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Abstract: In recent years, Amazon, Microsoft, and Google have become three of the dominant 
developers of AI infrastructures and services. The increasing economic and political power of these 
companies over the data, computing infrastructures, and AI expertise that play a central role in the 
development of contemporary AI technologies has led to major concerns among academic 
researchers, critical commentators, and policymakers addressing their market and monopoly power. 
Picking up on such macro-level political-economic analyses, this paper more specifically 
investigates the micro-material ways infrastructural power in AI is operated through the respective 
cloud AI infrastructures and services developed by their cloud platforms: AWS, Microsoft Azure, and 
Google Cloud. Through an empirical analysis of their evolutionary trajectories in the context of AI 
between January 2017 and April 2021, this paper argues that these cloud platforms attempt to 
exercise infrastructural power in three significant ways: through vertical integration, their 
complementary innovation, and the power of abstraction. Each dynamic is strategically mobilised 
to strengthen these platforms’ dominant position at the forefront of AI development and 
implementation. This complicates the critical evaluation and regulation of AI technologies by 
public authorities. At the same time, these forms of infrastructural power in the cloud provide 
Amazon, Microsoft, and Google with leverage to set the conditions of possibility for future AI 
production and deployment. 
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This paper is part of Locating and theorising platform power, a special issue of Internet 
Policy Review guest-edited by David Nieborg, Thomas Poell, Robyn Caplan and José van 
Dijck. 

Introduction 

Powered by a corporate promise that Google CEO Sundar Pichai (2017) declared as 
the shift from a “mobile first to an AI first world”, Amazon, Microsoft, and Google 

have become three of the dominant developers of artificial intelligence1 (AI) infra-
structures and services (Srnicek, 2022). Beyond leveraging their vast amounts of 
data, these three big tech corporations have equipped themselves with the neces-
sary technical knowledge through the attraction of AI expertise, the acquisitions of 
AI startups (e.g. Google/Deepmind), and the emergence of extensive business part-
nerships such as those of Microsoft and OpenAI (Murgia, 2023). Additionally, the 
last years have seen significant investments in the infrastructural expansion of 
their cloud computing platforms: Amazon Web Services (AWS), Microsoft Azure, and 
Google Cloud. Accounting for 68% of the global cloud-computing market (Synergy 
Research Group, 2024), these platforms provide full-stack integrated tools and ser-
vices for the production, training, and deployment of machine-learning systems 
and applications thriving on their proprietary cloud infrastructures that provide 
computing power at scale (Luitse & Denkena, 2021). The most recent develop-
ments involve the creation and provision of very large pre-trained models — foun-
dation models (Bommasani et al., 2022) — such as OpenAI’s DALL·E (Ramesh et al., 
2021) or Google’s PaLM (Chowdhery et al., 2022). 

Driven by expectations and hype around AI’s potential, corporate cloud AI2 infra-
structures and services are increasingly being implemented across different eco-
nomic and societal sectors. This has raised significant concerns about the bias and 
social ramifications of these systems as they risk exacerbating existing patterns of 
social inequality and discrimination (e.g. Bender et al., 2021; Miceli et al., 2022). In 
addition, following scholarly discussions on AI’s political economy (Luitse & 
Denkena, 2021; Widder et al., 2023), these rapid implementations allow cloud 
platforms to leverage their AI infrastructures as core “commercial computing as-
sets” (Narayan, 2022). This is producing new relations of dependency for third-par-

1. AI encompasses various approaches rooted in different research traditions and disciplines. Using AI 
and machine learning in this paper, I refer to ‘narrow AI’ deep-learning systems. 

2. I understand cloud AI as the assemblage of service-based machine-learning tools and systems, as 
well as the underlying data and computing infrastructures operated through cloud platforms. 

2 Internet Policy Review 13(2) | 2024

https://policyreview.info/articles/analysis/introduction-special-issue-locating-and-theorising-platform-power


ty developers as platforms keep control over the tools, as well as the development 
environments for AI production and deployment. Consequently, researchers and 
public commentators observe a rapid concentration of economic and political pow-
er (monopolisation) into the hands of a small set of corporations (Srnicek, 2022). 
This tendency is increasingly met with calls for action to confront and reclaim this 
power through regulatory intervention by, among others, the US Federal Trade 
Commission and the European Commission (Kak & Myers West, 2023). Contribut-
ing to this body of work on the political economy of AI, this paper provides an em-
pirical case study into how AWS, Microsoft Azure, and Google Cloud have strategi-
cally been operationalising their power in AI production and deployment over time 
through the cloud AI ecosystems they operate. 

Critical analyses of big tech’s monopoly power in AI have put forward valuable in-
sights on a macro-level, proving important entry points for regulation. However, 
relatively little attention has been paid to the specific micro-material ways in 
which power in AI is operationalised by their cloud subsidiaries through the evolu-
tion of their network of AI infrastructures and services. An explicit focus on infra-
structure is important as “cloud computing arrangements […] are foundational to 
platform expansion” (Narayan, 2022, p. 915). As evolving assemblages of hardware 
and software services they set the conditions for the development of AI systems 
(Rieder, 2022). Dominant actors who own and operate these infrastructures thus 
give shape to the AI’s present in terms of “what we do (and do not) know about 
[it]” (Whittaker, 2021a, 55) as well as how it can be produced and deployed. At the 
same time, they predetermine the future trajectories of the technologies that are 
increasingly being implemented into societal domains such as cultural production, 
healthcare, and the security industry (Jacobides et al., 2021) with significant impli-
cations for these respective areas. AWS, Microsoft Azure, and Google Cloud are the 
cloud computing subsidiaries of lead firms in AI research and development (Rikap, 
2023) as well as the cloud-infrastructure market (Synergy Research Group, 2024). 
Consequently, they warrant a deeper examination into the specific operations of 
the infrastructures and services for AI they have developed over time. Such an em-
pirical investigation allows us to better understand the ways in which these plat-
form corporations have strategically manifested themselves in the field and how 
they attempt to exercise power over industrial AI development and implementa-
tion. 

This paper provides such an inquiry through a critical empirical investigation into 
the evolution of AWS, Microsoft Azure, and Google Cloud in the context of AI in the 
run-up to the current shift to foundation models. That is, primarily since Sundar 
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Pichai’s 2017 defining proclamation up to April 2021. I investigate the (often con-
cealed) development of their cloud AI infrastructures and services over this period 
to show how these major cloud platforms have been operating specific forms of in-
frastructural power in AI’s larger political economy. Adapting Khalili (2018) toward 
the context of cloud AI, I understand infrastructural power as (cloud) platforms’ 
ability to forge the assemblage of computational infrastructures, AI development 
practices, discourses, and governing procedures with the strategic aim of (re)pro-
ducing and enforcing capitalist relations. This type of platform power is relational, 
dispersed, and materially emerges through the large network of cloud AI infra-
structures and services as they set the conditions of possibility for AI production 
and deployment with the strategic aim to strengthen the political and economic 
position of the companies that operate them. 

Pursuing this inquiry, I first situate this research within the literature on the politi-
cal economy of AI and the infrastructural power of cloud platforms. This is fol-
lowed by a discussion of the methodology that I term evolutionary platform 
technography, as well as the (archived) materials I analysed to trace the evolution 
of three cloud ecosystems’ AI-specific infrastructures and services. The remainder 
of the paper draws from these platform evolutionary trajectories to empirically 
analyse the manifestation of infrastructural power in AI in three substantial ways 
— through vertical integration, complementary innovation, and abstraction — and 
considers the implications for the development of the field. 

