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Abstract

The shocks in structural vector autoregressive (VAR) analysis are typically as-

sumed to be instantaneously uncorrelated. This condition may easily be violated

in proxy VAR models if more than one shock is identified by a proxy variable.

Correlated shocks may be obtained even if the proxies are uncorrelated and satisfy

the usual relevance and exogeneity conditions individually. Examples from the re-

cent proxy VAR literature are presented. It is shown that assuming uncorrelated

proxies that satisfy the usual relevance and exogeneity conditions individually ac-

tually over-identifies the shocks of interest and a Generalized Method of Moments

(GMM) algorithm is proposed that ensures orthogonal shocks and provides efficient

estimators of the structural parameters. It generalizes an earlier GMM proposal

that works only if at least K − 1 shocks are identified by proxies in a VAR with

K variables.

Key Words: Structural vector autoregression, proxy VAR, external instruments,

correlated shocks, Generalized Method of Moments

JEL classification: C32, C36, E52
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1 Introduction

In recent years it has become increasingly popular to identify structural shocks in

structural VAR analysis by external instruments or proxies. In a number of studies,

more than one shock of interest is identified in this way. In monetary policy analysis,

this approach is, for instance, used by Altavilla, Brugnolini, Gürkaynak, Motto and

Ragusa (2019) to account explicitly for the different nature of monetary policy shocks

due to the range of tools at the disposal of central banks. Other examples of studies

using a set of proxies to identify more than one structural shock are Mertens and Ravn

(2013) who use two proxies to identify two tax shocks, Lunsford (2015) who identifies

a consumption and an investment TFP shock by two proxies, Piffer and Podstawski

(2017) who identify an uncertainty and a news shock, Lakdawala (2019) who identifies

two monetary policy shocks, a fed funds rate shock and a forward guidance shock,

Jarociński and Karadi (2020) who identify a monetary policy and a central bank

information shock, and Känzig (2021) who uses two proxies to identify two oil market

related shocks. Further examples are Arias, Rubio-Ramı́rez and Waggoner (2021)

and Giacomini, Kitagawa and Read (2022), where Bayesian methods are applied.

If a set of proxies identifies several shocks, in general only linear combinations of

the shocks are identified but they are not identified individually. For disentangling

the shocks of interest, further information is required. In some studies, it is assumed

that the proxies satisfy the usual relevance and exogeneity conditions for valid proxies

individually and then they are used one-by-one to identify the shocks individually.

It was pointed out by Gregory, McNeil and Smith (2024), however, that in this case

the shocks may not be instantaneously uncorrelated any more and, hence, violate

a standard assumption of structural VAR analysis. This can happen, even if the

proxies are mutually uncorrelated and individually satisfy the standard relevance

and exogeneity conditions that the proxy VAR literature typically assumes for valid

proxies.

Having uncorrelated structural shocks is important for the interpretation of im-

pulse responses, for example. If structural shocks are instantaneously correlated, then
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they are not likely to occur in isolation and, hence, impulse responses to individual

shocks may not reflect properly the dynamics of the system under consideration. In

fact, for realistically assessing the responses of the variables, one would have to con-

sider the situation where several shocks hit at the same time. Clearly, responses to

several shocks hitting jointly can be quite different from the impulse responses of the

individual shocks. Hence, the causal interpretation of isolated shocks may be ques-

tionable in that case (see also the related discussions in Ramey (2016), Stock and

Watson (2018), and Gregory et al. (2024)). Thus, it may be problematic that some

of the shocks considered in recent structural VAR analysis are not instantaneously

uncorrelated.

In this study we will first state the problem and its sources more formally. We

show that even if the proxies are mutually uncorrelated and individually satisfy the

standard assumptions for valid proxies, the resulting shocks may be correlated. How-

ever, if each proxy is correlated with one shock only, that information can be used

to identify the shocks. In fact, imposing that the shocks are instantaneously un-

correlated, the assumption of each proxy being correlated with one shock only even

over-identifies the shocks identified by the proxies.

Gregory et al. (2024) present a GMM method that provides uncorrelated shocks

if the condition of each proxy being correlated with a single shock only is satisfied.

Their method requires that, in aK-dimensional VAR model withK variables, at least

K − 1 shocks are identified by proxies. Unfortunately, that condition is not satisfied

in a range of proxy VAR studies (e.g., Lunsford (2015), Lakdawala (2019), Jarociński

and Karadi (2020), Känzig (2021), Piffer and Podstawski (2017), Fanelli and Marsi

(2022)). We propose a simple GMM method that also works more generally even if

there are fewer proxies and shocks to be identified by them. The method permits

to focus exclusively on the structural parameters of interest in the GMM objective

function and, hence, will typically result in a computationally simple optimization

problem. A device proposed by Crepon, Kramarz and Trognon (1997) is used to

ensure that the method provides asymptotically efficient estimators under standard
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assumptions. It also ensures a valid J-test for model misspecification.

We will present examples of empirical studies, where using the proxies one-by-one

in the usual way leads to correlated shocks and we will show that using our GMM

approach for estimation can, for instance, make a difference for the impulse responses.

Thereby we show that avoiding correlated shocks is not only a theoretical problem

but is relevant for applied work.

The remainder of the paper is organized as follows. In the next section we present

the model setup, formulate the problem of getting correlated shocks formally, and

present the GMM procedure that can be used for solving the problem. In Section 4

we present the empirical examples and Section 5 concludes.

The following general notation will be used throughout. The operator vec(·) is

the usual column vectorization operator for a matrix. vech(·) is the corresponding

operator vectorizing a square matrix from the main diagonal downwards, and vh(·)

is the vectorization operator that collects only the elements below the main diagonal

of a matrix in a vector. Moreover, we use the following special matrices (see also

Lütkepohl (1996) for some of the definitions and properties of the matrices): Sm

is a (1
2
m(m − 1) × m2) selection matrix that selects the elements below the main

diagonal of an (m × m) matrix M from vec(M), i.e., vh(M) = Smvec(M). The

(1
2
m(m+1)×m2) elimination matrix Lm is defined such that, for an (m×m) matrix

M , vech(M) = Lmvec(M). Furthermore, Dm is the (m2 × 1
2
m(m + 1)) duplication

matrix defined such that, for a symmetric (m×m) matrix M , vec(M) = Dmvech(M).

