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Generalized Optimization Algorithms for Complex Models

Mario Martinoli∗†

Raffaello Seri‡

Fulvio Corsi§

Abstract

Linking the statistic and the machine learning literature, we provide new general results on the

convergence of stochastic approximation schemes and inexact Newton methods. Building on these results,

we put forward a new optimization scheme that we call generalized inexact Newton method (GINM). We

extensively discuss the theoretical and the computational aspects of the GINM. The results apply to both

deterministic and stochastic approximation schemes, and are particular effective in the case in which the

objective function to be optimized is highly irregular and/or the stochastic equicontinuity hypothesis

is violated. Examples are common in dynamic discrete choice models and complex simulation models

characterized by nonlinearities and high levels of heterogeneity. The theory is supported by extensive

Monte Carlo experiments.

Keywords: Optimization, stochastic approximation, Newton-Raphson methods, asymptotic convergence; M -

estimation; stochastic equicontinuity.

JEL classification: C61; C15; C44

1 Introduction

Several topics discussed in social sciences, hard sciences and life sciences are represented as optimization

problems. Increasingly frequently, these maximization (or, equivalently, minimization) problems relate to

highly parametrized, nonlinear complex functions F (θ) for θ ∈ Θ, where Θ is the parameter space. Most

algorithms devised to optimize such a function achieve the goal by constructing a sequence
{
θ(i)
}

in which

each value depends on the previous value (or values). Some of these methods, like the NelderśMead algorithm

(Nelder and Mead, 1965), use no derivatives but approximate the objective function F (θ) through convex

hulls or simplexes. However, optimization is more commonly performed through derivative-based algorithms,

that we can separate in two main groups according to the number of derivatives that are required. The őrst

group originates from the NewtonśRaphson algorithm that requires the computation of the őrst derivative
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(or gradient) and of the second derivative (or Hessian) of the objective function itself. Other widely used

examples are the BroydenśFletcherśGoldfarbśShanno (BFGS) and BerndtśHallśHallśHausman (BHHH, see

Berndt et al., 1974) algorithms that replace the Hessian with different approximations. However, also the

gradient is generally approximated, as one of the building blocks of the implementation of these algorithms

is the use of numerical differentiation methods exploiting the fact that the difference quotient approaches

the derivative when the points entering the quotient are near enough. Therefore, in the literature, some

results have appeared considering inexact Newton methods (INM), i.e. a large class of optimization methods

encompassing (most of) the previous algorithms and allowing for the simultaneous replacement of the gradient

and of the Hessian with approximations (see Nocedal and Wright, 1999, and references therein). The second

group of derivative-based optimization algorithms, often called stochastic approximation schemes (SAS),

requires only an approximation of the gradient and replaces the Hessian with a deterministic diagonal matrix

containing a quantity called step size. The approximation of the gradient can either be unbiased, as in the

original paper (Robbins and Sutton, 1951), or biased, as more recently considered (Karimi et al., 2019). It

is clear that SAS are a subset of INM, but considering them separately allows for a more precise analysis of

the algorithms.

However, most of these optimization methods break down when the function is noisy or non-differentiable.

In fact, when the function is łroughž or łruggedž, the optimization algorithm can go back and forth without

settling on a value. This is generally referred to in the literature under the name of łchatteringž. This term

is used in several branches of Applied Mathematics to denote some phenomena that share the same feature,

i.e. an alternating behavior among two or more states. In production engineering, machining vibrations

or chatter are self-excited vibrations between the cutting tool and the workpiece łwhich grow until the tool

jumps out of the cutting zone or breaks because of the exponentially growing dynamic displacements between

the tool and workpiecež (Altintas, 2012, p. 2, see Tobias and Fishwick, 1958a,b for the őrst explanation of the

phenomenon). In qualitative simulation, chatter or chattering arises when the łbehavior [of some variables]

is unconstrained except by continuityž (Kuipers et al., 1991, p. 345). In optimal control and dynamic

programming, łchattering refers to fast oscillations of the optimal control switching inőnitely many times

over a őnite time intervalž (Caponigro et al., 2018, p. 2046; see Zelikin and Borisov, 1994 for applications);

Artstein (1989) introduces a theory of chattering systems and Wagner (2014) the concept of policy chattering.

In statistics and econometrics, the term is generally used (see McFadden, 1989) for the situation in which

an optimization algorithm oscillates around the optimal value.

There are two distinct aspects related to chattering in statistics and econometrics. The őrst is a theoretical

aspect, linked to the limit of the objective function in an optimization problem; the second is a computational

problem linked to the type of optimization routine that is used, whether it is derivative-free or derivative-

based. Let us start from the second problem. Suppose to consider a derivative-based algorithm. Since, based

on the theoretical problem, the function is rugged and nowhere differentiable, the derivatives do not exist.

However, as numerical derivatives are generally calculated using the representation of the derivative as a

limit of the difference quotient, the algorithms use őnite derivatives whose value is random and determined

by the roughness of the function at the point. It is not clear how this should converge. Now, suppose to use

derivative-free algorithms. In this case, we can imagine that the algorithm converges to the global minimum

of the objective function seen in the previous theoretical point. But here the theoretical aspect kicks in:

the asymptotic distribution of this theoretical limit is expected to depend dramatically on chattering. This

theoretical problem persists even in the absence of computational issues.

In this paper, we consider the issue of őnding the zero of an objective function θ 7→ F (θ) on the basis of
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a noisy version of this function, say θ 7→ F̂ (θ). We give four main contributions to the literature.

First, we provide new general őndings that do not depend on a particular choice of the approximations

of the gradient and the Hessian. We consider separate results for INM and SAS. In particular, when F̂ (θ)

is a deterministic approximation of F (θ), we characterize the rate of convergence to the true value θ⋆ and,

when F̂ (θ) involves a stochastic element, we bound the escape probability, that is the probability that the

sequence
{
θ(i)
}

gets out of a neighborhood of θ⋆ in less than n steps. Then, we compute an upper bound

on the probability that θ(i) from SAS never visits a region where the gradient is near to zero as a function of

the number of steps. These results have, to the best of our knowledge, never been proved before and, as the

study of the convergence properties of these algorithms is still a hot topic, this is, in our view, a substantial

contribution to the literature.

Second, we propose a class of algorithms in which the őrst one or two derivatives of F (θ) are replaced

by those of a locally approximating function F̃ (θ). We will call our algorithm generalized inexact Newton

method (GINM). In the following, we illustrate the method by applying it to both INM and SAS. We

choose P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood of θ(i), and we estimate the values F̂ (θ) for

θ ∈ Pi

(
θ(i)
)
. Then, we őt a regression F̃ (θ) on the values assumed by F̂ (θ) in θ ∈ Pi

(
θ(i)
)

and we

use the estimated coefficients to calculate its őrst and second derivatives (i.e. only the őrst derivative for

SAS and both the őrst and second derivatives for INM). We then use these approximated derivatives in the

optimization routine (see Section 3.2 for more details). As we claim generality for our procedure, in the

paper we also consider the case in which F̃ (θ) is estimated by a more general polynomial of degree D. It

is worth noting that, with respect to the classical implementation of the NewtonśRaphson algorithm with

numerical derivatives, the technique only requires one further step, i.e. the estimation of a local regression

and applies also to non-differentiable approximations F̂ (θ) of the function F (θ).

Third, we also produce some new results on the least squares approximation of a function and of its

derivatives in a point θ0 and in a neighborhood of θ0 on the basis of the approximated values of the function

in a set of points. In particular, we give some bounds on the approximation of the function F̃ (θ) and its

derivatives. These results are of independent interest and can be adapted to different situations.

Fourth, we draw together the previous results and we characterize the deterministic rate of convergence

and the escape probability of GINM. These results show that the properties of the algorithm depend on

some key quantities: the size of the neighborhood Pi

(
θ(i)
)
, the degree D of the polynomial F̃ (θ), the size

of the error F̂ (θ) − F (θ) for θ ∈ Pi

(
θ(i)
)
, and, for the SAS version, the step size. If these quantities are

modiőed during the iterations of the optimization routine, one can get convergence to the optimum of F (θ).

We give some results ensuring that this is the case. Moreover, we discuss several aspects connected with the

practical implementation of the algorithm.

Despite the results of the paper, and the particular algorithm proposed, apply rather generally, a mo-

tivating example is the situation in which the approximation F̂ (θ) is obtained through simulations, as in

the method of simulated moments (MSM, see, e.g., McFadden, 1989; Pakes and Pollard, 1989), simulated

maximum likelihood (see, e.g., Lee, 1992, 1995) and indirect inference (Gouriéroux et al., 1993; Smith Jr.,

1993).

When dealing with simulation-based estimation methods, the use of the derivatives of the approximation

F̂ (θ) in an optimization algorithm can be complicated by the fact that the dependence of F̂ (θ) on θ may

not be smooth enough. The reason is that optimization algorithms usually rely on some continuity properties

of the mapping θ 7→ F̂ (θ).

The condition that is generally used to enforce a sufficient degree of continuity is stochastic equicontinuity
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(see, e.g., McFadden, 1989, Pakes and Pollard, 1989 and Newey and McFadden, 1994, pp. 2136-2137). This

often boils down to the requirement that a simulated process can be expressed in terms of innovations that

are drawn once and for all at the beginning of the algorithm and kept constant throughout its execution. It

is generally expressed saying that the innovations of the model are recycled for different values of θ. This

removes the problem of chattering that was őrst outlined by McFadden (1989, p. 999). In his contribution,

the author speciőes that ła simulator must avoid ‘chatter’ as θ varies; this will generally require that the

Monte Carlo random numbers used to construct f (θ) not be redrawn when θ is changedž. This concept was

then extended by Gouriéroux and Monfort (1996, p. 16). The authors pointed out that łit is necessary to

keep these basic drawings [i.e. the innovations] őxed when θ changes, in order to have good numerical and

statistical properties of the estimators based on these simulationsž. This was also stressed, among others,

by Hall et al. (2012, p. 505) and Kristensen and Shin (2012, p. 78) in more recent contributions. Stochastic

equicontinuity ensures that the function is not łroughž or łruggedž.

However, this has two drawbacks. First, the recommendations of McFadden (1989) and Gouriéroux and

Monfort (1996) do not hold for some complex models such as network models and simulation-based models

characterized by strong heterogeneity, in which recycling the drawings is simply not possible. Second,

algorithms using recycled innovations only provide the optimum of F̂ (θ), and not of F (θ), and often require

modiőcations of the classical asymptotic results (e.g., an inŕation of the covariance matrix of the estimators).

To overcome these drawbacks, the researcher can apply GINM in order to recover the optimum of F (θ) and

apply the classical asymptotic theory.

The paper is structured as follows. In Section 2 we introduce some notation and preliminary results. In

Section 3 we summarize the convergence results of the Newton-based optimization algorithms. In particular,

in Section 3.1 we give a general introduction to inexact Newton methods, in Section 3.2 we describe GINM

and in Section 3.3 we outline the differences between GINM and other optimization, approximation and

estimation methods advanced in the literature. The main theoretical results are contained in Section 4: in

Section 4.1 we produce two general convergence results, one for INM and one for biased SAS, as explained

above; in Section 4.2 we give some results on the least squares approximation of a function in a point θ0

and in a neighborhood of θ0; in Section 4.3 and 4.4, we study the properties of our regression-based inexact

Newton method or GINM. In Section 5 we treat the computational aspects of the GINM. Finally, the results

of the simulations are exposed in Section 6. In particular, in Section 6.1 we perform an extensive Monte Carlo

Experiment in which we estimate the mean of a Gaussian random variable, in the presence of chattering,

by varying some quantities of the algorithm. Section 7 concludes. The proofs of the theoretical results are

contained in Section 8.

2 Notation and Preliminary Results

In this section, we expose some notation and some preliminary results that will be used throughout the

paper.

We use small indexed letters, like c1, c2, etc., or C1, C2, etc., for constants that are deőned inside a

theorem but may differ from a theorem to another. We use K1, K2, etc., for absolute constants that are

different from one place to another and do not appear in the statement of the results but only in the proofs.

We write N for the positive integers, N0 for the non-negative integers and R for the real numbers. We

denote sequences indexed by N or N0 as {an}. When n → ∞, we use an ≃ bn when an = bn (1 + o (1)),

an ≍ bn when bn/C ≤ an ≤ Cbn for ∞ > C > 0 and n large enough, an ≪ bn when an = o (bn), an ≲ bn
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when an ≤ bn (1 + o (1)).

We use capital bold letters, such as A, to denote matrices and lowercase bold letters, such as a, to denote

vectors. Let ι be a vector of ones, U a square matrix of ones, I the identity matrix, 0 a matrix or a vector

of zeros. The dimensions are generally clear from the context. If a confusion is possible, the dimension will

be indicated through an index, as in ιN . For a vector a, let ā be the vector containing the reciprocals of the

elements of a. Let dg (a) be a diagonal matrix having a on its diagonal. Let tr (A) be the trace of A, i.e.

the sum of the diagonal elements of a square matrix A. For a suitable matrix A, A′ is its transpose, A⋆ its

conjugate transpose, A−1 its inverse and A+ its MooreśPenrose pseudoinverse. The element-wise power of

a vector or a matrix is denoted by A⊙b (so that ā = a⊙(−1)), Ab is the usual power obtained multiplying

A by itself b times and A⊗b is the Kronecker multiplication of b copies of A. The element of A in position

(i, j) is denoted as Aij or [A]ij ; the matrix with generic element aij is denoted [aij ].

When applied to a vector a, the notation ∥·∥p denotes the vector norm deőned as ∥a∥p := (
∑

i |ai|
p
)

1
p ;

when applied to a matrix A, it denotes the matrix norm induced by the vector norm as ∥A∥p := supx ̸=0

∥Ax∥p

∥x∥p
.

For a matrix A, λi is the i-th eigenvalue of A and σi is the i-th singular value of A, i.e. the square root

of the i-th non-negative eigenvalue of A⋆A. The condition number of the matrix is κ (A) := σmax(A)
σmin(A) where

σmax (σmin) is the largest (smallest) singular value of A. If the matrix is normal, κ (A) = |λmax(A)|
|λmin(A)| , where

λmax (λmin) is the largest (smallest) eigenvalue by modulus of A.

The symbol ⊕ denotes the Minkowski sum of sets, i.e. A⊕B := {a+ b : a ∈ A,b ∈ B}. For a set A, Å

denotes the interior of A and A its closure.

If D is the order of a polynomial, PD is the space of polynomials of order D in x.

Consider a function f deőned on R
n. Given a multi-index ν = (ν1, . . . , νn) ∈ N

n
0 , we denote as |ν| the

sum ν1 + · · ·+ νn and we deőne the partial derivative:

Dνf :=
∂|ν|

∂xν1
1 · · · ∂xνn

n
f.

For lower-order derivatives, we also write:

Dif :=
∂f

∂xi

, Dijf :=
∂2f

∂xi∂xj

.

We also use the following simpliőed notation. One overdot, as in ḟ :=
[
Dif

]
, denotes the gradient, i.e.

the vector containing the őrst derivatives of a function with respect to the elements of its vector argument,

two overdots, as in f̈ :=
[
Dijf

]
, denote the Hessian, i.e. the matrix containing the second derivatives of a

function with respect to the elements of its vector argument.

Let Ω be a compact domain. We deőne the norms:

∥f∥Ω := sup
x∈Ω

|f (x)|

and:

|f |q := max
|ν|≤q

sup
x∈Ω

|Dνf (x)| .

Let us assume the following property.

R1 There exists a number γ ≥ 1 such that any two points x,y ∈ Ω can be joined by a rectiőable curve

Γ ⊂ Ω with length |Γ| ≤ γ ∥x− y∥2.

5



A function f : Ω → R is of class Cq in Ω iff functions Dkf (x) and Rk (x;y), with |k| ≤ q, exist in Ω such

that the following Taylor’s formula holds:

Dkf (x) =
∑

|s|≤q−|k|

1

s!
Dk+sf (y) (x− y)

s
+Rk (x;y)

for x,y ∈ Ω. A function f : Ω → R is of class Cq,1 in Ω iff f is of class Cq in Ω and the partial derivatives

Dkf of order q are Lipschitz continuous in Ω. We deőne the semi-norm |·|q,1 as

|f |q,1 := sup

{∣∣Dkf (x1)−Dkf (x2)
∣∣

∥x1 − x2∥2
: x1,x2 ∈ Ω,x1 ̸= x2, |k| = q

}
. (2.1)

The following lemma, taken from Lemma 1 in Zuppa (2003), collects results from Whitney (1934).

Lemma 1. Let Ω satisfy assumption R1 and let f be of class Cq,1 in Ω. Then, for every x,y ∈ Ω:

|Rk (x;y)| ≤
nq−|k|

(q − |k| − 1)!
γq−|k| ∥x− y∥q−|k|+1

2 |f |q,1

where it is intended that (−1)! = 1.

We also need some naming conventions concerning the convergence properties of optimization and root-

őnding algorithms. These are characterized by the construction of a series of values θ(i) that should approach

θ⋆. The convergence properties can be summarized as follows (see, e.g., Dembo et al., 1982, p. 403).

Definition 1. If
{
θ(i)
}

is a sequence converging to θ⋆ and ∥·∥ is a norm, we say that

1. θ(i) → θ⋆ linearly if there is µ ∈ (0, 1) such that

lim sup
i→∞

∥∥∥θ(i+1) − θ⋆
∥∥∥

∥∥∥θ(i) − θ⋆
∥∥∥

= µ;

2. θ(i) → θ⋆ superlinearly if

lim sup
i→∞

∥∥∥θ(i+1) − θ⋆
∥∥∥

∥∥∥θ(i) − θ⋆
∥∥∥

= 0;

3. θ(i) → θ⋆ with (strong) order at least q, with q > 1, if

lim sup
i→∞

∥∥∥θ(i+1) − θ⋆
∥∥∥

∥∥∥θ(i) − θ⋆
∥∥∥
q < +∞;

in particular, if q = 2, the algorithm is said to be quadratically convergent;

4. θ(i) → θ⋆ with weak order at least q, with q > 1, if

lim sup
i→∞

∥∥∥θ(i) − θ⋆
∥∥∥

1

qi

< 1.
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3 Description of the Algorithm

In this section we describe the algorithm. Let us deőne the (uncomputable) function F (·), the (computable)

function F̂ (·) and the function F̃ (·), which is an approximation of F (·) depending on F̂ (·).

3.1 Inexact Newton Algorithms

Suppose that we want to identify θ⋆ such that:

Ḟ (θ⋆) ≡ 0

where Ḟ (·) : RK → R
K . Let us start from a point θ(0) and use the recurrence equation:

F̈
(
θ(i)
)(

θ(i+1) − θ(i)
)
= −Ḟ

(
θ(i)
)

or:

θ(i+1) = θ(i) −
[
F̈
(
θ(i)
)]−1

Ḟ
(
θ(i)
)
.

This algorithm is called NewtonśRaphson method and is known to be quadratically convergent.

It is sometimes possible to approximate the method by using an inexact Newton method (INM) deőned

by

θ(i+1) = θ(i) −
[
¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)

(3.1)

where the functions ˙̃F (·) and ¨̃F (·) replace Ḟ (·) and F̈ (·). We can also write this as

¨̃F
(
θ(i)
)(

θ(i+1) − θ(i)
)
= − ˙̃F

(
θ(i)
)
,

F̈
(
θ(i)
)(

θ(i+1) − θ(i)
)
= −Ḟ

(
θ(i)
)
+ r(i), (3.2)

where

r(i) = Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)
.

A special case concerns stochastic approximation schemes (SAS). In this case the inverse (approximate)

Hessian at step i,
[
¨̃F
(
θ(i)
)]−1

, is replaced in (3.1) by the step size γi+1:

θ(i+1) = θ(i) − γi+1
˙̃F
(
θ(i)
)
. (3.3)

In Dembo et al. (1982), it is shown that the performance of the inexact Newton method in (3.1) depends

on the ratio
∥r(i)∥

∥Ḟ(θ(i))∥ and in particular on the fact that

∥∥r(i)
∥∥

∥∥∥Ḟ
(
θ(i)
)∥∥∥

≤ ηi

for ηi ≥ 0, where {ηi} is called a forcing sequence and controls the level of accuracy of the algorithm.
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In Ypma (1984), it is shown that one can consider instead

∥∥∥∥
[
F̈
(
θ(i)
)]−1

r(i)
∥∥∥∥

∥∥∥∥
[
F̈
(
θ(i)
)]−1

Ḟ
(
θ(i)
)∥∥∥∥

≤ νi

for νi ≥ 0, where {νi} plays the same role of {ηi} above. Morini (1999) generalizes the previous treatments

to the case of preconditioning, in which
[
F̈
(
θ(i)
)]−1

is replaced by a generic matrix P(i).

The previous results hold under so-called residual control-type conditions, i.e. conditions based on the

control of the residual r(i). However, in the following we will provide direct conditions in terms of the

distance
∥∥∥θ(i) − θ⋆

∥∥∥.

3.2 Approximating Algorithm

In this section, we describe the simplest versions of the proposed algorithm. For stochastic approximation

schemes, since SAS do not need the computation of the Hessian matrix, the algorithm simpliőes as follows:

1. for any i ≥ 0, we select P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood of θ(i);

2. we compute F̂ (θ) for θ ∈ Pi

(
θ(i)
)
;

3. we estimate a linear function through the regression:

F̂ (θ) = β1 + β′
2θ + ε

for θ ∈ Pi

(
θ(i)
)
;

4. we deőne F̃ (θ) = β̂1 + β̂
′
2θ and ˙̃F (θ) = β̂

′
2, and we replace ˙̃F (θ) in (3.3).

For inexact Newton methods, we have:

1. for any i ≥ 0, we select P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood of θ(i);

2. we compute F̂ (θ) for θ ∈ Pi

(
θ(i)
)
;

3. we estimate a quadratic function through the regression:

F̂ (θ) = β1 + β′
2θ + β′

3D
+
K (θ ⊗ θ) + ε

for θ ∈ Pi

(
θ(i)
)
, where D+

K is the MooreśPenrose inverse of the duplication matrix (see Magnus and

Neudecker, 2019, p. 56);

4. we deőne F̃ (θ) = β̂1 + β̂
′
2θ + β̂

′
3D

+
K (θ ⊗ θ), ˙̃F (θ) = β̂

′
2 + (θ ⊗ IK + IK ⊗ θ)

′
D

+,′
K β̂3 and ¨̃F (θ) =

2D+,′
K β̂3, and we replace them in (3.1).

In the following we will also cover the case in which the linear or quadratic functions are replaced by more

general polynomials of degree D.

8



3.3 Relation with Other Approximation Algorithms

In this section we investigate the relation between the proposed algorithm and other optimization, approxi-

mation and estimation methods advanced in the literature.

The area of research that is nearest to our algorithm is the one concerning derivative free optimization

(see, e.g., Conn and Toint, 1996; Conn et al., 1997; the latter contains, in Section 2, a history of the method),

i.e. optimization methods in which derivatives are not known or computable. A subgroup of these algorithms

forms what are called trust-region methods. Our method shares with these ones the fact of identifying a

region, that they call trust region and whose radius decreases when the algorithm progresses, containing a

set of points that are used to produce an approximation to the objective function. Three crucial differences

between our method and these ones are that (i) they do not try to approximate the derivatives but only

the function, hence the name of derivative free methods, (ii) the pointset in the trust region recycles points

from the previous steps, and (iii) the approximation to the objective function is usually obtained through

interpolation.

The approximation step of the algorithm has a relation with spectral (see Boyd, 2001) and pseudospectral

(see Fornberg and Sloan, 1994) methods for the computation of derivatives and the solution of partial

differential equations. The rationale of the methods is to approximate the function as a sum of smooth basis

functions such that the computation of the derivatives of the function can be easily performed. There are

some important differences: (i) these methods are generally intended to produce a global approximation to

the function, while our method yields a local one; (ii) these methods approximate unknown functions and

their derivatives that are then replaced into a partial differential equation, without any direct involvement

of data; (iii) the smooth basis functions are generally more complex than plain polynomials. However,

the two methods share the idea of approximating a function with a sum of basis functions and using this

approximation to compute approximate derivatives. In our case, the choice of the basis function is justiőed

by the fact that we scale differently the points of the pointset Pi

(
θ(i)
)

as far as the algorithm progresses.

It also has some contacts with techniques like local polynomial regression (see Fan and Gijbels, 1996) or

moving least squares (see, e.g., Lancaster and Salkauskas, 1981). In these techniques, one observes a set of

couples (yi,xi) for i = 1, . . . , n, composed of a response yi ∈ R and explanatory variables xi ∈ R
k. For any

point x ∈ R
k, one can estimate the corresponding expected value of y by weighting the observations (yi,xi)

according to the distance between x and xi. Our technique differs from these ones because our points are

not őxed or predetermined before the estimation is performed, there is no weighting of the observations and

we put a particular emphasis on the size of the neighborhood of the pointset Pi

(
θ(i)
)
.

