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ABSTRACT

Cross-predictability denotes the fact that some assets can predict other assets’ returns.
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explained by other assets’ signals (cross-predicted returns). Empirically, the latter
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market capitalization and book-to-market ratio rise.
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1 Introduction

“Firms do not exist as independent entities, but are linked to each other through

many types of relationships. Some of these links are clear and contractual, while

others are implicit and less transparent.”

Cohen and Frazzini (2008)

Economic links among different firms can give rise to cross-predictability and profit op-

portunities. For instance, a long-short trading strategy exploiting customer-supplier relations

earns monthly alphas of over 150 basis points over the period 1980-2004 (Cohen and Frazzini,

2008). Lead-lag relations between large and small stocks contribute to more than 50% of

profits from contrarian strategies (Lo and MacKinlay, 1990), which means they can help ex-

plaining important phenomena occurring in financial markets. Nevertheless, standard asset

pricing almost exclusively focuses on own-asset predictive signals for building characteristic-

sorted portfolios or for pricing tests in the spirit of Gibbons et al. (1989) (Kelly et al., 2023).

In other words, the predictive content of signals coming from other assets is typically ignored

when looking for anomalies or new predictors. Cross-predictability is often overlooked likely

due to the lack of a solid understanding of its origin. If, on the one hand, a few conjectures

have been proposed, such as investors’ limited attention or market segmentation, on the other

hand a unifying framework has yet to be found that is consistent with all cross-prediction

patterns that have been documented.

In this paper, I provide a novel approach to quantify the economic value of cross-

predictability with a performance-based measure that builds on the recent work of Kelly

et al. (2023) (hereafter KMP). This method allows to identify the sources of cross-prediction
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effects in the cross-section and to distinguish two components: cross-predictive signals, i.e.,

the power that one asset’s signal has to predict other assets’ returns; and cross-predicted re-

turns, i.e., the amount of one asset’s return that is explained by other assets’ signals. I find

that neglecting to predict returns of small stocks subject to limits to arbitrage using other

assets’ signals results in dramatic losses in portfolio performance, whereas it becomes increas-

ingly more difficult to cross-predict returns when market capitalization and book-to-market

ratio rise.

In the literature, cross-predictability is often interpreted as the existence of lead-lag

relations, where the returns of a group of stocks predict the returns of another group of

stocks in the following period. Economic links leading to these effects are found between

large and small stocks, firms in customer-supply relationships (Menzly and Ozbas, 2010),

stocks with a higher and lower analyst coverage (Brennan et al., 1993) and institutional

ownership (Badrinath et al., 1995), or that are more and less frequently traded (Chordia

and Swaminathan, 2000). The approach used so far to measure cross-predictability mainly

consists in constructing a long-short portfolio obtained using binary splits of the cross-section

that follows one of these economic links. For example, buying stocks of firms whose customer

performed well in the previous period reveals a profitable strategy (Cohen and Frazzini,

2008). As other forms of return predictability, lead-lag effects go against the notion of market

efficiency, and justifications such as slow information diffusion, investors’ specialization, or

even information manifestation (Huang et al., 2022), are needed. Alternatively, firms in

leading industries might provide resolution of uncertainty relative to companies in lagging

industries (Croce et al., 2023). However, “[...] cross-predictability effects are different from

lead-lag effects where one market either always leads or always lags another market [...] With

2

Electronic copy available at: https://ssrn.com/abstract=4674080



cross-predictability, a market can sometimes lead and sometimes lag another related market

depending on where the information originates.” (Menzly and Ozbas, 2010). Put differently,

cross-predictability effects are likely complex, and limiting the analysis to coarse partitions

of the cross-section (such as customer-supplier splits) is ill-suited to provide further insights

on the origin of cross-predictability and measure its economic value. This is where Principal

Portfolio Analysis (PPA, Kelly et al. (2023)) comes in especially handy.

PPA solves a general portfolio optimization problem using linear strategies that encom-

pass other well-known strategies such as long-short portfolios (e.g. Fama and French (1993)).

The solution delivered by this method are Principal Portfolios (PPs), which are ordered by

expected return and can be broken down into an alpha and a beta component. PPs prove

very profitable, beating both the long-short factor based on the same firm signal and a simple

factor that trade all assets according to the strength of only their own signal. The driver

of this outperformance lies in a simple mathematical object, the prediction matrix, which

contains information not only about the predictive power of firm characteristics for their own

return, but also for other assets’ returns. Accounting for cross-predictability effects allows

to improve portfolio performance meaningfully.

By setting specific restrictions on the prediction matrix, I are able to quantify how much

cross-predictability contributes to PPs’ performance, distinguishing between how much one

signal cross-predicts other assets’ returns from how much one asset’s returns are cross-

predicted by other assets’ signals. Measuring cross-predictability through PPA represents

a noticeable improvement compared to existing methods that focus on simple long-short

portfolios, because PPs result from an explicit optimization process where all securities’ sig-

nals predict each individual return. In this framework I are able to control for any other
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effect that could otherwise influence the result of lead-lag strategies, leading to a clear-cut

identification of the sources of economic value contained in cross-prediction effects among

assets. Furthermore, using PPA permits capturing cross-predictability relative to any firm

characteristic and not just past returns, in contrast to previous studies.

The findings are three-fold. First, the economic value of cross-predictability concentrates

on small stocks. The average realized return and the Sharpe Ratio (SR) of the first PP built

on ten size-sorted portfolios decrease by roughly 60% and 50%, respectively, if I exclude any

type of cross-prediction effects involving the smallest size-decile. Moreover, while there is

valuable information in predicting returns of small stocks using signals from other assets,

small firms’ signals contain low information to predict the rest of the cross-section. Imposing

no prediction from non-small stocks’ characteristics to small stocks’ returns reduces both the

average return and the SR of the first PP by around 25%. Excluding small companies’ cross-

predictive signals barely changes the portfolio performance.

Second, the larger the market capitalization, the more difficult it is to predict stocks from

other assets’ signals, up to the point of becoming detrimental. Excluding cross-prediction

effects for each size decile has an impact on the PP performance that decreases to zero around

the fifth decile, and becomes slightly negative afterwards. Said differently, it is beneficial

to avoid predicting larger stocks with other assets’ signals for investment purposes. On the

other hand, the cross-predictive power of an asset rises with size. The middle of the cross-

section (i.e., mid-cap stocks) has instead a negligible impact. The dominant role of small

firms drives also the composition of PPs, which are strongly tilted towards these assets.

Third, cross-predictability is higher for stocks more prone to mispricing due to limits

to arbitrage. Cross-sectional regressions show that idiosyncratic volatility and mispricing
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measures are strongly positively associated with cross-predictability measures, while size,

book-to-market and operating profitability exert a negative influence. These characteristics

have opposite relations to cross-predictive signals, thereby suggesting that limits to arbitrage

provide room not only for own-asset predictability but also for cross-predictability, at the

same time decreasing the strength of one asset’s signal to predict other assets’ returns. These

results are robust to controlling for value nonparametrically through double-sorted portfolios.

The rest of the paper is organized as follows. Section 2 reviews the literature, highlighting

my contributions. Section 3 provides a primer on KMP’s PPA and benchmarks it with

the construction of risk factors typical in empirical asset pricing. Section 4 explains the

methodology employed in this paper to measure cross-predictability. Section 5 illustrates

the data used. Section 6 presents the main results. Section 7 proposes an explanation for

the findings. Section 8 discusses some robustness tests. Section 9 concludes.

2 Relation to the Literature and Contribution

Starting from the pioneering works of Lo and MacKinlay (1990), cross-predictability has

been mainly studied through the lens of lead-lag relations between groups of firms linked by

economic relations. Besides the studies mentioned above, more recent contributions observe

cross-predictability based on size within the same industry (Hou, 2007), conglomerates (Co-

hen and Lou, 2012), technological similarity (Lee et al., 2019), geographic position (Parsons

et al., 2020), shared analyst coverage (Ali and Hirshleifer, 2020) and production network

(Gofman et al., 2020). These studies focus on lead-lag relations between just two groups

of firms, such as large and small stocks. Instead, I look at potential cross-prediction effects
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along the entire cross-section by means of finer partitions based on the distribution of salient

firm characteristics like size and book-to-market ratio.

Notably, cross-predictability has been documented also at the industry level (Schlag and

Zeng, 2019; Croce et al., 2023) and in international markets (Rapach et al., 2013), which

shows that it is a phenomenon that has a strong impact on asset prices.

Up until now, only few studies leverage information contained in assets’ characteristics to

make cross-predictions. Kelly and Pruitt (2013) use the a cross-sectional measure of book-

to-market ratio to predict returns of both aggregate market, characteristic-based portfolios

and industries. In a similar spirit, Detzel and Strauss (2018) show that the cross-section

of book-to-market beyond a market-level factor helps forecasting portfolio returns. Müller

(2019) identifies economic links among firms through well-known characteristics and builds

a measure of earning surprise across different signals that predicts individual stock returns.

As for the literature related to lead-lag relations, these papers take into account only the

extremes of firm characteristics distributions to build trading strategies that fundamentally

hinge on long-short portfolios, disregarding what happens in the middle. Said differently, I

have no idea whether cross-prediction effects exists from the extremes towards the middle

or vice-versa. I fill this gap by employing a method that allows connections among all

the parts of the cross-section without ruling out any a priori. The approach is flexible

enough that it can control for the effect of a specific signal by simple means of double-sorted

portfolios. Furthermore, I provide a straightforward performance-based measure to quantify

the economic importance of cross-prediction effects in the context of portfolio optimization.

To the best of my knowledge, this is the first work achieving this result.

my work is related to the growing literature that employs machine learning in asset
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pricing. Prominent examples are Gu et al. (2020), Kelly et al. (2019), Kozak et al. (2020),

Freyberger et al. (2020), Goodarzi et al. (2022).1 Among others, Kozak et al. (2018) and

Lettau and Pelger (2020) evaluate their pricing factors using only the top- and bottom-decile

portfolios (or on long-short portfolios) as “most of the relevant information is contained in

the extreme first and tenth decile portfolios.” (p.2292). Here I provide the evidence that has

been missing to sustain this argument, confirming the previous intuition in the literature.

3 Principal Portfolios: A Primer

This section provides a framework encompassing both traditional trading strategies based on

long-short portfolios, on own-asset signals only, and the PPs. It also summarizes the main

concepts of PPA to understand the approach I introduce to measure cross-predictability.

3.1 Long-short Portfolios, Simple Factors and Principal Portfolios

The starting point in KMP is represented by linear strategies of the type

Rw
t+1 = w′

tRt+1 =
N∑
j=1

(S ′
tLj)︸ ︷︷ ︸

position in j

Rj,t+1︸ ︷︷ ︸
return of j

= S ′
tLRt+1 (1)

Rt+1 = (Ri,t+1)
N
i=1 ∈ RN is a vector of returns in excess of the risk-free rate, St =

(Si,t)
N
i=1 ∈ RN is a vector of signals (e.g. firm characteristics) and wt = (wi,t)

N
i=1 ∈ RN is a

vector of portfolio weights. L ∈ RN×N is the position matrix where each column translates

signals into a portfolio position in each assets, w′
t = S ′

tL. L allows the position S ′
tLj in any

1For a comprehensive review of the methods employed in this area, see Giglio et al. (2022). Bagnara (2022)
offers a thorough review of the empirical results.
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asset j to depend on the signal of all assets. This is a general framework nesting several cases

based on the specification of L. By controlling L I control in fact the effect of cross-prediction

effects in trading strategies.

Consider setting L = IN where IN is an N ×N identity matrix. Then, Eq.(1) delivers a

“simple factor” F̃ which considers only own-signal predictions:

F̃t+1 =
N∑
j=1

Sj,tRj,t+1 = S ′
tRt+1 (2)

When the entries off the main diagonal of L are set to zero, I disregard any cross-

predictability, and if the main diagonal elements all equal one, the corresponding strategy

trades each asset in the same proportion as the strength of its own signal.

Now consider further setting Sj,t = Dj,t where

Dj,t =


+1, if Sj,t = max{S1,t, S2,t, ..., SN,t}

−1, if Sj,t = min{S1,t, S2,t, ..., SN,t}

0, if else

(3)

A strategy based on the signal Dj,t buys the highest-signal asset and sells the one with

the lowest signal strength, disregarding the remaining ones. If assets are characteristic-sorted

portfolios, I obtain a market-neutral strategy mimicking the risk associated with the signal,

i.e., the traditional long-short portfolio LS used in empirical asset pricing:

LSt+1 =
N∑
j=1

Dj,tRj,t+1 = D′
tRt+1 (4)

Instead, PPs allow the signal of each asset to predict the return of all assets (or to
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“cross-predict” other assets). The k-th PP can be represented as

PP k
t+1 = S ′

tvku
′
kRt+1 = S

v′k
t Ruk

t =
N∑
j=1

Svk
j,tR

uk
j,t+1 (5)

where uk and vk are, respectively, the k-th column of the orthonormal matrices U and V

from the singular value decomposition of the so-called prediction matrix Π ∈ RN×N :

Πt := Et[Rt+1S
′
t] = U Λ̄V ′ (6)

Here, Λ̄ = diag(λ̄1, ..., λ̄N) is the diagonal matrix of singular values. The prediction matrix

is a very interesting mathematical object. The entries on the main diagonal Πi,i represent

the expected return of a strategy that chooses an asset’s position equal to its own signal

strength. Elements off the main diagonal Πi,j, i ̸= j, capture the return of a strategy that

determines asset i’s position based on asset j’s signal. Hence, Π contains the information

relative to the entire asset universe, including cross-prediction terms, which means it is the

source of cross-predictability. I address the properties of Π more in detail in Section 4.1.