Finally, Kmm denotes the (m2 ×m2) commutation matrix defined such that, for an

(m×m) matrix M , vec(M ′) = Kmmvec(M).
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2 Model Setup and Problem Discussion

2.1 The Model

Our basic model is a K-dimensional reduced-form VAR process,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut = (ν,A1, . . . , Ap)Yt−1 + ut, (1)

where ut is a zero mean white noise process with nonsingular covariance matrix Σu,

i.e., ut ∼ (0,Σu) and Yt−1 = (1, y′t−1, . . . , y
′
t−p)

′ is a (Kp + 1)-dimensional column

vector.

The vector of structural shocks is denoted by wt = (w1t, . . . , wKt)
′. It is obtained

from the reduced-form errors, ut, by a linear transformation, wt = B−1ut. The (K ×

K) matrix B = [bij] contains the impact effects of the structural shocks and BΣwB
′ =

Σu, where Σw is the covariance matrix of wt. As in much of the structural VAR

literature, the shocks are assumed to be instantaneously uncorrelated and, hence, the

transformation matrix B is such that the covariance matrix Σw is diagonal and the

structural shocks wt are instantaneously uncorrelated by construction.

As we are also considering partially identified models, we partition wt in K1- and

(K−K1)-dimensional subvectors w1t = (w1t, . . . , wK1t)
′ and w2t = (wK1+1,t, . . . , wKt)

′

such that w′
t = (w′

1t,w
′
2t). The first K1 shocks, w1t, are the structural shocks of

interest. They have to be identified properly, while w2t contains shocks which are

not in the focus of the analysis and are, hence, not necessarily identified as proper

economic shocks. The matrix of impact effects, B, is partitioned accordingly as

B = [B1 : B2], where B1 is (K ×K1) and B2 is (K × (K −K1)). In other words, Bi

contains the impact effects of the shocks wit, i = 1, 2.

The impact effects, B, are the structural parameters of the model. The shocks w1t

are identified if the B1 matrix is identified. Having the matrix B1, we can compute
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the structural impulse responses to the w1t shocks for propagation horizon h as

Θ1h = ΦhB1,

where the Φh are reduced-form quantities obtained recursively from the VAR slope

coefficients as Φh =
∑h

j=1 Φh−jAj, with Φ0 = IK , for h = 0, 1, . . . , and Aj = 0 for

j > p (see, e.g., Lütkepohl (2005, Sec. 2.1.2)).

Each column of B contains the impact effects of a single shock on all the K

variables. Denoting by bk the k-th column of B, the k-th shock can be obtained from

the reduced-form residuals as

wkt = b′kΣ
−1
u ut/b

′
kΣ

−1
u bk (2)

(see, e.g., Stock and Watson (2018), Bruns and Lütkepohl (2022, Appendix A.1)).

2.2 Identification via Proxy Variables

Identification of the structural parameters and, hence, the structural shocks is as-

sumed to be based on a set of N instrumental variables (proxies) zt = (z1t, . . . , zNt)
′

satisfying

E(w1tz
′
t) = Σw1z ̸= 0, Σw1z (K1 ×N), rk(Σw1z) = K1 (relevance), (3)

E(w2tz
′
t) = 0 (exogeneity). (4)

These conditions imply that

E(utz
′
t) = BE(wtz

′
t) = B1Σw1z. (5)

Obviously, there must be at least as many proxies as there are identified shocks such

that N ≥ K1, to satisfy the rank condition for Σw1z which ensures that the N proxies

contain identifying information for all shocks in w1t. As we can estimate B1Σw1z by
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the usual covariance matrix estimator

ûz =
1

T

T∑
t=1

ûtz
′
t, (6)

where the ût are reduced-form least squares (LS) residuals, the proxies contain iden-

tifying information for the first K1 structural shocks collectively but the shocks are

not necessarily individually identified. However, if each proxy is correlated with just

one shock such that Σw1z is a diagonal square matrix, the shocks will be identified

individually because the right-hand side of (5) will consist of multiples of the impact

effects of the shocks that will provide multiples of the shocks via the relation (2). In

general, if Σw1z is not a diagonal matrix, the proxies identify only linear combinations

of the shocks of interest.

For ease of exposition, we assume from now on that there are precisely as many

proxies as there are structural shocks of interest, i.e., N = K1 and Σw1z is a square

matrix. In that case, if Σw1z is a diagonal matrix, each proxy satisfies the relevance

and exogeneity conditions individually, i.e.,

E(wktzkt) = ck ̸= 0, (relevance), (7)

E(wjtzkt) = 0, j ∈ {1, . . . , K}, j ̸= k, (exogeneity), (8)

such that E(utzkt) = BE(wtzkt) = ckbk. Thus, zkt identifies a multiple of the impact

effects of the k-th shock. Note that, if we just have a multiple of bk and use that

in (2) in place of bk, we get a multiple of the k-th shock. That is not a problem in

practice because the analyst has to take a stand on the size of the shock she wants

to look at anyway and she has to scale the shock accordingly.

If the impact effects of an individual shock are estimated as

ĉkbk =
1

T

T∑
t=1

ûtzkt,

we will refer to this approach as the conventional proxy VAR approach to estimating
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the impact effects of the shocks of interest. Obviously, this estimator is identical to

the one obtained by using the estimator in equation (6) and thereby estimating the

impact effects of all K1 shocks of interest jointly. The shocks obtained in this way

may, however, be instantaneously correlated, as pointed out already by Gregory et al.

(2024), because there is no mechanism that enforces uncorrelatedness. Effectively,

with each of the proxies we are estimating a column of a B matrix, say B(i), that

satisfies B(i)Σ
(i)
w B(i)′ = Σu with a diagonal matrix Σ

(i)
w . For two proxies z1t and z2t we

do not necessarily estimate a column of the same B matrix, however, and, hence, it

is possible that B(1) ̸= B(2).

If we were to specify two proxies zt and three shocks wt such that

 zt

wt

 ∼ N


0,



1 0 ∗ 0 0

0 1 0 ∗ 0

∗ 0 1 ∗ 0

0 ∗ ∗ 1 0

0 0 0 0 1




, (9)

where * denotes a nonzero element chosen such that the covariance matrix is positive

definite, then the proxies are mutually uncorrelated and satisfy individually the rele-

vance and exogeneity conditions (7) and (8) such that each proxy is correlated with

one shock only. Still, that can go together with correlated shocks, as the example in

(9) shows. Thus, correlated shocks may in principle come up also in empirical work

based on the conventional proxy VAR approach.