Another related technique is the generalized őnite difference method (see Jensen, 1972; Benito et al.,

2001). In this method, a function is locally approximated through its Taylor expansion and the derivatives

are estimated, together with the value of the function, by interpolation or weighted least squares estimation

using observations on an irregular grid. The aim of this method is the approximation of the derivatives of

a function for the solution of partial differential equations, as for spectral and pseudospectral methods, and

not the overall approximation of a surface, as for moving least squares. However, the method shares with

moving least squares the ability to accommodate irregularly spaced observations. This method is rather

similar to our local approximation technique, despite the use is radically different.

Finally, it is worth mentioning the contribution by Forneron (2023). In this work, the author develops a

new GaussśNewton algorithm combining non-smooth moments with smoothed Jacobian estimates. A grid-

search step is also added to each iteration to reach global convergence. Our method differs from this as we

do not use a grid-search approach, rather we use a set of points to approximate the objective function whose
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radius reduces as the algorithm progresses. Moreover, our approach is more general as we do not directly

focus on estimation of moment condition models.

4 Theoretical Results

In this section we will devise conditions on the proposed algorithm under which
{
θ(i)
}

converges to θ⋆ and

we will provide results on the convergence rates. We will őrst consider, in Section 4.1, some general results

on optimization algorithms that do not depend on the speciőc choice of ˙̃F (·) and ¨̃F (·) outlined in Section 3.2

and may be of independent interest. They generalize some results in the optimization and machine learning

literatures. In Section 4.2 we compute upper bounds on the approximation error of F̃ (·), ˙̃F (·) and ¨̃F (·). In

Sections 4.3 and 4.4 we then give some results on the algorithm described in Section 3.2 in conjunction with

the results of Section 4.1.

4.1 Optimization Results

We őrst characterize the properties of the function F (·) in four assumptions.

Opt The function F : θ 7→ F (θ) is deőned on a compact set Θ ⊂ R
K and the parameter space contains an

open neighborhood of a value θ⋆ such that Ḟ (θ⋆) = 0.

Lip-1 The function F : θ 7→ F (θ) is of class C1 on Θ ⊂ R
K and

∥∥∥Ḟ (θ1)− Ḟ (θ2)
∥∥∥
2
≤ L1 ∥θ1 − θ2∥2 for

θ1,θ2 ∈ Θ̊.

Lip-2 The function F : θ 7→ F (θ) is of class C2 on Θ ⊂ R
K and

∥∥∥F̈ (θ1)− F̈ (θ2)
∥∥∥
2
≤ L2 ∥θ1 − θ2∥2 for

θ1,θ2 ∈ Θ̊.

Hess minθ∈Θ λmin

[
F̈ (θ)

]
≥ m > 0.

Remark 1. Assumption Opt deőnes the target value θ⋆ as a solution of the őrst-order conditions of the

optimization problem. Assumptions Lip-1 and Lip-2 require the function to be differentiable, respectively

with Lipschitz gradient and Hessian. Assumption Hess concerns the smallest eigenvalue of the Hessian. It

is equivalent to the requirement that the function is strongly convex (see Bertsekas et al., 2003, p. 72).

Let
{
θ(i)
}

be a sequence in Θ ⊂ R
K . Whenever the algorithm is stochastic, we need an assumption

quantifying the effect of replacing the őrst derivative with its approximated value. We deőne the σ-algebra

Fi = σ
{
θ(i),θ(i−1), . . . , F̃

(
θ(i−1)

)
, F̃
(
θ(i−2)

)
, . . . ˙̃F

(
θ(i−1)

)
, . . .

}
containing events known prior to step

i, including the value of θ(i) and of all the derivatives that are needed for the algorithm to run. The collection

of these σ-algebras for i ≥ 1 constitutes a őltration.

MaV

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
≤ bi, E

[∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
|Fi

]
≤ σi.

Remark 2. We note that

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
≤ E

[∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
|Fi

]

≤
(
E

[∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
|Fi

]) 1
2

,

so that one could always take bi ≤ σ
1
2
i . The inequality becomes an equality in the deterministic case.

10



We now provide two sets of results. First, we study the general inexact Newton algorithm in (3.1). We

characterize the behavior of
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

as a function of
∥∥∥θ(i) − θ⋆

∥∥∥
2

and we compute a rate of convergence

for deterministic algorithms. Moreover, supposing that the algorithm is stochastic, we study the escape

probability of the algorithm, i.e. the probability that it gets out of the ball of radius ∆ centered in θ⋆ in

less than n steps. Second, as the previous results do not work well for stochastic approximation schemes, we

give analogous results for the particular case in (3.3).

4.1.1 Inexact Newton Method

The őrst set of results characterizes the behavior of
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

in terms of
∥∥∥θ(i) − θ⋆

∥∥∥
2
. It provides an

upper bound for deterministic algorithms (or an almost sure upper bound for stochastic algorithms). We

do not produce a residual control-type condition (see Section 3.1), rather we directly express the result in

terms of the relation between
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

and
∥∥∥θ(i) − θ⋆

∥∥∥
2
. We will need the deőnitions:

δ
(i)
1 :=

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
,

δ
(i)
2 :=

∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2
.

Theorem 1. Under Opt and Lip-2, provided δ
(i)
2 < λmin

(
F̈
(
θ(i)
))

,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2



δ

(i)
1 + δ

(i)
2

∥∥∥F̈ (θ⋆)
∥∥∥
2

λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2

+


3

2
− δ

(i)
2

λmin

(
F̈
(
θ(i)
))


L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

Remark 3. (i) Using the őrst inequality in Lemma 3 instead of the second one, one gets a similar inequality

for
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
:

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2



δ

(i)
1 + δ

(i)
2

L1

λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2

+


1− δ

(i)
2

λmin

(
F̈
(
θ(i)
))


 3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

(ii) When δ
(i)
1 ≡ 0 and δ

(i)
2 ≡ 0, we recover the quadratic convergence properties of the NewtonśRaphson

method. Indeed, in that case,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 3L2

2λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2

2
.

In order to retain also for the INM the quadratic convergence of the NewtonśRaphson method, we need

to have δ
(i)
1 = O

(∥∥∥θ(i) − θ⋆
∥∥∥
2

2

)
and δ

(i)
2 = O

(∥∥∥θ(i) − θ⋆
∥∥∥
2

)
. Provided δ

(i)
1 = o (1), δ

(i)
2 = o (1) and
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∥∥∥θ(i) − θ⋆
∥∥∥
2
= o (1), convergence is guaranteed to be linear if

lim sup
i→∞

δ
(i)
1∥∥∥θ(i) − θ⋆

∥∥∥
2

< λmin

(
F̈ (θ⋆)

)
. (4.1)

This shows that there is a difference between δ
(i)
1 and δ

(i)
2 as far as their impact on convergence rates is

concerned.

(iii) This result can be used to study the impact of numerical differentiation in optimization algorithms,

given δ
(i)
1 and δ

(i)
2 are interpreted as the errors arising in numerical differentiation of the őrst and of the

second derivative. Let us suppose to use higher-order őnite differences of order Q ≥ 1 and step size ε. From

Hong et al. (2015, p. 251), δ
(i)
1 = O

(
ε2Q
)

and δ
(i)
2 = O

(
ε2Q−1

)
. Therefore,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= O

(
ε2Q + ε2Q−1

∥∥∥θ(i) − θ⋆
∥∥∥
2
+
∥∥∥θ(i) − θ⋆

∥∥∥
2

2

)
.

The case with Q = 1 corresponds to the usual difference quotient. Note that this conőrms the statement that

łone needs to adjust the step size as a function of the sample sizež in (Hong et al., 2015, p. 250). Indeed,

provided
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆ and ε is small enough, lim supi→∞

∥∥∥θ(i) − θ⋆
∥∥∥
2
= O

(
ε2Q
)
. If the empirical

cumulative distribution function P̂y entering into the deőnition of θ⋆ is based on a large sample size, the

error O
(
ε2Q
)

can turn out to be signiőcant with respect to the distance between θ⋆ and the minimizer of

F (·), that is the pseudo-true value of the optimization problem.

(iv) Using the bound, we can investigate what happens when the Hessian is regularized. In this case, we

have ˙̃F
(
θ(i)
)
= Ḟ

(
θ(i)
)

and ¨̃F
(
θ(i)
)
= F̈

(
θ(i)
)
+ λiIK . We then have

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))

− λi

·



λi

∥∥∥F̈ (θ⋆)
∥∥∥
2

λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2
+

3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

The algorithm retains its quadratic convergence if λi = O
(∥∥∥θ(i) − θ⋆

∥∥∥
2

)
.

(v) The result can be used to obtain inequalities for the score. Indeed, under Lip-1, from the second

inequality in Lemma 2, ∥∥∥Ḟ
(
θ(i+1)

)∥∥∥
2
≤ L1

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
.

Corollary 1. Under Opt and Lip-2, provided δ
(i)
2 < λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

·



δ

(i)
1 + δ

(i)
2

L1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
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+


1− δ

(i)
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2


 3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

Under Opt, Lip-2 and Hess, provided δ
(i)
2 < m,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ δ

(i)
1

m− δ
(i)
2

+
δ
(i)
2 L1

m
(
m− δ

(i)
2

)
∥∥∥θ(i) − θ⋆

∥∥∥
2
+

3L2

2m

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
.

Remark 4. This corollary starts from the bound in Remark 3 (i). Using the bound in Theorem 1 instead,

one can obtain two different bounds. One is obtained from the őrst one replacing L1 with
∥∥∥F̈ (θ⋆)

∥∥∥
2

and

3
2

(
1− δ

(i)
2

λmin(F̈ (θ⋆))−L2∥θ(i)−θ⋆∥
2

)
with

(
3
2 − δ

(i)
2

λmin(F̈ (θ⋆))−L2∥θ(i)−θ⋆∥
2

)
. The other is obtained from the

second one replacing L1 with
∥∥∥F̈ (θ⋆)

∥∥∥
2

and 3
2m with

3m−2δ
(i)
2

2m
(

m−δ
(i)
2

) .

The following result for INM shows what happens when θ(0) is in a neighborhood of θ⋆, i.e. when∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆, a situation in line with Dembo et al. (1982, Theorem 2.3).

Theorem 2. (i) Under Opt, Lip-2 and Hess, suppose that, for any i ≥ 0, there are constants 1 > c1 > 0,

c2 ≥ 0, c3 > 0, ∆ > 0, ξ ≥ 0 and δ > 0 such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

δ
(i)
1 + δ

(i)
2

(
1 +

M

m

)
∆ ≤

(
m− 3L2

2
∆

)
∆,

δ
(i)
2 < m,

1

m− δ
(i)
2

(
δ
(i)
2 M

m
+

3L2

2
∆

)
≤ c1

(
1 + c2 (i+ 1)

−ξ
)
,

δ
(i)
1

m− δ
(i)
2

≤ c3 (i+ 1)
−δ

(1 + o (1)) ,

where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
, L1

}
. Then, we have

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲

c3n
−δ

c1 |ln c1|
.

(ii) Under Opt, Lip-2 and Hess, suppose that, for any i ≥ 0, there are constants 1 > c1 > 0, c2 ≥ 0, ∆ > 0

and ξ ≥ 0 such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

δ
(i)
1 ≡ 0,

δ
(i)
2 ≤ m− 3L2

2 ∆

1 + M
m

,

1

m− δ
(i)
2

(
δ
(i)
2 M

m
+

3L2

2
∆

)
≤ c1

(
1 + c2 (i+ 1)

−ξ
)
,
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where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
, L1

}
. We have

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲




∆ec2ζ(ξ)cn+1

1 exp
{

c2
1−ξ

n1−ξ
}
, ξ > 0, ξ ̸= 1,

∆ec2γ(0)cn+1
1 nc2 , ξ = 1.

Remark 5. The previous results are especially suitable in order to study the properties of deterministic

algorithms. In this context, it is important to note that δ
(i)
1 and δ

(i)
2 play different roles. This is evident

from Theorem 2. While δ
(i)
1 must converge to 0, δ

(i)
2 is not compelled to. In particular, when δ

(i)
1 ̸= 0 and

δ
(i)
2 = o (1), one could take c1, c2 and c3 such that c1 = 3L2

2m ∆ and

δ
(i)
1 ≤ mc3 (i+ 1)

−δ
(1 + o (1)) ,

δ
(i)
2 ≤ m

1 +
(

2M+3L2∆
3L2∆c2

)
(i+ 1)

ξ
≲

3mL2∆c2
2M + 3L2∆

(i+ 1)
−ξ

,

δ
(i)
1 + δ

(i)
2

(
1 +

M

m

)
∆ ≤

(
m− 3L2

2
∆

)
∆.

The case δ
(i)
1 ̸= 0 and δ

(i)
2 ̸= o (1) is mainly associated with stochastic approximation schemes (see (3.3)). In

order to simplify, let us take δ
(i)
2 ≡ δ2 < m. We can then take c1 = 1

m−δ2

(
δ2M
m

+ 3L2∆
2

)
, c2 = 0 and

δ
(i)
1 ≤

(
m− 3L2

2
∆− δ2

(
1 +

M

m

))
∆,

δ
(i)
1 ≤ c3 (m− δ2) (i+ 1)

−δ
(1 + o (1)) .

However, we will show in Section 4.1.2 that better results can be obtained with a direct approach.

In the next result, we suppose that the approximation algorithm is stochastic. The following theorem

characterizes an analysis of the escape probability of the algorithm. In particular, if we deőne B := θ⋆⊕∆B,

the ball of radius ∆ centered in θ⋆, it studies the probability that θ(i) gets out of B in the steps between 1

and n+ 1, i.e. P

{
max1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
.

Theorem 3. Under Opt, Lip-2 and Hess, provided
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆ < 2(1−ε)m

3L2
for 0 < ε < 1, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}

≤
2
∑n

i=0 E

(
δ
(i)
1

)2

∆2
(
(1− ε)m− 3L2

2 ∆
)2

+

[
2ε2M2 +

(
(1− ε)m− 3L2

2 ∆
)2

ε2m2
(
(1− ε)m− 3L2

2 ∆
)2

]
n∑

i=0

E

(
δ
(i)
2

)2

where M > 0 is a constant such that
∥∥∥F̈ (θ⋆)

∥∥∥
2
≤ M . Moreover, for small enough

∑n
i=0 E

(
δ
(i)
1

)2
= O (1)
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and
∑n

i=0 E

(
δ
(i)
2

)2
= O (1),

max
1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
= OP



(

n∑

i=0

E

(
δ
(i)
1

)2
) 1

2


 .

Remark 6. It is clear that the probability P

{
max1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
is positive and non-vanishing in

almost all cases of interest. The reason is that, if the algorithm approximating the derivatives is stochastic, it

cannot be ruled out that it gives rise to extreme values of the derivatives that lead θ(i) astray. However, the

bound reproduces several stylized facts whose comprehension may help in the design of the algorithm. First,

when ∆ ↓ 0 while all other quantities are őxed, the bound blows up, as expected, because the probability of

getting out of the ball is larger for smaller values of ∆. Second, for őxed or decreasing ∆, the bound converges

to 0 if
∑n

i=0 E

(
δ
(i)
1

)2
= o

(
∆2
)

and
∑n

i=0 E

(
δ
(i)
2

)2
= o (1). This conőrms the different roles played by δ

(i)
1

and δ
(i)
2 (see Remark 5). Third, the bound increases with M and decreases with m, i.e. it increases with the

condition number of the matrix F̈ (θ⋆). It is well known that the larger is the condition number the more

eccentric are the level curves of the objective function, a condition associated with tenuous identiőcation in

the econometric literature (see Keane, 1992) and with slow convergence rates of gradient-based optimization

algorithms (see, e.g., Alger, 2019, Section 3.1). The convergence rate of the NewtonśRaphson algorithm does

not depend on the condition number of the Hessian because it is affinely invariant. The presence of both

m and M in the bound is due to the fact that this covers both the case in which the Hessian is correctly

approximated and the optimization method is affinely invariant and the case in which it is not. This is

witnessed by the fact that, if δ
(i)
2 ≡ 0, the bound only depends on m. The fact that the bound increases with

L2 conőrms that the difficulty of the optimization problem plays a role in the escape probability. Fourth,

the bound increases in n and it is necessary that E

(
δ
(i)
1

)2
↓ 0 and E

(
δ
(i)
2

)2
↓ 0 rapidly enough for it to

converge. In order to have
∑∞

i=0 E

(
δ
(i)
1

)2
= O (1) and

∑∞
i=0 E

(
δ
(i)
2

)2
= O (1), we need E

(
δ
(i)
1

)2
= o

(
i−1
)

and E

(
δ
(i)
2

)2
= o

(
i−1
)
. At last, when E

(
δ
(i)
1

)2
and E

(
δ
(i)
2

)2
decrease for a certain i, the bound decreases

too.

4.1.2 Stochastic Approximation Schemes

The previous results are not well suited to study the algorithm in (3.3). This section gives different, special-

ized results for this kind of algorithm. The őrst one is the analog of Theorem 1 and Corollary 1.

Theorem 4. Under Opt and Lip-2, if γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤
(
1− γi+1λmin

(
F̈ (θ⋆)

))∥∥∥θ(i) − θ⋆
∥∥∥
2
+ γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γi+1δ

(i)
1 .

The second result parallels Theorem 2.

Theorem 5. Suppose that Opt and Lip-2 hold and L2

2 ∆ < λmin

(
F̈ (θ⋆)

)
.

(i) Suppose that, for any i ≥ 0, there are constants ∆ > 0, ξ > 1, γ > 0, δ > 0, c1 > 0, c2 ≥ 0 and c3 ≥ 0,

such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,
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γi+1λmin

(
F̈ (θ⋆)

)
< 1,

δ
(i)
1 ≤

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆,

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

δ
(i)
1 ≤ c3 (i+ 1)

−δ
(1 + o (1)) .

If γ < 1,
∥∥∥θ(n+1) − θ⋆

∥∥∥
2
≲

c3e
2(λmin(F̈ (θ⋆))−L2

2 ∆)c2ζ(ξ)n−δ

λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
.

If γ = 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲





c1c3e
2(λmin(F̈(θ⋆))−

L2
2

∆)c2ζ(ξ)

(λmin(F̈ (θ⋆))−L2
2 ∆)c1−δ

n−δ,
(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)
c1 > δ,

c1c3e
2(λmin(F̈ (θ⋆))−L2

2 ∆)c2ζ(ξ)n−δ lnn,
(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)
c1 = δ,

Cn−(λmin(F̈ (θ⋆))−L2
2 ∆)c1

(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)
c1 < δ,

where

C ≤ c1c3e
2(λmin(F̈ (θ⋆))−L2

2 ∆)c2ζ(ξ)
∞∑

k=0

(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)k (

2c1+c2
2

)k

k!

· ζ
(
1 + δ + k −

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
c1

)

+∆exp

{(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)(
c2ζ (ξ)− c1γ(0)

)}
.

If γ > 1, there is no guarantee of convergence.

(ii) Suppose that, for any i ≥ 0, there are constants ∆ > 0, ξ > 1, γ > 0, δ > 0, c1 > 0 and c2 ≥ 0, such

that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

δ
(i)
1 ≡ 0.

For γ < 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲ exp

{(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)(
c2ζ (ξ)− c1ζ (γ)−

c1
1− γ

n1−γ

)}
,

for γ = 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲ ∆exp

{(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)(
c2ζ (ξ)− c1γ(0)

)}
n−(λmin(F̈ (θ⋆))−L2

2 ∆)c1
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and, for γ > 1, there is no guarantee of convergence.

Remark 7. In the most relevant case, i.e. the one with δ
(i)
1 ̸= 0 and γ < 1, the rate of convergence only

depends on the rate of decrease of δ
(i)
1 , in the sense that

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
= O

(
δ
(n)
1

)
. If γ < 1, the rate is

therefore independent of the value of γ.

When the algorithm is stochastic, the following corollary provides a result on the escape probability

analogous to Theorem 3.

Corollary 2. Under Opt and Lip-2, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤

∑n
i=0 E

(
δ
(i)
1

)2

∆2
[
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
]2

provided γi+1 < λ−1
min

(
F̈ (θ⋆)

)
for any i and ∆ <

2λmin(F̈ (θ⋆))
L2

. Moreover,

max
1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
= OP



(

n∑

i=0

E

(
δ
(i)
1

)2
) 1

2


 .

Remark 8. The bound on P

{
max1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
does not depend on the learning sequence {γi}.

This implies that

sup
{γi:γi+1<λ−1

min(F̈ (θ⋆))}
P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤

∑n
i=0 E

(
δ
(i)
1

)2

∆2
[
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
]2 .

The result sounds surprising, but it should be remarked that, once it is ascertained that the exponent γ of

the learning sequence is smaller than 1, also the convergence rate of Theorem 5 does not feature γ.

The next theorem is inspired by some results in Ghadimi and Lan (2013); Karimi et al. (2019).

Theorem 6. Under Opt, Lip-1 and MaV, suppose that maxθ∈Θ

∥∥∥Ḟ (θ)
∥∥∥
2
≤ c1 < ∞ and 1 − γi+1L1 ≥

c2 > 0. Moreover, let θ(0) be fixed and F (θ⋆) > −∞. Then, the following results hold:

(i) We have

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

((
1 +

∑n
i=0 γi+1bi +

∑n
i=0 γ

2
i+1σi∑n

i=0 γi+1

) 1
2

)
.

(ii) We have

1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP





1

n

(
n∑

i=0

γ−1
i+1

) 1
2
(
1 +

n∑

i=0

γi+1bi +
n∑

i=0

γ2
i+1σi

) 1
2



 .

(iii) If also Hess holds, the previous results hold respectively with min0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
and 1

n

∑n
i=0

∥∥∥θ(i) − θ⋆
∥∥∥
2

replacing min0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
and 1

n

∑n
i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
.

Remark 9. (i) The deterministic case can be recovered taking bi = δ
(i)
1 and σi =

(
δ
(i)
1

)2
. Following the proof
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of the theorem, if γi+1 ∼ i−γ and δ
(i)
1 ∼ i−δ, one gets the following convergence rates:

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





O (1) , γ > 1,

O
(
ln−

1
2 n
)
, γ = 1,

O
(
n− δ

2

)
, γ < 1, γ + δ < 1,

O
(
n− δ

2 ln
1
2 n
)
, γ < 1, γ + δ = 1,

O
(
n

γ−1
2

)
, γ < 1, γ + δ > 1,

and

1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





O
(
n

γ−1
2

)
, γ > 1,

O (1) , γ = 1,

O
(
n− δ

2

)
, γ < 1, γ + δ < 1,

O
(
n− δ

2 ln
1
2 n
)
, γ < 1, γ + δ = 1,

O
(
n

γ−1
2

)
, γ < 1, γ + δ > 1.

(ii) In the stochastic case, we note that

E

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
≤ E

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
≤ Eδ

(i)
1 ,

EE

(∥∥∥ ˙̃F
(
θ(i)
)
− F

(
θ(i)
)∥∥∥

2

2
|Fi

)
= E

(
δ
(i)
1

)2
.

(iii) The őrst result states that the probability that the optimization algorithm never visits a region where

the score is near to zero tends to decrease with the number of steps of the algorithm, i.e.

P

{∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≥ ε, 0 ≤ i ≤ n

}
= O

(
1 +

∑n
i=0 γi+1bi +

∑n
i=0 γ

2
i+1σi

ε2
∑n

i=0 γi+1

)
.

(iv) From Remark 2, it is clear that, if bi ≍ i−β and σ ≍ i−σ, one can always take β ≥ σ
2 . In the extreme

case in which bi ≡ 0,

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1) , γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, 1−σ

2 < γ < 1,

OP

(
n

γ−1
2 ln

1
2 n
)
, γ = 1−σ

2 ,

OP

(
n− γ+σ

2

)
, γ < 1−σ

2 .

In the other extreme case, in which β = σ
2 ,

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1) , γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, 1− σ

2 < γ < 1,

OP

(
n

γ−1
2 ln

1
2 n
)
, γ = 1− σ

2 ,

OP

(
n−σ

4

)
, γ < 1− σ

2 .
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(v) Most optimization methods have an objective function of the form:

F (θ) :=
1

N

N∑

k=1

Fk (θ)

where each Fk (·) is identically distributed. The gradient descent (GD) algorithm is deőned as

θ(i+1) = θ(i) − γi+1Ḟ
(
θ(i)
)
= θ(i) − γi+1

1

N

N∑

k=1

Ḟk

(
θ(i)
)
,

but it is sometimes replaced by the stochastic gradient descent (SGD) algorithm

θ(i+1) = θ(i) − γi+1
˙̃F
(
θ(i)
)
= θ(i) − γi+1ḞK

(
θ(i)
)
,

where K is randomly uniformly drawn from {1, 2, . . . , N}. For the GD algorithm, it is clear that bi ≡ 0 and

σi ≡ 0, and

min
0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ min

0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1) , γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, γ < 1,

and
1

n

n∑

i=0

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ 1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

(
n

γ−1
2

)
.