3.2 An overview of Principal Portfolio Analysis

Before illustrating the methodology used in this paper, I outline the main steps in the

derivation of PPs, including their decomposition into positive- and zero-factor exposures, in

order to provide the intuition necessary to follow the rest of the paper. The original notation

is used where possible. The reader familiar with PPA can skip this section.

KMP maximize the expected return of a linear strategy subject to a constraint on L:

9
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max
L:||L||≤1

E[S ′
tLRt+1] (7)

The matrix norm is defined as ||L|| = sup{||Lx|| : x ∈ Rm with ||x|| = 1} where

||x|| = (
∑

i xi)
2 is the standard Euclidean norm of a vector in x ∈ RN . The constraint

represents a bound on the portfolio size ||L′St|| corresponding to portfolio weights S ′
tL that

admits only linear strategies with a position size not exceeding the position size of the simple

factor F̃ , as explained in Appendix A.1. KMP show that the solution to (7) is

L = (Π′Π)−1/2Π′ = V Λ̄−1V ′V Λ̄U ′ =
N∑
k=1

vku
′
k (8)

where I used the singular value decomposition on Π as in Eq.(6). The optimal solution

can be decomposed into a collection of linear strategies denoted as PPs:

PP k
t+1 = S ′

t vku
′
k︸︷︷︸

Lk

Rt+1 (9)

for k = 1, ..., N . This strategy trades the portfolio u′
kRt+1 based on the signal coming from

the portfolio S ′
tvk. In contrast to Principal Component Analysis (PCA), which decomposes

the variance, PPA decomposes expected returns, which equal the eigenvalue of each PP (see

Proposition 4 in KMP)

E[PP k
t+1] = tr(Πvku

′
k) = tr(U Λ̄V ′vku

′
k) = λ̄k (10)

where tr denotes the trace of a matrix.

PPs can be further decomposed into two sets of portfolios with different factor exposures,
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namely Principal Exposure Portfolios (PEPs) and Principal Alpha Portfolios (PAPs). First,

recall that any matrix Π ∈ RN×N has a symmetric part Πs = 1
2
(Π+Π′) and an antisymmetric

part Πa = 1
2
(Π − Π′) such that Π = Πs + Πa. Similarly, I can see any linear strategy L as

the sum of a symmetric and antisymmetric part, L = Ls + La. Hence

Rw
t+1 = S ′

tLRt+1 = S ′
tL

sRt+1 + S ′
tL

aRt+1 (11)

While the factor risk of a linear strategy is entirely due to its symmetric part, such

that the antisymmetric strategy is always factor neutral, both components contribute to

its expected return, i.e., the antisymmetric strategy can give rise to alphas, as shown in

Appendix A.2. KMP argue that symmetric strategies can be represented more generally as

strategies trading assets based on their own signals, similarly to the simple factor F̃ . The

optimal symmetric strategy is Ls = (ΠsΠs)−1/2Πs, which can be decomposed into N PEPs:

PEP k
t+1 = S ′

tw
s
k︸︷︷︸

S
ws
k

t

(ws
k)

′Rt+1︸ ︷︷ ︸
R

ws
k

t+1

(12)

for k = 1, ..., N where ws
k is the k-th eigenvector corresponding to the k-th eigenvalue

of Πs. The expected return of the k-th PEP equals the corresponding eigenvalue λs
k of Πs,

E[PEP k
t+1] = λs

k (see Proposition 6 in KMP).

The optimal antisymmetric strategy can be decomposed into Na ≤ N/2 PAPs:

PAP k
t+1 = S ′

txk(yk)
′Rt+1︸ ︷︷ ︸

S
xk
t R

yk
t+1

−S ′
tyk(xk)

′Rt+1︸ ︷︷ ︸
S
yk
t R

xk
t+1

(13)

for k = 1, ..., Na where xk and yk are the real and the imaginary components of the
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eigenvectors associated with the eigenvalues of (Πa)′.2 Differently from symmetric strategies,

which exploit only own-asset signals, PAPs represent long-short strategies trading portfolios

Ryk
t+1 and Rxk

t+1 against each other based on each other’s signal (hence using Sxk
t and Syk

t ,

respectively), with no factor exposure. The expected return for the k-th PAP equals twice

the corresponding eigenvalue λa
k of the antisymmetric matrix Πa, E[PAP k

t+1] = 2λa
k.

To sum up, PPs are optimal linear strategies that simultaneously account for own-asset

predictions and cross-asset predictions, which are captured by PEPs and PAPs, respectively.

4 Methodology

After giving a quick overview of PPA, I now explain the approach I employ to build a

performance-based measure of cross-predictability that allows to decompose it into cross-

predictive signals and cross-predicted returns.

4.1 A Closer Look at the Prediction Matrix

Let us start by examining the prediction matrix Πt for a given firm characteristic Sk
t :

Πt = Et[Rt+1S
′
t] = Et



R1S1 R1S2 · · · R1SN

R2S1 R2S2 · · · R2SN

...
...

. . .
...

RN−1S1 RN−1S2 · · · RN−1SN

RNS1 RNS2 · · · RNSN


where I omit the time index for matrix entries for ease of exposition. The corresponding

symmetric and antisymmetric matrices Πs
t and Πa

t are

2See Appendix A.3 for further details.
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Πs
t =

1

2
(Πt +Π′

t) =
1

2
Et



2R1S1 R1S2 +R2S1 · · · R1SN +RNS1

R2S1 +R1S2 2R2S2 · · · R2SN +RNS2

...
...

. . .
...

RN−1S1 +R1SN−1 RN−1S2 +R2SN−1 · · · RN−1SN +RNSN−1

RNS1 +R1SN RNS2 +R2SN · · · 2RNSN



Πa
t =

1

2
(Πt − Π′

t) =
1

2
Et



0 R1S2 −R2S1 · · · R1SN −RNS1

R2S1 −R1S2 0 · · · R2SN −RNS2

...
...

. . .
...

RN−1S1 −R1SN−1 RN−1S2 −R2SN−1 · · · RN−1SN −RNSN−1

RNS1 −R1SN RNS2 −R2SN · · · 0



The entries along the main diagonal of Πt contain only own-asset prediction terms. With

Πt as a diagonal matrix, in fact, I are back in the case of the simple factor F̃t (see Section

3.1). Entries off the main diagonal, instead, contain cross-prediction terms, as the signal of

one asset at time t is paired with the return of another asset at time t + 1. Based on this

observation, I can disentangle the economic value of cross-prediction effects by manipulating

the prediction matrix. By performing three different transformations, I can capture three

types of cross-prediction effects, as explained in the following.

4.2 Cross-predictive Signals and Cross-predicted Returns

What kind of cross-prediction effects can I expect? Consider a simple example illustrated

in Figure 1 with N = 3 stocks and a single signal St = (S1,t, S2,t, S3,t) used to predict the

returns Rt+1 = (R1,t+1, R2,t+1, R3,t+1). Each signal Sj,t predicts the return of the same stock

13
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Rj,t+1, but it can also predict the returns of the other two stocks. Hence, there are three

arrows originating from each Sj,t, one for each return Rj,t+1, for j = 1, ..., N = 3. Horizontal

lines represent own-asset predictions. Focusing on the remaining ones, I can represent cross-

prediction effects differently depending on the point of view I take. If I focus on signals

(left side of the chart), I can think of cross-predictability as the predictive power that each

signal Sj,t has to predict other assets’ returns, Ri,t+1 with i ̸= j. I name this cross-predictive

signals. If, instead, I focus on returns (right side), cross-predictability is represented by the

amount of one asset’s return Rj,t+1 captured by the signals of other assets, Si,t with i ̸= j.

I name this cross-predicted returns. Notice that considering all cross-predictive signals for

j = 1, ..., N is the same as considering all cross-predicted returns for j = 1, ..., N , as both

capture any possible cross-prediction effect. The union of the cross-predictive signals and

the cross-predicted returns of asset j captures any cross-effects involving that asset, which

means either originating from its own signals or from other assets. I name the whole effect

simply cross-prediction total. The special structure of the prediction matrix allows us to

isolate these three effects precisely and to quantify their economic value, as shown below.

4.2.1 Cross-predictive Signals

PPA uses one signal at a time. For a given signal S, consider excluding the N -th cross-

predictive signal, which is the effect that firm j = N ’s characteristic SN has on other firms’

returns, without restricting its own-predictability effect. Through the lens of the prediction
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matrix Πt, this means setting St,N = 0, excluding the entry on the main diagonal.3 Hence:

Π̇t = Et



R1S1 R1S2 · · · 0

R2S1 R2S2 · · · 0

...
...

. . .
...

RN−1S1 RN−1S2 · · · 0

RNS1 RNS2 · · · RNSN



Π̇s
t =

1

2
Et



2R1S1 R1S2 +R2S1 · · · RNS1

R2S1 +R1S2 2R2S2 · · · RNS2

...
...

. . .
...

RN−1S1 +R1SN−1 RN−1S2 +R2SN−1 · · · RNSN−1

RNS1 RNS2 · · · 2RNSN



Π̇a
t =

1

2
Et



0 R1S2 −R2S1 · · · −RNS1

R2S1 −R1S2 0 · · · −RNS2

...
...

. . .
...

RN−1S1 −R1SN−1 RN−1S2 −R2SN−1 · · · −RNSN−1

RNS1 RNS2 · · · 0



The notation Π̇t indicates that Πt has been manipulated to exclude cross-predictive sig-

nals involving one asset. This transformation does not alter the matrix properties that are

relevant for PPA. In particular, Π̇t = Π̇s
t + Π̇a

t , and Π̇s
t and Π̇t are still symmetric and

antisymmetric, respectively, and all Π̇t, Π̇s
t , Π̇a

t are of full rank and thus invertible (unless

RN = 0, which is usually not the case, which would make even the original Πt rank-deficient).

This implies that the number of non-zero eigenvalues of all Π̇t, Π̇
s
t , Π̇

a
t does not change with

respect to the baseline case, and all the results in Kelly et al. (2023) are still valid. The

3The procedure of setting a column (or row as below) to evaluate the impact of a certain covariate on a
PCA-based methodology is used also in Kelly et al. (2019) to test instrument significance.
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crucial step is not to set main diagonal elements to zero. Mathematically, this would create

rank-deficient matrices. Economically, this would capture own-asset predictability effects,

which is not what I are after.

4.2.2 Cross-predicted Returns

Now consider excluding the N -th cross-predicted return, which is the effect that all other

firms’ characteristics Si, i = 1, ..., N, i ̸= j have on firm j = N ’s return, without restricting

its own-predictability effect. Working on Πt, this means setting RN,t = 0 outside the main

diagonal. Hence:

Π̈t = Et



R1S1 R1S2 · · · R1SN

R2S1 R2S2 · · · R2SN

...
...

. . .
...

RN−1S1 RN−1S2 · · · RN−1SN

0 0 · · · RNSN



Π̈s
t =

1

2
Et



2R1S1 R1S2 +R2S1 · · · R1SN

R2S1 +R1S2 2R2S2 · · · R2SN

...
...

. . .
...

RN−1S1 +R1SN−1 RN−1S2 +R2SN−1 · · · RN−1SN

R1SN R2SN · · · 2RNSN



Π̈a
t =

1

2
Et



0 R1S2 −R2S1 · · · R1SN

R2S1 −R1S2 0 · · · R2SN

...
...

. . .
...

RN−1S1 −R1SN−1 RN−1S2 −R2SN−1 · · · RN−1SN

−R1SN −R2SN · · · 0
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The notation Π̈t indicates that Πt has been manipulated to exclude cross-predicted returns

involving one asset. Analogously to the first transformation, this does not alter the properties

of the prediction matrix that are relevant for PPA.

4.2.3 Cross-prediction Total

Finally, consider excluding the N -th cross-prediction total, which amounts to disregard any

type of cross-predictability linked to firm N , again without restricting its own-predictability

effect. From the point of view of the prediction matrix Πt, this means setting St,N = 0 and

RN,t = 0 excluding the entry on the main diagonal. In this case:

...
Π t = Et



R1S1 R1S2 · · · 0

R2S1 R2S2 · · · 0

...
...

. . .
...

RN−1S1 RN−1S2 · · · RN−1SN

0 0 · · · RNSN



...
Π

s

t =
1

2
Et



2R1S1 R1S2 +R2S1 · · · 0

R2S1 +R1S2 2R2S2 · · · 0

...
...

. . .
...

RN−1S1 +R1SN−1 RN−1S2 +R2SN−1 · · · 0

0 0 · · · 2RNSN



...
Π

a

t =
1

2
Et



0 R1S2 −R2S1 · · · 0

R2S1 −R1S2 0 · · · 0

...
...