Clearly, it is attractive to estimate the structural shocks without having to draw

on additional identifying information because identifying information based on exclu-

sion restrictions on the impact or long-run effects of the shocks or on sign restrictions

is often debatable and not shared by the entire profession. That may have motivated

some researchers to construct their proxies such that each of them is correlated with

exactly one shock only. In the next section it will be shown that such a property to-

gether with the requirement of uncorrelated shocks actually over-identifies the shocks
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of interest. Taking all the identifying information properly into account avoids the

problem of getting correlated shocks.

2.3 Orthogonalizing the Shocks

Gregory et al. (2024) propose a generalized method of moments (GMM) approach that

ensures uncorrelated (orthogonal) shocks. They use moment conditions obtained from

the assumption that each proxy is correlated with one shock only which implies that

all the other shocks are uncorrelated with the proxy, giving K−1 moment conditions

for each proxy. In addition, they use that all the shocks are mutually uncorrelated.

Thereby they obtain 1
2
K(K−1) further moment conditions. Finally, they standardize

the B matrix to have a unit diagonal. In other words, they assume that each shock

has a unit impact effect for one of the variables. Thereby they have to estimate just

K(K − 1) structural parameters in the B matrix. A drawback of the Gregory et al.

(2024) approach is that it works only if at least K−1 shocks are identified by proxies.

Otherwise they do not have enough moment conditions to identify all the parameters.

Clearly, there are many examples of proxy VAR studies, where less than K−1 shocks

are identified by proxies and, hence, their approach does not work any more. It is also

a disadvantage of their approach that, for each shock, they have to take a stand on

a specific variable having a nonzero instantaneous response. In the literature, there

are many studies, where the response of the variables to the shocks is uncertain and

is only the outcome of the analysis and not known before the analysis.

In the following, we present a GMM method that works more generally also if

K1 < K − 1 because we use a different set of moment conditions. Our moment

conditions are focussed on the first K1 shocks of interest that are identified by proxies

and do not involve moment conditions related to other shocks. We assume that Σw1z

is diagonal and standardize the variances of the shocks such that Σw1z = IK1 . Thereby

we get KK1 moment conditions

E(utz
′
t −B1) = 0 (10)

9



from (5). Moreover, using ut = Bwt and, hence, Σu = BΣwB
′, where Σw is the

covariance matrix of the standardized wt shocks, we have

E(B′
1Σ

−1
u utu

′
tΣ

−1
u B1) = B′

1B
′−1Σ−1

w B−1B1 = [IK1 : 0]Σ
−1
w

 IK1

0

 .

Uncorrelated shocks imply that Σw is a diagonal matrix. Hence, considering only the

elements below the main diagonal of the left-hand side matrix, we get a further set

of 1
2
K1(K1 − 1) moment conditions

E[vh(B′
1Σ

−1
u utu

′
tΣ

−1
u B1)] = 0. (11)

Note that there are KK1 free parameters in B1, which are already identified by the

KK1 moment conditions (10) so that the additional moment conditions (11) over-

identify B1 if we have multiple proxies. In other words, assuming that each proxy

is correlated with a single shock only does not only identify the shocks but even

over-identifies them if K1 > 1.

Note also that the moment conditions depend on the reduced-form VAR parame-

ters α = vec(ν,A1, . . . , Ap) via ut(α) = yt − (Y ′
t−1 ⊗ IK)α and σ = vech(Σu). Thus, if

we focus on estimating β = vec(B1), we still have to account for nuisance parameters

γ = (α′, σ′)′. The standard moment conditions for the reduced-form VAR parameters

are

E[(Yt−1 ⊗ IK)yt − (Yt−1Y
′
t−1 ⊗ IK)α] = 0 (12)

and

E(Σu − utu
′
t) = 0. (13)

The empirical moments corresponding to the moment conditions for the structural
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parameters (10) and (11) are

m̄β(β, γ) =
1

T

T∑
t=1

mβ
t (β, γ)

(
KK1 +

1
2
K1(K1 − 1)

)
× 1

with

mβ
t (β, γ) =

 vec (ut(α)z
′
t −B1)

vh (B′
1Σ

−1
u ut(α)ut(α)

′Σ−1
u B1)

 (14)

and for the reduced-form parameters we get empirical moments

m̄γ(γ) =
1

T

T∑
t=1

mγ
t (γ)

(
K(Kp+ 1) + 1

2
K(K + 1)

)
× 1

with

mγ
t (γ) =

 (Yt−1 ⊗ IK)yt − (Yt−1Y
′
t−1 ⊗ IK)α

vech(Σu − ut(α)ut(α)
′)

 (15)

Using a result by Crepon et al. (1997, Proposition 1), we can set up an efficient

GMM procedure by specifying the GMM objective function as

J(β) = Tm̄β(β, γ̂)′Ω(β̂, γ̂)−1m̄β(β, γ̂), (16)

where Ω(β, γ) is a suitable GMM weighting matrix, β̂ is a consistent first-stage esti-

mator of β and γ̂ is a consistent estimator of γ that satisfies the condition

m̄γ(γ̂) = 0. (17)

In the present setup, we can use the least squares (LS) estimator γ̂LS as estimator

for γ because it satisfies condition (17).

An asymptotically efficient estimator for β, denoted by β̂GMM in the following, is
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obtained if the weighting matrix Ω(β, γ) is chosen as

Ω(β̂, γ̂LS) =
1

T

T∑
t=1

ωt(β̂, γ̂
LS)ωt(β̂, γ̂

LS)′, (18)

where β̂ is some consistent first-stage estimator of β and

ωt(β, γ) = mβ
t (β, γ)−

(
1

T

T∑
t=1

∂mβ
t (β, γ)

∂γ′

)(
1

T

T∑
t=1

∂mγ
t (γ)

∂γ′

)−1

mγ
t (γ) (19)

(see Crepon et al. (1997)). It is shown in Appendix A that the correction term

simplifies to

ωt(β, γ̂
LS) = mβ

t (β, γ̂
LS)−


(
( 1
T

∑T
t=1 ztY

′
t−1)(

1
T

∑T
t=1 Yt−1Y

′
t−1)

−1Yt−1 ⊗ IK

)
ût

−2SK1vec
(
B′

1Σ̂
−1
u (Σ̂u − ûtû

′
t)Σ̂

−1
u B1

)


(20)

if γ is replaced by the LS estimator γ̂LS. Here ût denotes again reduced-form LS

residuals and Σ̂u = T−1
∑T

t=1 ûtû
′
t. For β = vec(B1) we may choose a consistent

first-stage estimator obtained, e.g., by minimizing the GMM objective function (16)

with Ω(β, γ) = IKK1+
1
2
K(K+1). The procedure can also be iterated, using the latest

estimate of β and γ̂LS in each iteration step.

