. While 

concentration ratios for non-AI patenting activities are also reported, it is important to note that 

their interpretation differs. Computed on a sample of AI innovators, non-AI concentration 

ratios do not indicate overall concentration in non-AI patenting activities but are conditional 

on having patented in AI. 

The concentration of AI and non-AI patent families applied for by AI innovators clearly 

declined during the period considered (Figure 4). For instance, the fraction of patents (both AI 

and non-AI) filed by the top 50 most prolific innovators decreased from about 50% in the early 

2000s to below 30% for AI patents and about 35% for non-AI patents by the mid-2010s. Similar 

declines in concentration are observed when considering the top 20 and top 10 innovators, 

 
7 Notice that yearly concentration ratios are by construction larger than the corresponding ones computed on the 

whole period. 
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though the gap between concentration ratios in AI and non-AI narrows when focusing on a 

smaller number of top innovators. 

 

Figure 4. Concentration ratios of AI and non-AI patent families among AI innovators  

 

Notes: AI innovators are 23,915 applicants who applied for at least 1 AI patent in the period. Concentration ratios (CR) indicate 

the share of AI patent families applied for by the 50th, 20th and 10th top AI innovators in each year. 

 

Next, we examine changes across the entire distribution of AI innovators. Figure 5 plots the 

Spearman rank correlation over time for AI and non-AI patent families. The correlation for 

applicant rankings based on AI patent families shows a consistent decline from about 0.3 in 

2000 to less than 0.1 in 2016. In contrast, the correlation for non-AI patent families remains 

relatively stable around 0.85. This indicates a much higher consistency in the ranking of AI 

innovators based on non-AI patents and a decreasing consistency based on AI patent families, 

revealing a dynamic reshuffle in the AI innovation hierarchy8. 

Overall, these findings indicate a strong dynamism among top AI innovators over time. 

Moreover, the smaller concentration ratios for AI compared to non-AI patents towards the end 

of the observation period and the increasing gap between AI and non-AI Spearman correlations 

suggest that applicants that started patenting in AI later in the period played an important role 

in the observed dynamics. The next subsection focuses on this issue. 

 

 
8 If we narrow the analysis to the top 50 innovators, yearly AI Spearman correlations are always below the non-

AI ones and also decreasing over time (see Figure A2 in Appendix A). This is a further confirmation of a marked 

dynamism in AI patenting hierarchy over the examined period. 
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Figure 5. Spearman rank correlations of AI innovators in AI and non-AI patenting 

 

Notes: AI innovators are 23,915 applicants who applied for at least 1 AI patent in the period. Spearman rank correlation, or 

Spearman's rho, is a non-parametric measure of the strength and direction of the association between two ranked variables. 

The values indicate the correlation between the rank of companies in the focal year with respect to the previous year. 

 

4.3 AI innovators  

In the previous subsections, we have highlighted significant changes in the sectoral 

composition of AI innovators and a reshuffling of their relative importance. Here, we 

investigate one possible determinant of these changes: the inflow of new AI innovators. 

We begin by examining AI innovative entry rates, defined as the fraction of AI innovators that 

patented for the first time. To ensure we identify truly new innovators, we use a six-year buffer 

to observe the patenting activities of AI innovators, calculating entry rates starting from 2006. 

Despite some oscillations, AI entry rates have generally increased throughout the period, rising 

from just above 55% in the mid-2000s to almost 70% in the mid-2010s (Figure 6). This 

indicates that the majority of AI innovators each year are applicants filing a patent in AI for the 

first time. 

While the number of applicants applying for an AI patent for the first time grew continuously, 

Figure 7 shows that the average age of these entities at the time of their first AI patent steadily 

declined, from 19 years in 2006 to 12 years in 2016. Additionally, as shown in Figure A3 in 

Appendix A, for a subsample of AI innovators with valid employment information, the median 

number of employees at the time of their first AI patent also declined, nearly halving from 

about 150 in the late 2000s to about 80 in the mid-2010s. 