. . .
...

RN−1S1 −R1SN−1 RN−1S2 −R2SN−1 · · · 0

0 0 · · · 0
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The notation
...
Π t indicates that Πt has been manipulated to exclude cross-predictive signals

and cross-predicted returns involving one asset. As with the previous two transformations,

the matrix properties of interest for PPA are preserved.4

4.3 The Economic Value of Cross-Predictability

Equipped with this straightforward way to distinguish different types of cross-prediction

effects, I now turn to how to quantify their economic value based on expected returns and

SRs, two classical performance measures that fit well the PPA optimization framework.

Starting from expected returns, for any asset j = 1, ..., N , I perform one of the trans-

formations explained above to capture cross-predictive signals, cross-predicted returns or

cross-prediction total. Then, I compute the average realized out-of-sample (OOS) return of

the first PP in each case and I calculate the negative percentage deviation from the baseline

case without restrictions on Π.5 Three cross-prediction measures are obtained:

value of Cross-predictive Signal j := CPSR̄
j = 1−

R̄−columnj

R̄full

(14)

value of Cross-predicted Return j := CPRR̄
j = 1−

R̄−rowj

R̄full

(15)

value of Cross-prediction Total j := CPT R̄
j = 1−

R̄−columnj ,−rowj

R̄full

(16)

4Notice that by applying any of the three transformations for all firms j = 1, 2, ..., N collapses the prediction
matrix Πt to a diagonal matrix populated with only own-predictability terms, i.e., I are back in the case of
the simple factor F̃ .

5A strategy using only the first PP is not necessarily the optimal one. Any portfolio with positive eigenvalue
should be traded. With PEPs, the optimal strategy shorts negative-eigenvalue portfolios, if any. With
this in mind, I focus on the first PP for two reasons. First, this portfolio has the highest expected return
among all PPs, and empirically the subsequent ones have singular values and average returns close to zero.
Hence, trading only the first PP does not lead to big losses in performance. Second, this is beneficial for
interpretation purposes. The LS factor, the standard in the literature, and the simple factor F̃ , are both
single portfolios. To remain close in spirit to them, I exclude strategies composed of multiple PPs.
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where R̄full denotes the average return of the baseline case and R̄−columnj
, R̄−rowj

and

R̄−columnj ,−rowj
denote the average return after zeroing out the j-th column, row, and column

and row, respectively, of the prediction matrix Π, except for the j-th element of the main

diagonal. In sequential order CPSR̄
j , CPRR̄

j and CPT R̄
j measure the percentage loss in

expected return from the first PP resulting from disregarding cross-prediction effects from,

to, and both from and to asset j. I repeat the same procedure for the average return of the

first PEP and PAP to obtain analogous measures.

From Eq.(10), I know that the k-th singular value of Π is also the expected return of the

corresponding k-th PP. As an additional estimate of the cross-predictability value based on

expected returns, in Appendix B I compute percentage deviations between singular values

before and after performing the transformations introduced above.

I also provide measures based on annualized OOS SRs. Accounting for portfolio risk as

represented by the standard deviation in addition to expected returns delivers a unit-free

measure for the economic value of cross-predictability. The SR-based measures are

value of Cross-predictive Signal j := CPSSR
j = 1−

SR−columnj

SRfull

(17)

value of Cross-predicted Return j := CPRSR
j = 1−

SR−rowj

SRfull

(18)

value of Cross-prediction Total j := CPT SR
j = 1−

SR−columnj ,−rowj

SRfull

(19)

where the interpretation of the pedices is analogous to one given above. These measures cap-

ture the percentage loss in the annualized OOS SR resulting from excluding cross-prediction

effects among the base assets used to build PP strategies.6

6Calculating percentage differences among SRs is a common practice in the literature, see e.g. Campbell
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Regardless of whether they focus on expected returns or on SRs, CPS, CPR and CPT are

performance-based measures that capture the economic impact of ignoring cross-prediction

effects when implementing a trading strategy. Compared to previous studies, which mainly

build long-short portfolios based on the lead-lag relations, my measures have the advantage

of identifying precisely whether it is more important to predict a certain part of the cross-

section with other assets (CPR) or if cross-prediction effects are mainly due to the signal from

a part of the cross-section that is very informative for other assets (CPS). Remaining in the

framework of PPA, a very recent and promising methodology, I are able to provide clean-cut

measures of cross-predictability that do not suffer from confounding variables affecting the

simple outcome of long-short portfolios, as I can precisely restrict only the cross-prediction

terms of the prediction matrix, leaving the rest unchanged. Benchmarking the performance

of PPs that exclude certain cross-effects to the “full” strategy, my approach keeps all the

rest fixed and thus does not need to control for further omitted variables.

5 Data

I apply my approach to the data from Jensen et al. (2022). The database contains 153

signals from the asset pricing literature at the individual stock-month level.7 The period

considered is January 1968 - December 2019. Characteristic-sorted portfolios are formed as

detailed below thoroughly following KMP. When forming portfolios (each month), nano and

micro stocks are excluded, and the minimum number of stocks per portfolio is restricted

to 10. Portfolio returns and portfolio-level signals are computed as weighted averages of

and Thompson (2008).
7I thank Bryan Kelly for sharing the data. Appendix C reports a list of the signals used.
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the portfolio components, using capped-value weights at the 80th percentile of the NYSE

breakpoints.8 The prediction matrix is estimated via 120-month-window rolling averages

of Rt+1S
′
t, as in KMP. PPA is applied with the same frequency for one-month ahead OOS

return predictions.

6 Empirical Results

In this section I apply PPA to size-sorted portfolios and describe the empirical application

of the cross-predictability value measures, focusing on their economic interpretation.

6.1 Size-sorted Portfolios: Size as signal

Among the many paradigms that can be used to group individual stocks into portfolios,

characteristic-sorted portfolios are the most frequently used. For instance, the portfolios

made available by Kenneth French have been used for decades as test assets for many models,

becoming universal benchmarks in asset pricing.9 Here, I sort stocks into ten groups based

on size. Previous research has documented lead-lag effect from large to small stocks (Lo and

MacKinlay, 1990). Moreover, small stocks are often problematic. Hou et al. (2020) find that

65% of anomalies are insignificant after excluding microcaps, and modern methods perform

remarkably different when applied to large or small stocks (Gu et al., 2020). In other words,

8Breakpoints are provided at https://www.bryankellyacademic.org/. Portfolio-level characteristics are
cross-sectionally ranked and mapped into the [−0.5, 0.5] interval before applying PPA, as it is standard
in ML applications (e.g. Kelly et al. (2019)). Moreover, as in Section V.A in KMP, returns are cross-
sectionally demeaned to focus predictions on cross-section differences in returns rather than on time-series
fluctuations in their common market component. In words, this is equivalent to trading assets with long
positions hedged by shorting an equal-weighted average of all portfolios. KMP show that results are very
similar if the market return is not hedged in this way, and thus I follow their main approach here. Notice
that this procedure makes it equivalent to use either returns or returns in excess of the risk-free rate.

9See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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firm market capitalization gives rise to interesting patterns that are worth investigating,

hence the choice of size-sorted portfolios. Considering the full ten-portfolio partition allows to

identify potential cross-prediction effects involving not only the characteristic-based extremes

of the cross-section, but also those regarding the middle range of the distribution, which is

typically disregarded in the literature without an explicit explanation.

Using these ten size-sorted portfolios, I compute the long-short portfolios LS, which is a

“classical” size factor, the simple factor F̃ and the first PP, PEP and PAP. As mentioned

above, I focus only on the first portfolio for PPA and disregard strategies composed of

multiple portfolios. The comparison among these different assets have meaningful economic

interpretations when considering Section 3.1. Differences between the performance of LS

and F̃ reveal the economic value contained in the signals in the middle of the cross-section

instead of focusing only on the extremes. Comparing the first PP and F̃ , instead, captures

the additional value of cross-prediction effects beyond own-asset predictions. Since PPA

must be performed one signal at a time, I start by using size to illustrate the main logic of

the analysis. In Section 6.2, I extend the approach to all signals available in the dataset.

6.1.1 Singular Values and Average Returns

Similarly to KMP, let us start by looking at how PPA performs for size-sorted portfolios.

Figure 2 shows time-averages of the singular values of Π, Πs and Πa on the left and the average

OOS returns of the corresponding PPs, PEPs and PAPs on the right, with±2 standard errors

confidence bands.10 First, I see that overall the singular values and eigenvalues on the left

panels are very close to the average returns on the right panels, as I would expect from the

10As explained in Section 5, PPA is performed on a rolling window of 120 months, which gives rise to a
time-series of singular values for each component of the prediction matrix.
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theory discussed in Section 3.2.11 In Panel D, the average returns are all basically zero except

for the first one. Thus, focusing just on the first PP is the optimal choice. In Panel B there

are two relevant PEPs, i.e., the first one and the last one, with positive and negative average

returns, respectively. Since PEPs represent factor exposure, this phenomenon is expected as

I recognize something similar to the two legs of the classical size factor.12 Panel C shows that

among the portfolios with zero factor exposures, only the first one earns a positive expected

return. The overall message of Figure 2 is that in the cross-section of size-sorted portfolios

there is one important latent factor exploiting cross-prediction effects (PP). Furthermore,

there is one alpha-generating portfolio (PAP) and two additional portfolios exposed to the

size factor (PEPs) with positive and negative expected return, respectively.

6.1.2 PPA Performance

To evaluate the performance of PPA, I follow KMP and report in Figure 3 the SR of the

first PP, the first PEP, and the first PAP. As a benchmark, I also show the SR of the

simple factor. The dashed line is the SR of the LS portfolio. Each bar is accompanied by

the ±2 approximate standard error bar based on Lo (2002). The PP strategy outperforms

both F̃ and LS, which means that cross-prediction effects contain valuable information for

investment purposes. Both PEP and PAP perform better than LS, but PAP earns the

highest SR. Put differently, exploiting only cross-predictability but no factor risk reveals the

best choice. All PPA-based strategies generate a significant SR while F̃ does not. Notably,

11Since I are comparing realized eigenvalues to OOS average returns I cannot expect a perfect match. This
is also what happens in KMP.

12The optimal symmetric strategy buys all portfolios with positive eigenvalues and sells those with negative
eigenvalues, which would result in a long-short portfolio in this case. Here, I focus only on the first PEP
for ease of interpretation to get a solid grasp of the sources of cross-predictability.
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LS does better than F̃ .13 This means that accounting for the information from some parts

of the cross-section (the middle) can be actually detrimental even in the case of own-asset

predictions. It could be that the market capitalization of mid-cap portfolios is a poor signal

for their own returns. A similar intuition is confirmed later on.

Before moving on to cross-predictability measures, in Table 1 I report the correlation

matrix of LS, F̃ , PP, PEP and PAP (excluding the last row) to highlight some interesting

facts. The first observation is the strikingly high correlation between LS and F̃ , which are

essentially the same factor up to a sign. However, trading portfolios on signal strength

instead of simply focusing on a long-short strategy hinders portfolio performance. Another

interesting correlation is the one between PEP and F̃ , which is 0.79. This is line with

the theory, that shows that PEPs are the only responsible for factor risk in PPA. PAP,

instead, shows the lowest correlation with F̃ as it is a zero-exposure portfolio. The last

row reports the average R2 obtained by regressing each size-sorted portfolio on a one-factor

model corresponding to the factor in the column. PPs (including PEP and PAP) produce

much lower fits compared to the standard LS factor. In other words, a better investment

performance is not accompanied by a higher cross-sectional explanatory power. This result

is noteworthy for two reasons. First, it is similar to the findings in Kelly et al. (2022), who

document that the OOS R2 is an incomplete measure of the economic value of a model,

and that substantial profits can be generated even with a low fit. Second, it suggests that

PPA-based strategies might produce “weak” factors (Lettau and Pelger, 2020) that are not

13I adjust the sign of LS such that it has a positive mean return to be consistent with what is typically
expected from the literature. For size-sorted portfolios, LS means actually buying small stocks and selling
large stocks. I do not do this for F̃ because this would introduce a look-ahead bias that is less of an issue
for LS factors that have been documented for decades. In any case, even flipping the sign of F̃ would not
change the conclusion that it performs worse than LS.

24

Electronic copy available at: https://ssrn.com/abstract=4674080



part of the stochastic discount factor but are nevertheless priced as non-diversifiable risk.

6.1.3 Cross-predictability: Average Returns

I now turn to measuring the economic value of cross-predictability. I start by using CPSR̄
j ,

CPRR̄
j and CPT R̄

j for j = 1, ..., N . I stress that j here denotes the base asset as opposed to

k, which refers to the ordering of PPs. I compute these statistics for the first PP and report

them on the top-left panel of Figure 4. One of the most apparent patterns is that there

is essentially no value in the center of the cross-section, because all three cross-prediction

measures are almost zero. The extremes are instead the most important parts, as informally

argued in the literature (e.g. Lettau and Pelger (2020)). This fact is also in line with the idea

of using the extremes as the two legs of a long-short portfolio mimicking the underlying risk

factors, a widely used practice. At the extremes, the economic value of cross-predictability

concentrates on small stocks. Excluding any cross-prediction regarding this portfolio results

in a loss of roughly 57% of the average PP return. The same operation involving large

stocks leads to a loss of around 12%. Hence, small firms are the most relevant part of the

cross-section from a cross-predictability perspective. Where does its economic value come

from? Mainly from cross-predicted returns. In fact, predicting small stocks with signals from

other assets creates much larger economic value (CPRR̄
1 = 0.28) than using small companies’

signals to predict other assets (CPSR̄
1 close to zero).