Using this approach, we estimate the impact effects of the first K1 structural

shocks that can be obtained as w1t = B′
1Σ

−1
u ut from the reduced-form residuals. The

GMM approach aims at estimating the structural shocks of interest in such a way

that they are instantaneously uncorrelated. It should be clear that, due to the over-

identifying moment conditions, the empirical correlation between the components of

the estimated w1t may be nonzero because J(β̂GMM) > 0. This feature can also be

used to set up Hansen’s J-test for misspecification using that

J(β̂GMM)
d→ χ2

(
1
2
K1(K1 − 1)

)
(21)
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under standard GMM assumptions, if the model and the moment conditions are

correctly specified. Note that the asymptotic χ2-distribution is obtained because we

have corrected for the nuisance parameters.

The diagonality of Σw1z is one assumption that may not hold in practice and,

diagnosing model misspecification by a Hansen test may be a signal of incorrect mo-

ment conditions. The advantage of our GMM approach is that it provides estimates

of the shocks and, hence, we can also estimate the Σw1z matrix and directly check

whether it is diagonal.

We have standardized the shocks such that Σw1z is an identity matrix. For an

empirical analysis we can, of course, rescale the shocks to have the desired size. For

example, if a monetary policy shock is identified that moves an interest rate on impact,

we can rescale the column of B̂1 corresponding to the shock such that the interest

rate changes by, say, 25 basis points on impact.

Another approach for estimating the structural parameters B1 is discussed by

Angelini and Fanelli (2019).2 These authors assume a parametric model for the

proxies and augment the VAR model by the proxies. Then they set up a minimum

distance procedure that minimizes the distance of the structural parameters from

the reduced-form parameters. Their approach also works for proxy VAR models

where less than K − 1 shocks are identified by proxies. However, in addition to the

B1 matrix, the minimum distance method also estimates parameters of the model for

the proxies. Given the way some proxies are constructed in the recent literature, their

model is not a universally good approximation of the generating mechanism of the

proxies. In particular, their model does not match the situation where observations

for the proxy are only available at infrequent event dates and the proxy is set to

zero on all other dates as, e.g., in Piffer and Podstawski (2017), Wright (2012), Boer

and Lütkepohl (2021), Gertler and Karadi (2015) and many other studies. Clearly,

our GMM approach has the advantage of focussing exclusively on the parameters of

interest, B1, and it does not assume a specific model for the generating mechanism

2Related research is also reported by Garchi Casal and Zimic (2023).
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of the proxies and therefore also accommodates proxies with many zero values during

the sample period.

3 Monte Carlo Study

An attractive feature of the orthogonality conditions introduced in the previous

section is that they provide over-identifying moments, which are testable with the

J-statistic. Unless the nuisance parameters are properly accounted for, however,

this test will not follow the expected distribution. One might also expect the over-

identified model to yield more precise estimates compared with the usual proxy SVAR

procedure since it incorporates additional information to estimate the same number of

parameters. That both of these points are observed in finite samples is demonstrated

with the following small Monte Carlo experiment.

The data generating process is

yt = A1yt−1 +Bwt, wt ∼ N (0,Σw), (22)

where yt and wt are (3 × 1) vectors and Σw is a diagonal matrix. We fit VAR(4)

models with constant term and consider sample sizes, exclusive of pre-sample values,

of T = 100 and 500 and the parameter matrices are

A1 =


0.9 0 0

1/3 1/3 1/3

1/3 1/3 1/3

 , B =


1 0.2 0.2

0.2 1 0.2

0.2 0.2 1

 , Σw =


1 0 0

0 1 0

0 0 σ2
w3

 .

There are K1 = 2 instruments available to identify the first two shocks. These two

shocks are related to the vector of proxies, zt, according to

zt = w1t + vt, vt ∼ N (0,Σv), (23)

where vt is independent of w1t and Σv is a diagonal matrix. The matrix A1 has a
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maximum eigenvalue of 0.9 and, thus, the VAR process is stable but quite persistent.

We set σ2
w3

= 0.01 or 1 and simulate 5000 Monte Carlo replications. The low value of

σ2
w3

= 0.01 reflects an environment in which the two identified shocks account for a

majority of the variation in all three variables. This case may be of practical interest

as macroeconomists often study the most important sources of economic variation.

A value of σ2
w3

= 1 reflects a situation where all three shocks are equally important.

The strength of the proxies as instrumental variables is determined by the corre-

lations between the two identified shocks and their respective proxy variables

Corr(wit, zit) =
Var(wit)√

Var(wit) + Var(vit)
.

Since the two identified shocks have unit variance, we adjust the diagonal elements

of Σv to achieve an intermediate correlation of 0.5 between the instruments and their

associated shocks.

For each simulation we produce three estimates of the first two columns of B,

i.e. for B1. First, we apply the usual proxy SVAR procedure, which uses the two

instrumental variables (proxies) but places no restriction on the correlation between

the two identified shocks. Thus, it uses the moment conditions (10) such that the

estimator for the impact effects is B̂1 = 1
T

∑T
t=1 ûtz

′
t. Second, we apply the GMM

method outlined in the previous section, which incorporates the over-identifying mo-

ment condition based on the orthogonality of the estimated shocks, and adjusts the

GMM weighting matrix using the Crepon et al. (1997) method. The moment con-

ditions for this estimator are (10) and (11) and the GMM weighting matrix is (18).

As first stage estimates for β and γ we use β̂ = vec(B̂1) and γ̂LS, respectively. The

resulting estimator will be referred to as adjusted GMM estimator in the following.

Third, we again use the moments (10) and (11) but ignore the nuisance parameters

α and Σu and use as GMM weighting matrix

1

T

T∑
t=1

mβ
t (β̂, γ̂

LS)mβ
t (β̂, γ̂

LS)′. (24)
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The corresponding estimator will be called unadjusted GMM estimator.