Taken together, these evidences reveal the emergence of an entrepreneurial regime 

(Schumpeter Mark I, see Section 2), at least with regard to innovation activities. 
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Figure 6. Entry rates of AI innovators  

 

Notes: AI innovators are 21,675 applicants who applied for at least 1 AI patent in the period. Entry rates are defined as the 

percentage of applicants patenting in AI for the first time at time t over all applicants that patented in AI at time t. 
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Figure 7. Number and age of AI innovators at year of first AI patent family  

 

Notes: AI innovators are 20,356 applicants who applied for the first AI patent in the period. Age is defined based on the year 

of foundation or consolidation of the applicant. 

 

The increasing number of younger and smaller applicants applying for AI patents does not 

necessarily mean that these entities account for a growing share of AI patent families. Figure 8 

illustrates the evolution of the shares of AI and non-AI patent families by the year of foundation 

or consolidation of applicants. In 2000, entities established before 1950 applied for more than 

half of all AI patent families, while those founded between 1950 and 2000 accounted for 44% 

of AI patents. Over time, the share held by these groups decreased significantly, with the 

steepest decline observed among applicants established before 1950. By 2016, their share 

dropped to 11%, whereas those established between 1950 and 2000 recorded a smaller 

reduction, still holding 33% of AI patents. Meanwhile, younger applicants established from 

2000 onwards steadily increased their share of AI patent families, reaching 55% in 2016. 

Similar trends are observed for non-AI patent families, but they are much less pronounced. In 

2016, applicants established before 1950 still accounted for 35% of non-AI patents, and those 

established after 2000 for just 25%. 

Overall, this evidence indicates that a growing number of AI innovators were young and small 

applicants specializing in AI patenting, significantly contributing to AI patenting throughout 

the period. 
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Figure 8. Share of AI patent families by year of foundation or consolidation of AI 

innovators  

 

Notes: AI innovators are 23,915 applicants who applied for at least 1 AI patent in the period. 

 

4.4 AI as an enabling technology 

This subsection investigates the possible role of AI as an enabling technology for overall 

innovative activity, a characteristic feature of a GPT. 

Table 2 illustrates the change in non-AI patenting activity between the three years before and 

after the first AI patent family application by each AI innovator. The analysis focuses on a 

subsample of 10,624 AI innovators who recorded their first AI patent between 2003 and 2013, 

ensuring the availability of three-year windows at the beginning and end of this period, in order 

to be able to compute the two three-year changes. On average, each AI innovator filed 24.4 

non-AI patent families in the three years preceding their first AI patent and 43.6 in the three 

years following it. This absolute change corresponds to a 78.7% average increase in the number 

of non-AI patent families within the three years following the AI application. 

While our dataset does not allow for a proper counterfactual design to precisely identify the 

additional impact of starting to patent in AI on the subsequent non-AI patenting activity, this 

growth rate contrasts sharply with an average three-year increase of just 5.9% in the overall 

non-AI patenting activity within our full sample during the 2003-2013 period (see also the 

general trend reported in Table 1). This comparison suggests a significant role for AI as an 

enabling technology for overall innovative activity. 

Table 2 further highlights that this enabling role of AI becomes more pronounced as AI 

innovators engage more extensively in non-AI patenting activity prior to their first AI patent. 

Of the approximately 200,000 additional non-AI patent families filed by AI innovators in the 
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three years following their first AI patent family, 79.8% were filed by those in the top decile of 

the distribution for non-AI patent families in the preceding three years. This finding 

underscores the necessity of a substantial level of a preexisting absorptive capacity (Cohen and 

Levinthal 1990) for AI to significantly boost overall innovation. 

 

Table 2. Change in non-AI patents in the 3 years following the first AI patent, 2003-2013 

  

All 

applicants 

Applicant distribution of the number of non-AI pat. families in 3 years 

prior to first AI patent family 

Bottom 75 

percentiles 

Between 75th and 

90th percentiles 

Between 90th and 

99th percentiles 

Top 1st 

percentile 

Number of applicants 10,624 7,914 1,636 967 107 

Per-applicant non-AI pat. families in 

3 years prior to first AI pat. family 
24.4 0.0 7.0 138.0 1070.5 

Per-applicant absolute change in non-

AI pat. families in 3 years after first 

AI pat. family with respect to prior 3 

years 

19.2 0.5 23.0 133.5 311.5 

Total absolute change in non-AI pat. 

families in 3 years after first AI pat. 

family compared to prior 3 years 

203,799 3,714 37,635 129,115 33,335 

% of total absolute change 100.0 1.8 18.5 63.4 16.4 

Notes: computed on the 10,624 applicants applying their first AI patent between 2003 and 2013.  