Infrastructural power in the cloud and the political 
economy of AI 

The power of big tech corporations like Amazon, Microsoft and Google is often the-
orised in terms of market and monopoly power (e.g. Khan, 2018; van Dijck et al., 
2019) and the contemporary development of AI is further driving their monopolis-
ing tendencies. Research on AI’s political economy in business studies, critical AI 
studies, and platform studies has paid particular attention to these dynamics (e.g. 
Jacobides et al., 2021; Srnicek, 2022) and identified three aspects that steer this 
concentration of power in the field. First, tech corporations champion the collec-
tion and provision of vast amounts of valuable data that are key to AI develop-
ment. Second, these companies have many more financial resources to invest in 
and retain highly skilled AI researchers to capture expertise in the field. Third, the 
concentrated ownership and control of big tech over computing resources such as 
Graphics Processing Units (GPUs) facilitates a “compute divide” (Ahmed & Wahed, 
2020, p. 1) that provides significant advantages for these corporations and a small 
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set of partnering academic research institutions (Whittaker, 2021a). Taken together, 
these dynamics present a major obstacle towards democratisation of AI develop-
ment — i.e. involving a wider consortium of people (e.g. academic researchers, 
public participants, and regulators) to contribute to AI development processes, in-
cluding critical evaluation and auditing mechanisms (Seger et al., 2023). 

Contributing to these observations, this paper considers the infrastructural power 
of AWS, Microsoft Azure, and Google Cloud within AI’s wider political-economic 
structure. Here, I draw from and build on critical work in platform studies (e.g. van 
Dijck, 2020; Plantin 2020; Rieder, 2022) that has described how the transformation 
of platform architectures into service components and their accompanying techni-
cal procedures “may effectively alter market dynamics and, by extension, political-
economic power relations” (Lomborg et al., 2024). These shifting power relations 
emerge as platforms set technical standards, terms and conditions, and criteria for 
AI production and deployment through a variety of so-called “technical boundary 
resources” (Ghazawneh & Henfridsson, 2013). Such resources include Application 
Programming Interfaces (APIs), Software Development Kits (SDKs), developer 
guidelines, data and software tools to build machine-learning systems, and appli-
cations on top of the pre-existing platform infrastructures. These features demand 
developers across domains to align and integrate their practices and data infra-
structures with those of the larger platform ecosystem (Nieborg & Helmond, 
2019). Consequently, this allows cloud platforms to not only infrastructurally ex-
tend themselves through deep integration, but also to profit from their intermedi-
ary position as the owner of the core infrastructures AI systems are built on. 

Vertical integration has been identified as one of the (key) sources of infrastructur-
al power held by big tech companies (Khan, 2018). This process entails the “seam-
less integration of platforms” (van Dijck, 2020, p. 8) into the underlying proprietary 
“stack” (Bratton, 2016) of scalable infrastructures that make up the various materi-
al and abstract layers of (planetary-scale) computation owned and operated by this 
small set of powerful corporations. This consequently allows these companies to 
further channel developer activities under their corporate control, creating path-
dependencies that result in user lock-in and vendor lock-in (van Dijck, 2020). 
Cloud platforms like AWS, Microsoft Azure, and Google Cloud operate according to 
this dynamic by leveraging their vast and complex set of infrastructural technolo-
gies and products as integrated services across three layers of the cloud stack: 1) 
Infrastructure-as-a-Service (IaaS); 2) Platform-as-a-Service (PaaS); and 3) Software-
as-a-Service (SaaS). IaaS refers to the on-demand delivery of various computing re-
sources such as server capacity, virtualisation technology, and networking capabili-
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ties (Narayan, 2022) by corporate clouds, including the provision of processing 
units for the training and inference of machine-learning models. The PaaS-layer 
consists of a collection of integrated development resources including operating 
systems, machine-learning frameworks, and SDKs. Via this layer, cloud providers 
also manage the underlying computing infrastructures for third parties within a re-
spective cloud ecosystem. SaaS allows third-party developers or individual cus-
tomers to source integrated proprietary technologies that are fully controlled and 
operated by cloud platforms. This service layer is also referred to as AI-as-a-Ser-
vice (AIaaS) (Parsaeefard et al., 2019) where services can be used for advanced 
computing capabilities such as facial recognition or language generation. Follow-
ing van Dijck (2020), the vertical integration of IaaS, PaaS, and AIaaS services 
across the cloud stack indicates a strategic move by corporate clouds to potentially 
expand their control over AI development and implementation processes, which 
may strengthen their (critical) intermediary position. From this perspective, I draw 
on these insights to more specifically outline how AWS, Microsoft Azure, and 
Google Cloud attempt to exert this source of power through the infrastructures 
and services for AI production and deployment they have developed. 

The ability of cloud platforms to leverage their infrastructural “core “ of computing 
assets and micro-services to third-party institutions has been considered another 
important source of their infrastructural power as it allows them to expand and in-
tegrate themselves into various domains of application (Aradau & Blanke, 2022). 
As Rieder (2022) explains, this dynamic of spawning “complementary innovation” 
(Gawer, 2014) is — next to the cross-market utility of data — driven by the trans-
versality of software, computing hardware, and their “capacity to articulate, struc-
ture, and automate processes in very different task environments” (p. 3). In other 
words, following research in business studies (e.g. Gawer, 2014), proprietary cloud 
computing infrastructures such as operating systems, processing chips in data cen-
tres, or software-service portfolios can strategically be applied to facilitate “inno-
vation” by third-party institutions or companies in a variety of different domains. 
Thus far, this has afforded companies like Amazon, Microsoft, and Google, which 
are behind the development of these infrastructural technologies, to expand their 
activities to penetrate different markets and societal sectors through their cloud 
computing branches and solidify their dominant position at a brisk pace (van Dijck 
et al., 2019). The rapid provision of AI-specific infrastructures and services is fur-
ther accelerating this process as machine-learning systems have the potential to 
serve many purposes (Rieder, 2022) and can be applied in a plurality of contexts. 
Considering this issue, this paper investigates how AWS, Microsoft Azure, and 
Google Cloud have specifically been developing and operating their AI infrastruc-
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tures and services toward (new) domains of activity, thereby mobilising their infra-
structural power over third-party developers looking to adapt AI-driven systems in-
to their respective practices. 

Evolutionary technographic analysis of AWS, Microsoft 
Azure, and Google Cloud infrastructures for cloud AI 

Empirical research into the evolution of cloud platforms is a challenge, as compu-
tational ecosystems are not only rather complex and opaque, but are also subject 
to continuous change. To overcome these difficulties and examine how these com-
panies operationalise forms of infrastructural power in AI through their cloud 
ecosystems, I developed a methodological approach that I term evolutionary plat-
form technography. Adapted from Bucher’s (2018) notion of technography, and Hel-
mond and van der Vlist’s (2021) work on historical platform studies, this method 
allows for the critical observation and description of the workings of technical sys-
tems, including entire platforms. It hence allows us to trace their development in 
an evolutionary manner to account for the “economic growth and technological ex-
pansion” (Nieborg & Helmond, 2019, p. 197, emphasis in original) and, ultimately, 
the exertion of power by the cloud platforms that operate these infrastructures. 

A technographic analysis of primary and secondary sources such as (platform) doc-
umentation, press releases, media or industry reports, and corporate blog posts, 
Bucher (2018) explains, is a way of reading such materials to develop a “critical un-
derstanding of the mechanisms and operational logic of software” (p. 61). It con-
centrates on the suggestive qualities of sociotechnical systems and infrastructures, 
i.e. how these systems and infrastructures work, and more importantly, who they 
work for (Galloway, 2004). Furthermore, such primary industrial resources — the 
material traces that platforms strategically distribute — provide insights into the 
“evolving production, preferred usage and embedded politics of software objects” 
(Helmond & van der Vlist, 2021, p. 4) such as cloud infrastructures and services as 
well as big tech’s larger infrastructural ambitions (Nieborg & Helmond, 2019). As 
such, these resources offer valuable entry points to critically analyse specific 
strategies behind the technological development of a platform within a particular 
field such as AI. It is, however, important to acknowledge the corporate nature of 
these materials as they are strategic and self-serving, produced and distributed by 
industry. Therefore, they are likely to obfuscate potential technological risks of the 
services platforms tend to promote. Additionally, these documents neither provide 
insight into the specific operations of control in AI development ecosystems which 
are likely to be buried in contracts and terms and conditions, nor do they allow for 
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an analysis of how companies are violating antitrust laws (e.g., Khan, 2018) to fur-
ther exploit their monopoly power. Relying on the selected public documents, 
thus, requires me to remain attentive to the discursive strategies behind these ma-
terials. As such, these resources demand careful and critical distance to avoid shal-
low perpetuation of corporate claims that risk further amplifying AI-hype cycles. 