Figures 1 and 2 show kernel densities for the estimates of the six identified parame-

ters of B1, for each of the three estimators when we set σ2
w3

= 0.01 and 1, respectively.

The vertical black lines correspond with the true values of the parameters. The fol-

lowing observations emerge from the figures:

1. The two GMM estimators clearly dominate the conventional proxy VAR estima-

tor in that their densities are generally more or at least not less concentrated

than the densities of the conventional proxy VAR estimates and, hence, the

GMM estimators have smaller variances.

2. For some of the parameters the densities of all three estimators are concentrated

around values different from the true parameter value in small samples. In other

words, they are biased. The bias is similar for all three estimators and declines

quickly with growing sample size.

3. The adjusted and unadjusted GMM estimators have very similar small sample

densities. In other words, for our limited simulation designs, the small sample

properties of the estimators do not depend much on the adjustment of the GMM

weighting matrix.

Table 1 shows rejection frequencies for the J-test calculated for the two over-

identified GMM estimators at three popular significance levels. If the test statistic

has the correct size, we would expect it to exceed the 10% critical value approximately

10% of the time, and likewise for any other critical value. We see that this is the

case even for a relatively small sample size of T = 100 for the adjusted GMM but

the test is severely undersized for the unadjusted GMM, indicating that a test of

the over-identifying restrictions would under-reject. The rejection frequencies for the

unadjusted GMM do not improve as the sample size increases and it is found for both

values of σ2
w3
. This illustrates that the adjustment for the GMM procedure outlined

in the previous section is crucial for obtaining a reliable J-test.
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Figure 1: Monte Carlo Kernel Densities of Estimates of B1 when σ2
w3

= 0.01.
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Figure 2: Monte Carlo Kernel Densities of Estimates of B1 when σ2
w3

= 1.
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Table 1: Monte Carlo Rejection Frequencies of J-Test

T = 100 T = 500
10% 5% 1% 10% 5% 1%

σ2
w3

= 0.01
adjusted GMM 11.38% 5.72% 1.24% 11.22% 5.72% 1.32%

unadjusted GMM 2.30% 0.68% 0.04% 1.84% 0.60% 0.02%

σ2
w3

= 1
adjusted GMM 11.38% 5.80% 1.18% 11.22% 5.70% 1.22%

unadjusted GMM 2.24% 0.72% 0.06% 1.8% 0.60% 0.02%

In summary, the simulation results suggest that the adjusted GMM procedure

should be used in applied work because it generally dominates the conventional proxy

VAR estimator in terms of small sample precision and it is crucial for taking full

advantage of the inference possibilities that come with the GMM approach. In the

following examples, we use the adjusted GMM procedure throughout.

4 Empirical Examples

There are a number of VAR studies where several shocks are identified by a set of prox-

ies. If the proxies are instantaneously correlated, the authors typically use additional

information to identify the shocks of interest individually. For example, Mertens and

Ravn (2013) study the impact of tax shocks on the U.S. economy. They use two

proxies to identify two shocks simultaneously and use an additional identifying zero

restriction for the impact effects of the shocks to identify them individually. If the

proxies individually satisfy the relevance and exogeneity conditions, it is tempting

to use them one-by-one without additional, possibly controversial identifying restric-

tions. Clearly such an approach can be used if there are good reasons to assume that

each proxy is only correlated with precisely one shock. As discussed in the previous

section, using the conventional proxy VAR approach in this case may lead to corre-

lated shocks. However, our GMM approach can be used to get around the problem

of correlated shocks and to increase estimation efficiency. In the following we will

present examples that illustrate the relevance of the issue for applied work.
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Table 2: Empirical Correlations of Proxies for Altavilla el al. (2019) Example, Sample
Period Jan 1, 2014 - Sep 13, 2018, with 95% Bootstrap Confidence Intervals

zTarget
t zT iming

t zFG
t zQE

t

zTarget
t 1.000 0.094

(−0.255, 0.361)
0.253

(−0.368, 0.592)
0.147

(−0.389, 0.557)

zT iming
t 1.000 −0.558

(−0.830,−0.056)
0.428

(0.251, 0.601)

zFG
t 1.000 −0.015

(−0.324, 0.359)

zQE
t 1.000

4.1 European Monetary Policy Analysis

Altavilla et al. (2019) investigate the impact of monetary policy in the euro area

(EA) by a proxy VAR model. They consider four shocks related to monetary policy

to be identified by four proxies in a daily financial VAR model containing the fol-

lowing variables: the 2-year Overnight Index Swap rate (OIS2Y), the log EUR-USD

exchange rate (EURUSD), the log Euro Stoxx 50 (STOXX), and the 2-year inflation

linked swap (ILS2Y). They use their four proxies zt = (zTarget
t , zT iming

t , zFG
t , zQE

t )′

one-by-one to identify four shocks, labelled Target, Timing, Forward Guidance (FG),

and Quantitative Easing (QE) shocks. The Target shock is meant to capture con-

ventional monetary policy action reflected in changes in the OIS2Y, the Timing and

FG shocks are associated with central bank communication and capture short-term

and medium term guidance, respectively. Finally, the QE shock is relevant for the

time of unconventional monetary policy starting in 2014. It captures the longer term

assessment of the economic situation by the central bank.

The overall sample considered by Altavilla et al. (2019) runs from January 2002

till September 2018. They conduct a subsample analysis for three subperiods. We

only consider the last subperiod from January 2014 to September 2018 for which all

the variables and all proxies are available. We perform our analysis based on VARs

with 12 lags and an intercept term as in Altavilla et al. (2019).