Interestingly, the opposite holds for large stocks. Roughly 11% of PP average return is

lost once I do not consider the information that large firms’ signals have for other assets.

However, excluding cross-prediction from other assets towards large stocks does not lead

any loss (CPSR̄
10 = −0.03). These facts resemble the lead-lag effects documented in Lo and
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MacKinlay (1990), where past returns of large stocks systematically lead small stocks returns

but not vice-versa. Here, the difference is that I are using size as signal to predict returns

instead, and the signal is measured at the same time for both group of stocks.

In the second and third panel on the left of Figure 4 I repeat the same exercise for

the first PEP and the first PAP, respectively. The shape of the cross-prediction measures

for symmetric and antisymmetric strategies is somewhat different, but the general patterns

highlighted above persist: the extremes of the distributions contain most of the economic

value of cross-predictability and the value from predicting an asset’s return from other assets

decreases with size. Notably, these patterns hold to a great extent also for PEP. Although

the cross-prediction measures are remarkably high not only for the first size-sorted portfolio

but also for the second and the third, I have to keep in mind that PEPs are symmetric

strategies that drive the factor exposure of a certain trading strategy exploiting own-asset

signals. However, looking at the structure of Πs in Section 4, I see that cross-prediction

terms actually exist and thus eventually impact the matrix eigenvalues and expected returns.

Hence, neglecting cross-predictability impacts also PEP strategies. As expected from the

theory, the third panel of Figure 4 reflects very closely the first one. PAPs are indeed long-

short strategies trading one asset against the other based on the other asset’s signal. As

such, they exploit in full cross-predictability patterns and are thus likely to be even more

sensitive to neglecting cross-prediction effects. The CPT R̄
1 is indeed 0.69, even higher than

the same measure for the PP case. Cross-predicting large stocks is not detrimental any more,

but disregarding this effect leads only to a modest performance loss (CPRR̄
10 = 0.07).

In PPA, the eigenvalues of the prediction matrix (including its symmetric and antisym-

metric components) correspond to the expected returns of PPs. However, as explained in
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KMP, eigenvalues will never perfectly match realized average returns out-of-sample but will

follow them very closely, as can be seen from Figure 3. Abstracting from few small dis-

crepancies, in Appendix B I observe a strong similarity also between cross-predictability

measures based on average returns and on eigenvalues. As eigenvalues are only the theo-

retical counterpart of expected returns, and the aim of this study is to provide an actual

performance-based measure of cross-predictability, for the remainder of the paper I will focus

on average-return-based measures.

6.1.4 Cross-predictability: Sharpe Ratios

The right side of Figure 4 illustrates CPSSR
j , CPRSR

j and CPT SR
j for j = 1, ..., N . Results

are shown for the first PP, PEP and PAP, from top to bottom, respectively. Similarly to

what is observed for average returns, small stocks are the most important part of the cross-

section: excluding any type of cross-prediction effects involving the first size-sorted portfolio

results in a loss of almost 50% of the first PP SR. Most of this effect is captured by the

information contained in other assets predicting small stocks (CPRSR
1 = 0.24), rather than

vice-versa (CPSSR
1 = −0.01). Using SRs, it must be noticed that CPS is close to zero for

all portfolios, which means on average no portion of the cross-section alone has predictive

power for the entire remaining part. However, when put together, cross-prediction effects

are strong for small companies, but rapidly decrease to zero in the middle of the distribution

until becoming negative for the larger half of stocks (CRV SR
10 = −0.06).

These patterns hold generally also for the other two investment strategies. A couple of

observations are noteworthy nonetheless. In particular, for PEP, CPRSR is never positive

except only for the smallest group of stocks. PAP are remarkably similar to PP and, as before,
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CPR is positive for large firms (CPRSR
10 = 0.11), but not nearly close to the magnitude of

smallest stocks (CPRSR
1 = 0.63). The comparison across the panels of the figure helps

understanding the origin of this finding. The component of returns of large stocks due to

exposure to size risk cannot really be explained by other assets’ size (middle panel), while a

portion of the alpha component can be meaningfully cross-predicted by other firms (bottom

panel). The first effect dominates the second one, such that overall trying to cross-predict

large stocks does not improve portfolio performance or even hinders it (top panel).

To sum up, cross-prediction measures tell us that it is crucial not to ignore cross-

predictability for investment purposes, but only for smaller stocks, while larger stocks appear

too hard to predict using the other assets.

6.2 Size-sorted Portfolios: All signals

PPA can be performed only one signal at a time. After illustrating the results using size as

a signal, I extend the analysis to all 153 signals in the dataset for the same ten size-sorted

portfolios and average out the results to investigate the robustness of out findings.

Figure 5 shows the average SR of the first PP, PEP and PAP over all signals, together

with the size LS portfolio (independent of the signal) and the average simple factor F̃ .

Results are very close to those observed above: each PPA-based strategy outperforms both

LS and F̃ , and the best outcomes are achieved with PAP. The first PEP now does slightly

better than PP, instead of worse as for the single size signal. Investing in each asset based

on own-asset signal (F̃ ) is still strictly worse than a standard long-short strategy (LS).

Figure 6 reports on the left CPSR̄
j , CPRR̄

j and CPT R̄
j for j = 1, ..., N , averaged over the

28

Electronic copy available at: https://ssrn.com/abstract=4674080



153 signals, for PP, PEP and PAP from top to bottom, respectively. As in the single size

case, most of the cross-predictive information concentrates on the extremes, and small stocks

are the most relevant. The average return of the first PP drops by almost 60% if one excludes

any cross-prediction effect involving the first size-portfolio. This effect is dominated by CPR

rather than by CPS, while the opposite holds for larger stocks (ninth and tenth portfolio).

The contribution of cross-predictability for the rest of the cross-section is negligible. The

results relative to PEP and PAP are also remarkably close to what observed in Figure 4.

The right side of the same figure illustrates analogous averages based on CPSSR
j , CPRSR

j

and CTP SR
j for j = 1, ..., N . The disproportionate importance of small stocks is apparent

once again: on average, excluding cross-prediction effects involving the first size-portfolio

leads to a decrease in SR of more than 60% for the first PP and around 40% for the first PAP,

and more than 20% for PEP. The general decrease in economic value of cross-predictability

with market capitalization is present in all three cases, and overall CPRSR
1 > CPSSR

1 but

CPRSR
10 < CPSSR

10 . All cross-predictability measures are negative for the largest-stock port-

folio for symmetric strategies exposed to characteristic factors (PEPs), while their cross-

predictive power is positive for factor-neutral antisymmetric strategies (PAP).

6.2.1 Cross-predictability: Portfolio Composition

To shed further lights on the previous findings, now I analyze the optimal portfolio com-

position. By looking at how the weights assigned by PPA to size portfolios change when

restrictions regarding cross-prediction effects are imposed on Π compared to the unrestricted

case, I can get a better idea about the determinants of cross-predictability. Figure 7 shows

time-series averages of the portfolio weights composing the first PP, PEP and PAP, from
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left to right, averaged over 153 signals. For PP, they take the form S ′
tv1u

′
1.

14 The bars

represent the weights assigned to each size-sorted portfolio after excluding cross-predictive

signals, cross-predicted returns or cross-prediction total relative to the smallest (top panels)

or largest companies (bottom panels) with the manipulations on Π introduced above.

I focus on the extremes of the distribution because I have seen that they are the most in-

teresting ones. The dashed line represents the portfolio weights with no restrictions (“full Π”

case) and coincides in panels belonging to the same PPA strategy. The first PP loads strongly

on small stocks, with a weight of 0.35, and essentially shorts the rest of the cross-section,

with the exception of portfolios 7, 8 and 9, which have, however, almost no importance.

The largest negative weights are for portfolios 2 and 3 (-0.09 and -0.12, respectively). The

weight for largest firms is instead -0.05. Overall, the first PP is hardly composed of any

“middle-size” stocks, which once again dovetails with the center of the distribution having

negligible importance for prediction purposes. An interesting comparison involves LS and F̃ .

PP assigns a much larger weight to small stocks than to large ones compared with LS, which

is equally divided between long and short leg. Such disproportionate weight distinguishes

PP also from F̃ , which weighs each asset according to the strength of its signal, and reveals

decisive based on the performance ratios shown above.

How does the first PP composition change when restricting cross-predictions regarding

the first size-portfolio? Excluding small stocks’ cross-predictive signals (blue bars) does not

change much their weight. The weights for the rest of the cross-section barely change (less

than 0.01 in absolute value on average). The result is not surprising: as I have seen, CPS1 is

14Following KMP, weights vary between [-1,1] and sum up to zero in each month. However, taking their
average over time, which is necessary for expository purposes, does not ensure the latter property anymore.
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generally low, and since PPs are the linear strategies that maximize expected returns, their

composition is not strongly impacted by eliminating cross-prediction patterns from small

stocks to other stocks’ returns. The situation changes more visibly when I do not allow

small stocks’ returns to be predicted by other assets’ signals (orange bars). The weight given

to the first portfolio drops to less than half at 0.15. Since the cross-predictive power of small

stocks is small, excluding their cross-predicted returns leaves room for them to contribute

to PPs almost only through own-asset predictions. The result of this change is a great drop

in performance, as shown by the CPR in the previous pictures. Eliminating small stocks’

cross-prediction total exacerbates this effect even further, with their weight plummeting to

0.05. Nonetheless, this remains still the third highest weight in absolute value after the

second and third portfolio: the simple possibility of predicting small stocks’ return with

their own signal contributes still strongly to the overall PP performance, a result that I

confirm also below. This hints at the fact that low-cap companies have a great room for

predictability compared to others, such as including even a one-way prediction mechanism

(their own signal) is beneficial for investment outcomes. These findings are in line with with

the fact that small stocks are notoriously difficult to arbitrage.

Let us now focus on the bottom-left panel. Based on Section 6.2, I expect different

phenomena once I impose restrictions related to the tenth portfolio. Indeed, disregarding

large stocks’ cross-predictive signals shrinks the overall weights in absolute value, but not

substantially: CPSR̄
10 and CPSSR

10 are not very high, the cross-predictive power of large

companies contributes to portfolio performance only moderately. Excluding cross-prediction

effects from other assets’ signals for large stocks’ returns also does not lead to noticeable

differences, except for large firms themselves, whose weight drops almost to zero. In fact,
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CPRR̄10 and CPRSR
10 are low or even negative. The same happens when total cross-prediction

effects are removed: if large stocks are allowed only to predict themselves, PPA does not

identify them as meaningful contributors to expected returns, because the portion of their

returns that can be predicted, which is likely low as large stocks are typically liquid and

more prone to react promptly to news, might already be captured by other assets’ signals.

What happens to the alpha and beta components of PPs? Let us start from PEPs,

represented in the two central panels in Figure 7. In the unrestricted case, the first PEP

loads positively on larger stocks (last five portfolios) and negatively on smaller stocks, with

the exception of the first size-portfolio where the weight is 0.12. Disregarding the smallest

10% of stocks, the first PEP is therefore very similar to the simple portfolio F̃ (correlation

of 0.79 in Table 1).15 When ruling out cross-predictive effects from small stocks to other

assets, the weights of all other portfolios decrease in absolute value, while they increase for

the first one: after eliminating cross-predictive signals from small stocks, which are indeed

detrimental for PEP strategies as from Figure 6, these assets can only predict themselves or

being predicted by others, and since CPRR̄
1 and CPRSR

1 are strongly positive, PEP allocates

them a higher weight to improve expected returns. When excluding small companies’ cross-

predicted returns (orange bars) or cross-prediction totals (black bars), the weight of portfolio

1 drops considerably and PPA assigns an even more negative weight to smaller stocks up to

portfolio 5 but also reduces the weight of larger firms from portfolio 6 to 10. When I do not

allow large stocks’ size to predict other assets’ returns, their weight becomes negative and

the rest of the weights shrink, indicating that large firms cross-predict a portion of other

15I stress that F̃ has not been adjusted in sign to make its average return positive, hence the sign of the
correlation with PEP.
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stocks’ returns even with PEPs. Preventing large stocks from being predicted by others has

barely any effect of the rest, hence the total effect is largely dominated by the blue bars.

Finally, let us consider the first PAP in Figure 7 in the last panel. Overall, PAP re-

sembles the simple factor F̃ with the addition of another portfolio that heavily buys small

stocks. Excluding the cross-predictive signals of small companies does not change the general

composition considerably. It is much more interesting to look at the orange bars instead:

if small firms cannot be cross-predicted by the rest of the cross-section, their importance

drops almost to zero. Considering that PAPs are strategies that do not contain any own-

asset prediction effects, this finding confirms once again that small stocks have close to zero

cross-predictive power but it is beneficial to cross-predict them, which fits together with the

idea of small stocks containing higher degree of predictable variation due, for example, to

trading frictions, a fact widely accepted in the literature. In line with this interpretation,

the weight given to larger companies changes dramatically, flipping sign for portfolios 6 to 9

and reaching -0.08 for the last portfolio, which becomes the second most important: the top

10% largest stocks contribute significantly to the portfolio performance of strategies based

exclusively on cross-prediction effects, and strikingly so through their effect on small stocks.