For the SGD algorithm, bi ≡ 0 and σi is O (1). Therefore,

min
0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ min

0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1) , γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, 1

2 < γ < 1,

OP

(
n− 1

4 ln
1
2 n
)
, γ = 1

2 ,

OP

(
n− γ

2

)
, 0 < γ < 1

2 ,

and

1

n

n∑

i=0

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ 1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP

(
n

γ−1
2

)
, γ > 1

2 ,

OP

(
n− 1

4 ln
1
2 n
)
, γ = 1

2 ,

OP

(
n− γ

2

)
, 0 < γ < 1

2 .

The following result gives a convergence rate for the stochastic case.

Theorem 7. Under Opt, Lip-1, MaV, Hess, suppose that

∆+∆γ2
i+1L

2
1 + γi+1 (1 + γi+1L1) bi > 2γi+1∆m,
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣≤ c2 (i+ 1)

−ξ
,

∣∣∣bi − c3 (i+ 1)
−β
∣∣∣≤ c4 (i+ 1)

−ζ
,

σi ≤ c5 (i+ 1)
−σ

(1 + o (1))
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for i ≥ 0, with β ≥ 0, ζ ≥ 0, σ ≥ 0, 1 < ξ and 1 < γ + ζ. Then, the following rates of convergence hold:

• If 1 > γ > 0, ∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−

(γ+σ)∧β

2

)
.

• If γ = 1,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
=





OP

(
i−

(σ+1)∧β

2

)
, 2mc1 > (σ + 1) ∧ β,

OP

(
i−mc1 ln

1
2 i
)
, 2mc1 = (σ + 1) ∧ β,

OP (i
−mc1) , 2mc1 < (σ + 1) ∧ β.

• If γ > 1, then
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
= OP (1) and the algorithm is not guaranteed to converge.

Remark 10. Let us consider again the GD and SGD algorithms. For GD, we can take β = σ = ∞. Therefore,

for γ > 1 the rate of convergence is OP (1), for γ = 1 it is OP (i
−mc1) and for 1 > γ > 0 it is faster than

polynomial. In particular, following the proof, we get

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
exp

{
− mc1
1− γ

i1−γ +O
(
i1−2γ

)})
.

For SGD, we can take β = ∞ and σ = 0. Then,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
=





OP (1) , γ > 1,

OP

(
i−

1
2

)
, γ = 1, 2mc1 > 1,

OP

(
i−

1
2 ln

1
2 i
)
, γ = 1, 2mc1 = 1,

OP (i
−mc1) , γ = 1, 2mc1 < 1,

OP

(
i−

γ
2

)
, 1 > γ > 0.

We can thus represent the convergence rates of SGD as in Figure 4.1. It is apparent that the convergence

rate of
∥∥∥θ(n) − θ⋆

∥∥∥
2

is faster for larger γ < 1. The discrepancy between the rates of
∥∥∥θ(n) − θ⋆

∥∥∥
2

and

min0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
, and the discontinuity in the rate of min0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2

are probably artifacts of

the method of proof.

4.2 Local Approximation by Least Squares

In this section, we characterize some results on the least squares approximation of a function in a point θ0

and in a neighborhood of θ0, on the basis of the approximate values of the function in a set of points.

Consider a point θ0 ∈ Θ ⊂ R
K . Let P (θ0) := {θ1, . . . ,θP } be a set of P points. In most cases of

interest, θ0 will be quite near to P (θ0) but this is not necessary. Moreover, in some cases θ0 will belong

to P (θ0). Let ρ := maxj ∥θj − θ0∥2 be the radius of the smallest closed ball centered in θ0 and containing

P (θ0). This means that P (θ0) ⊂ θ0 ⊕ ρB. We suppose that the points in P (θ0) are a dilated version of a

set of points P0 (θ0) := {θ0,1, . . . ,θ0,P } with ρ0 := maxj ∥θ0,j − θ0∥2, i.e.

θj := θ0 + h (θ0,j − θ0)

where h = ρ
ρ0

, in most cases of interest, will be supposed to converge to 0. We deőne also ρ̃ := minj ∥θj − θ0∥2;

20



0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

−
0
.4

−
0
.3

−
0
.2

−
0
.1

0
.0

γ

E
x
p
o
n
e
n
t 
o
f 
n

Figure 4.1: Exponent f (γ) of n as a function of γ for
∥

∥

∥
θ
(n)

− θ
⋆
∥

∥

∥

2
= OP

(

nf(γ)
)

(solid line) from Theorem

7, min0≤i≤n

∥

∥

∥
θ
(i)

− θ
⋆
∥

∥

∥

2
= OP

(

nf(γ)
)

(dashed line) from Theorem 6, and max0≤i≤n

∥

∥

∥
θ
(i)

− θ
⋆
∥

∥

∥

2
= OP

(

nf(γ)
)

(dotted line) from Corollary 2; the empty points represent the presence of logarithmic terms or the coexistence of

different convergence rates not depending on γ.

this is 0 if θ0 ∈ P (θ0). Next, we suppose without loss of generality that the point θ0 is in the origin, so

that all points are replaced by θ 7→ θ − θ0.

The function F (θj) is contaminated by an error εj , i.e. one observes the value F̂ (θj) = F (θj) + εj

instead of F (θj). In this section we keep the treatment quite general and we do not specify a source for

εj . We then provide an approximation to the function F (·). For a generic θ ∈ ρB, we build the vector

of regressors xD (θ) containing all the monomials of elements of θ up to order D. As usual, the order of

multiplication in the monomials does not matter, so that the number of monomials in K variables exactly

of order d is
(
d+K−1

d

)
and up to order D is

(
D+K
D

)
. We then take, as approximating function, a polynomial

of order D in the elements of θ, β′xD (θ).

Example 1. When using a őrst-order polynomial, we can write

β1 + β′
2θ = β′x1 (θ)

where β =
[
β1,β

′
2

]′
and x1 (θ) =

[
1,θ′]′. For a second-order polynomial, we can write

β1 + β′
2θ + β′

3D
+
K (θ ⊗ θ) = β′x2 (θ)

where D+
K was deőned in Section 3.1, β =

[
β1,β

′
2,β

′
3

]′
and x2 (θ) =

[
1,θ′,

(
D+

K (θ ⊗ θ)
)′]′

.

Remark 11. In principle, one could substitute the least squares approximation with other methods, e.g., least

absolute shrinkage and selection operator (Lasso). However, whereas OLS produces an efficient estimate of

β, Lasso puts forward a biased estimate of β.

Let y be the vector whose generic j-th element is F̂ (θj). For each j, we build the vector of regressors

xD (θj) from θj . Let X be the matrix of regressors obtained stacking the rows x′
D (θj). Let X0 be the same

21



matrix for the point set P0 (θ0). The OLS estimator of β is

β̂ = (X′X)
−1

X′y.

For a generic θ, we deőne the OLS predictor as

F̃ (θ) = x′
D (θ) β̂ = x′

D (θ) (X′X)
−1

X′y.

For the statement of the results, let ε be the vector whose j-th element is εj = F̂ (θj)−F (θj). We note that,

despite we do not explicit it, ε may depend on the set of points P (θ0) in which the function is computed.

We will need an assumption concerning the function F .

Fun-d The function F : θ 7→ F (θ) is of class Cd,1 on a compact set Θ ⊂ R
K . The parameter space contains

an open neighborhood of a value θ⋆ such that Ḟ (θ⋆) = 0.

Assumption Fun-d requires the function to be differentiable up to order d with Lipschitz derivative. In this

paper, we will mainly use Fun-1 and Fun-2 but some results are stated in more general form.

We present four different results: the őrst one concerns the quality of the approximation of the function

in a single point, the second one deals with the approximation of the function and its derivatives in a

neighborhood of a point, the third one regards the gradient and the Hessian, and the last one provides upper

bounds for the bias and the variance of the approximation when the error affecting the function is stochastic.

Theorem 8. Suppose Fun-d holds. If θ0 ∈ P (θ0),

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ−D P− 1

2 ρD0 ∥ε∥2√
λmin

(
1
P
X′

0X0

) .

If θ0 /∈ P (θ0),

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ̃ |F |0,1

+ ρ−D

{
ρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2

∥F∥P(θ0)
+ P− 1

2 ∥ε∥2

}
ρD0√

λmin

(
1
P
X′

0X0

) .

Remark 12. (i) When P (θ0) ≡ P0 (θ0) and ρ = ρ0, we have

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ̃ |F |0,1

+

{
ρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2

∥F∥P(θ0)
+ P− 1

2 ∥ε∥2

}
1√

λmin

(
1
P
X′

0X0

) .

(ii) When θ0 /∈ P (θ0) and ρ̃ is small,

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≲ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ−D P− 1

2 ρD0 ∥ε∥2√
λmin

(
1
P
X′

0X0

)
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+ ρ̃



|F |0,1 + ρ−D

ρD0 ∥F∥P(θ0)√
λmin

(
1
P
X′

0X0

)





and, as expected, the bound is only slightly larger than the one for θ0 ∈ P (θ0).

(iii) Considering only the most important asymptotic parameters, for ρ ↓ 0 and ρ̃ ↓ 0, we get

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ = O

(
ρD+1 + ρ̃+ ρ−D (ρ̃+ ∥ε∥2)

)
.

It is clear that ρ̃ ≤ ρ, but the choice of a θ0 not belonging to P (θ0) may affect negatively the rate of

convergence to 0. Indeed, if ρ̃ = 0,

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ = O

(
ρD+1 + ρ−D ∥ε∥2

)

while, if ρ̃ and ρ converge to zero at the same rate,

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ = O

(
ρ−D+1 + ρ−D ∥ε∥2

)
.

Now we turn to the uniform approximation in a neighborhood of θ0. Deőne the constant

CD (P0) := sup
p∈PD

∥p (θ)∥ρ0B

∥p (θ)∥P0(0)

.

Calvi and Levenberg (2008, p. 85) discuss its meaning and its relation with other properties of the polyno-

mials. Other properties are collected in Bos et al. (2011b,a). The constant does not depend on the position

of θ0, but only on the conőguration of points P0 (0) and on its radius ρ0, and the degree of the polynomial

D. The existence of a őnite CD (P0) is equivalent to the fact that P0 (0) is a PD-determining class for ρ0B,

i.e. the fact that any polynomial of degree D is zero on P0 (0) implies that it is zero on ρ0B.

Theorem 9. Suppose Fun-D holds and let θ0 be a point in Θ. Then, for S ≤ D,

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

≤ ρD0 ρ−D
P− 1

2S!

√∑D
d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

) max
θ∈θ0⊕ρB

∥ε∥2

+




(
2 + CD (P0)

(
1 + P

1
2

))
(D!)

2
KS

((D − S)!)
2
(D − 1)!

+
1

(D − S − 1)!


KD−SρD−S+1 |F |D,1

where it is intended that (−1)! = 1.

Remark 13. (i) By restricting our attention to the most important asymptotic parameters, i.e. ρ and

maxθ∈θ0⊕ρB ∥ε∥2, we get

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

= O

(
ρD−S+1 + ρ−D max

θ∈θ0⊕ρB
∥ε∥2

)
.

Note that this implies, as expected, a worse rate of convergence for higher derivatives. If we suppose that

all other parameters are őxed, we need ρ ↓ 0, ρ−D maxθ∈θ0⊕ρB ∥ε∥2 ↓ 0 in order to have convergence to 0.
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Indeed, when ρ ↓ 0 and S ≤ D,
∑D

d=S

(
d
S

)2
ρ2(d−S) = 1 + o (1).

(ii) For S = 0, we get

∥∥∥F̃ (θ)− F (θ)
∥∥∥
θ0⊕ρB

≤

(
3 + CD (P0)

(
1 + P

1
2

))
KD

(D − 1)!
ρD+1 |F |D,1

+ ρ−D P− 1
2 ρD0√

λmin

(
1
P
X′

0X0

)

√
1− ρ2(D+1)

1− ρ2
max

θ∈θ0⊕ρB
∥ε∥2 .

This compares favorably with the bound of Theorem 8 for θ0 ∈ P (θ0),

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ−D P− 1

2 ρD0√
λmin

(
1
P
X′

0X0

) ∥ε∥2

that gives a bound for the approximation in a single point. The two main sources of disagreement between

the two formulas are the terms 3+CD (P0)
(
1 + P

1
2

)
and

√
1−ρ2(D+1)

1−ρ2 in the őrst formula that are replaced

by P
1
2 and 1 in the second formula. The term

√
1−ρ2(D+1)

1−ρ2 takes into account the size of the neighborhood:

indeed, it converges to 1 when ρ ↓ 0 and diverges as ρD when ρ → ∞. The term 3 + CD (P0)
(
1 + P

1
2

)
is

more difficult to characterize and compare to P
1
2 . Calvi and Levenberg (2008, Section 3.1) discuss the case

in which CD (P0) is bounded from above and, as a result, the two terms have the same asymptotic behavior

in P . Other results are contained in Bos et al. (2011b,a), where several examples of meshes with slowly

increasing values of CD (P0) are proposed. However, note that P is rarely an asymptotic parameter in what

follows.

(iii) Given the relevance of the approximation of the őrst derivative in Theorem 1, it may be interest-

ing to choose ρ in such a way to minimize max|k|=1 supθ∈ρB

∣∣∣DkF̃ (θ)−DkF (θ)
∣∣∣. This means that ρ⋆ ∼

maxθ∈θ0⊕ρB ∥ε∥
1

2D
2 and, if maxθ∈θ0⊕ρB ∥ε∥2 ↓ 0,

max
|k|=1

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

= O

(
max

θ∈θ0⊕ρB
∥ε∥

1
2
2

)
.

The second derivative has a worse convergence rate, namely

max
|k|=2

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

= O

(
max

θ∈θ0⊕ρB
∥ε∥

D−1
2D

2

)
.

Under Lip-1 and Lip-2, similar results hold for the gradient and the Hessian. In the following,
[
DiF̃ (θ)−DiF (θ)

]

denotes the gradient of F̃ (θ)−F (θ) and
[
DijF̃ (θ)−DijF (θ)

]
the Hessian of the same function. The ad-

vantage of these results is that they are less affected by the curse of dimensionality in K, the number of

parameters.

Corollary 3. Let θ0 be a point in Θ. Then, under Lip-1, for S = D = 1,

sup
θ∈θ0⊕ρB

∥∥∥
[
DiF̃ (θ)−DiF (θ)

]∥∥∥
2
≤ρ0K

1
2 maxθ∈θ0⊕ρB ∥ε∥2

P
1
2 ρ
√
λmin

(
1
P
X′

0X0

)
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+
1

2

(
4 + C1 (P0)

(
1 + P

1
2

))
L1ρ.

Under Lip-2, for S = 1 and D = 2,

sup
θ∈θ0⊕ρB

∥∥∥
[
DiF̃ (θ)−DiF (θ)

]∥∥∥
2
≤ρ20K

1
2

√
1 + 4ρ2 maxθ∈θ0⊕ρB ∥ε∥2

P
1
2 ρ2
√
λmin

(
1
P
X′

0X0

)

+
1

6

(
11 + 4C2 (P0)

(
1 + P

1
2

))
L2ρ

2

and, for S = D = 2,

sup
θ∈θ0⊕ρB

∥∥∥
[
DijF̃ (θ)−DijF (θ)

]∥∥∥
2
≤2ρ20Kmaxθ∈θ0⊕ρB ∥ε∥2
P

1
2 ρ2
√

λmin

(
1
P
X′

0X0

)

+
1

3

(
3 + 4K

1
2 + 2K

1
2C2 (P0)

(
1 + P

1
2

))
L2ρ.

At last, we provide a version of Theorem 9 for the mean and the variance of the approximation error,

when this is stochastic.

Theorem 10. Let θ0 be a point in Θ. Then, under Fun-D, for S ≤ D,

max
|k|=S

∥∥∥EDkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

≤ ρ−D
P− 1

2 ρD0 S!

√∑D
d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

) max
θ∈θ0⊕ρB

∥Eε∥2

+




(
2 + CD (P0)

(
1 + P

1
2

))
(D!)

2
KS

((D − S)!)
2
(D − 1)!

+
1

(D − S − 1)!


KD−SρD−S+1 |F |D,1

where it is intended that (−1)! = 1, and

max
|k|=S

∥∥∥∥E
∣∣∣DkF̃ (θ)−DkF (θ)− E

(
DkF̃ (θ)−DkF (θ)

)∣∣∣
2
∥∥∥∥
θ0⊕ρB

≤ ρ−2D P−1ρ2D0 (S!)
2

λmin

(
1
P
X′

0X0

)
(

D∑

d=S

(
d

S

)2

ρ2(d−S)

)
max

θ∈θ0⊕ρB
E ∥ε− Eε∥22 .

4.3 Results Specific to the Approximating Algorithm

In this section we apply the previous results to our algorithm. In particular, we will replace the generic

point θ0 ∈ Θ with a point of the sequence
{
θ(i)
}

. Moreover, we will suppose that all the expectations are

conditional on the σ-algebra Fi. As the process
{
θ(i)
}

is Markov, any expectation at step i depends only

on the previous point θ(i−1) in the sequence.

We need two assumptions quantifying the effect of replacing the true probability Pz(·) with an approxi-

mated version P̂z(·). The őrst one is a deterministic bound, the second one concerns the stochastic case.
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AUB The element F̂ (θ)− F (θ) is such that, for a sequence {aN},

max
θj∈Pi(θ(i))

∣∣∣F̂ (θ)− F (θ)
∣∣∣ ≤ aN , P-as.

MaV2 max
θj∈Pi(θ(i))

∣∣∣E
(
F̂ (θj) |Fi

)
− F (θj)

∣∣∣ ≤ Bi, max
θj∈Pi(θ(i)) E

((
F̂ (θj)− F (θj)

)2
|Fi

)
≤ Σi.

Remark 14. (i) The bounds in Assumption MaV2 could be replaced with unconditional bounds like

maxθ∈Θ

∣∣∣EF̂ (θ)− F (θ)
∣∣∣ ≤ Bi and maxθ∈Θ E

(
F̂ (θ)− F (θ)

)2
≤ Σi. The dependence on i of the bounds

comes from the fact that the function F (θ) is estimated by F̂ (θ) on the basis of a number of simulated

observations depending on the step i.

(ii) The bounds in Assumptions AUB and MaV2 can generally be obtained using the functional differentia-

bility of f
(
P̂y, ·

)
. A short explanation can be useful. Let ϕ be a function of a probability measure, deőned

in a neighborhood of P. Deőne also the empirical process Gn :=
√
n
(
P̂n − P

)
based on n observations.

Then an informal reasoning, that can be made rigorous along the lines of van der Vaart (1998, Chapter 20),

leads to the development

ϕ
(
P̂n

)
− ϕ (P) =

1√
n
ϕ′
P
(Gn) +

1

2n
ϕ′′
P
(Gn) + . . .

where ϕ
(n)
P

are functional derivatives of order n, and the function ϕ′
P
(·) is generally linear. Now, this implies

that

E

[
ϕ
(
P̂n

)
− ϕ (P)

]
≃





1
2nEϕ

′′
P
(Gn) , EP̂n = P,

1√
n
ϕ′
P
(EGn) , EP̂n ̸= P,

and

V

(
ϕ
(
P̂n

)
− ϕ (P)

)
≃ 1

n
V (ϕ′

P
(Gn)) .

These results can be used to characterize Bi and Σi using the identiőcations

ϕ
(
P̂z(θj)

)
= F̂ (θj) = f

(
P̂y, P̂z(θj)

)
,

ϕ
(
Pz(θj)

)
= F (θj) = f

(
P̂y,Pz(θj)

)
.

Moreover, under suitable assumptions, a functional Law of the Iterated Logarithm yields

lim sup
N→∞

√
n

ln lnn

∣∣∣ϕ
(
P̂n

)
− ϕ (P)

∣∣∣ = lim sup
N→∞

√
n

ln lnn

∣∣∣ϕ′
P

(
P̂n − P

)∣∣∣ ≤ c, P-as.

As a result, in most cases,

Bi = O
(
N− 1

2

)
,

Σi = O
(
N−1

)
,

aN =

√
N

ln lnN
.

The following corollary provides formulas for the quantities involved in some of the previous convergence
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results.

Corollary 4. Under AUB and Fun-D,

δ
(i)
1 ≤ ρ−D

i

ρD0 K
1
2

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

) aN

+ ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

D − 1
+ 1


 KD− 1

2 |F |D,1

(D − 2)!
,

δ
(i)
2 ≤ ρ−D

i

2ρD0 K

√∑D
d=2

(
d
2

)2
ρ
2(d−2)
i√

λmin

(
1
P
X′

0X0

) aN

+ ρD−1
i



D2 (D − 1)K2

(
2 + CD (P0)

(
1 + P

1
2

))

D − 2
+ 1


 KD−1 |F |D,1

(D − 3)!
.

Under MaV2 and Fun-D,

E

(
δ
(i)
1

)2
≤



ρ−D

i

K
1
2 ρD0

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

)
(
Σ

1
2
i +Bi

)

+ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 1)!
+

1

(D − 2)!


KD− 1

2 |F |D,1





2

,

E

(
δ
(i)
2

)2
≤



2ρ−D

i

KρD0

√∑D
d=2

(
d
2

)2
ρ
2(d−2)
i√

λmin

(
1
P
X′

0X0

)
(
Σ

1
2
i +Bi

)

+ρD−1
i



D2 (D − 1)K2

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 2)!
+

1

(D − 3)!


KD−1 |F |D,1





2

and

bi = ρ−D
i

K
1
2 ρD0

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

) Bi

+ ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 1)!
+

1

(D − 2)!


KD− 1

2 |F |D,1 ,

σi =



ρ−D

i

K
1
2 ρD0

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

)
(
Σ

1
2
i +Bi

)

+ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 1)!
+

1

(D − 2)!


KD− 1

2 |F |D,1





2

.
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Remark 15. From the previous formulas, for D = 1,

(
E

(
δ
(i)
1

)2) 1
2

≤
K

1
2 ρ0

(
Σ

1
2
i +Bi

)

ρi

√
λmin

(
1
P
X′

0X0

) + ρi

[
K
(
2 + C1 (P0)

(
1 + P

1
2

))
+ 1
]
K

1
2 |F |1,1 ,

bi =
K

1
2 ρ0Bi

ρi

√
λmin

(
1
P
X′

0X0

) + ρi

[
K
(
2 + C1 (P0)

(
1 + P

1
2

))
+ 1
]
K

1
2 |F |1,1 ,

σ
1
2
i =

K
1
2 ρ0

(
Σ

1
2
i +Bi

)

ρi

√
λmin

(
1
P
X′

0X0

) + ρi

[
K
(
2 + C1 (P0)

(
1 + P

1
2

))
+ 1
]
K

1
2 |F |D,1 ,

and, for D = 2,

(
E

(
δ
(i)
1

)2) 1
2

≤
K

1
2 ρ20
√

1 + 4ρ2i

(
Σ

1
2
i +Bi

)

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρ2i

[
4K

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K

3
2 |F |2,1 ,

(
E

(
δ
(i)
2

)2) 1
2

≤
2Kρ20

(
Σ

1
2
i +Bi

)

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρi

[
4K2

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K |F |2,1 ,

bi =
K

1
2 ρD0

√
1 + 4ρ2iBi

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρ2i

[
4K

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K

3
2 |F |2,1 ,

σ
1
2
i =

K
1
2 ρ20
√

1 + 4ρ2i

(
Σ

1
2
i +Bi

)

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρ2i

[
4K

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K

3
2 |F |2,1 .

Slightly better formulas for D ∈ {1, 2} can be obtained using Corollary 3.

The next two results give deterministic convergence rates for the INM and SAS algorithms.

Theorem 11. For the Inexact Newton Method, under Opt, Fun-D, Hess and AUB, suppose that, for any

i ≥ 0, there exist C1 > 0, C2 > 0, m
2K|F |2,1

> ∆ > 0, ρ > 0 and α > 0, such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

δ
(i)
1 + δ

(i)
2

(
1 +

M

m

)
∆ ≤

(
m− 3L2

2
∆

)
∆,

ρi ≤ C1 (i+ 1)
−ρ

aN ≤ C2 (i+ 1)
−α
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where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
,
√
K |F |1,1

}
. We have

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
= O

(
n−(α−Dρ)∧(Dρ)

)
.

Theorem 12. For the Stochastic Approximation Scheme, suppose that Assumptions Opt, Fun-D and AUB

hold and K∆ |F |2,1 < λmin

(
F̈ (θ⋆)

)
. Moreover, for any i ≥ 0, there are constants ∆ > 0, 1 > γ > 0, ξ > 1,

ρ > 0, α > 0, C1 > 0, C2 > 0, C3 > 0 and C4 > 0, such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∣∣∣γi+1 − C1 (i+ 1)
−γ
∣∣∣ ≤ C2 (i+ 1)

−ξ
.