The purposefully adapted evolutionary platform technography draws from a wide 
range of historical data from AWS, Microsoft Azure, and Google Cloud released be-
tween January 2017 and April 2021. As web archives are considered valuable for 
locating such material (strategic) platform resources (Helmond & van der Vlist, 
2021), the selected materials for this study, include (1) archived product pages and 
documentation available via the Internet Archive Wayback Machine; (2) AWS, Mi-
crosoft Azure, and Google Cloud’s corporate blog posts and press releases; and (3) 
relevant media or industry reports. The period was set primarily after Sundar 
Pichai’s 2017 proclamation as it is considered to have started “another paradigm 
shift in the history of computing” (Burkhardt, 2019, p. 209). Following this mo-
ment, I trace the development of cloud AI infrastructures and services over time in 
the run-up to the release of foundation models. These models now dominate cur-
rent AI discourses but are arguably a result of ongoing strategic developments in 
the AI industry. 

For each of the three cloud platforms under study, the set of archived cloud AI 
product pages was systematically retrieved using the Wayback Machine. Addition-
ally, I draw from corporate blog posts that specifically focus on the topics of AI and 
machine learning (Table 1). To identify and collect a relevant list of posts, all four 
blogs were queried for mentions of [AI], [artificial intelligence], and [machine 
learning]. In a similar vein, press releases on AI and machine learning products 
and services have been collected and added to the final dataset of platform re-
sources that were considered for analysis. Lastly, as Bucher (2018) suggests, I con-
sidered a number of relevant media and industry reports. Following the set period 
of study, the dataset begins in 2017 and ends in April 2021. Appendices I and II 
provide a full overview of the collected (archived) cloud AI platform resources. 
These materials are organised per cloud platform and sorted by type and date to 
facilitate the analysis of these resources over time. Appendix III provides insight 
into the industry reports considered as secondary resources in this study, whereas 
relevant media sources are directly cited. 

The analysis was carried out along two complementary stages of empirical inquiry. 
First, I examined the collection of archived product pages to reconstruct how AWS, 
Microsoft Azure, and Google Cloud have been developing their cloud AI infrastruc-
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tures and services over time. This part of the research is substantiated by purpose-
fully designed visualisations that present excerpts of these reconstructions per 

company (Figures 1–4 and 6–11).3 The exploration and visualisation of the cloud 
platforms’ evolution provided an overview of the respective levels of the stack to-
ward various AI infrastructures and services that have been developed and operat-
ed — IaaS, PaaS, or AIaaS — as well as their domain of application. This part of the 
analysis paid specific attention to corporate development and operation of com-
puting infrastructure, such as purpose-built hardware, that has proven to play a 
particularly important role in the production and deployment of contemporary ma-
chine-learning systems (Vipra & Myers West, 2023). 

TABLE 1: Overview of corporate blogs from Amazon, Microsoft, and Google that were queried for 
mentions of [AI], [artificial intelligence], and [machine learning] 

COMPANY BLOG URL 

Amazon AWS Machine Learning Blog 
https://aws.amazon.com/blogs/
machine-learning/ 

Microsoft Azure Blog and Updates 
https://azure.microsoft.com/en-us/
blog/ 

Google 
Google Cloud Blog | News, Features and 
Announcements 

https://cloud.google.com/blog/ 

Google The Keyword | Google 
https://www.blog.google/products/
google-cloud/ 

The second stage of the analysis builds on the previous level of inquiry. Following 
Bucher’s (2012) statement that technography requires the critical observation, de-
scription, and interpretation of technical systems on their own material-discursive 
terms, this step involved a document analysis and close reading of the set of col-
lected archived product documentation, blog posts, and press releases. In 
analysing these materials specific attention has been paid to distinguishing the 
strategic positions of AWS, Microsoft Azure, and Google Cloud in mobilising and 
operating their growing collection of AI-related infrastructures and services. This 
part is substantiated by an analysis of the collected media and industry reports 
that discuss economic strategies across different fields of AI. By outlining the cor-
porate platform dynamics, this technographic exploration into the evolution of 
their platform-specific operations allowed me to gain empirical insight into the 

3. Due to the size of the visualisations this article only includes image excerpts. An overview of the AI 
platform evolutions of AWS, Microsoft Azure, and Google Cloud (2017–April 2021) that support the 
findings of this study are openly available on the Open Science Framework (OSF) (Luitse, n.d.). 
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specific ways AWS, Microsoft Azure, and Google Cloud seek to exert infrastructural 
power within AI’s larger political economy. 

Vertical integration 

The evolutionary trajectories of AWS , Microsoft Azure, and Google Cloud demon-
strate that these platforms strategically extended their AI capacities across the 
multiple layers of the cloud stack by vertically integrating their computing infra-
structures into their respective PaaS and AIaaS services (cf. Aradau & Blanke, 
2022). Turning toward the bottom layer of infrastructures for computation first, the 
visualisations reveal that AWS and Google Cloud most specifically have been de-
veloping custom processing units for the training and inference of machine-learn-
ing systems and applications (Figure 1). It was Google’s in-house AI research team 
that started this process in 2016 as the company needed new hardware that could 
better suit “the fast-growing computational demands of neural networks” (Sato & 
Young, 2017). This led to the development of an application-specific integrated cir-
cuit (ASIC) optimised for deep-learning processes: the Tensor Processing Unit (TPU). 
By now, this specialised chip is merely accessible as an infrastructural service 
through Google Cloud’s Computing Engine and Kubernetes Engine, or its AI platform 
— now Vertex AI (GCP–2021c). 
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FIGURE 1: Custom application-specific integrated circuits (ASIC) and field-programmable gate 
arrays (FPGA) developed and operated by AWS [pink], Microsoft Azure [blue], and Google Cloud 
[green] between January 2017 and April 2021. 

Additionally, Google has strategically tied the usage of its proprietary hardware in-
frastructure to its open-source machine-learning framework TensorFlow, which is 
specifically optimised for operating TPUs to reduce computing requirements (Sr-
nicek, 2022). Like Google Cloud but differing from Microsoft Azure, AWS broke with 
the tradition of relying on Intel field-programmable gate arrays (FPGAs) and differ-
ent types of Nvidia Graphics Processing Units (GPUs) through the release of its 
specialised processing chips in 2019: AWS Inferentia (Barr, 2019) and Tranium
(Lardinois, 2020) (Figure 1). Respectively optimised for training and inference of 
deep-learning models at scale, these integrated processors power Amazon Elastic 
Compute Cloud (EC2) instances that are only accessible through the Neuron SDK 
(AWSN–2021) or development platform SageMaker (AWS–2017). 
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FIGURE 2.1: Excerpts of Cloud AI infrastructures and services operated by AWS at the platform-as-
a-service (PaaS) level between January 2017 and April 2021 (part 1). 
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FIGURE 2.2: Excerpts of Cloud AI infrastructures and services operated by AWS at the platform-as-
a-service (PaaS) level between January 2017 and April 2021 (part 2). 
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FIGURE 3: Excerpts of Cloud AI infrastructures and services operated by Microsoft Azure at the 
platform-as-a-service (PaaS) level between January 2017 and April 2021. 
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FIGURE 4: Excerpts of Cloud AI infrastructures and services operated by Google Cloud at the 
platform-as-a-service (PaaS) level between January 2017 and April 2021. 