The final result is essentially a portfolio shorting (with different intensities) the entire cross-

section, i.e., a sort of negative market factor. Similar results arise when restricting both

types of cross-prediction effects (black bars).

The findings of this section seem to point at an important fact: large stocks contribute to

PPs by cross-predicting other assets, especially small stocks, although their predictive power

is quite low, such that neglecting it does not change substantially the PPs’ composition.

Small stocks’ contribution, the highest in the entire cross-section, is instead due to themselves
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being predicted by other firms or simply predicting themselves, probably because they are

assets that have more room for return predictability. I confirm these results in Section 7.

6.2.2 Cross-predictability: Heatmaps

The cross-predictability measures illustrated so far capture either the predictive power of

one asset’s signal for all other assets’ returns (CPS), or the amount of one asset’s return

that is predicted by all other assets’ signals (CPR), or both (CPT), keeping fixed all the rest

including assets’ own predictability. But how much does a part of the cross-section predict of

another specific part, for example what is the value of cross-predicting small-stocks using only

large stocks? To answer this question, I propose a more granular cross-prediction measure

that sets to zero just one entry of the prediction matrix at a time:

value of Cross-prediction Element (i, j) := CPER̄
i,j = 1− R̄−ij

R̄full

(20)

for any i, j = 1, ..., N . The measure is defined analogously for SR, which I denote as

CPESR
i,j . CPE captures the loss in portfolio performance due to the exclusion of specific

cross-prediction effects from asset j’s signal to asset i’s return, and can be applied also to

elements of the main diagonal of Π. With N = 10 assets, I get N2 = 100 CPEs, which can

be arranged into a N ×N matrix similar to a correlation matrix. Figure 8 shows a heatmap

for CPER̄ for the first PP, PEP and PAP (from top to bottom) on the left and CPESR on

the right. I name these figures Cross-Predictability Heatmaps (CP-Heatmaps). The values

are averages over PPA carried out with one of 153 signals at a time, as above. Starting from

zeros, which are blank spaces, darker colors represent higher values, according to the colored
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bar on the right of each panel. Green denotes positive values and red negative ones.

Let us start from the PP case. One region of interest is the main diagonal, whose elements

refer to own-asset prediction effects, keeping all other cross-prediction effects captured by

PPA fixed. The signal of small stocks positively contributes to predict themselves (CPE1,1

is about 0.11). Interestingly, own-asset cross-prediction values are quite low for the rest

of the cross-section and become slightly negative for larger stocks. Hence, the CP-heatmap

reveals why F̃ underperforms compared to LS in Figure 5. As in the previous sections, cross-

predictability concentrates on small firms, and much more so for cross-predicted returns (first

row) than for cross-predictive signals (first column). More in detail regarding the first row,

the second half of the size-sorted portfolios predict small stocks better than the first half,

with CPE increasing up to a peak for the tenth portfolio. The last row shows that the cross-

predictive power of large companies is mainly due to predicting small stocks, analogously

to the lead-lag relation documented in the literature. Finally, the CP-heatmap is overall

greener in the upper portion and more red in the lower portion, which suggests that larger

stocks are more difficult to predict. The middle of the heatmap is generally populated with

lower values, i.e., cross-predictability concentrates on the extremes.

The second panels of Figure 8 refer to symmetric strategies (PEP). In general, the CP-

heatmap looks very similar to the PP case, with the main difference that there are fewer

negative values here. Now larger stocks contribute positively to portfolio performance when

predicting their own returns (bottom-right element). Differences compared to the top panel

originate in the nature of symmetric strategies: although cross-prediction terms appear in

Πs as showed in Section 4, PEPs contain factor risk and are based on own-asset predictions,

which have here the highest importance (CPE1,1 = 0.31 and CPE10,10 = 0.13).
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Antisymmetric strategies are based purely on cross-prediction effects and are factor-

neutral. From the bottom panels, this is immediately clear as the CPE along the main

diagonal is always perfectly zero, as is the main diagonal in Πa. Also for PAP, the cross-

prediction effects contributing the most to portfolio performance involve small stocks. Pre-

venting large firms from predicting them reduces the average return of the first PAP by

15%. Small companies, instead, have a negative impact when used to predict other assets

(first row), and it becomes increasingly more difficult to predict larger stocks: from top to

bottom, the CP-heatmap passes from green to red. The CP-heatmap passes instead from

red to green from left to right, meaning that signals’ cross-predictive power increases with

size. CPESR’s (right-side of Figure 8) show basically the same results.

CP-heatmpas help to further understand the sources of cross-predictability within the

PPA framework. Empirical results suggest again that cross-predictability concentrates on

small stocks returns predicted using other assets’ signals, predominantly large stocks. The

amount of returns cross-predicted by other assets tend to decrease with size while assets’

cross-predictive power tends to increase with market capitalization.

7 Discussion: Sources of Cross-Predictability

After having explored how much cross-predictability there is in the cross-section, I now ad-

dress the question regarding what drives cross-predictability. Previous research has suggested

several explanations based on slow information diffusion (Menzly and Ozbas, 2010; Müller,

2019) and frictions to information processing (Cohen and Lou, 2012). Burt and Hrdlicka

(2021) argues that own-firm momentum captures the bulk of cross-predictability at longer
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horizons. As discussed before, these papers mainly rely on long-short portfolios disregard-

ing the rest of the cross-section. With the approach used in this paper, I can investigate

what influences cross-predictability with more precise tests. The results of this section are

based on the average over all 153 signals considered to ensure that they are not driven by

signal-specific behaviors.

To start with, in Figure 9 I plot time-series of CPT R̄, CPSR̄ and CPRR̄ for the ten

size-sorted portfolios. I build these by applying Eq.(14) to (16) to rolling average returns

instead of standard averages, using 120-month windows (like in the main PPA implementa-

tion in KMP) that require at least 95% available observations in each window. Calculating

the measures on rolling averages of returns reduces the sensitivity to extreme observations

that otherwise would arise by taking ratios of returns in each month directly whenever the

denominator (PP return) is close to zero.

The cross-predictability measure for small stocks stands out, being well above any other

portfolio for most of the sample for CPT R̄ and CPRR̄. In the second panel, relative to

CPSR̄, the largest companies have the highest importance whereas the smallest stocks have

the lowest, contributing negatively most of the time. An important change concerning small

firms occurs towards 2014, when CPT R̄ and CPRR̄ drop and CPSR̄ increases. The opposite

happens especially for the second portfolio. It is difficult to argue whether this trend will

remain stable in the future considering the high volatility of the time-series.

What determines cross-predictability? The main finding of the previous sections is that

the largest economic value of cross-predictability lies in cross-predicting small stocks through

the signals other assets, especially large companies. The contribution of the latter alone,

however, is relatively low. More generally, the power of cross-predictive signals increases
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with market capitalization whereas cross-predicted returns shrink. These facts, paired with

the previous literature, hint to an explanation based on information frictions and limits to

arbitrage. Typically, small stocks are more difficult to trade than large stocks due to lower

liquidity and higher transaction costs, and as such potential arbitrage opportunities involving

these assets might not be fully exploited or exploited only with some delay. In general, I

expect strongly mispriced assets to be more predictable than less mispriced ones, and not

necessarily only through their own signal. For instance, signals originating from the rest of

the cross-section might help predicting at least a part of small stocks’ returns, but not large

stocks’ returns. This could explain why CPRR̄, which captures cross-predictability beyond

own-asset predictions, is large for portfolio one but small or even negative for others.

To investigate this conjecture, I use cross-sectional Fama-MacBeth regressions (FMB,

Fama and MacBeth (1973)) for the ten size-sorted portfolios:

CPt = αt + β1MISt + β2Xt + εt (21)

where CPt = {CPT R̄, CPSR̄, CPRR̄}, contains one of the three cross-predictability mea-

sures for the ten test assets, MISt is the MGMT mispricing measure from Stambaugh and

Yuan (2017), and Xt is a vector of controls.16 Since Figure 9 shows that small stocks have a

dominant role and their cross-prediction measures are disproportionately more volatile than

the rest, I normalize the measure of each portfolio by its standard deviation. Accordingly, I

do the same for the variables on the right-hand side.17

16Stambaugh and Yuan (2017) also provide PERF , another mispricing measure based on a set of “perfor-
mance” factors. Due to its very high correlation with the controls used (e.g. 0.54 with book-to-market), I
exclude it from the analysis as the resulting estimates would be impaired by high collinearity problems.

17In this section I report results only for PP for reasons of space. Moreover, since PPs represent the complete
outcome of PPA, cross-predictability measures are easier to interpret than those based on PEPs or PAPs.
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I report the results in Table 2. The panels refer to CPT R̄, CPSR̄ and CPRR̄ from top to

bottom, respectively. In the first column, the model contains portfolio-level book-to-market,

momentum (Carhart, 1997) and operating profitability (Fama and French, 2015) as controls.

The coefficient for MIS is positive (0.25) and highly significant, which means there is a

positive correlation between mispricing and cross-predictability. The book-to-market ratio

and operating profitability have a strongly negative effect with coefficients of -0.35 and -0.87,

respectively, whereas momentum has positive but barely significant impact. The negative

effect of book-to-market resembles the finding in Kelly and Pruitt (2013), where a cross-

sectional book-to-market measure constructed with Partial Least Squares (PLS) predicts

the returns of growth stocks better than value stocks.18

In column 2 I add idiosyncratic return volatility with respect to Fama and French (1993)

model, IV OL (Ang et al., 2006). Cohen and Lou (2012) suggest that idiosyncratic volatility

proxies for limits to arbitrage. Coeteribus paribus, stocks that are more difficult to arbitrage

are likely to be more mispriced, such that signals coming from other assets can be useful in

predicting a part of their future price movements. The coefficient for IV OL is 0.64 and it is

significant at any conventional significance level, as I would expect.

The model specification in the last column adds size. Other than being an important

control, this covariate is interesting on its own as it can also proxy for limits to arbitrage

(Cohen and Lou, 2012). Size has a large negative effect, which means the larger the stocks,

the lower their total cross-prediction value, a finding that dovetails with the trend observed

above that CPT R̄ is large for small stocks but decreases for bigger firms, which are typically

The overall findings do not change substantially compared to PPs. They are available upon request.
18See Table III in their paper.
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those with the smallest limits to arbitrage.19 The coefficients of the other controls do not

change considerably. The average cross-sectional R2 of the regressions is roughly 50%.

The second panel reports results for CPSR̄. While, in the first specification, MIS has

a positive coefficient, this becomes strongly negative in the last two specifications, with a t-

statistic above 3 in absolute value. Also IV OL has a negative effect. This opposite behavior

compared to CPT R̄ makes sense intuitively: if an asset is strongly mispriced or if it is diffi-

cult to close arbitrage opportunities connected to it, its signal becomes less reliable and loses

cross-predictive power, and since CPRR̄ dominates CPSR̄, the overall effect has opposite

sign compared to CPT R̄. In similar fashion, the sign of size also changes, but the coeffi-

cient is not significant. Regarding the controls, book-to-market and operating profitability

increase the signal cross-predictive power like momentum, which is now strongly significant.

Comparing the second to the third panel, which refers to CPRR̄, the two components of the

total cross-predictability value are almost opposed, with regression coefficients flipping sign.

Nevertheless, the explanatory power (average cross-sectional R2) is very similar in all the

three cases, which suggests that such variables have a strong and stable influence on assets’

cross-prediction measures.

In Table 3, I repeat the same cross-sectional regressions for cross-predictability measures

based on SRs. The results remain vastly unchanged: MIS, IV OL and Size have strongly

significant coefficients with the same sign as before (with the only exception that MIS is

insignificant in the last model specification for CPSSR), and the sign of the independent vari-

ables tends to flip between CPRSR and CPSSR. The cross-sectional R2 is some percentage

19Kelly and Pruitt (2013) predict better large stocks than small stocks, instead. The reader should bear in
mind that their PLS-based book-to-market represents the entire cross-section and not only one portion
like here. Moreover, it cannot distinguish between cross-predictive signals and cross-predictive returns as
my measures. Nonetheless, it represents a meaningful comparison for the results of this paper.
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points lower compared to Table 2.

In this section I documented results that help shedding light concerning the determinants

of cross-predictability, which seem to be mostly represented by limits to arbitrage and mis-

pricing. These findings can be a useful starting point for future research aimed at building

a formal structural model that creates cross-prediction patterns, an approach that has not

been adopted yet in the literature.

8 Robustness Tests: Double-sorted Portfolios

A natural extension to single-sorted portfolios are double-sorted portfolios. Two-sorts have

been extensively employed as a non-parametric tool to control for the effect of one covariate.