ρi ≤ C3 (i+ 1)
−ρ

,

aN ≤ C4 (i+ 1)
−α

,

δ
(i)
1 ≤

(
λmin

(
F̈ (θ⋆)

)
−K∆ |F |2,1

)
∆.

Then, ∥∥∥θ(n+1) − θ⋆
∥∥∥
2
= O

(
n−(α−Dρ)∧(Dρ)

)
.

Remark 16. Theorems 11 and 12 can be used to study the convergence of a Gaussian quadrature (e.g., Monte

Carlo integration), which is known to converge exponentially fast (see, e.g., Trefethen, 2008).

The following results provide upper bounds on the escape probabilities of INM and SAS algorithms, and

a convergence rate for the SAS algorithm.

Theorem 13. Suppose that ρi ↓ 0 and B2
i = O (Σi). Then, the escape probability can be characterized as

follows:

• For the Inexact Newton Method, under Opt, Fun-D and Hess, provided
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆ < 2(1−ε)m

3K|F |2,1
for 0 < ε < 1, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤ C

n∑

i=0

(
ρ−2D
i Σi + ρ2D−2

i

)

where the constant C depends upon ∆, ε, m, M , λmin

(
1
P
X′

0X0

)
, K, P , D, ρ0, CD (P0), |F |2,1 and

|F |D,1.

• For the Stochastic Approximation Scheme, under Opt and Fun-D, provided γi+1 < λ−1
min

(
F̈ (θ⋆)

)
for

any i and ∆ <
2λmin(F̈ (θ⋆))

K|F |2,1
, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤ C

n∑

i=0

(
ρ−2D
i Σi + ρ2Di

)

where the constant C depends upon ∆, λmin

(
F̈ (θ⋆)

)
, λmin

(
1
P
X′

0X0

)
, K, P , D, ρ0, CD (P0), |F |2,1

and |F |D,1.
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Table 1: Escape probabilities for INM with D = 2 and SAS with D = 1 and D = 2.

Method Rate
Conditions for

Fastest rate
Conditions for

convergence fastest rate

INM with D = 2
∑n

i=0 i
−(ν−4ρ)∧(2ρ) 1

2
< ρ < ν−1

4

∑n
i=0 i

− ν
3 =

∑n
i=0 i

−2ρ ν = 6ρ

SAS with D = 1
∑n

i=0 i
−(ν−2ρ)∧(2ρ) 1

2
< ρ < ν−1

2

∑n
i=0 i

− ν
2 =

∑n
i=0 i

−2ρ ν = 4ρ

SAS with D = 2
∑n

i=0 i
−(ν−4ρ)∧(4ρ) 1

4
< ρ < ν−1

4

∑n
i=0 i

− ν
2 =

∑n
i=0 i

−4ρ ν = 8ρ

Remark 17. Suppose that Ni ≍ iν , ρi ≍ i−ρ and Σi ≍ N−1
i . Then, we get the results in Table 1: łRatež

denotes the general rate, łConditions for convergencež denotes the conditions under which the escape prob-

ability does not diverge, łFastest ratež is the fastest possible rate, obtained balancing the two terms, and

łConditions for fastest ratež denotes the conditions under which the fastest rate is achieved.

Theorem 14. For the Stochastic Approximation Scheme, under Opt, Fun-D, MaV2, Hess, suppose that

Ni ≍ iν , ρi ≍ i−ρ, Bi ≍ N
− 1

2
i and Σi ≍ N−1

i . If ∆ :=
∥∥∥θ(0) − θ⋆

∥∥∥
2
, suppose that

∆+∆γ2
i+1K |F |21,1 + γi+1

(
1 + γi+1

√
K |F |1,1

)
bi > 2γi+1∆m,

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

for i ≥ 0, with 1 < ξ. If ν > 2Dρ, γ + ν
2 > 1 +Dρ, and γ +Dρ > 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
=





OP

(
n−( ν

4−
Dρ
2 )∧(Dρ

2 )
)
, 1 > γ > 0,

OP

(
n−( ν

4−
Dρ
2 )∧(Dρ

2 )
)
, γ = 1, 2mc1 >

(
ν
2 −Dρ

)
∧ (Dρ) ,

OP

(
n−mc1 ln

1
2 n
)
, γ = 1, 2mc1 =

(
ν
2 −Dρ

)
∧ (Dρ) ,

OP (n
−mc1) , γ = 1, 2mc1 <

(
ν
2 −Dρ

)
∧ (Dρ) ,

OP (1) , γ > 1.

Remark 18. For 0 < γ < 1, the role of ρ in the convergence rate is ambiguous. Note that this is far from

unexpected, as neighborhoods Pi

(
θ(i)
)

that shrink too rapidly or not rapidly enough may both lead to

problems of convergence. Let us take, for simplicity, the case D = 1. We őrst note that the results only

hold for 1 − γ < ρ < ν
2 + γ − 1. The exponent of n−1 in OP

(
n−( ν

4−
ρ
2 )∧

ρ
2

)
is
(
ν
4 − ρ

2

)
∧ ρ

2 . It is increasing

in ν, thus suggesting that convergence is faster when Ni increases more steeply, but its behavior in ρ is not

monotonic. It is increasing in ρ for ρ < ν
4 and decreasing for ρ > ν

4 . This implies that both small and large

values of ρ may lead to slower convergence rates.

4.4 Computation of the Hessian matrix at the optimal point

The algorithm of Section 4.2 can be used to calculate an estimate of the Hessian at the optimal point θ⋆.

This may be useful both for INM and, especially, for SAS. The result is a simple consequence of Theorem 9.

Theorem 15. Under Opt and Fun-D, for D ≥ 2,

∥∥∥ ¨̃F (θ⋆)− F̈ (θ⋆)
∥∥∥
F
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≤ ρ−D
ρD0 P− 1

2

√∑D
d=2 d

2 (d− 1)
2
ρ2(d−2)

√
λmin

(
1
P
X′

0X0

) max
θ∈θ⋆⊕ρB

∥ε∥2

+ ρD−1




(
2 + CD (P0)

(
1 + P

1
2

))
D2 (D − 1)K2

(D − 2)!
+

1

(D − 3)!


KD−2 |F |D,1

where it is intended that (−1)! = 1.

Remark 19. If there is no error in the computation of the objective function, ε ≡ 0 and

∥∥∥ ¨̃F (θ⋆)− F̈ (θ⋆)
∥∥∥
F

≤ ρD−1




(
2 + CD (P0)

(
1 + P

1
2

))
D2 (D − 1)K2

(D − 2)!
+

1

(D − 3)!


KD−2 |F |D,1 .

If D = 2, then ∥∥∥ ¨̃F (θ⋆)− F̈ (θ⋆)
∥∥∥
F
≤ ρ

[
4K2

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
|F |2,1 .

5 Computational Aspects

Now we turn to the computational aspects of the algorithm.

5.1 Computation of the Design Matrix

We recall the deőnitions we introduced in Section 4.2. Pi

(
θ(i)
)
= {θ1, . . . ,θP } is a set of P points in a

neighborhood of θ(i). Let ρ := max
θj∈Pi(θ(i))

∥∥∥θj − θ(i)
∥∥∥
2

be the radius of the smallest closed ball centered

in θ(i) and containing Pi

(
θ(i)
)
. Each point θj ∈ Pi

(
θ(i)
)

corresponds to a vector xD (θj).

Example 2. As an example, if K = 1 and D = 2, θj = θj and x2 (θj) =
(
1, θj , θ

2
j

)′
.

We consider estimation of the regression

F̂ (θj) = β′xD (θj) + εj

where xD (θj) is the vector based on θj .

First of all, we remark that the result of the regression is invariant with respect to translations, i.e. the

predictor does not change if we estimate the regression in which the data are őrst centered in θ(i). We adopt

the transformation θj → θj − θ(i), we build xD

(
θj − θ(i)

)
on the basis of θj − θ(i) and we estimate the

regression as

F̂ (θj) = β̃
′
xD

(
θj − θ(i)

)
+ εj .

The two regressions are observationally equivalent, provided the set of polynomials that are used is downward

closed (see Migliorati, 2015), a condition that is always veriőed in our examples. For this reason, in the

following we will always suppose that the points have been recentered in θ(i) and we will write, with a slight

abuse of notation, xD (θj) for xD

(
θj − θ(i)

)
. This has another advantage, as it makes easier to compute

the derivatives.
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Example 3. If K = 1 and D = 2, xD

(
θj − θ(i)

)
=
(
1, θj − θ(i),

(
θj − θ(i)

)2)′
.

A second problem is the fact that the design matrix tends to a singular matrix. The design matrix X is

obtained by stacking the generic vectors xD (θj) for j = 1, . . . , P , i.e.

X =




x′
D (θ1)

x′
D (θ2)

...

x′
D (θP )



.

The point θ(i) is associated to a vector xD

(
θ(i)
)
= e1, but also the other points in Pi

(
θ(i)
)

are associated

to vectors that converge towards e1. We must őnd a way to make the distance between the vectors xD (θj)

and xD (θk), for 1 ≤ j ̸= k ≤ P , more salient. As above, we suppose that Pi

(
θ(i)
)

is a dilated copy of the

pointset P0

(
θ(i)
)
:= {θ0,1, . . . ,θ0,P } with ρ0 := maxj

∥∥∥θ0,j − θ(i)
∥∥∥
2
. Therefore,

Pi

(
θ(i)
)
=

{
θ(i) +

ρ

ρ0

(
θ0,j − θ(i)

)
: θ0,j ∈ P0

(
θ(i)
)}

=

{
ρ

ρ0
θ0,j : θ0,j ∈ P0

(
θ(i)
)}

where the latter equality comes from the fact that we suppose that θ(i) ≡ 0. Let us deőne h := ρ
ρ0

. This

means that xD (θj) for θj ∈ Pi

(
θ(i)
)

can be written as

xD (θj) = xD (hθ0,j) = xD (θ0,j)⊙ h

where h is the vector containing the powers of h according to the following rule: the k-th element of h has

the same power of the k-th element of xD (θ0,j).

Example 4. If K = 1 and D = 2, h =
(
1, h, h2

)′
. Therefore:

xD (θj) =

(
1, θj − θ(i),

(
θj − θ(i)

)2)′
=

(
1, h

(
θ0,j − θ(i)

)
, h2
(
θ0,j − θ(i)

)2)′
= xD (θ0,j)⊙ h.

If we deőne the design matrix X0 by stacking the generic vectors xD (θ0,j) for j = 1, . . . , P , we have

X = X0dg (h) = X0 ⊙ (ιNh′) =




x′
D (θ0,1)⊙ h′

x′
D (θ0,2)⊙ h′

...

x′
D (θ0,P )⊙ h′



.

The OLS estimator is β̂ = (X′X)
−1

X′y. Therefore,

β̂ = (X′X)
−1

X′y

= (dg (h)X′
0X0dg (h))

−1
dg (h)X′y

= dg
(
h
)
(X′

0X0)
−1

dg
(
h
)
dg (h)X′

0y

= dg
(
h
)
(X′

0X0)
−1

X′
0y
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where h is the elementwise reciprocal of h.

It is worth noting that:

• if the points are kept in the same relative position with respect to θ(i) when i changes, the design

matrix X0, as well as the term (X′
0X0)

−1
X′

0, can be computed once and for all and stored for future

uses;

• the OLS estimator can be computed by multiplying the diagonal matrix dg
(
h
)
, the pre-computed

(X′
0X0)

−1
X′

0, and the vector y of the function evaluated in the points Pi

(
θ(i)
)
= {θ1, . . . ,θP }.

5.2 Computation of the Hessian Matrix

We stated in Section 3.2 that we can estimate the Hessian through the quantity ¨̃F (θ). This is true only if

the matrix is positive (semi)deőnite. If this is not the case, the solution is to compute a positive deőnite (or

semideőnite) matrix that is near to ¨̃F (θ). We start remarking that it is not possible to compute the nearest

positive deőnite (pd) matrix as the set of pd matrices is not closed (we will be back to this later). Therefore,

we will compute the nearest positive semideőnite (psd) matrix. This clearly depends on the concept of

łdistancež between two matrices. When the distance is computed through the Frobenius norm, there is a

unique nearest positive semideőnite matrix, for which an algorithm has been given in Higham (1988). When

the distance is given by the spectral norm, there are several nearest matrices; an algorithm for computing

one of them has been provided in Halmos (1972) and discussed in Higham (1988). The following proposition

summarizes the relevant results taken from Halmos (1972) and Higham (1988).

Proposition 1. Let UΛU′, with U′U = I and diagonal Λ = diag (λ1, λ2, . . . ), be the spectral decomposition

of ¨̃F (θ). Then the nearest psd matrix in the Frobenius norm is defined by UΛ+U
′, where Λ+ is the diagonal

matrix in which negative elements of Λ are replaced by 0. The Frobenius distance between the two matrices

is: ∥∥∥ ¨̃F (θ)−UΛ+U
′
∥∥∥
F
=

√ ∑

j:λj<0

λ2
j .

The matrix UΛ+U
′ is also a nearest psd matrix in the spectral norm (despite not the only one) and it has

distance: ∥∥∥ ¨̃F (θ)−UΛ+U
′
∥∥∥
2
= max

{
0,−min

j
λj

}
.

Remark 20. (i) The two distances appearing in the statement of the proposition can be used to check for

the adequacy of the matrix ¨̃F (θ) as an approximation of the Hessian. If this distance is too large it may be

a good idea to increase the number of simulations or move the points.

(ii) In case the matrix UΛ+U
′ is psd, its inverse has to be replaced by the MooreśPenrose inverse that is

given by (UΛ+U
′)† = UΛ

†
+U

′.

If a pd matrix is required, a solution is to regularize the matrix UΛ+U
′. In this case, one may replace

Λ+ with Λ+ + λI for a small λ > 0:

¨̃F (θ) = UΛ+U
′ + λI = U (Λ+ + λI)U′.

In this case the őnal Hessian matrix is a linear combination of (a modiőcation of) the Hessian matrix from

the algorithm outlined in Section 3.2 and a diagonal matrix. The limiting case in which only the diagonal

part is retained corresponds to the Stochastic Approximation Scheme case covered in Section 4.1.2.
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5.3 Computational Complexity

It seems very difficult to compare on the same ground our method and the classical optimization algorithms

based on numerical differentiation. Indeed, our algorithm is designed for noisy cases where the performances

of the latter are expected to be bad.

However, we can still compute the number of function evaluations required by the two methods. The

NewtonśRaphson algorithm requires the computation of K őrst derivatives, K second non-mixed derivatives

and K (K − 1) /2 second mixed derivatives. Let us őrst consider the case of centered-difference approxima-

tions (see Eberly, 2020) and compute the number of evaluations necessary for numerical differentiation of

order Q. For the őrst derivatives, we use 2Q evaluations, 4Q2 for the second mixed derivatives and 2Q+ 1

for the second non-mixed derivatives. The őnal value is

K + 4KQ+ 2K (K − 1)Q2.

Using the simplest possible value, i.e. Q = 1, the number of evaluations is:

1 + 2K + 2K2.

The number of evaluations can be reduced by exploiting different numerical differentiation formulas and

using the fact that some functions appear more than once in the formulas for the őrst two derivatives (see

Monahan, 2011, pp. 200-203). In this way, the leading term can be reduced to K2 or even K2

2 . On the other

hand, our method requires P evaluations. The polynomial of degree D in K variables is obtained as the

sum of (K+D)!
K!D! monomials, therefore P ≥ (K+D)!

K!D! . If we only use D = 2, P ≥ (K+2)(K+1)
2 . Therefore, our

method competes favorably with the classical method as far as the number of evaluations is concerned.

As to the accuracy, we can see what happens when our method is applied to non-noisy data by taking

aN ≡ 0 in Assumption AUB. In this case, Theorem 9 yields δ
(i)
1 = O

(
ρD
)

and δ
(i)
2 = O

(
ρD−1

)
. On the

other hand, classical numerical differentiation yields δ
(i)
1 = O

(
ε2Q
)

and δ
(i)
2 = O

(
ε2Q−1

)
.

As to the computational complexity of our method, we consider the case D = 2 and we adopt the

real-number model of computation. We can reason as follows:1

1. populating the matrix X0 requires O
(
PK2

)
evaluations;

2. computing X′
0X0 requires O

(
PK4

)
operations;

3. the inversion of X′
0X0 requires O

(
K6
)

operations;

4. multiplying (X′
0X0)

−1
and X′

0 requires O
(
PK4

)
operations;

5. populating y requires O (Pξ) operations, where ξ is the computational complexity of each function

evaluation;

6. the multiplication of (X′
0X0)

−1
X′

0, y and dg
(
h
)

requires O
(
PK2

)
operations;

7. populating the putative Hessian matrix 2D+,′
K β̂3, computing its eigendecomposition and inverting the

Hessian matrix ¨̃F
(
θ(i)
)

requires O
(
K3
)

operations;

1For multiplication and inversion of matrices we adopt the computational complexity of the classical algorithms; see Seri
(2022, p. 6) for more details.
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8. the other steps, like computing ˙̃F
(
θ(i)
)

and updating θ(i+1) = θ(i) −
[
¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)
, require

fewer operations than the others.

Steps 1-4 can be performed just once. The other steps have to be repeated for I iterations. Taking into

account that P ≥ (K+2)(K+1)
2 , the őnal computational complexity is

O
(
P
[
K4 + I

(
ξ +K2

)])
.

6 Applications

In this section we provide an application of our techniques in order to verify the őnite-sample properties of

GINM. In particular, we estimate the mean µ of a Gaussian random variable when stochastic equincontinuity

is violated. The optimization procedure follows the algorithm described in Section 3.2.

6.1 Monte Carlo Experiment

The őrst example concerns the estimation of the mean µ of a Gaussian random variable with known variance.

Although this is a trivial case, it allows to investigate in detail the properties of our algorithm. In the next

lines, we describe the Monte Carlo experiment:

1. we simulate a sample of N independent random variables distributed as N (0, 1), and we compute its

empirical mean (i.e. the pseudo-true value θ⋆);

2. we select P points in a neighborhood of θ = µ and, for each point:

(a) we simulate a sample of N independent random variables of the following data generating process

z (θ) = µ+ σε, where ε ∼ N (0, 1) and σ ≡ 1;

(b) we compute the empirical mean of z (θ) and the objective function F̂ (θj) via the Method of

Simulated Moments;

(c) we build the regression design matrix and we compute the scaling vector ρ;

(d) we compute the OLS estimator β̂ as explained in Section 5;

(e) we calculate F̃ (θ), using β̂ as predictor, the őrst derivative ˙̃F (θ) and the Hessian ¨̃F (θ);

(f) we substitute ˙̃F (θ) and ¨̃F (θ) in the optimization routine and we compute µ̂;

3. we repeat steps 2a-2g n times for őxed n.

For our purposes, we vary the sample size of the benchmark data S, the sample size of the simulated data

Ni, the mesh of the grid ρi, the learning rate γi used in the stochastic approximation scheme and the number

of iterations n, and we őx the other quantities. The values taken by these quantities are the following: S =

{10, 100, 1000, 10000}, Ni = 10 · iν for ν = {1/4, 3/8, 1/2, 5/8, 3/4}, ρi = i−ρ with ρ = {0.1, 0.5, 0.9}, γi = i−γ for

γ = {0.4, . . . , 1.5} taken on an equispaced grid of cardinality card = 23, and n = {10, 20, 40, 80, 160, 320, 640}.
To test the validity of our procedure, we use as starting value θ(0) = 50, which is very far from the true

value. We replicate the experiment R = 50000 times, and we compute the sample mean squared error (MSE)

of the estimator of µ across Monte Carlo runs.

The results of the Monte Carlo experiment for different combinations of ν, ρ, γ, n and S, are depicted in

Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4.
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n=10

n=20

n=40

n=80

n=160

n=320

n=640

MSE

ρ=0.1

0.171

0.292

0.5

0.171

0.292

0.5

0.171

0.292
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0.171

0.292

0.5

0.171

0.292
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0.171
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γ

ρ=0.5

0.4 0.6 0.8 1.0 1.2 1.4

ρ=0.9

0.4 0.6 0.8 1.0 1.2 1.4

Figure 6.1: Behavior of the MSE of the estimator of µ for S = 10, Ni = 10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line),

Ni = 10 × i
1
2 (dotted line), Ni = 10 × i

5
8 (dot-dashed line), Ni = 10 × i

3
4 (long-dashed line), and different combinations of

ρi = i−ρ, γi = i−γ and n, with respect to its Cramér—Rao Lower Bound (grey horizontal line).
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n=10

n=20

n=40

n=80

n=160

n=320

n=640

MSE

ρ=0.1

0.037
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0.037

0.136
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0.037

0.136
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0.037

0.136

0.5
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γ

ρ=0.5
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0.4 0.6 0.8 1.0 1.2 1.4

Figure 6.2: Behavior of the MSE of the estimator of µ for S = 100, Ni = 10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line),

Ni = 10 × i
1
2 (dotted line), Ni = 10 × i

5
8 (dot-dashed line), Ni = 10 × i

3
4 (long-dashed line), and different combinations of

ρi = i−ρ, γi = i−γ and n, with respect to its Cramér–Rao Lower Bound (grey horizontal line).
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Figure 6.3: Behavior of the MSE of the estimator of µ for S = 1000, Ni = 10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line),

Ni = 10 × i
1
2 (dotted line), Ni = 10 × i

5
8 (dot-dashed line), Ni = 10 × i

3
4 (long-dashed line), and different combinations of

ρi = i−ρ, γi = i−γ and n, with respect to its Cramér–Rao Lower Bound (grey horizontal line).
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Figure 6.4: Behavior of the MSE of the estimator of µ for S = 10000, Ni = 10× i
1
4 (solid line), Ni = 10× i

3
8 (dashed line),

Ni = 10 × i
1
2 (dotted line), Ni = 10 × i

5
8 (dot-dashed line), Ni = 10 × i

3
4 (long-dashed line), and different combinations of

ρi = i−ρ, γi = i−γ and n, with respect to its Cramér–Rao Lower Bound (grey horizontal line).
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We can state some considerations based on the outcomes of the simulation study. The őrst comment

concerns the impact of the number of steps n of the algorithm on the MSE; the second regards the role of

Ni and ρi; the third concerns the behavior of the learning parameter γ.

First of all, let us consider the role of the number of steps n of the algorithm. In most cases, the MSE

approaches the CramérśRao Lower Bound (CRLB) as n → ∞. Theorem 14 predicts that convergence is

not guaranteed for γ > 1, γ ≤ 1 −
(
ν
2 − ρ

)
∨ ρ, and for ν > 2ρ. The őgures are coherent with this fact:

convergence seems to fail for large ρ especially for small γ, when the second condition boils down to γ ≤ 1−ρ

and is veriőed. For small S, a fairly low number of iterations n can be sufficient to reach a value of the MSE

near the CRLB. However, this is partly an artifact of the logarithmic ordinate axis.

Second, the dependence of the MSE on Ni is monotonic. Indeed, when Ni grows faster or, equivalently,

ν is larger, the MSE approaches monotonically from above the CRLB. This is at odds with the dependence

of the MSE on ρi and on the number of steps n of the algorithm. Indeed, for ρi = i−0.1 and ρi = i−0.5, the

MSE is monotonically decreasing in n. However, this behavior breaks down for ρi = i−0.9: (i) for larger ν,

the MSE decreases as n increases; (ii) for smaller ν, an increasing n may lead to a higher MSE, especially

for small values of γ. Otherwise stated, for small n, say n < 80, the optimization routine acts as in the case

of ρi = ρ−0.1 and ρi = ρ−0.5, while, for n ≥ 80, the effect of Ni is predominant, as the optimization scheme

seems to reach the CRLB only when Ni grows fast enough. This is in line with the results in Table 1 and in

Theorem 14: őrst, from Table 1 the escape probability for SAS with D = 1 diverges when ρ is large and ν is

small, i.e. when ρi decreases slowly (as in ρi = i−0.9) and Ni diverges slowly (as in Ni = 10 × i
1
4 ); second,

the convergence rate in Theorem 14 is OP

(
n−( ν

4−
ρ
2 )∧

ρ
2

)
, it worsens when ρ is large and ν is small and no

convergence is guaranteed when ν > 2ρ. In this case, a larger n has a negative effect on the convergence

rate.

Third, for γ = 1, Theorem 14 predicts a discontinuity in the behavior of the MSE, as for γ > 1 the

algorithm is not guaranteed to converge. However, the simulation experiment tells a more nuanced story.

The discontinuity seems to depend on n. In particular, as n increases the algorithm converges also for values

of γ larger than 1.

Given all the above, we can claim that the Monte Carlo experiment seems to conőrm the theoretical

results.

7 Conclusions

In this paper, we provide some new, general results of interest for both the econometric and the machine

learning literature.