The power of vertical integration becomes particularly visible through the compo-
sition of such machine-learning development platforms. Next to Amazon SageMak-
er (Figure 1), Figures 3 and 4 show that this middle layer (PaaS) is occupied by 
Azure Machine Learning (2017) and Google Cloud’s AI platform (2016). Over the last 
few years, these platforms have evolved into vast and fully managed development 
environments that provide third-party developers with the tools and services for 
data processing as well as model production, training, evaluation, deployment, and 
monitoring. Tables 2 and 3 provide an overview of the SageMaker and Google 
Cloud AI platform components. The specific set of Microsoft Azure platform services 
(Figure 3), however, remains underspecified even though these tools are part of in-
tegrated development environments (IDEs) such as Visual Studio Code (Lardinois, 
2017). These integrated resources allow third parties to develop machine-learning 
models and deploy their applications all in one place. Yet, they also allow these 
cloud providers to increasingly manage, and thus control, a multitude of stages of 
machine-learning development pipelines, including the monitoring of applications 
through their corporate cloud ecosystems. This becomes visible through the col-
lective push for services that facilitate managing entire machine-learning projects 
such as the MLOps tools illustrated in Figure 5. As an aggregate of machine learn-
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ing and DevOps (Development and Operations), MLOps refers to a set of integrated 
practices that aim to shorten and simplify machine-learning development and op-
erational cycles (Kepes, 2013). Yet, by doing so, MLOps also evoke further stan-
dardisation and automation, placing the platforms that operate them — AWS, Mi-
crosoft Azure, and Google Cloud — in the strategic position to exert their infra-
structural power over these processes. 

TABLE 2: Overview of SageMaker platform components as of April 2021. Source: Amazon Web 
Services (n.d.) 

SAGEMAKER PRODUCT DESCRIPTION 

Automatic Model Tuning Hyperparameter optimization 

Built-in and Bring-your-own 
Algorithms 

Dozens of optimized algorithms or bring your own 

Distributed training libraries Training for large datasets and models 

Kubernetes & Kubeflow Integration Simplify Kubernetes-based machine learning 

Local Mode Test and prototype on your local machine 

Managed Spot Training Reduce training cost by 90% 

Multi-Model Endpoints Reduce cost by hosting multiple models per instance 

One-click Deployment Fully managed, ultra low latency, high throughput 

One-click Training Distributed infrastructure management 

SageMaker Autopilot 
Automatically create machine learning models with full 
visibility 

SageMaker Clarify Detect bias and understand model predictions 

SageMaker Data Wrangler Aggregate and prepare data for machine learning 

SageMaker Debugger Debug and profile training runs 

SageMaker Edge Manager Manage and monitor models on edge devices 

SageMaker Experiments Capture, organize, and compare every step 

SageMaker Feature Store Store, update, retrieve, and share features 

SageMaker Ground Truth Label training data for machine learning 

SageMaker JumpStart Pre-built solutions for common use cases 

SageMaker Model Monitor Maintain accuracy of deployed models 

SageMaker Pipelines Workflow orchestration and automation 

SageMaker Processing Built-in Python, BYO R/Spark 
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SAGEMAKER PRODUCT DESCRIPTION 

SageMaker Studio Integrated development environment (IDE) for ML 

SageMaker Studio Notebooks Jupyter notebooks with elastic compute and sharing 

TABLE 3: Overview of Google Cloud AI platform components in April 2021. Source: Google Cloud 
(n.d.) 

GOOGLE 
CLOUD AI 
PLATFORM 
PRODUCT 

DESCRIPTION 

AI 
Explanations 

Understand how each feature in your input data contributed to model's outputs 

AutoML 
Easily develop high-quality custom machine learning models without writing 
training routines. Powered by Google's state-of-the-art transfer learning and 
hyperparameter search technology. 

Continuous 
evaluation 

Obtain metrics about the performance of your models in production. Compare 
predictions with ground truth labels to gain continual feedback and optimize 
model performance over time. 

Data 
Labeling 
Service 

Get highly accurate labels from human labelers for better machine learning 
models. 

Deep 
Learning 
Containers 

Quickly build and deploy models in a portable and consistent environment for all 
your AI applications. 

Deep 
Learning VM 
Image 

Instantiate a VM image containing the most popular AI frameworks on a Compute 
Engine instance without worrying about software compatibility. 

Neural 
Architecture 
Search 

Build application-specific models and improve existing model architectures with 
an automated service. Powered by Google's leading AI research, users can design 
models that are optimized for latency, accuracy, power consumption, and more. 

Notebooks 
Create, manage, and connect to VMs with JupyterLab, the standard data scientist 
workbench. VMs come pre-installed with deep learning frameworks and libraries. 

Pipelines 
Implement MLOps by orchestrating the steps in your ML workflow as a pipeline 
without the difficulty of setting up Kubeflow Pipelines with TensorFlow Extended 
(TFX). 

Prediction 
Easily deploy your models to managed, scalable endpoints for online or batch 
predictions. 

TensorFlow 
Enterprise 

Easily develop abnd deploy TensorFlow models on Google Cloud with enterprise-
grade support and cloud scale performance. 

Training Train any models in any framework on any hardware, from single machines to 
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GOOGLE 
CLOUD AI 
PLATFORM 
PRODUCT 

DESCRIPTION 

large clusters with multiple accelerators. 

Vizier Optimize your model's output by intelligently tuning hyperparameters. 

What-if Tool 
Visualize your datasets and probe your model to better understand its behavior 
with an interactive visual interface. 

FIGURE 5: Overview of Google Cloud AI Platform components according to the different stages of 
the machine-learning life cycle proposed by Google by April 2021. Source: Google Cloud (n.d.). 

Lastly, at the top layer of the cloud stack, infrastructural power is operated through 
the rapid availability of vertically integrated, ready-to-deploy pre-trained models 
for particular inference tasks such as Amazon Recognition; Azure Vision API, and 
Google Vision API for image recognition (AWSD–2021; MA–2021a; GCP–2021a); 
automated speech recognition (Amazon Lex and Google Speech API); or content 
moderation (Azure Form Recognizer and Immersive Reader) (MA–2021a; MA–2021b). 
Respectively available as AI services (AWS), Cognitive Services (Microsoft Azure), and 
various APIs (Google Cloud) visualised in Figures 6, 7 and 8, these pre-trained 
models are integrated within proprietary ecosystems and leveraged on a service 
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basis through paid APIs4 available on all cloud computing platforms (AWSD–2021; 
MA–2021a; GCP–2021a). As such, these models are leveraged as closed systems 
that operate according to the standards of AWS, Microsoft Azure, or Google Cloud, 
running on infrastructures from different cloud AI branches ranging from hardware 
(e.g. Inferentia) to data storage (e.g. Amazon S3, Google’s BigQuery). The “gateway 
function” (van der Vlist & Helmond, 2021, p. 13) of APIs allows these companies to 
strengthen their position as powerful intermediaries by governing the accessibility 
of pre-trained models as well as their use by third-party developers for the devel-
opment of specific applications. 

FIGURE 6.1 

4. With paid APIs, I refer to APIs that operate on a pay-as-you-use basis, following a pricing plan set 
by cloud platforms. See for example Google Cloud, (2024) 
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FIGURE 6.2. 6.1;6.2: Excerpts of Cloud AI infrastructures and services operated by AWS at the AI-as-
a-service (AIaaS) level between January 2017 and April 2021. 
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FIGURE 7.1 

FIGURE 7.2 
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FIGURE 7.3 
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FIGURE 7.4. 7.1–7.4: Excerpts of Cloud AI infrastructures and services operated by Microsoft Azure 
at the AI-as-a-service (AIaaS) level between January 2017 and April 2021. 
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FIGURE 8: Cloud AI infrastructures and services operated by Google Cloud at the AI-as-a-service 
(AIaaS) level between January 2017 and April 2021. 