Portfolios sorted along the second dimension (e.g. book-to-market) within a certain range

of variation of the first one (e.g. bottom 20% of the size distribution) reflect variation in the

second covariate keeping fixed the value of the other one. The 25 size-and-book-to-market-

sorted portfolios are among the most used test assets in empirical asset pricing, and I employ

them here as a robustness test to verify that the findings found above continue to hold with

new assets. After all, Section 7 reveals that, other than size, book-to-market is associated

with cross-predictability. Portfolios’ returns and signals are built with the same approach

as for the ten size-sorted portfolios, with the difference that stocks are independently sorted

into 5 × 5 groups by size and by book-to-market ratio. Independent sorts are widely used,

such as in Fama and French (1992) or, more recently, in Huang et al. (2022). I apply PPA on

the double-sorted portfolios one signal at a time over the 153 signals available and present

average results consistently with Section 6.2.
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To start with, Figure D.1 in Appendix D shows SRs of the first PP, PEP and PAP

together with the simple factor F̃ and the LS factor. To mimick Fama-French size factors,

the latter is built going long an equally-weighted average of the 5 bottom size-portfolios and

by shorting an equally-weighted average of the 5 top size-portfolios. All three PPA-based

strategies abundantly outperform both F̃ and LS, with SRs of about 0.8 for both PP and

PEP and above 1 for PAP. Hence, PPA proves very powerful also for double-sorted portfolios.

Moving to cross-predictability measures, Figure D.2 in Appendix D shows CPSR̄, CPRR̄

and CPT R̄ for the first PP, PEP and PAP from top to bottom, respectively.20 Starting from

PPs, CPT R̄ is remarkably high for the first size quintile (the first five portfolios) and tends

to decrease towards the right, i.e., with size, as with single-sorted portfolios. Within each

size quintile, CPT R̄ generally decreases from left to right with book-to-market, which reflects

the negative coefficient of this characteristic in the previous FMB regressions. An exception

to this is the first size quintile, where CPT R̄ peaks for small-growth stocks (CPT R̄
11 = 0.30),

decreases but it is again large for small-value stocks (CPT R̄
15 = 0.20). Overall, the fact that

there is low value in the middle of the cross-section occurs relatively clearly within each size

quintile. As previously observed, the strongest component of CPT R̄ is CPRR̄ for smaller

stocks, while the opposite holds for larger firms, i.e., the cross-predictive power of large

stocks dominates (CPSR̄) the amount of their returns that can be predicted by other assets’

signals (CPRR̄), which becomes even slightly negative on the right of the picture.

Cross-predictability is the highest for small companies also for symmetric strategies (mid-

dle panel) and, even if less clearly compared to above, it decreases to zero or even negative

20For reasons of space, the first digit identifies the portfolio number along the size dimension and the second
one along the book-to-market dimension. For example, portfolio “14” indicates stocks belonging to the
first size quintile and the fourth book-to-market quintile.
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values in the middle of the cross-section and increases again for larger stocks. The third

panel (PAP) is extremely similar to the PP case, both in terms of patterns and magni-

tudes, pointing again at the fact that the antisymmetric component of PPA-based trading

strategies dominates the symmetric component. These findings hold also when using cross-

predictability measures based on SRs, illustrated in Figure D.3.

To conclude, I repeat FMB regressions according to Eq.(21) using double-sorted portfo-

lios after building time-series of cross-predictability measures. Results are shown in Table

D.1 in Appendix D for CPT R̄, CPSR̄ and CPRR̄. Starting from CPT R̄, MIS has now a

negative and strongly significant coefficient opposed to the positive coefficient for size-sorted

portfolios. Although counter-intuitive at first, one must acknowledge that the magnitude

of the coefficient is very low 0.03, roughly ten times lower than for the size-sorted case).

Moreover, the coefficient is not significant anymore in the CPRR̄ case (third panel). Hence,

the relation between cross-predictability and mispricing is feeble for double-sorted portfolios.

What remains quite strong, instead, is the impact of idiosyncratic volatility (0.12, t-statistic

of 2.76 in column 3) and size (-1.17, t-statistic of -2.93): the stronger the limits to arbi-

trage, the higher the cross-predictability. Among the controls, momentum and operating

profitability are generally insignificant whereas book-to-market ratio has a strongly negative

coefficient (-0.34, t-statistic of -8.7), conforming with Figure D.2. Analogously to size-sorted

portfolios, on the one hand these results for CPRR̄ are almost the same; on the other hand

almost all coefficient change sign for CPSR̄ (second panel) apart from book-to-market. Said

differently, signals’ cross-predictive power decreases with mispricing and limits to arbitrage

and increases with size, operating profitability and momentum.

The findings are virtually unchanged using SR-based cross-predictive measures (Table
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D.2). Notably, here MIS does not significantly impact neither CPT SR nor CPRSR, and

IV OL and size remain crucial determinants of cross-predictability.

To sum up, the conclusions relative to cross-predictability reached before continue to hold

also with double-sorted portfolios. Most of the value of cross-predictability concentrates on

small stocks (specifically small-growth and small-value stocks) and decreases with size and

value. Companies with higher market capitalization and book-to-market ratios contribute

to PPA-based strategies more by cross-predicting other stocks than vice-versa, in contrast to

small stocks. Limits to arbitrage increase the amount of cross-predicted returns but reduce

the power of cross-predictive signals.

9 Conclusion

In this paper, I propose a measure based on portfolio performance to quantify the value of

cross-predictability. Within the PPA framework introduced by KMP, imposing restrictions

on the prediction matrix allows to isolate the impact of cross-prediction effects on optimal

linear strategies and to distinguish between the predictive power of one asset’s signal for other

assets’ returns (cross-predictive signals) from the amount of one asset’s returns predicted by

other assets’ signals (cross-predicted returns). my approach gives a comprehensive view on

cross-prediction effects on the entire cross-section, differently from the existing practice in

the literature that focuses mainly on the extremes (e.g. lead-lag effects).

Using ten size-sorted portfolios as test assets, I observe that most of the value of cross-

predictability arises from predicting small stocks’ returns with other assets, especially larger

companies. In other words, failing to account for cross-prediction effects involving these
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assets can severely impair the investment outcome. In fact, imposing restrictions on cross-

prediction effects regarding small firms triggers a considerable rebalancing in the optimal

portfolio weights. Overall, the higher the market capitalization, the more difficult it is to

cross-predict stocks’ returns. The cross-predictive power of the same asset instead tends to

rise with size, although its value is rarely more important than the value of cross-predicted

returns. The middle of the cross-section does not significantly contribute to PPA outcomes

through cross-prediction effects.

I investigate the link between cross-preditability measures and classical firm character-

istics, finding a strong positive relation with mispricing and with limits to arbitrage, and a

negative relation with value and profitability. These relations flip sign for cross-predictive

signals. Put differently, the more stocks are subject to limits to arbitrage, the more they are

mispriced and thus the more room there is for overall predictability, such that other assets’

signals can significantly contribute to investment outcomes if employed to predict at least

a portion of those stocks’ returns. The opposite holds instead when focusing on the cross-

predictive power of one asset for other assets’ returns: the less the mispricing and limits to

arbitrage, the cleaner the signal becomes to predict other assets.

This paper offers a straightforward yet effective methodology to quantify and isolate

the sources of cross-predictability in the cross-section. Cross-predictability (including lead-

lag effects) has been under the scrutiny of many scholars so far, each proposing different

interpretations that frequently exhibit gaps or contradictions. my findings stand as a starting

point for future research to facilitate the development of a comprehensive framework that

systematically explains all the stylized facts documented in the literature.
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Figures

Figure 1: Example of cross-prediction effects

This figure shows how cross-prediction effects can arise in a simple case with N = 3 stocks with a

signal St = (S1,t, S2,t, S3,t) (red circles) used to predict the returns Rt+1 = (R1,t+1, R2,t+1, R3,t+1)

(yellow squares). Horizontal arrows represent own-asset predictions. Arrows originating from each

Sj,t, j = 1, 2, 3 to other assets’ return Rj,t+1, j ̸= i capture cross-predictive signals for asset j. For

asset j, 1, 2, 3, arrows pointing towards Rj,t+1 and originating from other assets’ signals Sj,t, j ̸= i

illustrate cross-predicted returns. The cross-prediction total for asset j is given by putting together

its cross-predictive signal and its cross-predicted return. Arrows originating from each signal have

the same style, such as a dashed line.
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Figure 2: Prediction matrix eigenvalues

In this figure, panels A, B, and C show estimated singular values and eigenvalues for Π, Πs and Πa

averaged over training samples for ten size-sorted portfolios (portfolio number on x-axis). Panels

D, E, and F show average out-of-sample returns and ±2 standard error confidence bands for cor-

responding PPs, PEPs and PAPs, respectively. The sample period is 1968 - 2019.
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Figure 3: PPA Performance

This figure shows out-of-sample annualized SRs for the first PP, PEP and PAP, along with ±2

standard error bands around each estimate, for ten size-sorted portfolios. PPA is carried out using

size as signal. Each forecast is made on an out-of-sample basis using a rolling training window of

120 months. The sample period is 1968 - 2019.
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Figure 4: Size-sorted Portfolios: CPSR̄, CPRR̄ and CPT R̄ (CPSSR, CPRSR and CPT sr)

This figure shows CPSR̄, CPRR̄ and CPT R̄ on the left and CPSSR, CPRSR and CPTSR on the

right for ten size-sorted portfolios (portfolio number on x-axis) where PPA is carried out using size

as signal. R̄ refers to average realized returns for a trading strategy based on the first PP, PEP

and PAP, from top to bottom. Analogously for SR. The sample period is 1968 - 2019.

54

Electronic copy available at: https://ssrn.com/abstract=4674080



Figure 5: Performance ratios across all signals

This figure shows average out-of-sample annualized SRs for the first PP, PEP and PAP over 153

signals for ten size-sorted portfolios, along with ±2 standard error bands around each estimate.

PPA is carried out using one signal at a time. Each forecast is made on an out-of-sample basis

using a rolling training window of 120 months. The sample period is 1968 - 2019.
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Figure 6: Size-sorted Portfolios: CPSR̄, CPRR̄ and CPT R̄ (CPSSR, CPRSR and CPTSR)

across all signals

This figure shows the average CPSR̄, CPRR̄ and CPT R̄ on the left and CPSSR, CPRSR and

CPTSR for ten size-sorted portfolios (portfolio number on x-axis) over 153 signals, where PPA is

carried out using one signal at a time. R̄ refers to average realized returns of a trading strategy

based on the first PP, PEP, and PAP, from top to bottom. Analogously for SR. The sample period

is 1968 - 2019.
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Figure 8: Size-sorted Portfolios: CEV R and CEV SR

This figure shows CP-heatmaps for average CPER̄ (on the left) and CPESR (on the right) over 153

signals for ten size-sorted portfolios where PPA is carried out using one signal at a time. From top

to bottom, panels represent results for PP, PEP and PAP. Green colors represent positive values

and red colors negative ones. The sample period is 1968 - 2019.

58

Electronic copy available at: https://ssrn.com/abstract=4674080



Figure 9: Size-sorted Portfolios: rolling CPSR̄, CPRR̄ and CPT R̄ across all signals

This figure shows rolling estimates of CPT R̄, CPSR̄ and CPRR̄ for ten size-sorted portfolios

(portfolio number in legend) averaged over 153 signals, where PPA is carried out using one signal

at a time. Rolling average returns of the first PP are computed with a rolling window of 120

months, and the cross-predictability measures are calculated using Eq.(14) to (16). Accounting for

the rolling estimation, the available sample period is 1989 - 2019.
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Tables

Table 1: Portfolio correlation and explanatory power

This table reports the correlation matrix for LS, F̃ , the first PP, PEP and PAP obtained through PPA

analysis on ten size-sorted portfolios. The last row reports the average R2 from regressing each size-sorted

portfolio on a one-factor model corresponding to the factor reported in each column. The sample period is

1968 - 2019.

LS F̃ PP PEP PAP

LS 1.00 -0.97 0.57 -0.74 0.51

F̃ -0.97 1.00 -0.55 0.79 -0.41

PP 0.57 -0.55 1.00 0.08 0.58

PEP -0.74 0.79 0.08 1.00 -0.06

PAP 0.51 -0.41 0.58 -0.06 1.00

R2 0.18 0.14 0.04 0.08 0.02
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Table 2: Cross-predictability: Fama-MacBeth Regressions (Average Returns)

This table reports the results of Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions ac-

cording to Eq.(21). The first, second and third panel refer to CPT R̄, CPSR̄ and CPRR̄ based on rolling

average returns for ten size-sorted portfolios as dependent variable, respectively. MISt is the MGMT mis-

pricing measure from Stambaugh and Yuan (2017) andXt is a vector of controls which includes portfolio-level

book-to-market ratio (BM), momentum (MOM) and operating profitability (OP ) in column (1), together

with idiosyncratic volatility (IV OL) in column (2) and idiosyncratic volatility and Size in column (3).

Both dependent and independent variables are normalized by their standard deviation. t-statistics based

on Newey-West standard errors (Newey and West, 1987) with 4 lags (chosen following Greene (2003)) are

in brackets. Bold numbers indicate significant statistics based on conventional significance levels. The last

column of each panel reports the average cross-sectional R2. Accounting for the rolling estimation, the

available sample period is 1989 - 2019.