The empirical correlations of the proxies for our sample period are presented in
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Table 3: Empirical Correlations of Conventional Proxy VAR Shocks and Proxies for
Altavilla el al. (2019) Example, Sample Period Jan 1, 2014 - Sep 13, 2018, with 95%
Bootstrap Confidence Intervals

ŵTarget
t (PVAR) ŵT iming

t (PVAR) ŵFG
t (PVAR) ŵQE

t (PVAR)

ŵTarget
t (PVAR) 1.000 0.990

(0.985, 0.993)
0.979

(0.972, 0.985)
0.991

(0.987, 0.994)

ŵT iming
t (PVAR) 1.000 0.959

(0.946, 0.970)
0.992

(0.989, 0.994)

ŵFG
t (PVAR) 1.000 0.972

(0.962, 0.980)

ŵQE
t (PVAR) 1.000

ŵTarget
t (PVAR) ŵT iming

t (PVAR) ŵFG
t (PVAR) ŵQE

t (PVAR)

zTarget
t 0.379

(−0.040, 0.609)
0.375

(−0.038, 0.602)
0.370

(−0.044, 0.601)
0.375

(−0.042, 0.604)

zT iming
t 0.153

(−0.028, 0.337)
0.154

(−0.026, 0.339)
0.148

(−0.030, 0.333)
0.153

(−0.025, 0.336)

zFG
t 0.250

(0.043, 0.442)
0.245

(0.040, 0.435)
0.255

(0.049, 0.443)
0.248

(0.042, 0.438)

zQE
t 0.252

(0.046, 0.471)
0.252

(0.048, 0.469)
0.247

(0.047, 0.463)
0.254

(0.050, 0.470)

Table 2 along with 95% bootstrap confidence intervals.3 In the table it can be seen

that the proxies are not uncorrelated. For example, zT iming
t is significantly correlated

with zFG
t and zQE

t . Although our earlier discussion suggests that correlation between

the proxies is no problem as long as each of the proxies is correlated with a single

shock only, many researcher would take correlated proxies as a warning signal that

the shocks cannot be identified one-by-one using no further identifying information

or additional assumptions.

We still follow Altavilla et al. (2019) and use the proxies one-by-one to identify

the four shocks. The correlations between the estimated shocks and the proxies are

presented in Table 3. Apparently, the resulting estimated shocks are highly correlated.

The results in Table 3 also do not provide a case for the assumption of a diagonal

Σw1z matrix because the FG and QE proxies are significantly correlated with all the

3The confidence intervals are generated by the bootstrap method presented in Appendix B.
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Table 4: Empirical Correlations of GMM Shocks for Altavilla el al. (2019) Example,
Sample Period Jan 1, 2014 - Sep 13, 2018, with 95% Bootstrap Confidence Intervals

ŵTarget
t (GMM) ŵT iming

t (GMM) ŵFG
t (GMM) ŵQE

t (GMM)

ŵTarget
t (GMM) 1.000 −0.031

(−0.108, 0.042)
−0.017

(−0.111, 0.076)
0.066

(−0.019, 0.156)

ŵT iming
t (GMM) 1.000 0.003

(−0.111, 0.118)
0.003

(−0.096, 0.104)

ŵFG
t (GMM) 1.000 0.026

(−0.095, 0.153)

ŵQE
t (GMM) 1.000

ŵTarget
t (GMM) ŵT iming

t (GMM) ŵFG
t (GMM) ŵQE

t (GMM)

zTarget
t 0.357

(−0.047, 0.570)
0.021

(−0.034, 0.064)
0.077

(−0.042, 0.158)
−0.062

(−0.119, 0.018)

zT iming
t 0.149

(−0.015, 0.325)
0.018

(−0.021, 0.066)
0.012

(−0.023, 0.064)
−0.020

(−0.108, 0.062)

zFG
t 0.220

(0.032, 0.407)
0.050

(0.001, 0.093)
0.080

(0.018, 0.148)
−0.062

(−0.117, 0.009)

zQE
t 0.242

(0.045, 0.450)
0.037

(−0.020, 0.090)
0.047

(−0.034, 0.126)
−0.017

(−0.094, 0.060)

estimated shocks.

As, strictly speaking, the relevant Σw1z matrix to look at is the covariance matrix

between the proxies and the orthogonal (uncorrelated) shocks, we have also deter-

mined shocks with our GMM procedure and present their correlations and correlations

with the proxies in Table 4.4 Not surprisingly, there is no significant correlation be-

tween the GMM shocks. Recall, however, that the GMM approach is based on the

assumption of a diagonal Σw1z matrix which may not hold in this case. Therefore it

is useful to take a look at the estimated Σw1z matrix for the GMM shocks also shown

in Table 4. Clearly, that matrix does not look like a diagonal matrix. Three ele-

ments on the main diagonal are not even significantly different from zero while some

off-diagonal elements are (e.g., the correlations between zFG
t and ŵTarget

t (GMM) and

ŵT iming
t (GMM) as well as zQE

t and ŵTarget
t (GMM)). It is perhaps worth noting that

4The weighting matrix Ω(β, γ̂LS) of equation (18) used in the GMM objective function (16) is
chosen iteratively, using as stopping rule a relative change of the objective function of less than 5%.
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the J-statistic takes a value of 36.77 which corresponds to a p-value of less than 1% of

the relevant χ2(6) distribution. Hence, the J-test clearly rejects a proper specification.

These results indicate that additional assumptions are necessary for identifying the

four shocks properly as uncorrelated shocks based on the present proxies. Given the

rather substantial correlation of the proxies, this outcome is perhaps not surprising.

4.2 U.S. Monetary Policy

Jarociński and Karadi (2020) investigate the impact of monetary policy in the U.S.

and the EA. They consider two relevant shocks, a monetary policy shock which we

denote by wmp
t and a central bank information shock, denoted by wcbi

t in the following.

The first one captures conventional monetary policy action such as changes in inter-

est rates, while wcbi
t captures the impact of the assessment of the economic outlook

conveyed by the central bank. Jarociński and Karadi (2020) construct different sets

of proxies zmp
t and zcbit to identify the shocks. Furthermore, they use sign restrictions

to properly identify their shocks of interest and Bayesian methods to perform their

analysis. We will focus on one of their U.S. models, a specific pair of proxies and fre-

quentist methods, thereby deviating from Jarociński and Karadi (2020), to illustrate

some of the points we have made in Section 2.

Our model involves five U.S. variables, the one-year constant-maturity Treasury

yield, log S&P 500, log real GDP, the log GDP deflator, and the excess bond premium

(EBP) as a measure for the recession risk in the next 12 months. We use monthly

data for the period 1984m2 - 2016m12 from Jarociński and Karadi (2020), where

further details on their construction are provided. The model fitted is a VAR(12)

with intercept term.