Taken together, this growing operation of vertically integrated infrastructures and 
services, arguably allows AWS, Microsoft Azure, and Google Cloud to strategically 
evolve in ways to further expand their operative control over chains of valuable 
components — the means of production — for AI production and deployment. By 
doing so, corporate clouds do not only mobilise their infrastructural components 
to lower the access barriers to machine-learning resources which enable develop-
ers “to step further faster,” but actively condition the set of technologies in terms 
of “what can be considered possible in the first place” (Rieder, 2020, p. 16). Tying 
these elements together through pricing architectures (e.g. Khan, 2018), exclusive 
agreements and strategic partnerships (Vipra & Myers West, 2023), vertically inte-
grated services facilitate further standardisation and privatisation of machine-
learning workflows. From model production and evaluation to deployment and 
monitoring — all these steps can be configured and optimised through the ecosys-
tems of AWS, Microsoft Azure, or Google Cloud. Like with other software tools op-
erated in platform ecosystems (e.g. Foxman, 2019), such deep integrations of hard-
ware and software risk leading to path dependencies and lock-in for developers 
looking to adopt machine learning into their applications. Once customers are in-
vested in the tools and services operated by one of the major cloud providers, it 
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becomes very difficult to switch vendors without substantial investment in time, fi-
nancial, and computational resources (Vipra & Myers West, 2023). The sets of ver-
tically integrated infrastructures and services can thus be seen to function as 
strategically employed “engines of profit” (Whittaker, 2021b) for cloud platforms 
like AWS, Microsoft Azure and Google Cloud. These companies, in turn, not just at-
tempt to operate infrastructural power through a compute divide in AI (Ahmed & 
Wahed, 2020) but through strategically tethered collections of integrated hardware 
infrastructures and software services that cover entire machine-learning develop-
ment cycles. 

Complementary innovation 

Locating the infrastructural power of AWS, Microsoft Azure, and Google Cloud in 
their ability to facilitate “complementary innovation” (Gawer, 2014), the evolution-
ary technographic analysis reveals that these cloud platforms operate this form of 
power in distinct ways. First, I find that the infrastructural “cores” of cloud plat-
forms are continuously being leveraged by “breaking up, decomposing, and recom-
posing [these] existing digital components” (Aradau & Blanke, 2022, p. 104). These 
can then be further integrated into different societal domains such as healthcare. 
As Figures 6 and 8 show, AWS and Google Cloud have been harnessing their power 
in Natural Language Processing (NLP) by purposefully developing health-specific 
services such as Amazon Comprehend Medical, Amazon Healthlake, and Google 
Healthcare Natural Language API. These services for text analytics in the medical 
domain provide access to pre-trained language models that are specifically trained 
on health data. In contrast to its competitors, Google Cloud has taken this develop-
ment even one step further by announcing controlled access to MED-PaLM 2 — an 
industry-tailored large language model (LLM) that aligns with the medical domain 
while relying on Google’s existing PaLM model (Gupta & Waldron, 2023). It is 
through such announcements that we can understand how Google Cloud is relying 
on its infrastructural power and expertise in AI development to enter the health-
care industry (e.g. medical centres, pharmaceutical, and insurance companies) and 
shape the potential for applications from within the platform’s ecosystem. 

In contrast to Google Cloud, AWS and Microsoft Azure have been positioning their 
AI infrastructures for the development of complementary services in the manufac-
turing and retail sectors. Visualised in Figure 6, Amazon Monitron, Amazon Lookout 
for Equipment and AWS Panorama represent a set of software and hardware ser-
vices for assembly-line production, management, and remote operations originally 
designed for its warehouses (AWS–2021d). In addition, the platform launched AWS 
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Panorama, a hardware appliance and SDK to develop computer vision applications 
for workplace control (Shieber, 2020). Microsoft Azure launched a similar set of 
services more specifically for the retail industry through a platform called Azure 
Percept (MA–2021c; Figure 7). Complementary infrastructural expansions like 
these play to machine-learning systems’ potential to serve a plurality of purposes 
(Rieder, 2022). As such, they allow AWS and Microsoft Azure to enter different 
legacy domains (cf. van Dijck, 2020) and arguably also provide these corporate 
clouds with the capacity to strategically condition the development and integra-
tion of AI systems in these respective areas. 

In addition, cloud platforms arguably operationalise infrastructural power through 
complementary innovation by developing AI infrastructures and services that 
seamlessly operate with existing subsidiaries of Amazon, Microsoft, or Google plat-
form ecosystems. This can be illustrated in the example of AWS which has empha-
sised that its Monitron service relies on the “same technology used to monitor 
equipment in Amazon Fulfilment Centers” (AWS–2020b). As Delfanti (2021) ex-
plains, Amazon distribution centres are heavily equipped with technologies to fur-
ther optimise logistical operations and labour. In its attempt to optimise the main-
tenance of the in-house machinery, the company for example installed AI services 
like the Monitron system to monitor conveyor belts (Lee, 2020). Furthermore, AWS 
has been aligning the machine-learning services SageMaker Groundtruth and Ama-
zon Augmented AI with the Mechanical Turk crowdwork marketplace. Launched in 
2020 and 2021, these fully managed services allow third-party developers to out-
source data labelling jobs or human review for (pre-trained or custom) model pre-
dictions to new or existing applications by connecting them to the Mechanical Turk 
workforce (Morton-Youmans & Gupta, 2020) or third-party vendors which are ac-
tive on AWS Marketplace. While customers using the A2I service can also choose to 
work with their own employees, the service alignments with Mechanical Turk and 
the AWS Marketplace indicate another step by AWS to bring data processes within 
the platform’s corporate control, thereby expanding its power over a significant 
part of the AI development pipeline. 

Simultaneously, similar services have been developed by all cloud providers to ad-
dress issues around AI ethics. Such tools include AWS’ Augmented AI, Microsoft 
Azure’s Face API Transparency Note (MA–2019), or Google Cloud’s What If Tool 
(Robinson & Wexler, 2019) and are marketed with the promise to combat bias and 
to facilitate the development of “responsible systems”. However, as mentioned pre-
viously, the Augmented AI service is partly built on Amazon Mechanical Turk — the 
crowdworker marketplace that is known for the exploitation and the commodifica-
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tion of data-related micro-labour in the field (e.g. Miceli et al., 2022). Microsoft 
Azure and Google Cloud frame their tools as technical solutions to facilitate model 
transparency but they can only be accessed through proprietary infrastructures 
controlled by these corporations. These examples hence substantiate critiques 
against corporate AI ethics initiatives circumscribed by the cloud platforms that 
dominate the field (Aradau & Blanke, 2022): the companies address issues of 
ethics and responsibility through self-regulating frameworks, but still choose how 
to deploy AI technologies and condition the meaning of ‘ethical’ and ‘responsible’ 
AI. 

Abstraction 

In addition to vertical integration and complementary innovation, AWS, Microsoft 
Azure, and Google Cloud attempt to exercise infrastructural power in AI’s political 
economy through the abstraction of AI infrastructures and services. In computing, 
the notion of abstraction refers to the practice of packaging complicated underly-
ing operations into single commands, thereby “hiding” many technical complexi-
ties related to building, operating, and managing computational systems behind 
abstraction layers enabling developers to speed up working processes. As Selbst et 
al. (2018) explain: “abstractions are essential to computer science, and in particular 
machine learning” (p. 2) as they hide the domain-specific aspects of a machine-
learning problem or task. By using abstraction layers, machine-learning tools re-
main modular and can be applied in proprietary as well as in open-source manners 
across different economic and social domains (Selbst et al., 2018). In the case of 
the variety of cloud AI infrastructures and services under study, different complex 
operations for the training and inference of machine-learning systems increasingly 
disappear behind abstraction layers to make it easier for third-party developers to 
adapt these functions as a service into their applications. 