CPT R̄ (1) (2) (3)

MIS 0.25 (17.84) 0.32 (18.83) 0.35 (14.57)

IV OL 0.64 (4.32) 0.55 (3.54)

Size -5.76 (-5.11)

BM -0.35 (-5.3) -0.27 (-3.95) -0.59 (-4.95)

MOM 0.21 (1.19) 0.1 (0.5) 0.18 (0.9)

OP -0.87 (-8.39) -0.89 (-8.63) -0.84 (-6.89)

R2 0.51 0.51 0.57

CPSR̄ (1) (2) (3)

MIS 0.04 (2.5) -0.11 (-3.72) -0.14 (-3.38)

IV OL -1.67 (-5.34) -1.46 (-5.1)

Size -0.16 (-0.08)

BM 0.4 (2.92) 0.27 (2.02) 0.42 (1.69)

MOM 2.11 (4.23) 2.42 (4.73) 2.81 (4.66)

OP 0.68 (3.97) 0.56 (3.37) 0.69 (3.78)

R2 0.55 0.56 0.58

CPRR̄ (1) (2) (3)

MIS 0.49 (7.42) 0.22 (13.23) 0.25 (10.81)

IV OL 0.97 (7.06) 0.84 (5.81)

Size -4.98 (-5.66)

BM -2.52 (-8.26) -0.55 (-7.51) -0.91 (-7.55)

MOM -0.97 (-1.13) -0.23 (-1.19) -0.2 (-1.06)

OP -2.06 (-4.48) -0.54 (-5.24) -0.5 (-3.97)

R2 0.48 0.58 0.62
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Table 3: Cross-predictability: Fama-MacBeth Regressions (SRs)

This table reports the results of Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions ac-

cording to Eq.(21). The first, second and third panel refer to CPTSR, CPSSR and CPRSR based on rolling

average SRs for ten size-sorted portfolios as dependent variable, respectively. MISt is the MGMT mispric-

ing measure from Stambaugh and Yuan (2017) and Xt is a vector of controls which includes portfolio-level

book-to-market ratio (BM), momentum (MOM) and operating profitability (OP ) in column (1), together

with idiosyncratic volatility (IV OL) in column (2) and idiosyncratic volatility and Size in column (3).

Both dependent and independent variables are normalized by their standard deviation. t-statistics based

on Newey-West standard errors (Newey and West, 1987) with 4 lags (chosen following Greene (2003)) are

in brackets. Bold numbers indicate significant statistics based on conventional significance levels. The last

column of each panel reports the average cross-sectional R2. Accounting for the rolling estimation, the

available sample period is 1989 - 2019.

CPTSR (1) (2) (3)

MIS 0.04 (4.74) 0.16 (10.58) 0.18 (7.91)

IV OL 1.1 (8) 1.16 (7.75)

Size -2.4 (-2.69)

BM -0.82 (-11.18) -0.75 (-9.65) -0.91 (-8.66)

MOM 0.51 (2.44) 0.3 (1.39) 0.25 (1.1)

OP -0.59 (-5.47) -0.58 (-5.48) -0.57 (-4.65)

R2 0.44 0.46 0.42

CPSSR (1) (2) (3)

MIS 0.04 (4.13) 0.07 (4) 0.02 (0.79)

IV OL 0.25 (1.34) 0.42 (2.42)

Size 5.41 (5.12)

BM 0.03 (0.39) 0.05 (0.51) 0.34 (2.58)

MOM 0.86 (3.39) 0.83 (3.04) 1.04 (3.36)

OP -0.4 (-3.78) -0.41 (-3.89) -0.43 (-4.42)

R2 0.22 0.22 0.22

CPRSR (1) (2) (3)

MIS 0.04 (4.06) 0.15 (9.5) 0.17 (7.61)

IV OL 0.99 (7.27) 0.99 (6.82)

Size -3.35 (-3.81)

BM -0.81 (-10.44) -0.75 (-9.48) -0.99 (-8.69)

MOM 0.43 (1.92) 0.25 (1.09) 0.22 (0.9)

OP -0.68 (-5.61) -0.67 (-5.62) -0.68 (-5.07)

R2 0.47 0.47 0.43
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Appendix A Principal Portfolios: Further Mathemat-

ical Details

A.1 Bounds on Portfolio Size

The constraint to the problem in (7) is ||L|| ≤ 1. Since it holds that ||L′St|| ≤ ||L′|| ||St|| ≤

||St|| if ||L|| ≤ 1, the constraint represents a bound on the portfolio size ||L′St|| corresponding

to portfolio weights S ′
tL that admits only linear strategies with a position size not exceeding

the position size of the simple factor F̃ . Moreover, if St is normalized such that ||St|| = 1

for all signals as in my empirical analysis, only strategies with ||L′St|| ≤ 1 are considered.

A.2 Expected Return and Factor Exposure

Given that linear trading strategy can be decomposed into

Rw
t+1 = S ′

tLRt+1 = S ′
tL

sRt+1 + S ′
tL

aRt+1 (A.1)

its expected returns is

E[Rw
t+1] = tr((Ls + La)(Πs +Πa)) = tr(LsΠs) + tr(LaΠa) (A.2)

because tr(BA) = tr(AB) = 0 for any symmetric matrix B ∈ RN and any antisymmetric

matrix A ∈ RN .

Consider a “latent” factor F introduced in KMP that satisfies
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Ft+1 =

(
1

S ′
t(ΣR)−1St

(ΣR)
−1St

)′

Rt+1 (A.3)

with ΣR being the return covariance matrix.1 Since

Covt(R
w
t+1, Ft+1) = w′

tCovt(Rt+1, Ft+1) = V art(Ft+1)S
′
tL

sSt (A.4)

the conditional latent factor exposure of a linear trading strategy is

covt(R
w
t+1, Ft+1)

vart(Ft+1)︸ ︷︷ ︸
factor beta

= S ′
tL

sSt (A.5)

Eq.(A.5) tells us that the factor risk of a linear strategy is entirely due to its symmetric

part, which means an antisymmetric strategy is always factor neutral. Eq.(A.2) shows instead

that the expected return is impacted by both symmetric and antisymmetric parts. As long

as Πa ̸= 0, an antisymmetric strategy can deliver positive expected returns without factor

exposure, i.e., alphas with respect to F .

A.3 Antisymmetric Strategies

To understand the interpretation of PAPs, consider that any antisymmetric matrix Πa ∈

RK×K has an even number 2K of eigenvalues. The nonzero eigenvalues are purely imagi-

nary and come in complex-conjugate pairs: iλk and −iλk. The corresponding orthonormal

eigenvectors are zk = 1√
2
(xk + iyk) and the complex conjugate is z̄k = 1√

2
(xk − iyk), where

xk, yk ∈ RN with ||xk|| = ||yk|| = 1, x′
kyk = 0 and x′

kxl = x′
kyl = y′kyl = 0 for all k ̸= l,

1KMP provide an in-depth discussion about the economic interpretation of the latent factor. For the purpose
of this paper, it is enough to notice that if St = Et[Rt+1], then Ft+1 is the conditional tangency portfolio.
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l ≤ K ≤ N/2. The corresponding eigendecomposition is given by:2

Πa =
K∑
k=1

λk(xky
′
k − ykx

′
k)

KMP consider “rank-2 antisymmetric strategies”, where L = xy′ − yx′ for some vector

x, y ∈ RN , which give rise to PAPs of the following type, as explained in the text:

PAP k
t+1 = S ′

txk(yk)
′Rt+1︸ ︷︷ ︸

S
xk
t R

yk
t+1

−S ′
tyk(xk)

′Rt+1︸ ︷︷ ︸
S
yk
t R

xk
t+1

(A.6)

for k = 1, ..., Na where xk and yk are the real and the imaginary components of the

eigenvectors associated with the eigenvalues of (Πa)′.

2These results are contained in Lemma 3 in KMP. Their proof is provided by the authors in the Internet
Appendix to their paper.
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Appendix B Cross-predictability Measures with Sin-

gular Values and Eigenvalues

From the theory (Eq.10), the k-th singular value of Π is also the expected return of the

corresponding k-th PP. In practice, however, the two quantities might differ due to estimation

uncertainty. Hence, as an additional estimate of the cross-predictability value based on

expected returns of Section 6.1.3, I compute the percentage deviations between the first

singular value of Π after performing the transformations above, and the baseline case. I

therefore obtain three following alternative cross-prediction measures:

value of Cross-prediction Signal j := CPSλ
j = 1−

λ−columnj

λfull

(B.1)

value of Cross-prediction Return j := CPRλ
j = 1−

λ−rowj

λfull

(B.2)

value of Cross-prediction Total j := CPT λ
j = 1−

λ−columnj ,−rowj

λfull

(B.3)

where λfull denotes the first singular value of the unrestricted Π and λ−columnj
, λ−rowj

and λ−columnj ,−rowj
denote the first singular value after zeroing out the j-th column, row, and

column and row, respectively, except for the j-th element of the main diagonal. In sequential

order CSV λ
j , CRV λ

j and CPV λ
j measure the percentage loss in expected return from the

first PP resulting from disregarding cross-prediction effects from, to, and both from and to

asset j. I repeat the same procedure for the eigenvalues of Πs and Πa to obtain analogous

measures.3

3As mentioned in the text, E[PAP k
t+1] = 2λa

k. Hence, there is the proportionality term fades away in both
CSV λ

j , CRV λ
j and CPV λ

j .
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Results are shown in Figure B.1. Let us first consider the prediction matrix Π (first

panel). The patterns related to CPSλ and CPT λ line up almost perfectly with the CPSR̄

and CPT R̄ shown for PP in Figure 4 in the main text, with CPT λ
1 being a little lower

than CPT R̄
1 . The only difference concerns CPRλ, which is now slightly positive for larger

stocks, whereas it was basically zero or even slightly negative for CPRR̄. In other words,

when looking at realized performance, there is virtually no value in cross-predicting stocks’

returns using other assets’ signals, except for small firms, even if eigenvalues suggest there

should be some value. Abstracting from these small discrepancies, the similarity between

results based on eigenvalues and average returns is confirmed.
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Figure B.1: Size-sorted Portfolios: CSV λ, CRV λ and CPV λ

This figure shows CPSλ, CPRλ and CPT λ for ten size-sorted portfolios (portfolio number on

x-axis) where PPA is carried out using size as signal. λ refers to the first singular value of Π, or

the first eigenvalue of Πs and Πa from top to bottom. The sample period is 1968 - 2019.
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Appendix C Firm Signals

Table C.1: Firm signals

This table reports the 153 signals used in the paper, adapted from Table J.1 in Jensen et al. (2022).

Variable Paper (year)

Downside beta Ang et al. (2006)
Earnings variability Francis et al. (2004)
Idiosyncratic volatility from the CAPM (21 days)
Idiosyncratic volatility from the CAPM (252 days)
Idiosyncratic volatility from the Fama-French 3-factor
model

Ang et al. (2006)

Idiosyncratic volatility from the q-factor model
Cash flow volatility Huang (2009)
Maximum daily return Bali et al. (2011)
Highest 5 days of return Bali et al. (2017)
Return volatility Ang et al. (2006)
Years 6-10 lagged returns, nonannual Heston and Sadka (2008)
Share turnover Datar et al. (1998)
Number of zero trades with turnover as tiedbreaker (1
month)

Liu (2006)

Number of zero trades with turnover as tiedbreaker (6
months)

Liu (2006)

Number of zero trades with turnover as tiedbreaker (12
montha)

Liu (2006)

Current price to high price over last year George and Hwang (204)
Residual momentum t-6 to t-1 Blitz et al. (2011)
Residual momentum t-12 to t-1 Blitz et al. (2011)
Price momentum t-3 to t-1 Jegedeesh and Titman (1993)
Price momentum t-6 to t-1 Jegadeesh and Titman (1993)
Price momentum t-9 to t-1 Jegedeesh and Titman (1993)
Price momentum t-12 to t-1 Jegedeesh and Titman (1993)
Year 1-lagged return, nonannual Heston and Sadka (2008)
Change sales minus change Inventory Abarbanell and Bushee (1998)
Change sales minus change receivables Abarbanell and Bushee (1998)
Change sales minus change SG&A Abarbanell and Bushee (1998)
Change in quarterly return on assets
Change in quarterly return on equity
Standardized earnings surprise Foster et al. (1984)
Change in operating cash flow to as Bouchard et al. (2019)
Price momentum t-12 to t-7 Novy-Marx (2012)
Labor force efficiency Abarbanell and Bushee (1998)
Standardized Revenue surprise Jegadeesh and Livnat (2006)
Year I-lagged return, annual Heston and Sadka (2008)
Tax expense surprise Thomas and Zhang (2011)
Coefficient of variation for dollar trading volume Chordia et al. (2001)
Return on net operating assets Soliman (2008)
Profit margin Soliman (2008)
Pitroski F-score Piotroski (2000)
Return on equity Haugen and Baker (1996)
Quarterly return on equity Hou et al. (2015)
Ohlson O-score Dichev (1998)
Operating cash flow to assets Bouchard et al. (2019)
Operating profits-to-book equity Fama and French (2015)
Operating profits-to-lagged book equity
Coefficient of variation for share turnover Chordia et al. (2001)
Capital turnover Haugen and Baker (1996)
Cash-based operating-to-book assets
Cash-based operating profits-to-lagged book assets Ball et al. (2016)
Change gross margin minus change sales Abarbanell and Bushee (1998)
Gross profits-to-assets Novy-Marx (2013)
Gross profits-to-lagged assets
Mispricing factor: Performance Stambaugh and Yuan (2016)
Number of consecutive quarters with earning increases Barth et al. (1999)
Quarterly return on assets Balakrishnan et al. (2010)
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Table C.1: (continued) Firm signals