In the őrst part of the paper, we study some conditions under which the sequence of values produced by

an optimization algorithm,
{
θ(i)
}

, converges to the optimum of the function, θ⋆. These assumptions do not

depend on the speciőc choice of the approximated gradient and Hessian and are of general interest as they

expand some results in the optimization and machine learning literature. The main results of this part of

the paper concern the analysis of the algorithms as a function of the number of steps: (i) rigorous results on

the convergence rates of INM and SAS; (ii) upper bounds on the escape probabilities of INM and SAS; (iii)

upper bounds on the probability that SAS don’t visit a region where the score is near to zero.

Subsequently, we propose a special version of the inexact Newton method (see Dembo et al., 1982), i.e.

GINM, which has been thought to estimate complex and intractable objective functions (e.g., discontinuous,

non-differentiable, non-convex criterion function), even when the (stochastic) equicontinuity hypothesis is
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violated. We start by selecting P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood of θ(i), we compute the

values F̂ (θ) for θ ∈ Pi

(
θ(i)
)
, and we estimate through a regression a locally approximating function F̃ (·)

based on these points. We distinguish two cases: (i) when dealing with SAS, we estimate F̃ (·) using a linear

regression; (ii) when dealing with INM, we exploit a quadratic regression for the estimation of F̃ (·). Once

F̃ (θ) has been estimated, we calculate its őrst and second derivatives (i.e. only the the őrst derivative for

SAS and both the őrst and second derivative for INM) and we substitute them in the optimization routine

to őnd θ⋆.

After discussing the general construction of the optimization algorithms, we show their asymptotic prop-

erties by providing some upper bounds on the approximation error of F̃ (·), ˙̃F (·) and ¨̃F (·). Moreover,

since most optimization methods rely on the construction of a series of values θ(i) that should approach

θ⋆, we provide some rigorous bounds for
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
. These bounds can be applied also in the study

of the impact of numerical differentiation in optimization algorithms. Combining the latter results and the

bounds on the (approximated) objective function and its derivatives, we prove several convergence results.

We stress that, provided some quantities characterizing the algorithm are chosen judiciously, the limit of

the sequence
{
θ(i)
}

is the minimum of F (·) and is independent of F̂ (·), at odds with what happens with

classical simulation-based estimation algorithms. The computational aspects of the GINM are also treated.

The GINM is őnally used in an extensive MC experiment. The outcomes of the MC experiment conőrm the

theoretical results.
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8 Proofs

In this section we use the deőnition η(i) := ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)
.

8.1 Preliminary Lemmas

We will need some preliminary lemmas. The őrst concerns some properties of the derivatives of F , the second

provides a bound on the size of the vector r(i) := Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)
, the third yields

a solution to the recursive inequality xn+1 ≤ an + bnxn, the fourth, őfth and sixth provide bounds for

generalized harmonic numbers and related sequences, the seventh majorizes a sum with an integral, the

eighth gives an asymptotic expression for a series, the ninth characterizes the behavior of λmin (X
′X) when

the points in Pi

(
θ(i)
)

shrink towards θ(i), and the last provides upper bounds on the norm of vectors of

monomials.

Lemma 2. Under Lip-1, we have

∣∣∣F (θ1)− F (θ2)− (θ1 − θ2)
′
Ḟ (θ1)

∣∣∣ ≤ L1

2
∥θ1 − θ2∥22 ,

∥∥∥Ḟ (θ)
∥∥∥
2
≤ L1 ∥θ − θ⋆∥2 .

Under Lip-2, the following inequalities hold:

∥∥∥Ḟ (θ1)− Ḟ (θ2)− F̈ (θ1) (θ1 − θ2)
∥∥∥
2
≤ L2

2
∥θ1 − θ2∥22 ,

∥∥∥Ḟ (θ)
∥∥∥
2
≤
∥∥∥F̈ (θ⋆)

∥∥∥
2
∥θ − θ⋆∥2 +

L2

2
∥θ − θ⋆∥22 ,

∣∣∣λmin

(
F̈ (θ)

)
− λmin

(
F̈ (θ⋆)

)∣∣∣ ≤ L2 ∥θ − θ⋆∥2

and

∣∣∣∣∣F (θ2)− F (θ1)− (θ2 − θ1)
′
Ḟ (θ1)−

(θ2 − θ1)
′
F̈ (θ1) (θ2 − θ1)

2

∣∣∣∣∣

≤ L2

6
∥θ2 − θ1∥32 .

Proof. We start from the őrst inequality. First of all, we deőne g (t) := F (θ1 + t (θ2 − θ1)) for t ∈ [0, 1].

Then, from the differentiability of F , we have

g (1) = g (0) + g′ (0) +

∫ 1

0

(g′ (t)− g′ (0)) dt

or

F (θ2) = F (θ1) + (θ2 − θ1)
′
Ḟ (θ1) +

∫ 1

0

(θ2 − θ1)
′
(
Ḟ (θ1 + t (θ2 − θ1))− Ḟ (θ1)

)
dt.

From Lip-1, this can be written as

∣∣∣F (θ2)− F (θ1)− (θ2 − θ1)
′
Ḟ (θ1)

∣∣∣

≤ ∥θ2 − θ1∥2
∫ 1

0

∥∥∥Ḟ (θ1 + t (θ2 − θ1))− Ḟ (θ1)
∥∥∥
2
dt
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≤ L1 ∥θ2 − θ1∥22
∫ 1

0

tdt =
L1

2
∥θ2 − θ1∥22 .

The second one is trivially true from Lip-1.

In what follows, we suppose that Lip-2 holds true.

The third inequality can be proved along the lines of the őrst one, deőning g (t) := λ′Ḟ (θ1 + t (θ2 − θ1))

for t ∈ [0, 1] and λ ∈ R
K\ {0}.

For the fourth inequality, we write

Ḟ (θ) = F̈ (θ⋆) (θ − θ⋆) +
{
Ḟ (θ)− Ḟ (θ⋆)− F̈ (θ⋆) (θ − θ⋆)

}
,

∥∥∥Ḟ (θ)
∥∥∥
2
≤
∥∥∥F̈ (θ⋆)

∥∥∥
2
∥θ − θ⋆∥2 +

∥∥∥Ḟ (θ)− Ḟ (θ⋆)− F̈ (θ⋆) (θ − θ⋆)
∥∥∥
2
. (8.1)

Using the third inequality, we get the őnal result.

For the őfth inequality, a consequence of CourantśFischer theorem is that, for Hermitian A and B,

|λmin (A)− λmin (B)| ≤ ∥A−B∥2. Therefore,

∣∣∣λmin

(
F̈ (θ⋆)

)
− λmin

(
F̈ (θ)

)∣∣∣ ≤
∥∥∥F̈ (θ)− F̈ (θ⋆)

∥∥∥
2
.

Combining this with Lip-2, we get the result.

At last, as above, we deőne g (t) := F (θ1 + t (θ2 − θ1)) for t ∈ [0, 1]. Then, the őrst-order Taylor

expansion with integral remainder yields

g (t) = g (0) + g′ (0) t+

∫ t

0

g′′ (s) (t− s) ds

= g (0) + g′ (0) t+

∫ t

0

g′′ (t− u)udu,

g (1) = g (0) + g′ (0) +
g′′ (0)

2
+

∫ 1

0

[g′′ (1− u)− g′′ (0)]udu.

From this and Lip-2, one gets

∣∣∣∣∣F (θ2)− F (θ1)− (θ2 − θ1)
′
Ḟ (θ1)−

(θ2 − θ1)
′
F̈ (θ1) (θ2 − θ1)

2

∣∣∣∣∣

≤ ∥θ2 − θ1∥22
∫ 1

0

∥∥∥F̈ (θ1 + (1− u) (θ2 − θ1))− F̈ (θ1)
∥∥∥
2
udu

≤ L2 ∥θ2 − θ1∥32
∫ 1

0

(1− u)udu =
L2

6
∥θ2 − θ1∥32 .

QED

Lemma 3. Under Lip-1, if λmin

(
F̈
(
θ(i)
))

> δ
(i)
2 , we have

∥∥∥r(i)
∥∥∥
2
≤

δ
(i)
1 λmin

(
F̈
(
θ(i)
))

+ δ
(i)
2 L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2
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and

∥∥∥r(i)
∥∥∥
2
≤

δ
(i)
1 λmin

(
F̈
(
θ(i)
))

+ δ
(i)
2

(∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

)

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

.

Under Lip-2, if λmin

(
F̈ (θ⋆)

)
> K |F |2,1

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ δ

(i)
2 , we have

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

+ δ
(i)
2

L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

and

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

+ δ
(i)
2

∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

.

Proof. We write

∥∥∥r(i)
∥∥∥
2
=

∥∥∥∥Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)∥∥∥∥

2

≤ δ
(i)
1 +

∥∥∥∥
˙̃F
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)∥∥∥∥

2

≤ δ
(i)
1 +

∥∥∥∥IK − F̈
(
θ(i)
) [

¨̃F
(
θ(i)
)]−1

∥∥∥∥
2

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2

≤ δ
(i)
1 + δ

(i)
2

∥∥∥∥
[
¨̃F
(
θ(i)
)]−1

∥∥∥∥
2

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2

≤ δ
(i)
1 +

δ
(i)
2

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2

λmin

[
¨̃F
(
θ(i)
)] (8.2)

where we have used the fact that

∥∥∥∥
[
¨̃F
(
θ(i)
)]−1

∥∥∥∥
2

= λmax

([
¨̃F
(
θ(i)
)]−1

)
= λ−1

min

[
¨̃F
(
θ(i)
)]

.

First, we majorize
∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
in (8.2) as

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
≤
∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
+
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= δ

(i)
1 +

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
. (8.3)

Therefore, from the second and fourth inequalities of Lemma 2, we have

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
≤ δ

(i)
1 + L1

∥∥∥θ(i) − θ⋆
∥∥∥
2
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or ∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
≤ δ

(i)
1 +

∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
.

Second, we deal with λmin

[
¨̃F
(
θ(i)
)]

in (8.2). From Weyl’s inequality λmin (A+B) ≤ λmin (A) +

λmax (B) for Hermitian A and B, taking A = ¨̃F
(
θ(i)
)

and B = F̈
(
θ(i)
)
− ¨̃F

(
θ(i)
)
, we get

λmin

(
¨̃F
(
θ(i)
))

≥ λmin

(
F̈
(
θ(i)
))

− λmax

(
F̈
(
θ(i)
)
− ¨̃F

(
θ(i)
))

≥ λmin

(
F̈
(
θ(i)
))

−
∥∥∥F̈
(
θ(i)
)
− ¨̃F

(
θ(i)
)∥∥∥

2
= λmin

(
F̈
(
θ(i)
))

− δ
(i)
2 .

Replacing these formulas into (8.2), we get the őrst bounds in the forms

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1 +

δ
(i)
2

(
δ
(i)
1 + L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

)

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

and

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1 +

δ
(i)
2

(
δ
(i)
1 +

∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

)

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

.

This may be sufficient for most applications.

However, in the following we remove the dependence on θ(i) from λmin

(
F̈
(
θ(i)
))

in the denominator.

From λmin

(
¨̃F
(
θ(i)
))

≥ λmin

(
F̈
(
θ(i)
))

− δ
(i)
2 , using the őfth inequality of Lemma 2:

λmin

(
¨̃F
(
θ(i)
))

≥ λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2 .

At last we get the formula of the statement. QED

Lemma 4. Let the sequence {xn}n≥0 be such that

xn+1 ≤ an + bnxn, n ≥ 0,

for two sequences {an}n≥0 and {bn}n≥0. Then

xn+1 ≤
n∑

j=0

aj

n∏

k=j+1

bk + x0

n∏

k=0

bk, (8.4)

where, by convention, empty products are equal to 1.

Remark 21. Recurrences of the form xn+1 = an + bnxn have been considered, with some modiőcations, by

Vervaat (1979); Bougerol and Picard (1992); Rachev and Samorodnitsky (1995); Babillot et al. (1997) among

many others.

Proof. We prove the recurrence by induction. First of all, for n = 0, we have

x1 ≤ a0 + b0x0.
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Moreover, if (8.4) holds for n = h− 1, it also holds for n = h. Indeed,

xh+1 ≤ ah + bhxh

≤ ah + bh




h−1∑

j=0

aj

h−1∏

k=j+1

bk + x0

h−1∏

k=0

bk




=

h∑

j=0

aj

h∏

k=j+1

bk + x0

h∏

k=0

bk.

This proves the claim. QED

Lemma 5. For −1 < α and α ̸= 1,

−α

8
n−1−α ≤

n∑

k=1

k−α − ζ (α)− 1

1− α
n1−α − 1

2
n−α ≤ 0.

For α = 1,

0 ≤
n∑

k=1

k−1 − γ(0) − lnn ≤ 1

n
,

where γ(0) denotes the Euler–Mascheroni constant.

Remark 22. The proof of the őrst inequality is inspired by that in robjohn (https://math.stackexchange.com/users/13854/robjohn

Proof. We őrst note (see, e.g., Seri, 2015, Eq. (1)) that

n∑

k=1

k−α = ζ (α) +
1

1− α
n1−α +

1

2
n−α +O

(
n−1−α

)
.

Through integration by parts of a RiemannśStieltjes integral,

n∑

k=1

k−α =

∫ n+

1−
x−αd ⌊x⌋

=

∫ n

1

x−αdx−
∫ n+

1−
x−αd

(
{x} − 1

2

)

=
1

1− α

(
n1−α − 1

)
+

1

2
n−α +

1

2
− α

∫ n

1

x−1−α

(
{x} − 1

2

)
dx. (8.5)

We equate the two expressions and take the limit for n → ∞:

ζ (α) = − 1

1− α
+

1

2
− α

∫ ∞

1

x−1−α

(
{x} − 1

2

)
dx.

Using this formula in (8.5), we get

n∑

k=1

k−α =
1

1− α

(
n1−α − 1

)
+

1

2
n−α +

1

2
− α

∫ n

1

x−1−α

(
{x} − 1

2

)
dx

=
1

1− α

(
n1−α − 1

)
+

1

2
n−α +

1

2
− α

∫ n

1

x−1−α

(
{x} − 1

2

)
dx
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+ ζ (α) +
1

1− α
− 1

2
+ α

∫ ∞

1

x−1−α

(
{x} − 1

2

)
dx

= ζ (α) +
1

1− α
n1−α +

1

2
n−α + α

∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx.

The last integral can be written as a telescoping series of integrals:

∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx =

∞∑

k=n

∫ k+1

k

x−1−α

(
{x} − 1

2

)
dx.

We note that

∣∣∣∣∣

∫ k+1

k

x−1−α

(
{x} − 1

2

)
dx

∣∣∣∣∣

=

∣∣∣∣∣

∫ k+1

k

(
x−1−α − (k + 1)

−1−α
+ k−1−α

2

)(
{x} − 1

2

)
dx

∣∣∣∣∣

≤ max
x∈[k,k+1]

∣∣∣∣∣x
−1−α − (k + 1)

−1−α
+ k−1−α

2

∣∣∣∣∣

∫ k+1

k

∣∣∣∣{x} −
1

2

∣∣∣∣ dx

=
k−1−α − (k + 1)

−1−α

8

from which ∣∣∣∣
∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx

∣∣∣∣ ≤
∞∑

k=n

k−1−α − (k + 1)
−1−α

8
=

n−1−α

8
.

This implies that ∣∣∣∣∣

n∑

k=1

k−α − ζ (α)− 1

1− α
n1−α − 1

2
n−α

∣∣∣∣∣ ≤
αn−1−α

8
.

However, we can improve the bound in one direction. Indeed,

∫ k+1

k

x−1−α

(
{x} − 1

2

)
dx

=

∫ 1

0

(x+ k)
−1−α

(
x− 1

2

)
dx

=

∫ 1
2

0

[
(k + 1− x)

−1−α − (x+ k)
−1−α

](1

2
− x

)
dx.

Now, for x ∈
[
0, 1

2

]
, x + k < k + 1 − x and (x+ k)

−1−α
> (k + 1− x)

−1−α
. Therefore, the integral is

negative. At last,

−n−1−α

8
≤
∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx ≤ 0.

From this, the őrst result follows. The inequalities for α = 1 are mentioned, e.g., in Jameson (2015, p. 75),

where even more accurate bounds are proposed. QED

Lemma 6. Let
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
for ξ > γ > 0. If γ ̸= 1 and ξ ̸= 1,

(c1ζ (γ)− c2ζ (ξ)) +
c1

1− γ
i1−γ +

c1
2
i−γ − c1γ

8
i−1−γ − c2

1− ξ
i1−ξ − c2

2
i−ξ
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≤
i−1∑

k=0

γk+1 ≤ (c1ζ (γ) + c2ζ (ξ)) +
c1

1− γ
i1−γ +

c1
2
i−γ +

c2
1− ξ

i1−ξ +
c2
2
i−ξ.

If γ = 1,

(
c1γ(0) − c2ζ (ξ)

)
+ c1 ln i−

c2
1− ξ

i1−ξ − c2
2
i−ξ

≤
i−1∑

k=0

γk+1 ≤
(
c1γ(0) + c2ζ (ξ)

)
+ c1 ln i+ c1i

−1 +
c2

1− ξ
i1−ξ +

c2
2
i−ξ.

Proof. From
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
, we have

c1 (k + 1)
−γ − c2 (k + 1)

−ξ ≤ γk+1 ≤ c1 (k + 1)
−γ

+ c2 (k + 1)
−ξ

,

c1

i−1∑

k=0

(k + 1)
−γ − c2

i−1∑

k=0

(k + 1)
−ξ ≤

i−1∑

k=0

γk+1 ≤ c1

i−1∑

k=0

(k + 1)
−γ

+ c2

i−1∑

k=0

(k + 1)
−ξ

,

c1

i∑

k=1

k−γ − c2

i∑

k=1

k−ξ ≤
i−1∑

k=0

γk+1 ≤ c1

i∑

k=1

k−γ + c2

i∑

k=1

k−ξ.

Through Lemma 5, the őnal results follow. QED

Lemma 7. Let
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
for ξ > γ > 0. If γ ̸= 1 and ξ ̸= 1,

i∑

k=j+1

γk+1 ≤ 2c2ζ (ξ) +
c1

1− γ

[
(i+ 1)

1−γ − (j + 1)
1−γ
]
+

c1
2

[
(i+ 1)

−γ − (j + 1)
−γ
]

+
c2

1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]
+

c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
+

c1γ

8
(j + 1)

−1−γ

and

i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) +
c1

1− γ

[
(i+ 1)

1−γ − (j + 1)
1−γ
]
+

c1
2

[
(i+ 1)

−γ − (j + 1)
−γ
]

− c2
1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]
− c2

2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1γ

8
(i+ 1)

−1−γ
.

If γ = 1,

i∑

k=j+1

γk+1 ≤ 2c2ζ (ξ) + c1 ln

(
i+ 1

j + 1

)
+

c2
1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]

+
c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
+ c1 (i+ 1)

−1

and

i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) + c1 ln

(
i+ 1

j + 1

)
− c2

1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]

− c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1 (j + 1)

−1
.
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Proof. The proof is trivial from
∑i−1

k=j γk+1 =
∑i−1

k=0 γk+1 −
∑j−1

k=0 γk+1 and Lemma 6. QED

Lemma 8. Let f : R → R and g : R → R be respectively a decreasing and an increasing function. Then,

b∑

i=a

f (i) g (i) ≤
∫ b

a−1

f (x) g (x+ 1) dx.

Proof. The proof is trivial from

∫ b

a−1

f (x) g (x+ 1) dx =

b∑

i=a

∫ i

i−1

f (x) g (x+ 1) dx ≥
b∑

i=a

f (i) g (i) .

QED

Lemma 9. Define

S :=
i∑

j=0

(j + 1)
−A

exp



k1 (j + 1)

B1 +
J∑

j=2

kj (j + 1)
Bj





where k1 > 0, 1 > B1 > 0, Bj < B1 for j = 2, . . . . , J . Then, as i → ∞,

S ≃
(i+ 1)

1−A−B1 exp
(∑J

j=1 kj (i+ 1)
Bj

)

k1B1
.

Proof. We apply EulerśMaclaurin formula to S to get

S ≃
∫ i

0

(x+ 1)
−A

exp





J∑

j=1

kj (x+ 1)
Bj



 dx

+
1

2



exp




J∑

j=1

kj


+ (i+ 1)

−A
exp





J∑

j=1

kj (i+ 1)
Bj







 . (8.6)

Using the substitution x = z (i+ 1)− 1, the integral can be written as

∫ i

0

(x+ 1)
−A

exp





J∑

j=1

kj (x+ 1)
Bj



 dx

= (i+ 1)
1−A

∫ 1

1
i+1

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

= (i+ 1)
1−A

∫ 1

1
2

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

+ (i+ 1)
1−A

∫ 1
2

1
i+1

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz. (8.7)
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We start from the őrst integral in (8.7) that, through the substitution t = 2 (1− z), becomes

∫ 1

1
2

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

=
1

2

∫ 1

0

(
1− t

2

)−A

exp





J∑

j=1

kj

(
1− t

2

)Bj

(i+ 1)
Bj



 dt

=
exp

(∑J
j=2 kj (i+ 1)

Bj

)

2

∫ 1

0

(
1− t

2

)−A

· exp



k1

(
1− t

2

)B1

(i+ 1)
B1 +

J∑

j=2

kj

[(
1− t

2

)Bj

− 1

]
(i+ 1)

Bj



 dt.

Now we apply Theorem 2.1 in Olver (1997, p. 326), stated for an integral
∫ k

0
e−xp(t)+r(x,t)q (x, t) dt. In the

notation of Olver, x = (i+ 1)
B1 . As to condition (i) in his theorem, we have

p (t) = −k1

(
1− t

2

)B1

= −k1 +
k1B1t

2
+O

(
t2
)
,

p′ (t) =
k1B1

2

(
1− t

2

)B1−1

=
k1B1

2
+O (t)

from which it is clear that p (0) = −k1, P = k1B1

2 , µ = 1 and µ1 = 2. Now, we pass to condition (ii). Then,

r (x, t) =

J∑

j=2

kj

[(
1− t

2

)Bj

− 1

]
x

Bj
B1 ,

|r (x, t)| ≤
J∑

j=2

|kj |
∣∣∣∣∣

(
1− t

2

)Bj

− 1

∣∣∣∣∣x
Bj
B1

≤




J∑

j=2

|kj |


max

j

∣∣∣∣∣

(
1− t

2

)Bj

− 1

∣∣∣∣∣x
maxj

Bj
B1 .

We need to majorize this through Rxαtν . We can take α = maxj
Bj

B1
, 0 < ν < 1 and R large enough. At

last, for q (x, t) =
(
1− t

2

)−A
, we need

∣∣q (x, t)−Qtλ−1
∣∣ ≤ Q1x

βtλ1−1.

It is clear that λ = 1 and Q = 1, so that
∣∣q (x, t)−Qtλ−1

∣∣ =
∣∣∣1−

(
1− t

2

)−A
∣∣∣. This must be majorized by

Q1x
βtλ1−1 where β = 0. We can take 1 < λ1 < 2 and Q1 large enough. Then, p (0) = −k1, P = k1B1

2 ,

µ = 1, µ1 = 2, α = maxj
Bj

B1
, 0 < ν < 1, λ = 1, Q = 1, β = 0, λ1 < 2. The conditions ν ≥ 0, λ > 0, λ1 > 0,

α < 1 ∧ ν
µ
, β < λ1−λ

µ
in the statement are veriőed by taking ν = 1− ε and λ1 = 2− ε for suitably small ε.

At last, the integral behaves like

Q

µ
Γ

(
λ

µ

)
e−xp(0)

(Px)
λ
µ

=
2ek1(i+1)B1

k1B1 (i+ 1)
B1
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and the őrst term in (8.7) as

(i+ 1)
1−A−B1 exp

(∑J
j=1 kj (i+ 1)

Bj

)

k1B1
.

The second integral in (8.7) can be majorized as

(i+ 1)
1−A

∫ 1
2

1
i+1

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

≤ (i+ 1)
1−A

max
z∈[ 12 , 1

i+1 ]
exp





J∑

j=1

kjz
Bj (i+ 1)

Bj





∫ 1
2

1
i+1

z−Adz

= exp





J∑

j=1

(
kj2

−Bj (i+ 1)
Bj

)
∨ kj





2A−1 (i+ 1)
1−A − 1

1−A
.

It is clear that this is of a lower order than the previous one.

At last, from (8.6), we get the őnal result. QED

Lemma 10. Let X (X0) be the matrix associated with the points in P (θ0) (P0 (θ0)). Then,

λmin (X
′X) ≥ h2Dλmin (X

′
0X0) .

Proof. Let us őx the location of the points θ0,j−θ0 for any j. Let us see what happens when we multiply

each one of these vectors by a constant h. This should represent what happens when all points in P0 (θ0)

shrink towards θ0. When passing from θ0,j − θ0 to θj − θ0 = h (θ0,j − θ0), the generic vector xD (θ0,j)

is multiplied by a vector containing powers of h from degree 0 to degree D, according to the degree of the

respective element of xD (θ0,j). Calling h the vector containing the previously described powers of h, we

pass from xD (θ0,j) to xD (θj) = xD (θ0,j)⊙h. When building the design matrix, we have X = X0⊙ (ιNh′).