The two proxies are constructed as follows: A series of Federal Funds futures

surprises at the time of FOMC announcements is constructed and aggregated to

monthly frequency. That monthly series is split up in two proxies by taking into

account S&P 500 changes. When the S&P 500 moves in opposite direction to the Fed

Funds futures, the Fed Funds futures surprise is classified as a value of zmp
t , while it
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Table 5: Empirical Correlations of Proxies and Conventional Proxy VAR Shocks for
Jarociński/Karadi (2020) Example with 95% Bootstrap Confidence Intervals

ŵcbi
t (PVAR) ŵmp

t (PVAR)
zcbit 0.203

(0.067, 0.299)
0.089

(−0.090, 0.242)

zmp
t 0.101

(−0.018, 0.218)
0.232

(0.121, 0.335)

ŵcbi
t (PVAR) 1 0.436

(0.338, 0.534)

ŵmp
t (PVAR) 1

Table 6: Empirical Correlations of Proxies and GMM Shocks for Jarociński/Karadi
(2020) Example with 95% Bootstrap Confidence Intervals

ŵcbi
t (GMM) ŵmp

t (GMM)
zcbit 0.172

(−0.016, 0.338)
0.068

(−0, 115, 0.242)

zmp
t 0.023

(−0.095, 0.138)
0.230

(0.123, 0.331)

ŵcbi
t (GMM) 1 −0.025

(−0.163, 0.124)

ŵmp
t (GMM) 1

is classified as a value of zcbit for all other periods. For all periods where no value is

available, the proxies are set to zero. Thus, zmp
t zcbit = 0 by construction and, as the

proxies have nonzero means, their correlation is nonzero but small by construction.

In Table 5, we show the empirical correlations between the shocks and the proxies

when the shocks are estimated using the conventional proxy VAR approach. The

correlation between zcbit and ŵmp
t (PVAR) and between zmp

t and ŵcbi
t (PVAR) is small

and not significantly different from zero. Given that the estimated Σw1z matrix is

thus nearly diagonal, one may conclude that identifying the two shocks one-by-one

may be justified. However, the resulting shocks have significant correlation as high

as 0.436 if the conventional proxy VAR approach is used for estimating them.

As it may be reasonable to assume in the present case that each of the proxies is

only correlated with a single shock (Σw1z is diagonal), we can use our GMM procedure
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to obtain uncorrelated shocks without having to worry about further identifying in-

formation. In Figure 3, the shocks obtained by GMM with a 2-step weighting matrix

Ω(β, γ̂LS) in the objective function (16) are plotted in a scatter diagram against the

shocks obtained with the conventional proxy VAR approach. Obviously, the shocks

are similar but not identical, ŵcbi
t (PVAR) and ŵcbi

t (GMM) being not quite as similar

as ŵmp
t (PVAR) and ŵmp

t (GMM). In any case, corresponding shocks appear to be

highly positively correlated.
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Figure 3: U.S. monetary policy example: Scatter plots of shocks obtained by the
conventional proxy VAR and GMM approaches.

The correlations of the GMM shocks and their correlations with the proxies are

presented in Table 6. In this case, the empirical correlation between the estimated

ŵcbi
t (GMM) and ŵmp

t (GMM) is −0.025 and, hence, very small and not significantly

different from zero. The fact that the estimated correlation matrix corresponding to

Σw1z based on the conventional proxy VAR shocks in Table 5 is diagonal is, of course,

no insurance for getting also a diagonal Σw1z for the GMM shocks. Thus, we also

present the estimated correlation matrix corresponding to Σw1z for these shocks in
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Table 6 and find that the assumption of a diagonal Σw1z matrix is supported by the

very small and insignificant off-diagonal elements of the estimated correlation matrix.

Thereby we also support the use of our GMM approach for estimation in this case.

We have also performed the J-test and obtained a test value of J = 1.3462 and a

p-value of 0.25 of the corresponding χ2(1) distribution which indicates that our test

provides no evidence against the moment conditions being correct.

Given that an argument against using correlated shocks is that the correspond-

ing impulse responses may reflect a distorted picture of the actual responses of the

variables as isolated shocks are not likely to occur in practice, we present the im-

pulse responses obtained with the conventional proxy VAR approach and the GMM

approach in Figures 4 and 5. The shocks underlying the impulse responses in the

figures are scaled such that they increase the interest rate by 25 basis points on im-

pact to make them comparable in size despite having potentially different variances.5

The confidence intervals around the impulse responses in the figures are computed

by a moving block bootstrap. That method was proposed by Jentsch and Lunsford

(2019) and produces intervals that are robust to conditional heteroskedasticity. We

use exactly the implementation described in Bruns and Lütkepohl (2023).

In the two figures, the conventional proxy VAR impulse responses with 68% confi-

dence intervals are shown on the left-hand side of the figure and the GMM confidence

intervals are presented on the right-hand side. The point estimates obtained with

both approaches are shown on the left-hand as well as the right-hand side to facili-

tate the comparison. Of course, given the similarity of the shocks in Figure 3, one

would also expect the impulse responses to be similar as well. This is actually re-

flected in Figures 4 and 5. However, it may still be worth pointing out some important

differences.

The responses to ŵcbi
t (PVAR) and ŵcbi

t (GMM) shocks are compared in Figure 4.

Overall the confidence intervals of the GMM approach are somewhat smaller than

5For the scaling, a variable has to be chosen that has impact effects well away from zero for shocks
estimated with either approach to avoid undesirable effects on the bootstrap confidence intervals (see
Lütkepohl (2013)).
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Figure 4: U.S. monetary policy example: Comparison of impulse responses of a wcbi
t

shock estimated by the conventional proxy VAR approach (dotted lines, blue confi-
dence intervals) and with the GMM approach (solid lines, red confidence intervals).
The impulse responses are normalized to yield a 25 basis points increase in the one-
year government bond yield on impact. The confidence intervals around the impulse
responses are based on 5000 bootstrap samples.
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Figure 5: U.S. monetary policy example: Comparison of impulse responses of a wmp
t

shock estimated by the conventional proxy VAR approach (dotted lines, blue confi-
dence intervals) and with the GMM approach (solid lines, red confidence intervals).
The impulse responses are normalized to yield a 25 basis points increase in the one-
year government bond yield on impact. The confidence intervals around the impulse
responses are based on 5000 bootstrap samples.
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the corresponding conventional proxy VAR intervals. Most point estimates of one

approach are covered by the confidence intervals of the other approach. However, the

responses of the stock index estimated by the conventional proxy VAR approach for

the first 12 months after the shock do not fall inside the GMM confidence intervals

and are much closer to zero than the responses estimated by GMM. In other words,

for the orthogonalized central bank information shock the impact effect is estimated

to be much stronger on the stock market than indicated by the correlated shock. It

is in fact quite plausible that the information released by the central bank is closely

monitored by the stock market participants and, hence, the stock market response

estimated by the GMM approach may be the more realistic one. Another striking

difference is the response of EBP to the GMM shock compared to the conventionally

estimated shock. The confidence interval of the EBP response on impact to a GMM

central bank information shock does not cover zero and, hence, one may conclude that

the central bank can successfully reduce the risk of a recession by its communication

despite increasing the interest rate. In contrast, relying on the conventional proxy

VAR approach, zero is well inside the confidence intervals of propagation horizons of

up to more than one year. Hence, in this case, one may underestimate the impact of

the central bank communication shocks when using the correlated shocks.