Variable Paper (year)

Downside beta Ang et al. (2006)
Earnings variability Francis et al. (2004)
Idiosyncratic volatility from the CAPM (21 days)
Idiosyncratic volatility from the CAPM (252 days)
Idiosyncratic volatility from the Fama-French 3-factor
model

Ang et al. (2006)

Idiosyncratic volatility from the q-factor model
Cash flow volatility Huang (2009)
Maximum daily return Bali et al. (2011)
Highest 5 days of return Bali et al. (2017)
Return volatility Ang et al. (2006)
Years 6-10 lagged returns, nonannual Heston and Sadka (2008)
Share turnover Datar et al. (1998)
Number of zero trades with turnover as tiedbreaker (1
month)

Liu (2006)

Number of zero trades with turnover as tiedbreaker (6
months)

Liu (2006)

Number of zero trades with turnover as tiedbreaker (12
montha)

Liu (2006)

Current price to high price over last year George and Hwang (204)
Residual momentum t-6 to t-1 Blitz et al. (2011)
Residual momentum t-12 to t-1 Blitz et al. (2011)
Price momentum t-3 to t-1 Jegedeesh and Titman (1993)
Price momentum t-6 to t-1 Jegadeesh and Titman (1993)
Price momentum t-9 to t-1 Jegedeesh and Titman (1993)
Price momentum t-12 to t-1 Jegedeesh and Titman (1993)
Year 1-lagged return, nonannual Heston and Sadka (2008)
Change sales minus change Inventory Abarbanell and Bushee (1998)
Change sales minus change receivables Abarbanell and Bushee (1998)
Change sales minus change SG&A Abarbanell and Bushee (1998)
Change in quarterly return on assets
Change in quarterly return on equity
Standardized earnings surprise Foster et al. (1984)
Change in operating cash flow to as Bouchard et al. (2019)
Price momentum t-12 to t-7 Novy-Marx (2012)
Labor force efficiency Abarbanell and Bushee (1998)
Standardized Revenue surprise Jegadeesh and Livnat (2006)
Year I-lagged return, annual Heston and Sadka (2008)
Tax expense surprise Thomas and Zhang (2011)
Coefficient of variation for dollar trading volume Chordia et al. (2001)
Return on net operating assets Soliman (2008)
Profit margin Soliman (2008)
Pitroski F-score Piotroski (2000)
Return on equity Haugen and Baker (1996)
Quarterly return on equity Hou et al. (2015)
Ohlson O-score Dichev (1998)
Operating cash flow to assets Bouchard et al. (2019)
Operating profits-to-book equity Fama and French (2015)
Operating profits-to-lagged book equity
Coefficient of variation for share turnover Chordia et al. (2001)
Capital turnover Haugen and Baker (1996)
Cash-based operating-to-book assets
Cash-based operating profits-to-lagged book assets Ball et al. (2016)
Change gross margin minus change sales Abarbanell and Bushee (1998)
Gross profits-to-assets Novy-Marx (2013)
Gross profits-to-lagged assets
Mispricing factor: Performance Stambaugh and Yuan (2016)
Number of consecutive quarters with earning increases Barth et al. (1999)
Quarterly return on assets Balakrishnan et al. (2010)
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Table C.1: (continued) Firm signals

Variable Paper (year)

Operating profits-to-book assets
Operating profits-to-lagged book assets Ball et al. (2016)
Operating leverage Novy-Marx (2011)
Quality minus Junk: Composite Assness et al. (2018)
Quality minus Junk: Growth Assness et al. (2018)
Quality minus Junk: Profitability Assness et al. (2018)
Quality minus Junk: Safety Assness et al. (2018)
Assets turnover Soliman (2008)
Market correlation Assness et al. (2020)
Coskewness Harvey and Siddique (2000)
Net debt issuance Bradshaw et al. (2006)
Kaplan-Zingales index Lamont et al. (2001)
Change in long-term investments Richardson et al. (2005)
Taxable income-to-book income Lev and Nissim (2004)
Years 2-5 lagged returns, annual Heston and Sadka (2008)
Years 6-10 lagged returns, annual Heston and Sadka (2008)
Years 11-15 lagged returns, annual Heston and Sadka (2008)
Years 11-15 lagged returns, nonannual Heston and Sadka (2008)
Years 16-20 lagged returns, annual Heston and Sadka (2008)
Change in short-term investments Richardson et al. (2005)
Amihud Measure Amihud (2002)
Dollar trading volume Brennan et al. (1998)
Market Equity Banz (1981)
Price per share Miller and Scholes (1982)
R&D-to-market Chan et al. (2001)
Idiosyncratic skewness from the CAPM
Idiosyncratic skewness from the Fama-French 3-factor
model

Bali et al. (2016)

Idiosyncratic skewness from the q-factor model
Short-term reversal Jegadeesh (1990)
Highest 5 days of return scaled by volatility Assness et al. (2020)
Total skewness Bali et al. (2016)
Assets-to-market Fama and French (1992)
Book-to-market equity Rosenberg et al. (1985)
Book-to-market enterprise value Penman et al. (2007)
Net stock issues Pontiff and Woodgate (2008)
Debt-to-market Bhandari (1988)
Dividend yield Litzenberger and Ramaswamy (1979)
Ebitda-to-market enterprise value Loughran and Wellman (2011)
Equity duration Dechow et al. (2004)
Net equity issuance Bradshaw et al. (2006)
Equity net payout Daniel and Titman (2006)
Net payout yield Boudoukh et al. (2007)
Payout yield Boudoukh et al. (2007)
Free cac;h flow-to-price Lakonishok et al. (1994)
Intrinsic value-to-market Frankel and Lee (1998)
Net total issuance Bradshaw et al. (2006)
Earnings-to-price Basu (1983)
Operating cac;h flow-to-market Desai et al. (2004)
Sales-to-market Barbee et al. (1996)
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Appendix D Double-sorted Portfolios

Figure D.1: Performance ratios, size-and-book-to-market-sorted portfolios

This figure shows average out-of-sample annualized SRs over 153 signals for the first PP, PEP and

PAP, along with ±2 standard error bands around each estimate for 25 size-and-book-to-market-

sorted portfolios. PPA is carried out using size as signal. Each forecast is made on an out-of-sample

basis using a rolling training window of 120 months. The sample period is 1968 - 2019.
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Figure D.2: Size-and-book-to-market-sorted Portfolios: CPSR̄, CPRR̄ and CPT R̄ across

all signals

This figure shows the average CPSR̄, CPRR̄ and CPT R̄ for twenty-five size-and-book-to-market-

sorted portfolios (portfolio number on x-axis) over 153 signals, where PPA is carried out using one

signal at a time. The first digit identifies the portfolio number along the size dimension and the

second one along the book-to-market dimension. Realized returns refer to a trading strategy based

on the first PP, PEP, and PAP, from top to bottom. The sample period is 1968 - 2019.
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Figure D.3: Size-and-book-to-market-sorted Portfolios: CPSSR, CPRSR and CPTSR

across all signals

This figure shows the average CPSSR, CPRSR and CPTSR for twenty-five size-and-book-to-

market-sorted portfolios (portfolio number on x-axis) over 153 signals, where PPA is carried out

using one signal at a time. The first digit identifies the portfolio number along the size dimension

and the second one along the book-to-market dimension. SR refers to a trading strategy based on

the first PP, PEP and PAP, from top to bottom. The sample period is 1968 - 2019.
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Table D.1: Cross-predictability: Fama-MacBeth Regressions (Average Returns), Size-
and-book-to-market-sorted portfolio

This table reports the results of Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions ac-

cording to Eq.(21). The first, second and third panel refer to CPT R̄, CPSR̄ and CPRR̄ based on rolling

average returns for twety-five size-and-book-to-market-sorted portfolios as dependent variable, respectively.

MISt is the MGMT mispricing measure from Stambaugh and Yuan (2017) and Xt is a vector of controls

which includes portfolio-level book-to-market ratio (BM), momentum (MOM) and operating profitability

(OP ) in column (1), together with idiosyncratic volatility (IV OL) in column (2) and idiosyncratic volatil-

ity and Size in column (3). Both dependent and independent variables are normalized by their standard

deviation. t-statistics based on Newey-West standard errors (Newey and West, 1987) with 4 lags (chosen

following Greene (2003)) are in brackets. Bold numbers indicate significant statistics based on conventional

significance levels. The last column of each panel reports the average cross-sectional R2. Accounting for the

rolling estimation, the available sample period is 1989 - 2019.

CPT R̄ (1) (2) (3)

MIS -0.03 (-3.93) -0.03 (-3.9) -0.03 (-4.32)

IV OL 0.09 (2.07) 0.12 (2.76)

Size -1.17 (-2.93)

BM -0.26 (-7.92) -0.31 (-7.36) -0.34 (-8.7)

MOM 0.06 (0.79) 0.05 (0.66) 0.11 (1.28)

OP -0.02 (-1.94) -0.02 (-1.43) -0.01 (-0.86)

R2 0.05 0.04 0.08

CPSR̄ (1) (2) (3)

MIS -0.03 (-1.62) -0.02 (-1.43) -0.06 (-3.32)

IV OL -0.74 (-10.22) -0.35 (-5.27)

Size 3.3 (9.96)

BM -0.42 (-7.62) -0.21 (-2.87) -0.29 (-4.22)

MOM 1.2 (8.37) 1.19 (7.98) 1.09 (6.77)

OP 0.15 (6.72) 0.16 (6.66) 0.19 (8.2)

R2 0.08 0.11 0.14

CPRR̄ (1) (2) (3)

MIS 0.04 (0.57) 0 (0.26) 0 (0.38)

IV OL 0.23 (4.88) 0.24 (4.72)

Size -1.61 (-3.72)

BM -1.84 (-4.51) -0.36 (-7.23) -0.37 (-8.42)

MOM -0.27 (-0.35) -0.12 (-1.28) -0.05 (-0.54)

OP -0.89 (-8.08) -0.1 (-7.29) -0.09 (-7.75)

R2 0.1 0.14 0.17
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Table D.2: Cross-predictability: Fama-MacBeth Regressions (SRs), Size-and-book-
to-market-sorted portfolios

This table reports the results of Fama-MacBeth (Fama and MacBeth, 1973) cross-sectional regressions ac-

cording to Eq.(21). The first, second and third panel refer to CPTSR, CPSSR and CPRSR based on rolling

average SRs for twenty-five size-and-book-to-market-sorted portfolios as dependent variable, respectively.

MISt is the MGMT mispricing measure from Stambaugh and Yuan (2017) and Xt is a vector of controls

which includes portfolio-level book-to-market ratio (BM), momentum (MOM) and operating profitability

(OP ) in column (1), together with idiosyncratic volatility (IV OL) in column (2) and idiosyncratic volatil-

ity and Size in column (3). Both dependent and independent variables are normalized by their standard

deviation. t-statistics based on Newey-West standard errors (Newey and West, 1987) with 4 lags (chosen

following Greene (2003)) are in brackets. Bold numbers indicate significant statistics based on conventional

significance levels. The last column of each panel reports the average cross-sectional R2. Accounting for the

rolling estimation, the available sample period is 1989 - 2019.

CPTSR (1) (2) (3)

MIS 0.01 (1.16) 0.01 (0.98) 0 (-0.45)

IV OL 0.18 (3.58) 0.21 (3.94)

Size -1.6 (-3.02)

BM -0.32 (-12.47) -0.42 (-9.9) -0.46 (-12)

MOM -0.05 (-0.64) -0.06 (-0.84) 0.01 (0.1)

OP -0.16 (-12.82) -0.14 (-12.05) -0.12 (-11.75)

R2 0.24 0.25 0.3

CPSSR (1) (2) (3)

MIS -0.07 (-5.62) -0.07 (-5.74) -0.08 (-5.61)

IV OL -0.14 (-2.68) 0.02 (0.29)

Size 0.94 (4.71)

BM 0.17 (3.77) 0.22 (3.71) 0.16 (2.36)

MOM 0.09 (1.09) 0.06 (0.73) 0.1 (1.05)

OP 0.13 (10.27) 0.13 (9.63) 0.14 (10.29)

R2 0.16 0.19 0.2

CPRSR (1) (2) (3)

MIS 0.01 (1.51) 0.01 (1.42) 0 (0.12)

IV OL 0.28 (5.32) 0.31 (5.61)

Size -1.61 (-2.93)

BM -0.33 (-12.16) -0.45 (-9.7) -0.49 (-11.82)

MOM -0.15 (-1.95) -0.15 (-2.01) -0.1 (-1.25)

OP -0.16 (-12.16) -0.15 (-10.92) -0.13 (-10.86)

R2 0.26 0.29 0.33
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