From Styan (1973, p. 221, (2.11)),

X0 ⊙ (ιNh′) = dg (ιN )X0dg (h) = X0dg (h) ,

from which X′X = dg (h)X′
0X0dg (h). Now, from the variational property of eigenvalues,

λmin (X
′X) = λmin (dg (h)X

′
0X0dg (h)) ≥ λmin

(
dg (h)

2
)
λmin (X

′
0X0) = h2Dλmin (X

′
0X0) .

QED

Lemma 11. Let xD (θ) be the vector containing all monomials of elements of θ ∈ R
K up to degree D.

Then,

max
θ∈ρB

∥xD (θ)∥2 ≤
√

ρ2(D+1) − 1

ρ2 − 1
.

Let Dk denote the element-wise derivative with respect to the multi-index k. Then,

max
|k|=S

max
θ∈ρB

∥∥DkxD (θ)
∥∥
2
≤ S!

√√√√
D∑

d=S

(
d

S

)2

ρ2(d−S).
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Proof. In the proof we use the notation xd (θ) for the vector containing all monomials of degree d of ele-

ments of θ. It is clear that x0 (θ) ≡ 1 and x1 (θ) ≡ θ. Therefore, xD (θ) =
[(
x0 (θ)

)′
,
(
x1 (θ)

)′
, . . . ,

(
xD (θ)

)′]′
.

From this,

∥xD (θ)∥22 =
D∑

d=0

∥∥xd (θ)
∥∥2
2
.

It is clear that xd (θ) is a subvector of the Kronecker product of d copies of θ, so that
∥∥xd (θ)

∥∥
2
≤
∥∥∥θ⊗d

∥∥∥
2
=

∥θ∥d2. Therefore,
∥∥x0 (θ)

∥∥
2
= 1,

∥∥x1 (θ)
∥∥
2
= ∥θ∥2 ≤ ρ and

∥∥xd (θ)
∥∥
2
≤ ∥θ∥d2 ≤ ρd, from which

∥xD (θ)∥22 ≤
D∑

d=0

ρ2d.

Now we turn to the derivatives. It is not difficult to see that the derivative of xD (θ) with respect to one

element of θ, say θ1, is composed of zeros and of the elements of xD−1 (θ), each one multiplied by a different

constant. The zeros do not contribute to the norm, therefore we remove them. By induction, DkxD (θ) is

composed of zeros and of the elements of xD−|k| (θ) = xD−S (θ), each one with a different multiplicative

constant. Consider a multi-index ℓ and the monomial θℓ =
∏K

j=1 θ
ℓj
j . Then, Dkθℓ =

∏K
j=1

ℓj !
(ℓj−kj)!

θ
ℓj−kj

j

provided ℓj ≥ kj for any j, and Dkθℓ = 0 if ℓj < kj for some j. For őxed |ℓ| and |k|, the largest leading

constant is obtained when ℓ and k contain only one element different from zero and the indexes of the two

elements coincide. The leading constant is then |ℓ|!
(|ℓ|−|k|)! . We can thus majorize the constants multiplying the

monomials of order |ℓ| − |k| in DkxD (θ) times |ℓ|!
(|ℓ|−|k|)! . Therefore, the norm of DkxD (θ) can be majorized

by the norm of

[ |k|!
(|k| − |k|)!

(
x0 (θ)

)′
,

(|k|+ 1)!

(|k|+ 1− |k|)!
(
x1 (θ)

)′
, . . . ,

D!

(D − |k|)!
(
xD−|k| (θ)

)′]′
.

As a result,

∥∥DkxD (θ)
∥∥2
2
≤

D∑

d=S

d!

(d− S)!

∥∥xd−S (θ)
∥∥2
2
.

The norm of
∥∥xd (θ)

∥∥
2

can be majorized by ρd as above. At last, we get

√
∑D

d=S

(
d!

(d−S)!

)2
ρ2(d−S) from

which the result follows. QED

8.2 Proofs of Optimization Results

8.2.1 Inexact Newton Methods

Proof of Theorem 1. We note that (3.1) can be written as in (3.2):

F̈
(
θ(i)
)(

θ(i+1) − θ(i)
)
= −Ḟ

(
θ(i)
)
+ r(i)

with

r(i) = Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)
.
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Using the fact that Ḟ (θ⋆) = 0, this can be written as

θ(i+1) − θ⋆ =
[
F̈
(
θ(i)
)]−1 {

r(i) +
[
F̈
(
θ(i)
)
− F̈ (θ⋆)

] (
θ(i) − θ⋆

)

−
[
Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)]}
.

Taking norms,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤
∥∥∥∥
[
F̈
(
θ(i)
)]−1

∥∥∥∥
2

{∥∥∥r(i)
∥∥∥
2
+
∥∥∥F̈
(
θ(i)
)
− F̈ (θ⋆)

∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

+
∥∥∥Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)∥∥∥
2

}
. (8.8)

From the third inequality in Lemma 2 and from Lip-2, we respectively get

∥∥∥Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)∥∥∥
2
≤ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

and ∥∥∥F̈
(
θ(i)
)
− F̈ (θ⋆)

∥∥∥
2
≤ L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
.

Replacing these inequalities into (8.8) and using the equality

∥∥∥∥
(
F̈
(
θ(i)
))−1

∥∥∥∥
2

= λmax

((
F̈
(
θ(i)
))−1

)
=

λ−1
min

(
F̈
(
θ(i)
))

and the second formula of Lemma 3, we get the őnal result. QED

Proof of Corollary 1. The őrst formula in the statement can be obtained rewriting the inequality in

Remark 3 (i) as

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))



δ

(i)
1


1 +

δ
(i)
2

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2




+δ
(i)
2

L1

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+

3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2





and remarking that, from the őfth inequality of Lemma 2,

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ λmin

(
F̈
(
θ(i)
))

.

The second formula can be obtained using the fact that, under Hess, λmin

(
F̈
(
θ(i)
))

≥ m (see Bertsekas

et al., 2003, p. 72). QED

Proof of Theorem 2. From Theorem 1 and Remark 3 (i), under Lip-2 and Hess, we can write

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

m− δ
(i)
2



δ

(i)
1 +

δ
(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

m
M +

3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 , (8.9)
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where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
, L1

}
. Deőne

a(i) :=
δ
(i)
1

m− δ
(i)
2

,

b(i) :=
δ
(i)
2 M

m
(
m− δ

(i)
2

) +
3L2

2
(
m− δ

(i)
2

)∆

for i ≥ 0. If
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤ δ

(0)
1

m− δ
(0)
2

+





δ
(0)
2 M

m
(
m− δ

(0)
2

) +
3L2

2
(
m− δ

(0)
2

)∆




∥∥∥θ(0) − θ⋆

∥∥∥
2

≤ a(0) + b(0)
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ a(0) + b(0)∆.

If
∥∥∥θ(1) − θ⋆

∥∥∥
2

is smaller than ∆, we can reiterate the reasoning to get

∥∥∥θ(2) − θ⋆
∥∥∥
2
≤ δ

(1)
1

m− δ
(1)
2

+





δ
(1)
2 M

m
(
m− δ

(1)
2

) +
3L2

2
(
m− δ

(1)
2

)
∥∥∥θ(1) − θ⋆

∥∥∥
2




∥∥∥θ(1) − θ⋆

∥∥∥
2

≤ δ
(1)
1

m− δ
(1)
2

+





δ
(1)
2 M

m
(
m− δ

(1)
2

) +
3L2

2
(
m− δ

(1)
2

)∆




∥∥∥θ(1) − θ⋆

∥∥∥
2

= a(1) + b(1)
∥∥∥θ(1) − θ⋆

∥∥∥
2
.

This happens if
∥∥∥θ(1) − θ⋆

∥∥∥
2
≤ a(0) + b(0)∆ ≤ ∆, i.e. if a(0) ≤

(
1− b(0)

)
∆. Provided a(i) ≤

(
1− b(i)

)
∆ for

any i, the reasoning leads, through Lemma 4, to

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤

i∑

j=0

a(j)
i∏

k=j+1

b(k) +∆

i∏

k=0

b(k).

Note that the requirement a(i) ≤
(
1− b(i)

)
∆ is necessary to replace with ∆ the occurrence of

∥∥∥θ(i) − θ⋆
∥∥∥
2

in braces in (8.9). If

b(i) ≤ c1

(
1 + c2 (i+ 1)

−ξ
)
,

from Lemma 5, we can write

i∏

k=0

b(k) ≤ ci+1
1 exp

{
i∑

k=0

ln
(
1 + c2 (k + 1)

−ξ
)}

≤ ci+1
1 exp

{
c2

i∑

k=0

(k + 1)
−ξ

}
= ci+1

1 exp

{
c2

i+1∑

k=1

k−ξ

}

=




ci+1
1 exp

{
c2

(
ζ (ξ) + 1

1−ξ
(i+ 1)

1−ξ
+ 1

2 (i+ 1)
−ξ
)}

, ξ > 0, ξ ̸= 1,

ci+1
1 exp

{
c2

(
γ(0) + ln (i+ 1) + 1

i+1

)}
, ξ = 1.
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≃




ci+1
1 exp

{
c2ζ (ξ) +

c2
1−ξ

i1−ξ
}
, ξ > 0, ξ ̸= 1,

ci+1
1 ic2 exp

{
c2γ(0)

}
, ξ = 1.

(8.10)

Let us suppose that ξ ̸= 1. In the same way, from Lemma 5,

i∏

k=j+1

b(k) ≤ci−j
1 exp





i∑

k=j+1

ln
(
1 + c2 (k + 1)

−ξ
)


 ≤ ci−j

1 exp



c2

i∑

k=j+1

(k + 1)
−ξ





=ci−j
1 exp

{
c2

[
i+1∑

k=1

k−ξ −
j+1∑

k=1

k−ξ

]}

≤ci−j
1 exp

{
c2

1− ξ
(i+ 1)

1−ξ
+

c2
2
(i+ 1)

−ξ − c2
1− ξ

(j + 1)
1−ξ

−c2
2
(j + 1)

−ξ
+

c2ξ

8
(j + 1)

−1−ξ

}
.

From a(j) =
δ
(j)
1

m−δ
(j)
2

≤ c3 (j + 1)
−δ

(1 + o (1)),

i∑

j=0

a(j)
i∏

k=j+1

b(k) ≲ c3c
i
1 exp

{
c2

1− ξ
(i+ 1)

1−ξ
+

c2
2
(i+ 1)

−ξ

}

·
i∑

j=0

(j + 1)
−δ

exp

{
j |ln c1| −

c2
1− ξ

(j + 1)
1−ξ − c2

2
(j + 1)

−ξ

+
c2ξ

8
(j + 1)

−1−ξ

}
.

Using Lemma 8, we can majorize the sum through an integral:

i∑

j=0

(j + 1)
−δ

exp

{
j |ln c1| −

c2
1− ξ

(j + 1)
1−ξ − c2

2
(j + 1)

−ξ
+

c2ξ

8
(j + 1)

−1−ξ

}

≤
i+1∑

j=1

j−δ exp

{
(j − 1) |ln c1| −

c2
1− ξ

j1−ξ +
c2ξ

8
j−1−ξ

}

=

i+1∑

j=2

j−δ exp

{
(j − 1) |ln c1| −

c2
1− ξ

j1−ξ +
c2ξ

8
j−1−ξ

}
+ exp

{
− c2
1− ξ

+
c2ξ

8

}

≤
∫ i+1

1

x−δ exp

{
x |ln c1| −

c2
1− ξ

x1−ξ +
c2ξ

8
x−1−ξ

}
dx+ exp

{
− c2
1− ξ

+
c2ξ

8

}
.

Through the change of variable x = (i+ 1) z, we can follow the proof of Lemma 9 to get

∫ i+1

1

x−δ exp

{
x |ln c1| −

c2
1− ξ

x1−ξ +
c2ξ

8
x−1−ξ

}
dx

≃ (i+ 1)
1−δ

exp
{
(i+ 1) |ln c1| − c2

1−ξ
(i+ 1)

1−ξ
+ c2ξ

8 (i+ 1)
−1−ξ

}

(i+ 1) |ln c1|

≃
c−i−1
1 (i+ 1)

−δ
exp

{
− c2

1−ξ
(i+ 1)

1−ξ
}

|ln c1|
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and

i∑

j=0

a(j)
i∏

k=j+1

b(k) ≲ c3c
i
1 exp

{
c2

1− ξ
(i+ 1)

1−ξ
+

c2
2
(i+ 1)

−ξ

}

·





c−i−1
1 (i+ 1)

−δ
exp

{
− c2

1−ξ
(i+ 1)

1−ξ
}

|ln c1|
+ exp

{
− c2
1− ξ

+
c2ξ

8

}


≃ c3i
−δ

c1 |ln c1|
+O

(
c−i
1 i−δ exp

{
− c2
1− ξ

(i+ 1)
1−ξ

})
.

The other term is of a lower order. If ξ = 1, from Lemma 5,

i∏

k=j+1

b(k) ≤ ci−j
1 exp





i∑

k=j+1

ln
(
1 + c2 (k + 1)

−ξ
)


 ≤ ci−j

1 exp



c2

i∑

k=j+1

(k + 1)
−ξ





= ci−j
1 exp

{
c2

[
i+1∑

k=1

k−ξ −
j+1∑

k=1

k−ξ

]}

≤ ci−j
1

(
i+ 1

j + 1

)c2

exp

{
c2

i+ 1

}

and, using the same method seen above,

i∑

j=0

a(j)
i∏

k=j+1

b(k) ≲ c3c
i
1 (i+ 1)

c2 exp

{
c2

i+ 1

} i∑

j=0

c−j
1 (j + 1)

−δ−c2

= c3c
i+1
1 (i+ 1)

c2 exp

{
c2

i+ 1

} i+1∑

j=1

c−j
1 j−δ−c2

≤ c3c
i+1
1 (i+ 1)

c2 exp

{
c2

i+ 1

}


i+1∑

j=2

j−δ−c2 exp {j |ln c1|}+ c−1
1





≤ c3c
i+1
1 (i+ 1)

c2 exp

{
c2

i+ 1

}{∫ i+1

1

x−δ−c2 exp {(x+ 1) |ln c1|} dx+ c−1
1

}

= c3c
i
1 (i+ 1)

c2 exp

{
c2

i+ 1

}

·
{
(i+ 1)

1−δ−c2

∫ 1

1
i+1

z−δ−c2 exp {(i+ 1) z |ln c1|} dz + 1

}

≃ c3c
i
1 (i+ 1)

c2 exp

{
c2

i+ 1

}{
(i+ 1)

1−δ−c2 exp {(i+ 1) |ln c1|}
(i+ 1) |ln c1|

+ 1

}

≃ c3i
−δ

c1 |ln c1|
+O

(
ci1i

c2
)
.

At last, if δ
(i)
1 ≡ 0, we have a(i) ≡ 0 and

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ ∆

∏i
k=0 b

(k). From (8.10), we have

i∏

k=0

b(k) ≲




ec2ζ(ξ)ci+1

1 exp
{

c2
1−ξ

i1−ξ
}
, ξ > 0, ξ ̸= 1,

ec2γ(0)ci+1
1 ic2 , ξ = 1,
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and the őnal result follows. QED

Proof of Theorem 3. We can write

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}

= P

{∥∥∥θ(1) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(2) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤ ∆,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(3) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(2) − θ⋆
∥∥∥
2
≤ ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤ ∆,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

+ · · ·+ P

{∥∥∥θ(n+1) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(n) − θ⋆
∥∥∥
2
≤ ∆, . . . ,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

=

n∑

i=0

P




{∥∥∥θ(i+1) − θ⋆

∥∥∥
2
> ∆

}
,

i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




=
n∑

i=0

P




∥∥∥θ(i+1) − θ⋆

∥∥∥
2
> ∆

∣∣∣∣∣∣

i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}


P





i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




=

n∑

i=0

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




where the last step derives from the fact that the sequence
{
θ(i)
}

is a Markov process. From (8.9) valid

under Assumptions Lip-2 and Hess, using m− δ
(i)
2 ≤ m, we note that

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

}

⊆
{
δ
(i)
1 m+ δ

(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
M +

3L2m

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
> ∆m

(
m− δ

(i)
2

)}
. (8.11)

Therefore, for a constant µ > 0,

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

= P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ > δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ ≤ δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
M +

3L2m

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

> ∆m
(
m− δ

(i)
2

) ∣∣∣m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ > δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ ≤ δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
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≤ P

{
δ
(i)
1 m+ δ

(i)
2 ∆M +

3L2m

2
∆2 > ∆m

(
m− δ

(i)
2

)

∣∣∣m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ > δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ ≤ δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆+

3L2m

2
∆2 > ∆m

(
m− δ

(i)
2

)
,

m− µ > δ
(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆,m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆+

3L2m

2
> ∆mµ,

m− µ > δ
(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

where the second step derives from (8.11), the third step from the majorization
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆, the őfth

step from the minorization m− δ
(i)
2 > µ.

From this inequality and P

{⋂i
j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}}
≤ P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}
, using Markov’s in-

equality, we get

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆ > ∆mµ− 3L2m

2
∆2,

m− µ > δ
(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

+ P

{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆ > ∆mµ− 3L2m

2
∆2,

m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{
m− µ ≤ δ

(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆ > ∆mµ− 3L2m

2
∆2

}

+ P

{
m− µ ≤ δ

(i)
2

}

≤
E

(
mδ

(i)
1 +M∆δ

(i)
2

)2

m2∆2
(
µ− 3L2

2 ∆
)2 +

E

(
δ
(i)
2

)2

(m− µ)
2 ,

58



provided m > µ > 3L2

2 ∆.

If we take µ = (1− ε)m, we get

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤
E

(
mδ

(i)
1 +M∆δ

(i)
2

)2

m2∆2
(
(1− ε)m− 3L2

2 ∆
)2 +

E

(
δ
(i)
2

)2

ε2m2
.

We use the inequality (a+ b)
2 ≤ 2

(
a2 + b2

)
to get

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}

=

n∑

i=0

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤
2
∑n

i=0 E

(
δ
(i)
1

)2

∆2
(
(1− ε)m− 3L2

2 ∆
)2 +

[
2ε2M2 +

(
(1− ε)m− 3L2

2 ∆
)2

ε2m2
(
(1− ε)m− 3L2

2 ∆
)2

]
n∑

i=0

E

(
δ
(i)
2

)2
.

As for the conditions, m > µ is automatically veriőed while µ > 3L2

2 ∆ becomes ∆ < 2(1−ε)m
3L2

.

Now, let us denote δ := (1− ε)m− 3L2

2 ∆ with δ > 0. As a result,

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤ 2

∆2δ2

n∑

i=0

E

(
δ
(i)
1

)2
+

(
2M2

m2δ2
+

1

ε2m2

) n∑

i=0

E

(
δ
(i)
2

)2

≤ K1

(
1

∆2

n∑

i=0

E

(
δ
(i)
1

)2
+

n∑

i=0

E

(
δ
(i)
2

)2
)

for a constant K1 depending on K, m, M , ε and δ. (In particular, one could take K1 ≥ max
{

2
δ2
, 2M2

m2δ2
+ 1

ε2m2

}
.)

Taking ∆ =

(
∑n

i=0 E

(

δ
(i)
1

)2

K2
K1

−
∑

n
i=0 E

(

δ
(i)
2

)2

) 1
2

, we can write this as

P





max
1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
>




∑n
i=0 E

(
δ
(i)
1

)2

K2

K1
−∑n

i=0 E

(
δ
(i)
2

)2




1
2





≤ K2.

Now, δ > 0 can be written as

(1− ε)m− 3L2

2
∆ > 0,

(1− ε)
2
m2

[
K2

K1
−

n∑

i=0

E

(
δ
(i)
2

)2
]
>

9L2
2

4

n∑

i=0

E

(
δ
(i)
1

)2

and this is veriőed under the conditions of the theorem. QED
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8.2.2 Stochastic Approximation Schemes

Proof of Theorem 4. From θ(i+1) = θ(i) − γi+1
˙̃F
(
θ(i)
)
,

θ(i+1) − θ⋆ = θ(i) − θ⋆ − γi+1

{
Ḟ
(
θ(i)
)
+ ˙̃F

(
θ(i)
)
− Ḟ

(
θ(i)
)}

= θ(i) − θ⋆ − γi+1Ḟ
(
θ(i)
)
− γi+1η

(i)

=
(
IK − γi+1F̈ (θ⋆)

)(
θ(i) − θ⋆

)

− γi+1

(
Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

))
− γi+1η

(i)

where the third step comes from the rewriting

Ḟ
(
θ(i)
)
= F̈ (θ⋆)

(
θ(i) − θ⋆

)
+
(
Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

))

and from the fact that Ḟ (θ⋆) = 0. Now, taking norms,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤
∥∥∥IK − γi+1F̈ (θ⋆)

∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

+ γi+1

∥∥∥Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)∥∥∥
2
+ γi+1δ

(i)
1

≤
∥∥∥IK − γi+1F̈ (θ⋆)

∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γi+1δ

(i)
1

where the őrst step comes from δ
(i)
1 =

∥∥η(i)
∥∥
2

and the second step comes from the third inequality of Lemma

2. Provided γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∥∥∥IK − γi+1F̈ (θ⋆)
∥∥∥
2
= 1− γi+1λmin

(
F̈ (θ⋆)

)
.

Therefore,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤
(
1− γi+1λmin

(
F̈ (θ⋆)

))∥∥∥θ(i) − θ⋆
∥∥∥
2
+ γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γi+1δ

(i)
1 .

QED

Proof of Theorem 5. In this case too, as in Theorem 2, we consider what happens when
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆.

We deőne

a(i) := γi+1δ
(i)
1 ,

b(i) := 1− γi+1

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
.

Then, from the result in Theorem 4 and
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤
[
1− γ1

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)]∥∥∥θ(0) − θ⋆
∥∥∥
2
+ γ1δ

(0)
1

= a(0) + b(0)
∥∥∥θ(0) − θ⋆

∥∥∥
2
.
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We now reason as in the proof of Corollary 2. If a(i) ≤
(
1− b(i)

)
∆ for any i, we get, from Lemma 4,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤

i∑

j=0

a(j)
i∏

k=j+1

b(k) +∆
i∏

k=0

b(k).

We note that

i∏

k=j+1

b(k) = exp





i∑

k=j+1

ln

[
1− γk+1

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)]


≤ exp



−

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

) i∑

k=j+1

γk+1



 .

To simplify the computations, we deőne K3 := λmin

(
F̈ (θ⋆)

)
− L2

2 ∆. Then,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



+∆exp

{
−K3

i∑

k=0

γk+1

}
. (8.12)

We note that, in order to obtain convergence to 0 of the second term in the right-hand side of this inequality,

we need
∑i

k=0 γk+1 → ∞ or γ ≤ 1. We consider the two cases, γ < 1 and γ = 1, separately.

Let us start from the case γ < 1. We őrst consider the term exp
{
−K3

∑i
k=0 γk+1

}
in (8.12). In order

to simplify the computations, we write this as

exp

{
−K3

i∑

k=0

γk+1

}
= exp

{
−K3

i−1∑

k=0

γk+1 −K3γi+1

}
.

From the inequality
∣∣∣γk+1 − c1 (k + 1)

−γ
∣∣∣ ≤ c2 (k + 1)

−ξ
, Lemma 6 yields

(c1ζ (γ)− c2ζ (ξ)) +
c1

1− γ
i1−γ +

c1
2
i−γ − c1γ

8
i−1−γ − c2

1− ξ
i1−ξ − c2

2
i−ξ ≤

i−1∑

k=0

γk+1.

Therefore,

exp

{
−K3

i∑

k=0

γk+1

}
= exp

{
−K3

i−1∑

k=0

γk+1 −K3γi+1

}

≤ exp

{
−K3c1ζ (γ) +K3c2ζ (ξ)−

K3c1
1− γ

i1−γ − K3c1
2

i−γ +
K3c1γ

8
i−1−γ

+
K3c2
1− ξ

i1−ξ +
K3c2
2

i−ξ −K3c1 (i+ 1)
−γ

+K3c2 (i+ 1)
−ξ

}

= O

(
exp

{
−K3c1
1− γ

i1−γ +
K3c2
1− ξ

i1−ξ

})
(8.13)

where we have used the fact that, from
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
, c1 (i+ 1)

−γ−c2 (i+ 1)
−ξ ≤ γi+1.

All the summands K3c1
2 i−γ , K3c1γ

8 i−1−γ , K3c2
2 i−ξ, K3c1 (i+ 1)

−γ
and K3c2 (i+ 1)

−ξ
vanish asymptotically,

the summand K3c1
1−γ

i1−γ diverges, while the behavior of K3c2
1−ξ

i1−ξ depends on the value of ξ. If ξ ≥ 1,
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O
(
exp

{
−K3c1

1−γ
i1−γ + K3c2

1−ξ
i1−ξ

})
= O

(
exp

{
−K3c1

1−γ
i1−γ

})
while, if ξ < 1, the term K3c2

1−ξ
i1−ξ cannot be

neglected.