The responses to ŵmp
t (PVAR) and ŵmp

t (GMM) shocks presented in Figure 5 are

again rather similar. In this case, the confidence intervals produced by the GMM

approach are partly wider than the corresponding conventional proxy VAR intervals.

Even in this case, considering the point estimates, a 25 basis points interest rate shock

is estimated by the GMM approach to have a stronger impact on the S&P 500, and

the GDP deflator than the shock estimated by the conventional proxy VAR approach.

The real GDP and EBP responses to a GMM shock are significant on impact while

the conventional approach estimates insignificant impact effects. Clearly, it is not

implausible that an interest rate hike lowers real GDP and increases the risk of a

recession if the marginal effect of increasing the interest rate is clearly separated from

the central bank communication that goes along with it. In other words, the orthog-
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onal GMM shock provides the more plausible impulse responses. Thus, considering

uncorrelated shocks makes a difference.

We emphasize again that Jarociński and Karadi (2020) use quite different iden-

tification and estimation methods. Therefore it is not surprising that their impulse

responses differ from those obtained by our estimation approaches. We have deviated

from their analysis to illustrate some of the theoretical points made in Section 2 of

our paper.

5 Conclusions

This study shows that using proxies to identify structural shocks in a VAR analysis

can lead to unintentionally correlated shocks. Such shocks are usually ruled out

by assumption in structural VAR analysis because correlated shocks may lead to

distorted impulse responses. When several proxies are used to identify a set of shocks

and no further identifying information is available, in general, the proxies will identify

only linear combinations of the impact effects and, hence, the shocks. To avoid

having to worry about additional identifying information, it is desirable to use the

proxies one-by-one if they satisfy the usual relevance and exogeneity conditions for

valid proxies individually. If each proxy is correlated with exactly one shock only,

that approach is in fact theoretically sound. Using that feature and also imposing

uncorrelatedness of the shocks implies even over-identifying restrictions for the shocks

of interest. We have proposed a simple, efficient GMM approach that takes full

advantage of the over-identifying restrictions and ensures uncorrelated shocks if each

proxy is correlated with exactly one shock only.

We present examples of structural VAR studies that use multiple proxies to iden-

tify more than one structural shock and where the structural shocks are not instan-

taneously uncorrelated if the proxies are used in the conventional way to identify the

shocks. Enforcing uncorrelated shocks by using our GMM approach makes a dif-

ference for the impulse responses. Thereby we show that the problem of correlated
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shocks is relevant in practice.

Proxies have also been used to identify structural shocks in factor models (see,

e.g., Stock and Watson (2012)). Obviously, correlated shocks may also be obtained in

that setting if the proxies are used one-by-one. Therefore, extending our analysis in

that direction would be of interest. We leave it for future research because identifying

structural shocks in factor models involves additional considerations (see, e.g., Kilian

and Lütkepohl (2017, Chapter 16)).

Appendix

A Derivation of the GMM Correction Term

To set up an efficient GMM procedure for the parameters of interest, β, we need the

derivatives considered in the GMM weighting matrix in expressions (18) and (19).

We will derive closed-form expressions for these derivatives first.

A.1 Derivatives

∂mβ
t (β, γ)

∂γ′ =


∂vec(ut(α)z

′
t −B1)

∂γ′

∂vh(B′
1Σ

−1
u ut(α)ut(α)

′Σ−1
u B1)

∂γ′


((KK1+

1
2
K1(K1−1))×(K(Kp+1)+ 1

2
K(K+1)))

where

∂vec(ut(α)z
′
t −B1)

∂γ′ = (zt ⊗ IK)
∂ut(α)

∂γ′ = −(zt ⊗ IK)(Y
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t−1 ⊗ IK)

∂α
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(see Rule (2)(b) from Lütkepohl (1996, Section 10.5.1)). Moreover,
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where Rule (5)(c) from Lütkepohl (1996, Section 10.6.1) has been used. Obviously,
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with

∂vech[ut(α)ut(α)
′]

∂α′ = LK
∂vec[ut(α)ut(α)

′]
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(see Rule (2)(b) from Lütkepohl (1996, Section 10.5.1)) and
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∂σ′ = I 1
2
K(K+1).

A.2 Correction Term

The correction term for computing the GMM weighting matrix is of the form

−
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Thus, evaluating the derivatives at the LS estimator γ̂LS for γ, denoting the LS

residuals by ût and using 1
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Right-multiplying the latter matrix by

mγ
t (γ̂

LS) =

 (Yt−1 ⊗ IK)yt − (Yt−1Y
′
t−1 ⊗ IK)α̂

LS

vech(Σ̂u − ûtû
′
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 (Yt−1 ⊗ IK)ût
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gives the correction term in expression (20).

B Construction of Bootstrap Intervals for Corre-

lations

To construct the correlation confidence intervals shown in Tables 2 - 6, an i.i.d.

bootstrap with 10,000 repetitions as in Lunsford (2015) proceeds as follows:

1. Draw T times with replacement from

zt
wt

 to generate a bootstrap sample

z∗t,n
w∗

t,n

, t = 1, . . . , T .

2. Compute Rn = (ρij,n) = corr(

z∗t,n
w∗

t,n

) of dimension (2K1 × 2K1).

3. Repeat steps 1. - 2. 10,000 times and store (R1, . . . , R10,000).

4. Compute the 2.5th and 97.5th percentile CIρij ,2.5 and CIρij ,97.5 for each ρij, i < j.
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