 

 

5. Conclusions 

Artificial intelligence (AI) is emerging as a transformative innovation with the potential to 

drive significant economic growth and productivity gains, akin to a GPT. This study examines 

whether AI is ushering in a technological revolution, signifying the emergence of a new 

technological paradigm, as defined in the evolutionary tradition. Indeed, evolutionary 

economists argue that technologies evolve through revolutions in which new paradigms disrupt 

the trajectory of established ones, with a technological paradigm representing a dominant 

framework of core technologies, methods, and practices within a field at a given time (see 

Sections 1 and 2).  

Our analysis has started recognizing that AI technologies are embedded in the digital ICT 

paradigm, relying heavily on digital technologies, information processing, and communication 

infrastructures. However, while some argue that AI is a natural progression within the ICT 

paradigm, others believe it may represent a new distinct paradigm, given its unique 

characteristics as a GPT and method of invention (enabling technology).  

In order to disentangle this research question, this study has investigated developments in AI-

related innovations from 2000 to 2016. Our research purpose has been to assess whether the 

advent of AI signalled a departure from the ICT paradigm, showed dynamic patterns in 

innovative concentration rates and hierarchies, and fostered the emergence of new players in 

AI innovation, as these features characterised the emergence of new paradigms in the past. 
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Using a global dataset on AI patenting activities and their applicants, the analysis reveals that 

AI patenting has not only accelerated but also substantially evolved in nature. The sectoral 

composition of AI innovators has shifted from being heavily rooted in the ICT industries in the 

early 2000s to becoming increasingly prevalent across non-ICT service industries by the mid-

2010s. Additional findings indicate decreasing concentration rates in innovation and substantial 

reshuffling in innovative hierarchies. These shifts appear to be driven by increasing innovative 

entry rates and by the increasing important role of young and smaller applicants specializing 

in AI patenting. Finally, we find some evidence supporting the role of AI patenting in enhancing 

innovation in general, suggesting a possible enabling role of AI technologies (a distinctive 

feature of GPTs).  

Overall, this evidence points to an increasing pervasiveness and diffusion of AI innovation and 

to the emergence of an “entrepreneurial regime” in AI innovation. Indeed, these patterns 

indicate a "shakeout" effect, where AI technologies, initially dominated by ICT incumbents, 

spread to involve other industries and younger and smaller applicants. All these features have 

characterised the emergence of major technological paradigms in the past and suggest that AI 

technologies may indeed generate a paradigmatic shift. 
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Appendix A: Additional figures and tables 

 

Figure A1. Data matching procedure 
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Figure A2. Spearman rank correlations of the top 50 innovators in AI and non-AI patenting 

 

Notes: Spearman rank correlation, or Spearman's rho, is a non-parametric measure of the strength and direction of the 

association between two ranked variables. The values indicate the correlation between the rank of companies in the focal year 

with respect to the previous year. 
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Figure A3. Size of AI innovators at year of first AI patent family and number of ‘born AI patent 

 
Notes: AI innovators are 11,512 applicantss who applied for the first AI patent in the period and non-missing employment. 

Employment at first year of AI patenting is valid for 50% of applicants, imputed using the closer valid value in time for the 

remaining 50%. 

 

 

 

 

Table A1. List of keywords related to Artificial Intelligence 

Artificial intelligence Evolutionary Computation Probabilistic modeling 

Artificial intelligent Face recognition Random Forest 

Artificial reality  Facial recognition Reinforcement learning 

Augmented realities Gesture recognition Robot 

Augmented reality Holographic display Self driv 

Automatic classification Humanoid robot Sentiment analysis 

Automatic control Internet of things Smart glasses 

Autonomous car Knowledge Representation Speech Recognition 

Autonomous vehicle Machine intelligence Statistical Learning 

Bayesian modelling Machine learn Supervised learning 

Big data Machine to machine Transfer Learning 

Computational neuroscience Mixed reality  Unmanned Aerial Vehicle 

Computer Vision Natural Language Processing Unmanned aircraft system 

Data mining Neural Network Unsupervised learning 

Data science Neuro-Linguistic Programming Virtual reality  

Decision tree Object detection Voice recognition 

Deep learn Predictive modelling   
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Table A2. AI patent families by country of applicant, 2000-2016 