Now we consider the őrst term in (8.12). From Lemma 7,

exp



−K3

i∑

k=j+1

γk+1





≤ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ − K3c1

2
(i+ 1)

−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

· exp
{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
. (8.14)

The őrst term in the right-hand side of (8.12) becomes

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1





≲ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ − K3c1

2
(i+ 1)

−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}
(8.15)

·
i∑

j=0

a(j) exp

{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≤ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

a(j) exp

{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
(8.16)

where we have used the majorization −K3c1
2 (i+ 1)

−γ ≤ 0. From the inequalities for γj+1 and δ
(j)
1 ,

a(j) = γj+1δ
(j)
1 ≲ c1c3 (j + 1)

−γ−δ
+ c2c3 (j + 1)

−ξ−δ
.

We express the sum replacing either (j + 1)
−γ−δ

or (j + 1)
−ξ−δ

with a generic (j + 1)
−ν

. We apply Lemma

9 to get

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1





≤ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

a(j) exp

{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≲ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}
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· c1c3
(i+ 1)

1−γ−δ−1+γ
exp

{
K3c1
1−γ

(i+ 1)
1−γ

+ K3c1
2 (i+ 1)

−γ
+ K3c2

1−ξ
(i+ 1)

1−ξ
+ K3c2

2 (i+ 1)
−ξ
}

K3c1

≃ c3
K3

(i+ 1)
−δ

exp

{
2K3c2ζ (ξ) +

K3c1
2

(i+ 1)
−γ

+
K3c1γ

8
(i+ 1)

−1−γ

+
2K3c2
1− ξ

(i+ 1)
1−ξ

+K3c2 (i+ 1)
−ξ

}

≃c3i
−δ

K3
exp

{
2K3c2ζ (ξ) +

2K3c2
1− ξ

(i+ 1)
1−ξ

}

where we have used the fact that K3c1γ
8 (i+ 1)

−1−γ
+K3c2

2 (i+ 1)
−ξ → 0. If ξ > 1,

∑i
j=0 a

(j) exp
{
−K3

∑i
k=j+1 γk+1

}
≲

c3e
2K3c2ζ(ξ)i−δ

K3
. From (8.12),

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲

c3e
2K3c2ζ(ξ)i−δ

K3
+O

(
exp

{
−K3c1
1− γ

i1−γ +
K3c2
1− ξ

i1−ξ

})
≃ c3e

2K3c2ζ(ξ)i−δ

K3
.

Now we consider the case γ = 1. We start from the second summand in the right-hand side of (8.12).

We recall, from Lemma 6 with γ = 1, that

i∑

k=0

γk+1 ≥ c1γ(0) − c2ζ (ξ) + c1 ln (i+ 1)− c2
1− ξ

(i+ 1)
1−ξ − c2

2
(i+ 1)

−ξ
.

As a result,

exp

{
−K3

i∑

k=0

γk+1

}

≤ exp

{
−K3c1γ(0) +K3c2ζ (ξ)−K3c1 ln (i+ 1) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

≲ (i+ 1)
−K3c1 exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
(8.17)

where we have used the fact that 1 − ξ < 0 and both K3c2
2 (i+ 1)

−ξ
and −K3c2

ξ−1 i1−ξ vanish asymptotically.

The second summand in the right-hand side of (8.12) becomes

∆exp

{
−K3

i∑

k=0

γk+1

}
≲ ∆i−K3c1 exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
.

Now we pass to the őrst summand in the right-hand side of (8.12), i.e.
∑i

j=0 a
(j) exp

{
−K3

∑i
k=j+1 γk+1

}
.

From Lemma 7 with γ = 1,

i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) + c1 ln

(
i+ 1

j + 1

)
− c2

1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]

− c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1 (j + 1)

−1
.
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and

exp



−K3

i∑

k=j+1

γk+1





≤
(
j + 1

i+ 1

)K3c1

exp

{
2K3c2ζ (ξ) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

· exp
{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
. (8.18)

The őrst term in the right-hand side of (8.12) becomes

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲ c1c3

i∑

j=0

(j + 1)
−1−δ

exp



−K3

i∑

k=j+1

γk+1





+ c2c3

i∑

j=0

(j + 1)
−ξ−δ

exp



−K3

i∑

k=j+1

γk+1





where

c1c3

i∑

j=0

(j + 1)
−1−δ

exp



−K3

i∑

k=j+1

γk+1





≲
c1c3

(i+ 1)
K3c1

exp

{
2K3c2ζ (ξ) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≲
c1c3e

2K3c2ζ(ξ)

(i+ 1)
K3c1

i∑

j=0

(j + 1)
K3c1−1−δ

· exp
{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

and we have used the fact that K3c2
1−ξ

(i+ 1)
1−ξ

and K3c2
2 (i+ 1)

−ξ
vanish asymptotically. Using the fact that,

for small x, ex ≃ 1 +O (x), we have

i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

=

i∑

j=0

(j + 1)
K3c1−1−δ

+O




i∑

j=0

(j + 1)
K3c1−δ−ξ∧2


 .

Reasoning in the same way, the remaining term behaves like

c2c3

i∑

j=0

(j + 1)
−ξ−δ

exp



−K3

i∑

k=j+1

γk+1




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≲
c2c3

(i+ 1)
K3c1

exp

{
2K3c2ζ (ξ) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

(j + 1)
K3c1−ξ−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≲
c2c3

(i+ 1)
K3c1

exp {2K3c2ζ (ξ)}
i∑

j=0

(j + 1)
K3c1−ξ−δ

.

We have three different cases.

If K3c1 > δ, the EulerśMaclaurin formula yields

i∑

j=0

(j + 1)
K3c1−1−δ

=
i+1∑

j=1

jK3c1−1−δ

=

∫ i+1

1

xK3c1−1−δdx+O
(
iK3c1−1−δ + 1

)

=
(i+ 1)

K3c1−δ

K3c1 − δ
+O

(
iK3c1−1−δ + 1

)

and

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲

c1c3e
2K3c2ζ(ξ) (i+ 1)

−δ

K3c1 − δ

+O


i−1−δ + i−K3c1 + i−K3c1

i∑

j=0

(j + 1)
K3c1−δ−ξ∧2


 .

Now, i−K3c1 = o
(
i−δ
)

and i−1−δ = o
(
i−δ
)
. The last summand, i−K3c1

∑i
j=0 (j + 1)

K3c1−δ−ξ∧2
, behaves

like i−δ−ξ∧2+1 = o
(
i−δ
)

if K3c1 + 1 > ξ ∧ 2 + δ, like i−K3c1 ln i = o
(
i−δ
)

if K3c1 + 1 = ξ ∧ 2 + δ, and like

i−K3c1 = o
(
i−δ
)

if K3c1 + 1 < ξ ∧ 2 + δ. Therefore,
∑i

j=0 a
(j) exp

{
−K3

∑i
k=j+1 γk+1

}
≲ c1c3e

2K3c2ζ(ξ)

K3c1−δ
i−δ

and

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲

c1c3e
2K3c2ζ(ξ)

K3c1 − δ
i−δ +∆i−K3c1 exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
≃ c1c3e

2K3c2ζ(ξ)

K3c1 − δ
i−δ.

If K3c1 = δ,
∑i

j=0 (j + 1)
−1

=
∑i+1

j=1 j
−1 = ln (i+ 1) +O (1) (see Lemma 5),

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲ c1c3e

2K3c2ζ(ξ)i−K3c1 ln i+O
(
i−K3c1

)

and ∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲ c1c3e

2K3c2ζ(ξ)i−K3c1 ln i+O
(
i−K3c1

)
.

If K3c1 < δ, it is easy to see, using the limit comparison test, that

i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
= O (1) .
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This implies that
i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 = O

(
i−K3c1

)

and that ∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= O

(
i−K3c1

)
.

A leading constant can be obtained through the (rough) majorization:

i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≤
i+1∑

j=1

jK3c1−1−δ exp

{
K3c1j

−1 +
K3c2
2

j−ξ

}
≤

i+1∑

j=1

jK3c1−1−δ exp

{
K3

(
2c1 + c2

2

)
j−1

}

=

i+1∑

j=1

jK3c1−1−δ

∞∑

k=0

Kk
3

(
2c1+c2

2

)k
j−k

k!
=

∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!

i+1∑

j=1

jK3c1−1−δ−k

≤
∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!
ζ (1 + δ + k −K3c1) .

Then,

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲ i−K3c1c1c3e

2K3c2ζ(ξ)
∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!
ζ (1 + δ + k −K3c1)

and

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲ i−K3c1c1c3e

2K3c2ζ(ξ)
∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!
ζ (1 + δ + k −K3c1)

+ ∆i−K3c1 exp
{
−K3c1γ(0) +K3c2ζ (ξ)

}
.

If δ
(i)
1 ≡ 0, from (8.12),

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ ∆exp

{
−K3

i∑

k=0

γk+1

}
.

For γ < 1,

∆exp

{
−K3

i∑

k=0

γk+1

}
≲ exp

{
−K3c1ζ (γ) +K3c2ζ (ξ)−

K3c1
1− γ

i1−γ

}
,

and for γ = 1,

∆exp

{
−K3

i∑

k=0

γk+1

}
≲ ∆exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
i−K3c1 .

QED

Proof of Corollary 2. Reasoning as in the proof of Theorem 3 and using Theorem 4, we have

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}



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≤ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{(
1− γi+1λmin

(
F̈ (θ⋆)

))∥∥∥θ(i) − θ⋆
∥∥∥
2
+ γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+γi+1δ
(i)
1 > ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{(
1− γi+1λmin

(
F̈ (θ⋆)

))
∆+ γi+1

L2

2
∆2 + γi+1δ

(i)
1 > ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 >

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆
∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 >

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 >

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆

}

≤
E

(
δ
(i)
1

)2

∆2
[
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
]2 ,

provided λmin

(
F̈ (θ⋆)

)
> L2

2 ∆.

The last result is proved as in Theorem 3. QED

Proof of Theorem 6. (i) We start decomposing (3.3) as

θ(i+1) = θ(i) − γi+1
˙̃F
(
θ(i)
)
= θ(i) − γi+1Ḟ

(
θ(i)
)
− γi+1η

(i). (8.19)

Note that there is no guarantee that the expected value of η(i) is 0.

From the őrst inequality in Lemma 2, replacing θ1 with θ(i) and θ2 with θ(i+1), we get

F
(
θ(i+1)

)
− F

(
θ(i)
)
−
(
θ(i+1) − θ(i)

)′
Ḟ
(
θ(i)
)
≤ L1

2

∥∥∥θ(i) − θ(i+1)
∥∥∥
2

2
.

We set hi := F
(
θ(i)
)
. Using (8.19) and the inequality (a+ b)

2 ≤ 2a2 + 2b2,

hi+1 − hi ≤− γi+1

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
− γi+1

[
η(i)

]′
Ḟ
(
θ(i)
)

+ γ2
i+1

L1

2

∥∥∥Ḟ
(
θ(i)
)
+ η(i)

∥∥∥
2

2

≤− γi+1

[
η(i)

]′
Ḟ
(
θ(i)
)
− γi+1 (1− γi+1L1)

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

+ γ2
i+1L1

∥∥∥η(i)
∥∥∥
2

2
,

γi+1 (1− γi+1L1)
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ hi − hi+1 − γi+1

[
η(i)

]′
Ḟ
(
θ(i)
)
+ γ2

i+1L1

∥∥∥η(i)
∥∥∥
2

2
.
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We take expectations:

γi+1 (1− γi+1L1)E
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤E (hi − hi+1)− γi+1E

[
η(i)

]′
Ḟ
(
θ(i)
)
+ γ2

i+1L1E

∥∥∥η(i)
∥∥∥
2

2

≤E (hi − hi+1) + γi+1

∣∣∣∣E
[
η(i)

]′
Ḟ
(
θ(i)
)∣∣∣∣+ γ2

i+1L1E

∥∥∥η(i)
∥∥∥
2

2
.

From Assumption MaV and maxθ∈Θ

∥∥∥Ḟ (θ)
∥∥∥
2
≤ c1 < ∞ we have

∣∣∣∣E
[
Ḟ
(
θ(i)
)]′

η(i)

∣∣∣∣ =
∣∣∣∣EE

[[
Ḟ
(
θ(i)
)]′

η(i) |Fi

]∣∣∣∣

=

∣∣∣∣E
[
Ḟ
(
θ(i)
)]′

E

[
η(i) |Fi

]∣∣∣∣

≤ E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

∥∥∥E
[
η(i) |Fi

]∥∥∥
2

≤ E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

∥∥∥E
[
η(i) |Fi

]∥∥∥
2

≤ biE
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ c1bi,

E

∥∥∥η(i)
∥∥∥
2

2
≤ EE

[∥∥∥η(i)
∥∥∥
2

2
|Fi

]
≤ σi.

Summing up,

γi+1 (1− γi+1L1)E
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ E (hi − hi+1) + γi+1c1bi + γ2

i+1L1σi.

Using the fact that 1− γi+1L1 ≥ c2 > 0 and summing from i = 0 to i = n, we get

c2γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ E (hi − hi+1) + γi+1c1bi + γ2

i+1L1σi,

c2E
n∑

i=0

γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤

n∑

i=0

E (hi − hi+1) + c1

n∑

i=0

γi+1bi + L1

n∑

i=0

γ2
i+1σi, (8.20)

E min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ c1

∑n
i=0 γi+1bi + E (h0 − hn+1) + L1

∑n
i=0 γ

2
i+1σi

c2
∑n

i=0 γi+1
.

From this, at last,

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

((∑n
i=0 γi+1bi + E (h0 − hn+1) +

∑n
i=0 γ

2
i+1σi∑n

i=0 γi+1

) 1
2

)
.

If θ(0) is őxed and we minorize hn+1 = F
(
θ(n+1)

)
with F (θ⋆), we have

E (h0 − hn+1) ≤ E

(
F
(
θ(0)

)
− F (θ⋆)

)
= F

(
θ(0)

)
− F (θ⋆)

and

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

((
1 +

∑n
i=0 γi+1bi +

∑n
i=0 γ

2
i+1σi∑n

i=0 γi+1

) 1
2

)
.
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(ii) We use CauchyśSchwarz inequality to get

(
n∑

i=0

E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

)2

≤
(

n∑

i=0

(
E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

) 1
2

)2

=

(
n∑

i=0

(
γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

) 1
2

γ
− 1

2
i+1

)2

≤
n∑

i=0

γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

n∑

i=0

γ−1
i+1,

or

1

n

n∑

i=0

E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ 1

n

(
n∑

i=0

γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

n∑

i=0

γ−1
i+1

) 1
2

.

From (8.20), we get

1

n

n∑

i=0

E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ 1

n

(
n∑

i=0

γ−1
i+1

) 1
2
(
c1
c2

n∑

i=0

γi+1bi +

∑n
i=0 E (hi − hi+1)

c2
+

L1

c2

n∑

i=0

γ2
i+1σi

) 1
2

.

(iii) Under Hess, the function F is strongly convex with parameter m > 0, see Bertsekas et al. (2003, p.

72). In that case, from Eq. (1.16) in Bertsekas et al. (2003, p. 72), we have

(
Ḟ (θ1)− Ḟ (θ2)

)′
(θ1 − θ2) ≥ m ∥θ1 − θ2∥22

for any θ1,θ2 ∈ R
K . Taking θ1 = θ(i) and θ2 = θ⋆, and using CauchyśSchwarz inequality, we get

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ 1

m

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

from which the result follows. QED

Proof of Theorem 7. We write
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

2
as

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2

=
∥∥∥θ(i) − γi+1η

(i) − γi+1Ḟ
(
θ(i)
)
− θ⋆

∥∥∥
2

2

=
∥∥∥θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

∥∥∥
2

2
+ γ2

i+1

∥∥∥η(i)
∥∥∥
2

2

− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i)

=
∥∥∥θ(i) − θ⋆

∥∥∥
2

2
+ γ2

i+1

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
− 2γi+1

(
θ(i) − θ⋆

)′
Ḟ
(
θ(i)
)

+ γ2
i+1

∥∥∥η(i)
∥∥∥
2

2
− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i). (8.21)

Under Hess, Eq. (1.16) in Bertsekas et al. (2003, p. 72) yields

(
Ḟ (θ1)− Ḟ (θ2)

)′
(θ1 − θ2) ≥ m ∥θ1 − θ2∥22 .
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Taking θ1 = θ(i) and θ2 = θ⋆ and using Ḟ (θ⋆) ≡ 0, we get

(
Ḟ
(
θ(i)
))′ (

θ(i) − θ⋆
)
≥ m

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
.

Moreover, under Lip-1, the second inequality in Lemma 2 yields

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ L1

∥∥∥θ(i) − θ⋆
∥∥∥
2
.

These can be replaced in (8.21) to get

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2

≤
∥∥∥θ(i) − θ⋆

∥∥∥
2

2
+ γ2

i+1L
2
1

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
− 2γi+1m

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+ γ2
i+1

∥∥∥η(i)
∥∥∥
2

2
− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i)

≤
(
1− 2γi+1m+ γ2

i+1L
2
1

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+ γ2
i+1

∥∥∥η(i)
∥∥∥
2

2
− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i).

Taking expectations conditionally on Fi, we get

E

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}

≤
(
1− 2γi+1m+ γ2

i+1L
2
1

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γ2

i+1E

{∥∥∥η(i)
∥∥∥
2

2
|Fi

}

− 2γi+1E

{(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i) |Fi

}
. (8.22)

From MaV, we have

∣∣∣∣E
{(

θ(i) − γi+1Ḟ
(
θ(i)
)
− θ⋆

)′
η(i) |Fi

}∣∣∣∣

=

∣∣∣∣
(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
E

{
η(i) |Fi

}∣∣∣∣

≤
∥∥∥θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

∥∥∥
2

∥∥∥E
{
η(i) |Fi

}∥∥∥
2

≤
(∥∥∥θ(i) − θ⋆

∥∥∥
2
+ γi+1

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

)
bi

≤ bi (1 + γi+1L1)
∥∥∥θ(i) − θ⋆

∥∥∥
2

where the last step uses the second inequality in Lemma 2. Therefore, replacing this into (8.22) and using

MaV,

E

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}

≤
(
1− 2γi+1m+ γ2

i+1L
2
1

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γ2

i+1σi

+ 2γi+1bi (1 + γi+1L1)
∥∥∥θ(i) − θ⋆

∥∥∥
2
. (8.23)
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We use the inequality 2ab ≤ a2 + b2 to write

2γi+1bi (1 + γi+1L1)
∥∥∥θ(i) − θ⋆

∥∥∥
2

≤ 2

{
γi+1 (1 + γi+1L1) bi

ci

}{
ci

∥∥∥θ(i) − θ⋆
∥∥∥
2

}

≤ γ2
i+1 (1 + γi+1L1)

2
b2i

c2i
+ c2i

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
(8.24)

for a sequence ci. We choose ci in such a way to balance, in (8.24), the two terms
γ2
i+1(1+γi+1L1)

2b2i
c2i

and c2i∆
2,

intended as a replacement for c2i

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
. As a result, c2i = γi+1(1+γi+1L1)bi

∆ . Therefore, (8.23) becomes

E

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}

≤
(
1− 2γi+1m+ γ2

i+1L
2
1 +∆−1γi+1 (1 + γi+1L1) bi

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+ γi+1 (σiγi+1 +∆(1 + γi+1L1) bi) .

We set

A(i) = γi+1 (σiγi+1 +∆(1 + γi+1L1) bi) ,

B(i) = 1− 2γi+1m+ γ2
i+1L

2
1 +∆−1γi+1 (1 + γi+1L1) bi.

From

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= EE

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}
≤ E

{
A(i) +B(i)

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

}

= A(i) +B(i)
E

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
,

Lemma 4 allows us to prove the recurrence

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
≤

i∑

j=0

A(j)
i∏

k=j+1

B(k) +
∥∥∥θ(0) − θ⋆

∥∥∥
2

2

i∏

k=0

B(k)

that, taking into account
∥∥∥θ(0) − θ⋆

∥∥∥
2

2
≤ ∆2, becomes

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
≤

i∑

j=0

A(j)
i∏

k=j+1

B(k) +∆2
i∏

k=0

B(k). (8.25)

From
∣∣∣bi − c3 (i+ 1)

−β
∣∣∣ ≤ c4 (i+ 1)

−ζ
, we can see that bi ≤ K4 for a constant K4 ≥ 0 and we can write

i∏

k=0

B(k) =

i∏

k=0

[
1− 2γi+1m+ γ2

i+1L
2
1 +∆−1γi+1 (1 + γi+1L1) bi

]

= exp

{
i∑

k=0

ln
[
1− 2γi+1m+ γ2

i+1L
2
1 +∆−1γi+1 (1 + γi+1L1) bi

]
}
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≤ exp

{
−2m

i∑

k=0

γi+1 + L2
1

i∑

k=0

γ2
i+1 +∆−1

i∑

k=0

γi+1bi +∆−1L1

i∑

k=0

γ2
i+1bi

}

≤ exp

{
−2m

i∑

k=0

γi+1 +
(
L2
1 +∆−1K4L1

) i∑

k=0

γ2
i+1 +∆−1

i∑

k=0

γi+1bi

}

≤ exp

{
−2m

i∑

k=0

γi+1 +
((
L2
1 +∆−1K4L1

)
∨
(
∆−1

)) i∑

k=0

(
γ2
i+1 + γi+1bi

)
}

≤ exp

{
−2m

i∑

k=0

γi+1 +K5

i∑

k=0

(
γ2
i+1 + γi+1bi

)
}

where we have set K5 :=
(
L2
1 +∆−1K4L1

)
∨∆−1. In the same way,

i∏

k=j+1

B(k) ≤ exp



−2m

i∑

k=j+1

γi+1 +K5

i∑

k=j+1

(
γ2
i+1 + γi+1bi

)


 .

As concerns
∑i

k=0 γi+1, we use Lemma 6 to get

(c1ζ (γ)− c2ζ (ξ)) +
c1

1− γ
i1−γ +

c1
2
i−γ − c1γ

8
i−1−γ − c2

1− ξ
i1−ξ − c2

2
i−ξ ≤

i−1∑

k=0

γk+1.

Now we turn to
∑i−1

k=0

(
γ2
k+1 + γk+1bk

)
. From

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
and

∣∣∣bi − c3 (i+ 1)
−β
∣∣∣ ≤

c4 (i+ 1)
−ζ

, we have

γ2
i+1 ≤

(
c1 (i+ 1)

−γ
+ c2 (i+ 1)

−ξ
)2

= c21 (i+ 1)
−2γ

+ c22 (i+ 1)
−2ξ

+ 2c1c2 (i+ 1)
−γ−ξ

,

γi+1bi ≤
(
c1 (i+ 1)

−γ
+ c2 (i+ 1)

−ξ
)(

c3 (i+ 1)
−β

+ c4 (i+ 1)
−ζ
)

= c1c3 (i+ 1)
−γ−β

+ c2c4 (i+ 1)
−ξ−ζ

+ c2c3 (i+ 1)
−β−ξ

+ c1c4 (i+ 1)
−γ−ζ

,

γ2
i+1 + γi+1bi ≤ c21 (i+ 1)

−2γ
+ c22 (i+ 1)

−2ξ
+ c1c3 (i+ 1)

−γ−β
+ c2c4 (i+ 1)

−ξ−ζ

+ 2c1c2 (i+ 1)
−γ−ξ

+ c2c3 (i+ 1)
−β−ξ

+ c1c4 (i+ 1)
−γ−ζ

.

For the minorization, we use the obvious inequalities

γi+1 ≥ c1 (i+ 1)
−γ − c2 (i+ 1)

−ξ
,

bi ≥ c3 (i+ 1)
−β − c4 (i+ 1)

−ζ
.

However, when transforming them into minorizations for γ2
i+1 and γi+1bi, one must pay attention to the fact

that the right-hand sides of these inequalities could be negative. We then introduce the set of indexes

I :=
{
i : c1 (i+ 1)

−γ ≥ c2 (i+ 1)
−ξ

, c3 (i+ 1)
−β ≥ c4 (i+ 1)

−ζ
}
.