At the bottom and middle layers of the cloud stack, the evolutionary trajectories of 
AWS, Microsoft Azure, and Google Cloud show that these platforms operationalise 
the power of abstraction through the widespread provision of open-source ma-
chine-learning frameworks. As shown in Figure 9, AWS, Microsoft Azure, and 
Google Cloud all support their own set of frameworks which are pre-installed to 
their integrated machine-learning development platforms. Also visualised in Fig-
ure 10, AWS and Google Cloud offer developers direct access to frameworks 
through so-called Deep Learning Virtual Machine Images (Deep Learning AMIs and 
Google VM Image) (AWS–2021b; GCP–2021a). Open-source frameworks, Burkhardt 
(2019) explains, offer “predefined functions and functionalities [which] relieve de-
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velopers from building software from the ground up” (p. 213) and have become 
crucial infrastructural elements for the development of AI systems today. Depend-
ing on developers’ individual preferences, frameworks offer multiple levels of ab-
straction that make it easier for developers to adapt to machine learning even if 
they do not have the specific expertise. The high-level framework Keras adds an-
other layer of abstraction on top of TensorFlow and the Microsoft Cognitive Toolkit, 
supporting even more “easy and fast prototyping” (Rieder, 2020, p. 112). By offer-
ing integrated access to different frameworks with (multiple) built-in abstraction 
layers, AWS, Microsoft Azure, and Google Cloud thus simplify and speed up the AI 
production and deployment processes. However, these seemingly open-source in-
frastructures also enable these corporations to standardise and align such process-
es according to their proprietary interests to further drive AI’s deep-learning para-
digm that relies on the cloud (Widder et al., 2023). Abstraction is hence strategi-
cally mobilised to exert infrastructural power over AI development processes to 
conform cloud platforms’ economic and political interests and shift attention away 
from other techniques and approaches that are less reliant cloud AI service models 
(Vipra & Myers West, 2023). 

FIGURE 9: Open-Source machine-learning frameworks supported by the three major cloud 
platforms. 

28 Internet Policy Review 13(2) | 2024



FIGURE 10: The evolution of Deep Learning Virtual Machine Images provided by AWS [pink] and 
Google Cloud [green] through the IaaS-layer of their cloud ecosystem. 

Microsoft operates another layer of abstraction through its Azure Machine Learn-
ing Platform (Azure ML) (Figure 3), where it provides a no-code integrated develop-
ment environment (IDE). This Machine Learning Designer IDE (MA–2020c) hides the 
underlying code layers behind a visual interface which customers can use to build, 
deploy, and manage machine-learning models. Instead of programming, customers 
without any code experience are encouraged to set up entire machine-learning 
pipelines by dragging and dropping datasets, pre-trained models, and develop-
ment tool sets for data preparation, model training, and evaluation (Zhang, 2020). 
While the introduction of this IDE claimed to make machine learning more accessi-
ble for those with little or no programming experience (MA–2020c), Microsoft 
Azure arguably seeks to exercise power through the abstraction of machine-learn-
ing production and deployment processes: by hiding the code behind abstraction 
layers, customers can no longer modify or reprogramme the selected elements ac-
cording to their specific preferences. Instead, they become dependent on the selec-
tion of machine-learning models and tools that Microsoft Azure provides without 
being able to critically verify the technical functioning of the individual elements 
at play. In addition, customers who rely on the Azure Machine Learning Designer are 
required to use the Azure Kubernetes Service to run their models (MA–2020c). 
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Hence, they lose the autonomy and flexibility of choosing and (re)configuring their 
deployment infrastructure as they are being locked into the Microsoft Azure cloud 
ecosystem. 

The cloud providers’ strategy to package complicated underlying technical opera-
tions of AI systems and infrastructures becomes even more clear observing the 
large-scale offering of large pre-trained models as AI services via paid APIs. The 
different services for natural language processing (NLP), for example, enable de-
velopers to directly run these pre-trained models for tasks such as text generation 
or translation or use them as essential building blocks for application develop-
ment. However, while these technologies are programmable in the sense that de-
velopers can integrate machine-learning functionalities into their own applica-
tions, the pre-trained models themselves cannot externally be viewed, evaluated, 
or modified. Instead, their complex operations have disappeared behind abstrac-
tion layers hiding the technical functioning as well as the principles governing the 
use of these services. Consequently, developers who deploy pre-trained models are 
required to operate their applications within the tight boundaries specified and 
controlled by the operators of these services. This has been raising significant con-
cerns among members of the critical AI research community as it further increases 
the power of cloud platforms to shape AI technologies while undermining calls to 
mitigate privacy issues (e.g. Powles & Hudson, 2017) as well as the bias and dis-
crimination enforced by these systems (e.g. Bender et al., 2021). 
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FIGURE 11: AutoML services developed and operated by Microsoft Azure [blue] and Google Cloud 
[green]. 

The abstraction of complex machine-learning development mechanisms is even 
taken one step further through the development of services for automated ma-
chine learning (AutoML) in ways which are arguably even more particular to cloud 
AI spaces. Microsoft Azure and Google Cloud specifically evolved into this area by 
expanding their portfolio of proprietary AutoML services for the development of 
custom models into domains such as computer vision, video analysis, language 
generation, and translation (GCP–2021a; Figure 11). These services are claimed to 
automatically develop and test neural networks architectures (Thomas, 2018) and 
tend to abstract almost every aspect of machine-learning pipelines; from model 
construction, training and evaluation, to model deployment in specific settings and 
maintenance. Targeted at a developer base without the necessary expertise, these 
cloud platforms provide an abstracted plug-and-play version of machine learning. 
At the same time, AutoML systems remain limited in the scope of the problems 
they are claimed to solve and the amount of feedback they provide to the user. 
Google Cloud AutoML for example, is only available through an API which devel-
opers can access to query on new inputs (Liang et al., 2019). This means that de-
velopers have very little to no control over model production, training and valida-
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tion processes. AutoML systems can thus fully benefit from the power of abstrac-
tion, imposing functional logic and practical affordances on developers that have 
been defined by Google’s AI research team (Thomas, 2018). 

In conclusion, the abstraction of AI systems and their underlying infrastructures ar-
guably enables AWS, Microsoft Azure, and Google Cloud to further consolidate 
their infrastructural power in the political economy of AI. However, this form of in-
frastructural power is operationalised in different ways. First, the open-source 
frameworks that cloud platforms provide all offer multiple levels of abstraction 
that make it easier for developers to build, train, and deploy their machine-learn-
ing models which “appear to be applicable to problems in a variety of social set-
tings” (Selbst et al., 2018, p. 4) at greater speed. Subsequently, AWS, Microsoft 
Azure, and Google Cloud mobilise this power of abstraction to attract more users 
from different sectors into proprietary AI ecosystems, channelling and structuring 
their activities according to their strengths and benefits. Second, the introduction 
of no-code IDEs by Microsoft and the growing availability of pre-trained models by 
all cloud providers shows how these platforms increasingly operate abstraction 
layers with the attempt to standardise and control a variety of processes across 
machine-learning pipelines. This, however, becomes even more specifically visible 
through the release of AutoML services which abstract entire machine-learning 
workflows into plug-and-play environments that fully rely on the cloud. As a re-
sult, third-party institutions or companies are required to develop their AI applica-
tions within the framework of these cloud providers and have very little ability to 
evaluate the systems they use to automatically produce or run for further applica-
tion development. These organisations are drawn into a market without a basic 
understanding of the potential risks of the systems they operate and integrate into 
their respective applications even though there is significant evidence of the need 
to be critically aware (e.g., Miceli et al., 2022). 

Conclusion 

The evolutionary technographic analysis of AWS, Microsoft Azure, and Google 
Cloud’s AI infrastructures and services demonstrates that these major cloud 
providers operationalise infrastructural power in three substantial and comple-
mentary ways. First, the consistent vertical integration of AI infrastructures and 
services that are operated across the multi-layered stack of cloud architectures 
(Iaas, PaaS, and AIaas) shows that cloud providers attempt to exercise infrastruc-
tural power over entire AI systems and application development pipelines. This in-
cludes data storage and processing to model production, training, evaluation, de-
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ployment, and the integration of systems for the production of specific applica-
tions. On this level, this research contributes to literature on the political economy 
of AI which emphasises that the power of big tech in AI is primarily established 
through the unequal distribution of computing resources (Whittaker, 2021a). Com-
panies seek, not just to gain infrastructural power through a compute divide, 
(Ahmed and Wahed, 2020) but through the set of vertically integrated infrastruc-
tures and distributed services that strategically tether entire AI systems and appli-
cation-development cycles within cloud platforms’ respective ecosystems. 