Country of AI innovator % of AI patent families % of non-AI patent families 
   

China 37.1 13.4 

Europe* 7.7 10.9 

Japan 23.1 56.4 

South Korea 16.6 5.2 

United States 11.1 9.6 

Other countries 4.4 4.5 
   

Notes: Europe includes the European Union, Iceland, Lichtenstein, Norway, Switzerland, and the United Kingdom.  

 

 

Table A3. Industrial classes used in the analysis  

NACE Rev. 2 classes 

2- 

digits 

codes 

Detailed 

industry 

classes  

(Figures 1 

and 3) 

Broad 

industry 

classes  

(Figure 2) 

Agriculture, forestry and fishing 
01 to 

03 
Primary  

Primary,  

utilities and 

constructio

n 
Mining and quarrying 

05 to 

09 

Manufacture of food products, beverages and tobacco 

products 

10 to 

12 

Food, bever 

& tobacco 

Other 

manufactur

e 

Manufacture of textiles, apparel, leather and related 

products 

13 to 

15 
Textile 

Manufacture of wood and paper products, and printing 
16 to 

18 

Wood, 

paper & 

print 

Manufacture of coke, and refined petroleum products 19 

Chemistry  Manufacture of chemicals and chemical products 20 

Manufacture of rubber and plastics products 22 

Manufacture of pharmaceuticals, medicinal chemical and 

botanical products 
21 Pharma 

Manufacture of other non-metallic mineral products 23 Minerals 

Manufacture of basic metals and fabricated metal products, 

except machinery and equipment  

24 and 

25 
Metal 

Manufacture of computer, electronic and optical products 26 
Computer & 

electr 

Core ICT 

manufactur

e Manufacture of electrical equipment  27 

Manufacture of machinery and equipment not elsewhere 

classified 
28 Machinery 

Other 

manufactur

e 

Manufacture of transport equipment  
29 + 

30 

Transport 

equip 

Other manufacturing, and repair and installation of 

machinery and equipment 31 to 33 

31 to 

33 
Other manuf 

Electricity, gas, steam and air-conditioning supply 35 35 Utilities 
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NACE Rev. 2 classes 

2- 

digits 

codes 

Detailed 

industry 

classes  

(Figures 1 

and 3) 

Broad 

industry 

classes  

(Figure 2) 

Water supply, sewerage, waste management and 

remediation 

36 to 

39 
Primary,  

utilities and 

constructio

n 
Construction 

41 to 

43 
Constr 

Wholesale and retail trade, repair of motor vehicles and 

motorcycles 45 to 47 

45 to 

47 
Trade 

Other 

services 
Transportation and storage 

49 to 

53 

Transp & 

storage  

Accommodation and food service activities 
55 and 

56 

Accommoda

tion & food  

Publishing, audiovisual and broadcasting activities 
58 to 

60 

ICT serv 
Core ICT 

services 
Telecommunications 61 

IT and other information services  
62 and 

63 

Financial and insurance activities  
64 to 

66 
Finance 

Other 

services 

Real estate activities 68 Real estate 

Legal, accounting, management, architecture, engineering, 

technical testing and analysis activities 

69 to 

71 

Scientific Scientific research and development 72 

Other professional, scientific and technical activities 
73 to 

75 

Administrative and support service activities 
77 to 

82 
Admin 

Public administration and defence, compulsory social 

security 
84 Oth serv 

Education 85 Education 

Human health services 86 86 

Oth serv 

Residential care and social work activities 
87 and 

88 

Arts, entertainment and recreation 
90 to 

93 

Other services 
94 to 

96 

Activities of households as employers; undifferentiated 

goods- and services-producing activities of households for 

own use 

97 + 

98 

Activities of extra-territorial organisations and bodies 99 

 

 

 