Second, AWS, Microsoft Azure, and Google Cloud attempt to consolidate their infra-
structural power in AI through complementary innovation as they increasingly mo-
bilise the transversal characteristics of the machine-learning systems they operate 
in two directions. On the one hand, they facilitate the strategic development of 
complementary specialised services to infrastructurally expand themselves into 
different application domains, such as healthcare, manufacturing, or retail. 
Through the development of their infrastructures and services AWS, Microsoft 
Azure, and Google Cloud actively set the conditions of possibility for AI develop-
ment in these respective areas moving forward. On the other hand, the analysis 
showed that new machine-learning capabilities operate in complementary ways 
that seamlessly align with other branches in the larger ecosystems of Amazon, Mi-
crosoft, and Google such as Amazon Mechanical Turk. Most strikingly however, is 
that precarious workforces for data labour such as the micro-workers active on this 
Amazon platform (e.g. Miceli et al., 2022) are mobilised to substantiate services 
that are supposed to drive the development of “ethical and responsible AI”. Power, 
in this case, is operationalised through infrastructure to set the standards for ethi-
cal frameworks that fully align with the interests of corporate cloud platforms 
such as AWS, Microsoft Azure, and Google Cloud (Aradau & Blanke, 2022). 

Third, AWS, Microsoft Azure, and Google Cloud attempt to strategically exert the 
power of abstraction to strengthen their position in AI’s political economy. While 
abstraction is considered to play a central role in computer science practices 
(Selbst et al., 2018; Rieder, 2020), the analysis showed how these platforms mo-
bilise and further develop their abilities to hide the complex operations of their 
cloud infrastructures and services across the various layers of the stack. More 
specifically, AutoML services abstract machine-learning workflows into plug-and-
play environments that fully depend on the cloud. This creates another layer of 
significant advantages for cloud platforms to structure AI production in ways that 
further reinforce the creation of cloud dependent AI systems and applications. In 
addition, the widespread operationalisation of abstraction thwarts the critical 
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scrutiny and evaluation of AI systems — particularly in the case of AutoML — even 
though there have been ever more calls for critical oversight (e.g. Kak & Myers 
West, 2023). As such, the strategic mobilisation of abstraction can further 
strengthen AWS, Microsoft Azure, and Google Cloud in their position to operate in-
frastructural power. This allows them to shift the focus away from alternative re-
sources and the development of new approaches that contribute to different un-
derstandings about AI technologies outside of the confining ecosystems of the 
cloud. 

Taken together, vertical integration, complementary innovation, and abstraction as 
three central but interconnected sources of infrastructural power held by big tech 
in AI’s political economy further stress the importance of recent calls for regulatory 
intervention by public authorities such as the FTC and the European Commission 
(Kak & Myers West, 2023). A growing number of steps have been taken in these di-
rections (e.g. Khan, 2023), particularly since the launch of foundation models and 
the corporate ambitions to mobilise them in domains such as healthcare. However, 
focus on individual applications such as ChatGPT, or AI systems that have been de-
veloped for specific domains such as Google Cloud’s MedPaLM risks overlooking 
how they are part of evolving infrastructures and services for cloud AI strategically 
operated in Amazon, Microsoft, and Google’s ecosystems (see also van der Vlist et 
al., 2024). These systems thus require a deeper understanding of their operative 
politics and power in their integrated forms conditioned by corporate aims to 
(re)enforce capitalist relations at scale. The material-infrastructural approach to 
studying the evolutions of cloud platforms and the specific forms of infrastructural 
power in AI’s political economy that I put forward in this paper provides ground to 
develop such comprehensive frameworks further. 

There is a critical need for additional empirical research on the infrastructural 
power of cloud platforms and its specific implications for situated AI applications 
to substantiate such work and regulatory approaches. Acknowledging that AI oper-
ates in a dynamic ecosystem, such studies could further explore the strategies and 
operational logics of other significant firms such as Alibaba Cloud, Tencent Cloud, 
Oracle, IBM, and Nvidia. While scholars have extensively researched the implica-
tions of platform power for different areas of the economy and society (e.g. Lom-
borg et al., 2024), the immense scale at which these corporate clouds operate to 
govern and direct AI system and application development across domains and 
global contexts remains largely understudied. This is of particular concern consid-
ering the rapid implementations of generative AI. This paper therefore provides a 
critical empirical approach to further research AI and its political economy within 
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the context of corporate cloud platforms as vast and complex conglomerates of 
hardware infrastructures and software services that operate across the stack. Cloud 
platforms’ (archived) materials and documentation afford valuable information in-
to their technical operations as well as their governance structures which can be 
used to trace shifting relations of power in AI production and deployment. It is on-
ly through such a detailed understanding of how these infrastructures are strategi-
cally mobilised and operated that academic researchers and regulatory institutions 
can further deepen their capacities to effectively intervene. 
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Appendices 

Appendix I 

TABLE 4: Overview of the archived data sources. Pages are sorted by company and timeframe of 
information retrieval 

CLOUD AI PLATFORM RESOURCE 
(TIMEFRAME: NUMBER OF (ARCHIVED) PAGES, 

ANALYSIS INTERVAL 
COMPANY URL TYPE 

Machine Learning on AWS (January 
2017–April 2021): 517 pages, monthly 

Amazon 
https://web.archive.org/web/
20240000000000*/aws.amazon.com/machine-
learning/ 

Product 
page 

Press release archive | Amazon.com, Inc. 
(January 2017–April 2021): 255 pages 

Amazon 
https://press.aboutamazon.com/press-release-
archive 

Press 
Releases 

Amazon SageMaker 
(November 2017–April 2021): 642 pages, 
monthly 

Amazon 
https://web.archive.org/web/
20240000000000*/https://aws.amazon.com/
sagemaker/ 

Product 
page 

AWS AI services 
(May 2019–April 2021): 104 pages, monthly 

Amazon 
https://web.archive.org/web/
20240000000000*/https://aws.amazon.com/
machine-learning/ai-services/ 

Product 
page 

Azure Machine Learning | 
Microsoft Azure 
(January 2017–April 2021): 460 pages, 
monthly 

Microsoft 
https://web.archive.org/web/
20240000000000*/http://azure.microsoft.com/
services/machine-learning/ 

Product 
page 

Cognitive Services | 
Microsoft Azure 
(January 2017–April 2021): 
814 pages, monthly 

Microsoft 
https://web.archive.org/web/
20240000000000*/azure.microsoft.com/
services/cognitive-services/ 

Product 
page 

Microsoft news, features, events, and press 
materials 
(January 2017–April 2021): 336 pages 

Microsoft https://news.microsoft.com/ 
Press 
Releases 

Products and Services | 
Google Cloud 
(January 2017–April 2021): 
1538 pages, monthly 

Google 
https://web.archive.org/web/
20240000000000*/https://cloud.google.com/
products/ 

Product 
page 

Google Cloud Press Releases (January 
2017–April 2021): 336 Pages 

Google https://cloud.google.com/press-releases/ 
Press 
Releases 

AI and Machine Learning Products | Google 
Cloud (July 2018–April 2021): 335 pages, 

Google 
https://web.archive.org/web/
20240000000000*/cloud.google.com/products/

Product 
page 
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CLOUD AI PLATFORM RESOURCE 
(TIMEFRAME: NUMBER OF (ARCHIVED) PAGES, 

ANALYSIS INTERVAL 
COMPANY URL TYPE 

monthly ai/ 

Appendix II 

TABLE 5: References to primary sources. Pages are sorted by company and date 

CODE COMPANY TITLE URL ACCESS DATE 

AWS–2015 Amazon 
Introducing Amazon 
Machine Learning 

https://aws.amazon.c
om/about-aws/
whats-new/2015/04/
introducing-amazon-
machine-learning/ 

April 15, 2021 

AWS–2016 Amazon 
Introducing Amazon 
Lex, now in Preview 

https://aws.amazon.c
om/about-aws/
whats-new/2016/11/
introducing-amazon-
lex-now-in-preview/ 

April 15, 2021 

AWS–2017 Amazon 
Introducing Amazon 
SageMaker 

https://aws.amazon.c
om/about-aws/
whats-new/2017/11/
introducing-amazon-
sagemaker/ 

April 8, 2021 

AWS–2020a Amazon 

Introducing AWS 
Panorama for 
computer vision at 
the 
edge 

https://aws.amazon.c
om/about-aws/
whats-new/2020/12/
introducing-aws-
panorama-for-
computer-vision-at-
the-edge/ 

April 10, 2021 

AWS–2020b Amazon 

Introducing Amazon 
Monitron, an end-to-
end system to detect 
abnormal equipment 
behavior 

https://aws.amazon.c
om/about-aws/
whats-new/2020/12/
introducing-amazon-
monitron/ 

April 8, 2021 

AWS–2021a Amazon 
Machine Learning on 
AWS 

https://aws.amazon.c
om/machine-
learning/ 

April 25, 2021 

AWS–2021b Amazon 
AWS Deep Learning 
AMIs 

https://aws.amazon.c
om/machine-
learning/amis/ 

May 1, 2021 

AWS–2021c Amazon AWS Neuron 
https://aws.amazon.c
om/machine-
learning/neuron/ 

May 1, 2021 

AWS–2021d Amazon 

AWS Announces 
General Availability 
of Amazon Lookout 
for Equipment 

https://press.aboutam
azon.com/2021/4/
aws-announces-
general-availability-
of-amazon-lookout-
for-equipment 

May 1, 
2021 

AWSD–2021 Amazon 
Amazon Rekognition 
Developer Guide 

https://docs.aws.ama
zon.com/rekognition/

May 15, 2021 
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CODE COMPANY TITLE URL ACCESS DATE 

latest/dg/what-
is.html 

AWSN–2021 Amazon 
Amazon Neuron | 
Release Content 

https://aws.amazon.c
om/machinelearning/
neuron/ [data source 
no longer available] 

May 3, 2021 

MA–2016 Microsoft Cognitive Services 

http://web.archive.or
g/web/
20160610225624/
https://azure.microsof
t.com/en-us/services/
cognitive-services/ 

April 7, 2021 

MA–2019 Microsoft 
Transparency Note 
Azure Cognitive 
Services: Face API 

https://azure.microsof
t.com/mediahandler/
fils/resourcefiles/
transparencynote-
azure-cognitive-
services-faceapi/
Face%20API%20Trans
parency%20Note%20
March%202019.pdf 
URL no longer 
available, data source 
now available via: 
https://query.prod.cm
s.rt.microsoft.com/
cms/api/am/binary/
RE5cplH 

April 7, 2021 

MA–2020a Microsoft 

Bing Search APIs will 
transition from Azure 
Cognitive Services to 
Azure Marketplace on 
31 October 2023 

https://azure.microsof
t.com/en-us/updates/
bing-search-apis-
will-transition-from-
azure-cognitive-
services-to-azure-
marketplace-
on-31-october-2023/ 

April 7, 2021 

MA–2020b Microsoft 
Azure Machine 
Learning updates 
Ignite 2020 

https://azure.microsof
t.com/en-us/updates/
azure-machine-
learning-updates-
ignite-2020/ 

April 7, 2021 

MA–2020c Microsoft 
What is Azure 
Machine Learning 
designer? 

https://learn.microsof
t.com/en-us/shows/
ai-show/azure-
machine-learning-
designer 

April 8, 2021 

MA–2021a Microsoft 
Azure Cognitive 
Services 

https://azure.microsof
t.com/en-us/services/
cognitive-services/ 

April 5, 2021 

MA–2021b Microsoft 
What is Azure 
Content Moderator? 

https://learn.microsof
t.com/en-us/azure/ai-
services/content-
moderator/overview 

April 7, 2021 

MA–2021c Microsoft 
Learn how Microsoft 
AI is helping your 
industry 

https://www.microsof
t.com/enus/ai/
business?activetab=pi

May 5, 2021 
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vot1:primaryr2 [data 
source no longer 
available] 

MA–2021d Microsoft Azure Percept 

https://azure.microsof
t.com/enus/services/
azure-percept/ [data 
source no longer 
available] 

April 15, 2021 

GCP–2019 Google Products and services 

http://web.archive.or
g/web/
20190510045538/
https://cloud.google.c
om/products/ 

April 7, 2021 

GCP–2021a Google 
Cloud AI building 
blocks 

https://cloud.google.c
om/products/ai/
building-blocks 

April 7, 2021 

GCP–2021b Google 
Getting started: 
training and 
prediction with Keras 

https://cloud.google.c
om/ai-platform/docs/
getting-started-keras 

May 12, 2021 

GCP–2021c Google Vertex AI 
https://cloud.google.c
om/vertex-ai 

May 18, 2021 

Appendix III 

TABLE 6: Overview of the industry reports reviewed for this study 

REFERENCE YEAR TITLE AUTHOR(S) URL 

Benaich and 
Hogarth, 2018 

2018 
State of AI 
Report 2018 

Benaich and 
Hogarth 

https://drive.goo
gle.com/file/d/
1rdPH1wf7d2Nx
8Ax9sxd9eEypv
MQu8cn7/view 

CBInsights, 
2018a 

2018 
Amazon 
Strategy 
Teardown 

CBInsights 

https://www.cbi
nsights.com/
research/report/
amazon-
strategy-
teardown/ 

CBInsights, 
2018b 

2018 
Google Strategy 
Teardown 

CBInsights 

https://www.cbi
nsights.com/
research/report/
google-strategy-
teardown/ 

CBInsights, 
2018C 

2018 
Microsoft 
Teardown 

CBInsights 

https://www.cbi
nsights.com/
research/report/
microsoft-
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REFERENCE YEAR TITLE AUTHOR(S) URL 

strategy-
teardown/ 

CBInsights, 
2020 

2020 

Big Tech In 
Healthcare: How 
Tech Giants Are 
Targeting The 
$3T Industry 

CBInsights 

https://www.cbi
nsights.com/
research/report/
famga-big-tech-
healthcare/ 

McKinsey, 2018 2018 

Artificial-
intelligence 
hardware: New 
opportunities 
for 
semiconductor 
companies 

McKinsey 

https://www.mc
kinsey.com/~/me
dia/McKinsey/
Industries/
Semiconductors/
Our%20Insights
/
Artificial%20inte
lligence%20har
dware%20New
%20opportuniti
es%20for%20se
miconductor%2
0companies/
Artificial-
intelligence-
hardware.ashx 

Benaich and 
Hogarth, 2019 

2019 
State of AI 
Report 2019 

Benaich and 
Hogarth 

https://drive.goo
gle.com/file/d/
1RE0I4VMLNoxs
wXNnleAyoWsW
FGeXrz1F/view 

Benaich and 
Hogarth, 2020 

2020 
State of AI 
Report 2020 

Benaich and 
Hogarth 

https://docs.goo
gle.com/
presentation/d/
1ZUimafgXCBSL
sgbacd6-a-
dqO7yLyzIl1ZJbi
CBUUT4/edit 

Baker et al., 
2020 

2020 

Magic Quadrant 
for Cloud AI 
Developer 
Services 

Van Baker, Elliot, 
Sicular, Mullen 
and Brethenoux 

https://www.gar
tner.com/doc/
reprints?id=11Y
CWP1OB&ct=20
0213&st=sb [data 
source is no longer 
available] 

Baker et al., 
2021 

2021 
Magic Quadrant 
for Cloud AI 

Van Baker, Elliot, 
Sicular, Mullen 

https://www.gar
tner.com/doc/
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Developer 
Services 

and Brethenoux 

reprints?id=125
5TRY6T&ct=210
205&st=sb [data 
source is no longer 
available] 

in cooperation withPublished by
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