We note that

I :=

{
i : i ≥ max

{(
c2
c1

) 1
ξ−γ

,

(
c4
c3

) 1
ζ−β

}
− 1

}
,
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so that the set of i’s not belonging to I is őnite and has cardinality at most, say, I. We then have

γi+1 ≥
(
c1 (i+ 1)

−γ − c2 (i+ 1)
−ξ
)
1{i∈I},

bi ≥
(
c3 (i+ 1)

−β − c4 (i+ 1)
−ζ
)
1{i∈I},

and

γ2
i+1 ≥

[
c1 (i+ 1)

−γ − c2 (i+ 1)
−ξ
]2

1{i∈I}

=
[
c21 (i+ 1)

−2γ
+ c22 (i+ 1)

−2ξ − 2c1c2 (i+ 1)
−γ−ξ

]
1{i∈I},

γi+1bi ≥
[
c1 (i+ 1)

−γ − c2 (i+ 1)
−ξ
]
1{i∈I}

[
c3 (i+ 1)

−β − c4 (i+ 1)
−ζ
]
1{i∈I}

=
[
c1c3 (i+ 1)

−γ−β
+ c2c4 (i+ 1)

−ξ−ζ − c2c3 (i+ 1)
−β−ξ − c1c4 (i+ 1)

−γ−ζ
]
1{i∈I},

γ2
i+1 + γi+1bi ≥

[
c21 (i+ 1)

−2γ
+ c22 (i+ 1)

−2ξ
+ c1c3 (i+ 1)

−γ−β
+ c2c4 (i+ 1)

−ξ−ζ

−2c1c2 (i+ 1)
−γ−ξ − c2c3 (i+ 1)

−β−ξ − c1c4 (i+ 1)
−γ−ζ

]
1{i∈I}.

We note that, for a suitable choice of the constants kj1 , kj2 , αj1 and αj2 , the majorization and minorization

of γ2
i+1 + γi+1bi can be written as

γ2
i+1 + γi+1bi ≤

∑

j1

kj1 (i+ 1)
−αj1 +

∑

j2

kj2 (i+ 1)
−αj2

and

γ2
i+1 + γi+1bi ≥

∑

j1

kj1 (i+ 1)
−αj1 1{i∈I} −

∑

j2

kj2 (i+ 1)
−αj2 1{i∈I}

≥
∑

j1

kj1 (i+ 1)
−αj1 1{i∈I} −

∑

j2

kj2 (i+ 1)
−αj2 .

Note that the exponents αj1 ’s correspond to 2γ, 2ξ, γ + β and ξ + ζ and the exponents αj2 ’s correspond to

γ + ξ, β + ξ and γ + ζ. Using Lemma 5, the corresponding inequalities on
∑i−1

k=0

(
γ2
k+1 + γk+1bk

)
can be

written as

i−1∑

k=0

(
γ2
k+1 + γk+1bk

)
≤
∑

j1

kj1

i−1∑

k=0

(k + 1)
−αj1 +

∑

j2

kj2

i−1∑

k=0

(k + 1)
−αj2

=
∑

j1

kj1

i∑

k=1

k−αj1 +
∑

j2

kj2

i∑

k=1

k−αj2

≤
∑

j1

kj1

(
ζ (αj1) +

1

1− αj1

i1−αj1 +
1

2
i−αj1

)

+
∑

j2

kj2

(
ζ (αj2) +

1

1− αj2

i1−αj2 +
1

2
i−αj2

)
(8.26)
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and

i−1∑

k=0

(
γ2
i+1 + γi+1bi

)
≥
∑

j1

kj1

i−1∑

k=0

(k + 1)
−αj1 1{k∈I} −

∑

j2

kj2

i−1∑

k=0

(k + 1)
−αj2

=
∑

j1

kj1

i∑

k=1

k−αj1 1{k−1∈I} −
∑

j2

kj2

i∑

k=1

k−αj2

≥
∑

j1

kj1

i∑

k=1

k−αj1 −
∑

j2

kj2

i∑

k=1

k−αj2 −K6

≥
∑

j1

kj1

(
ζ (αj1) +

1

1− αj1

i1−αj1 +
1

2
i−αj1 − αj1

8
i−1−αj1

)

−
∑

j2

kj2

(
ζ (αj2) +

1

1− αj2

i1−αj2 +
1

2
i−αj2

)
−K6 (8.27)

for a suitable constant K6, provided 2γ, 2ξ, γ+β, ξ+ζ, γ+ξ, β+ξ and γ+ζ are larger than −1 and different

from 1. If one of them is equal to 1, the modiőcation to the proof is trivial, i.e. the leading constant ζ (αjk)

is replaced by γ(0), the term 1
1−αjk

i1−αjk is interpreted as a limit for αjk → 1, and the remaining terms are

modiőed accordingly. The choice of the coefficients αj1 ’s and αj2 ’s implies that all terms of the form i−αj1 ,

i−1−αj1 and i−αj2 vanish asymptotically for large i.

Now we consider the behavior of ∆2
∏i

k=0 B
(k). We have

∆2
i∏

k=0

B(k)

≤∆2 exp

{
−2m

i∑

k=0

γk+1 +K5

i∑

k=0

(
γ2
k+1 + γk+1bk

)
}

≤∆2 exp

{
−2m

[
(c1ζ (γ)− c2ζ (ξ)) +

c1
1− γ

i1−γ +
c1
2
i−γ − c1γ

8
i−1−γ − c2

1− ξ
i1−ξ − c2

2
i−ξ

]

+K5

∑

j1

kj1

(
ζ (αj1) +

1

1− αj1

i1−αj1 +
1

2
i−αj1

)

+K5

∑

j2

kj2

(
ζ (αj2) +

1

1− αj2

i1−αj2 +
1

2
i−αj2

)

−2mγi+1 +K5

(
γ2
i+1 + γi+1bi

)}

=O


exp



−2mc1

1− γ
i1−γ +

2mc2
1− ξ

i1−ξ +K5

∑

j1

kj1
1− αj1

i1−αj1 +K5

∑

j2

kj2
1− αj2

i1−αj2








=O

(
exp

{
−2mc1
1− γ

i1−γ (1 + o (1))

})
.

Now we turn to the őrst term of (8.25). The minorization on
∑i

k=j+1 γi+1 comes from Lemma 7:

i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) +
c1

1− γ

[
(i+ 1)

1−γ − (j + 1)
1−γ
]
+

c1
2

[
(i+ 1)

−γ − (j + 1)
−γ
]

− c2
1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]
− c2

2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1γ

8
(i+ 1)

−1−γ
.
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The majorization on
∑i

k=j+1

(
γ2
k+1 + γk+1bk

)
is obtained from (8.26) and (8.27) as

i∑

k=j+1

(
γ2
k+1 + γk+1bk

)

=

i∑

k=0

(
γ2
k+1 + γk+1bk

)
−

j∑

k=0

(
γ2
k+1 + γk+1bk

)

≤
∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1

)

+
∑

j2

kj2

(
2ζ (αj2) +

1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)

−
∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+
∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)
+K6.

As a result,

i∏

k=j+1

B(k) ≤ exp



−2m

i∑

k=j+1

γk+1 +K5

i∑

k=j+1

(
γ2
k+1 + γk+1bk

)




≤ exp

{
4mc2ζ (ξ)−

2mc1
1− γ

(i+ 1)
1−γ −mc1 (i+ 1)

−γ
+

mc1γ

4
(i+ 1)

−1−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

+K5

∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1

)

+K5

∑

j2

kj2

(
2ζ (αj2) +

1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)

+
2mc1
1− γ

(j + 1)
1−γ

+mc1 (j + 1)
−γ

+
2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)
+K5K6



 .

Moreover, we have

A(i) = γ2
i+1σi +∆γi+1bi +∆L1γ

2
i+1bi

≲ c21c5 (i+ 1)
−2γ−σ

+ c22c5 (i+ 1)
−2ξ−σ

+ 2c1c2c5 (i+ 1)
−γ−ξ−σ

+∆c1c3 (i+ 1)
−γ−β

+∆c2c4 (i+ 1)
−ξ−ζ

+∆c2c3 (i+ 1)
−β−ξ

+∆c1c4 (i+ 1)
−γ−ζ

+∆L1c
2
1c3 (i+ 1)

−2γ−β
+∆L1c

2
1c4 (i+ 1)

−2γ−ζ
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+∆L1c
2
2c3 (i+ 1)

−2ξ−β
+∆L1c

2
2c4 (i+ 1)

−2ξ−ζ

+ 2∆L1c1c2c3 (i+ 1)
−γ−ξ−β

+ 2∆L1c1c2c4 (i+ 1)
−γ−ξ−ζ

≲ K7 (i+ 1)
−γ−(γ+σ)∧β

for a suitable constant K7. As a result,

i∑

j=0

A(j)
i∏

k=j+1

B(k)

≲ K7 exp

{
4mc2ζ (ξ)−

2mc1
1− γ

(i+ 1)
1−γ −mc1 (i+ 1)

−γ
+

mc1γ

4
(i+ 1)

−1−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

+K5

∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1

)

+K5

∑

j2

kj2

(
2ζ (αj2) +

1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)
+K5K6





·
i∑

j=0

(j + 1)
−γ−(γ+σ)∧β

exp

{
2mc1
1− γ

(j + 1)
1−γ

+mc1 (j + 1)
−γ

+
2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)
 .

We are led to consider the second term in this equation. We apply Lemma 9 to get

i∑

j=0

(j + 1)
−γ−(γ+σ)∧β

exp

{
2mc1
1− γ

(j + 1)
1−γ

+mc1 (j + 1)
−γ

+
2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)


≃ (i+ 1)
−(γ+σ)∧β

2mc1
exp

{
2mc1
1− γ

(i+ 1)
1−γ

+mc1 (i+ 1)
−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1 − αj1

8
(i+ 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)


≃ (i+ 1)
−(γ+σ)∧β

2mc1
exp

{
2mc1
1− γ

(i+ 1)
1−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ
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−K5

∑

j1

kj1
1

1− αj1

(i+ 1)
1−αj1 +K5

∑

j2

kj2
1

1− αj2

(i+ 1)
1−αj2



 .

As a result,

i∑

j=0

A(j)
i∏

k=j+1

B(k) = O


(i+ 1)

−(γ+σ)∧β
exp





4mc2
1− ξ

(i+ 1)
1−ξ

+ 2K5

∑

j2

kj2
1− αj2

(i+ 1)
1−αj2






 .

This is
i∑

j=0

A(j)
i∏

k=j+1

B(k) = O
(
i−(γ+σ)∧β

)

provided 1− ξ < 0 and 1−αj2 < 0. Using the fact that αj2 is γ+ ξ, β+ ξ and γ+ ζ, these conditions become

1 < ξ, 1 < γ + ξ, 1 < β + ξ and 1 < γ + ζ, i.e. 1 < ξ and 1 < γ + ζ.

Now we consider the case γ = 1. Using (8.17), the second summand in (8.25) can be written as

∆2
i∏

k=0

B(k) = O

(
∆2 exp

{
−2m

i∑

k=0

γk+1

})
= O

(
i−2mc1

)
.

As to the őrst summand in (8.25), (8.18) yields

exp



−2m

i∑

k=j+1

γk+1





≤
(
j + 1

i+ 1

)2mc1

exp

{
4mc2ζ (ξ) +

2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

}

· exp
{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}
.

Therefore, using A(j) = O
(
(j + 1)

−2−σ∧(β−1)
)
, 2mc2

1−ξ
(i+ 1)

1−ξ
= o (1) and mc2 (i+ 1)

−ξ
= o (1), we have

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1





= O


(i+ 1)

−2mc1

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

· exp
{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

})
.

The proof is similar to the one of Theorem 5.

If 2mc1 − 2− σ ∧ (β − 1) > −1 or 2mc1 > σ ∧ (β − 1) + 1, the expansion ex ≃ 1 + x for small x yields

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}
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=

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

+O




i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)−1∧(ξ−1)




= O
(
i2mc1−1−σ∧(β−1)

)
,

and

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1



 = O

(
i−1−σ∧(β−1)

)
,

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= O

(
i−1−σ∧(β−1) + i−2mc1

)

= O
(
i−1−σ∧(β−1)

)
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−

1+σ∧(β−1)
2

)
.

If 2mc1 − 2− σ ∧ (β − 1) = −1 or 2mc1 = σ ∧ (β − 1) + 1, the same method gives

i∑

j=0

(j + 1)
−1

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

=

i∑

j=0

(j + 1)
−1

+O




i∑

j=0

(j + 1)
−1−(ξ−1)∧1




= O (ln i)

and

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1



 = O

(
i−2mc1 ln i

)
,

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= O

(
i−2mc1 ln i

)
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−mc1 ln

1
2 i
)
.

At last, when 2mc1 − 2 − σ ∧ (β − 1) < −1 or 2mc1 < σ ∧ (β − 1) + 1, the limit comparison test shows

that
i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

converges as far as
∑i

j=0 (j + 1)
2mc1−2−σ∧(β−1)

does. Therefore, we have

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

≤
i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 +

2mc2
1− ξ

+mc2

}
= O (1) .
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This implies that

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1



 = O

(
i−2mc1

)
,

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= O

(
i−2mc1

)
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−mc1

)
.

QED

8.3 Proofs of Approximation Results

Proof of Theorem 8. We build a predicted value of F (θ0) as

F̃ (θ0) = x′
D (θ0) (X

′X)
−1

X′y = x′
D (θ0) (X

′X)
−1

X′ (y + ε) .

As explained in the text, we center the points in P (θ0) in θ0, so that θ0 ≡ 0. The vector of regressors

associated with the origin is xD (θ0) ≡ e1. Moreover, y and ε are the vectors whose elements are, respectively,

F (θj) and F̂ (θj) − F (θj) for θj ∈ P (θ0). It should therefore be clear that ε may be deterministic or

stochastic but, in the second case, it does not have, in general, zero expectation. We have

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤

∣∣∣x′
D (θ0) (X

′X)
−1

X′y − F (θ0)
∣∣∣

+
∣∣∣x′

D (θ0) (X
′X)

−1
X′ε

∣∣∣ . (8.28)

Let us start from the last term. We have

∣∣∣x′
D (θ0) (X

′X)
−1

X′ε
∣∣∣ ≤ ∥xD (θ0)∥2

∥∥∥(X′X)
−1

X′
∥∥∥
2
∥ε∥2 = ∥xD (θ0)∥2 ∥ε∥2

√
λmax

(
(X′X)

−1
)

≤ ∥xD (θ0)∥2 ∥ε∥2√
λmin (X′X)

.

Now, ∥xD (θ0)∥2 = ∥e1∥2 = 1. Therefore, using Lemma 10,

∣∣∣x′
D (θ0) (X

′X)
−1

X′ε
∣∣∣ ≤ h−D ∥ε∥2√

Pλmin

(
1
P
X′

0X0

) .

We are left with the other term in (8.28), i.e.
∣∣∣x′

D (θ0) (X
′X)

−1
X′y − F (θ0)

∣∣∣. The őrst term, x′
D (θ0) (X

′X)
−1

X′y,

is p⋆ (θ0) where p⋆ ∈ PD is the polynomial minimizing

∑

j:θj∈P(θ0)

|F (θj)− p⋆ (θj)|2 = inf
p∈Pd

∑

j:θj∈P(θ0)

|F (θj)− p (θj)|2 .

If θ0 ∈ P (θ0),

|F (θ0)− p⋆ (θ0)|2 ≤
∑

j:θj∈P(θ0)

|F (θj)− p⋆ (θj)|2 .
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Let p⋆⋆ ∈ PD be a polynomial such that

∥F (θ)− p⋆⋆ (θ)∥ρB = inf
p∈Pd

∥F (θ)− p (θ)∥ρB .

Then,

|F (θ0)− p⋆ (θ0)|2 ≤
∑

j:θj∈P(θ0)

|F (θj)− p⋆ (θj)|2

≤
∑

j:θj∈P(θ0)

|F (θj)− p⋆⋆ (θj)|2

≤ P ∥F (θ)− p⋆⋆ (θ)∥2ρB .

Therefore, ∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2 ∥F (θ)− p⋆⋆ (θ)∥ρB + h−D ∥ε∥2√

Pλmin

(
1
P
X′

0X0

) .

If θ0 /∈ P (θ0), we can write, for any θj ∈ P (θ0),

|F (θ0)− p⋆ (θ0)| ≤ |F (θj)− p⋆ (θj)|+ |F (θj)− F (θ0)|+ |p⋆ (θj)− p⋆ (θ0)| .

Here, |F (θj)− p⋆ (θj)| can be majorized as we did above. For the other two terms, we have

|F (θj)− F (θ0)| ≤ |F |0,1 ∥θj∥2 ≤ |F |0,1 ρ̃

and

|p⋆ (θj)− p⋆ (θ0)| =
∣∣∣[x′

D (θj)− x′
D (θ0)] (X

′X)
−1

X′y
∣∣∣

≤ ∥xD (θj)− xD (θ0)∥2
∥∥∥(X′X)

−1
X′
∥∥∥
2
∥y∥2

≤ ∥xD (θj)− xD (θ0)∥2 ∥y∥2√
λmin (X′X)

.

From Lemma 11, we have

∥xD (θj)− xD (θ0)∥22 = ∥xD (θj)− e1∥22 = ∥xD (θj)∥22 − 1

≤ 1− ρ̃2(D+1)

1− ρ̃2
− 1 = ρ̃2

(
1− ρ̃2D

1− ρ̃2

)
.

Moreover,

∥y∥22 ≤ P sup
θj∈P(θ0)

|F (θj)|2 = P ∥F (θj)∥2P(θ0)
.

At last,

|p⋆ (θj)− p⋆ (θ0)|2 ≤ ρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2 ∥F∥P(θ0)√

λmin

(
1
P
X′X

) ≤ h−Dρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2 ∥F∥P(θ0)√

λmin

(
1
P
X′

0X0

)
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and

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2 ∥F (θ)− p⋆⋆ (θ)∥ρB + |F |0,1 ρ̃

+ h−Dρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2 ∥F∥P(θ0)√

λmin

(
1
P
X′

0X0

) + h−DP− 1
2

∥ε∥2√
λmin

(
1
P
X′

0X0

) .

Now, we want to majorize supθ∈ρB |F (θ)− p⋆⋆ (θ)|. Let p⋆⋆⋆ be the Taylor expansion of order d of F (θ)

around θ0 ≡ 0. Then,

∥F (θ)− p⋆⋆ (θ)∥ρB ≤ ∥F (θ)− p⋆⋆⋆ (θ)∥ρB .

We use Lemma 1 with γ = 1:

|R0 (0;θ)| ≤
KD

(D − 1)!
γD ∥θ∥D+1

2 |F |D,1 ≤ KD

(D − 1)!
ρD+1 |F |D,1

and, through ρ = hρ0, we get the őnal result. QED

Proof of Theorem 9. We build a predicted value of F (θ) as

F̃ (θ) = x′
D (θ) (X′X)

−1
X′y = x′

D (θ) (X′X)
−1

X′ (y + ε) .

The decomposition and the interpretation of the other quantities are similar to those in Theorem 8. We have

∣∣∣DkF̃ (θ)−DkF (θ)
∣∣∣ ≤

∣∣∣Dkx′
D (θ) (X′X)

−1
X′y −DkF (θ)

∣∣∣

+
∣∣∣Dkx′

D (θ) (X′X)
−1

X′ε
∣∣∣

≤
∣∣∣Dkx′

D (θ) (X′X)
−1

X′y −Dkx′
D (θ)β

∣∣∣

+
∣∣Dkx′

D (θ)β −DkF (θ)
∣∣

+
∣∣∣Dkx′

D (θ) (X′X)
−1

X′ε
∣∣∣

where β will be chosen below. From this, we get

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
ρB

≤ max
|k|=S

∥∥∥Dkx′
D (θ) (X′X)

−1
X′y −Dkx′

D (θ)β
∥∥∥
ρB

+ max
|k|=S

∥∥Dkx′
D (θ)β −DkF (θ)

∥∥
ρB

+ max
|k|=S

∥∥∥Dkx′
D (θ) (X′X)

−1
X′ε

∥∥∥
ρB

. (8.29)

Let us start from the last term in (8.29). By CauchyśSchwarz inequality, we have

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ε

∣∣∣ ≤
∥∥DkxD (θ)

∥∥
2

∥∥∥(X′X)
−1

X′
∥∥∥
2
∥ε∥2

≤
∥∥DkxD (θ)

∥∥
2
∥ε∥2

√
λmax

(
(X′X)

−1
)

≤
∥∥DkxD (θ)

∥∥
2
∥ε∥2√

λmin (X′X)
.
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Therefore, using Lemma 10,

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ε

∣∣∣ ≤ h−D
P− 1

2

∥∥DkxD (θ)
∥∥
2
∥ε∥2√

λmin

(
1
P
X′

0X0

) .

From Lemma 11,

max
|k|=S

max
θ∈ρB

∥∥∥Dkx′
D (θ) (X′X)

−1
X′ε

∥∥∥
2
≤ h−D

P− 1
2 maxθ∈ρB ∥ε∥2 max|k|=S maxθ∈ρB

∥∥DkxD (θ)
∥∥
2√

λmin

(
1
P
X′

0X0

)

≤ h−D
P− 1

2 maxθ∈ρB ∥ε∥2 S!
√∑D

d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

) .

Now we turn to the second term of (8.29). Let β be the vector of coefficients of the Taylor expansion of

order D of F (θ) around 0. From Lemma 1,

|Rk (0;θ)| ≤
KD−|k|

(D − |k| − 1)!
γD−|k| ∥θ∥D−|k|+1

2 |F |D,1 ≤ KD−|k|

(D − |k| − 1)!
ρD−|k|+1 |F |D,1 (8.30)

and the second term in (8.29) becomes

max
|k|=S

∥∥Dkx′
D (θ)β −DkF (θ)

∥∥
ρB

≤ max
|k|=S

|Rk (0;θ)| ≤
KD−S

(D − S − 1)!
ρD−S+1 |F |D,1 .

We are left with the őrst term in (8.29), i.e.

max
|k|=S

∥∥∥Dkx′
D (θ) (X′X)

−1
X′y −Dkx′

D (θ)β
∥∥∥
ρB

= max
|k|=S

∥∥∥Dkx′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

.

It is clear that x′
D (θ)

(
(X′X)

−1
X′y − β

)
is a polynomial of order D in θ. In order to majorize

∥∥∥Dkx′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

we use |k| times a version of Markov brothers’ inequality. We recall that, for a multidimensional polynomial

p of order n in d variables, the generalization of Markov brothers’ inequality in Kellogg (1928, Theorem VI)

states that

sup
x∈B

√√√√
d∑

j=1

(
∂p (x)

∂xj

)2

≤ n2 sup
x∈B

|p (x)| .

Therefore,

∥∥∥Dkx′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

≤
(

D!

(D − |k|)!

)2
1

ρ|k|

∥∥∥x′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

.
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We can write the term in the right-hand side of this equation as

∣∣∣x′
D (θ) (X′X)

−1
X′y − x′

D (θ)β
∣∣∣ ≤

∣∣∣x′
D (θ) (X′X)

−1
X′y − F (θ)

∣∣∣+ |F (θ)− x′
D (θ)β| .

The last term can be bounded as in (8.30):

∥x′
D (θ)β − F (θ)∥ρB ≤ |R0 (0;θ)| ≤

KD

(D − 1)!
ρD+1 |F |D,1 .

We only need to bound supθ∈ρB

∣∣∣x′
D (θ) (X′X)

−1
X′y − F (θ)

∣∣∣. Using Theorem 2 in Calvi and Levenberg

(2008),

∥∥∥x′
D (θ) (X′X)

−1
X′y − F (θ)

∥∥∥
ρB

≤
(
1 + CD (P (θ0) , ρB)

(
1 + P

1
2

))
inf

p∈PD

∥F (θ)− p (θ)∥ρB .

Here CD (P (θ0) , ρB) is the constant deőned as

CD (P (θ0) , ρB) := sup
p∈PD

∥p (θ)∥ρB
∥p (θ)∥P(θ0)

.

We show that this constant can be written in a different way. Indeed, we know that ρ = hρ0 and that

P (θ0) = hP0 (θ0). Then,

sup
p∈PD

∥p (θ)∥ρB
∥p (θ)∥P(θ0)

= sup
p∈PD

suph−1θ∈ρ0B
|p (θ)|

suph−1θ∈P0(θ0) |p (θ)|

= sup
p∈PD

supθ∈ρ0B
|p (hθ)|

supθ∈P0(θ0) |p (hθ)|

= sup
p∈PD

∥p (θ)∥ρ0B

∥p (θ)∥P0(0)

.

Using the deőnition in the text, we write CD (P0) instead of CD (P (θ0) , ρB). As to infp∈PD
supθ∈ρB |F (θ)− p (θ)|,

let p⋆ be the polynomial for which

inf
p∈PD

∥F (θ)− p (θ)∥ρB = ∥F (θ)− p⋆ (θ)∥ρB .

If we replace p⋆ with another polynomial in PD, the result will be a majorization of this term. We can use

the Taylor expansion of order D of F (θ) around 0:

∥F (θ)− p⋆ (θ)∥ρB ≤ |R0 (0;θ)| ≤
KD

(D − 1)!
ρD+1 |F |D,1 .

As a result:

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
ρB
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≤ h−D
P− 1

2 maxθ∈ρB ∥ε∥2 S!
√∑D

d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

)

+




(
2 + CD (P0)

(
1 + P

1
2

))
(D!)

2
KS

((D − S)!)
2
(D − 1)!

+
1

(D − S − 1)!


KD−SρD−S+1 |F |D,1 .

The result follows linking ρ and h, through ρ = hρ0. QED

Proof of Corollary 3. We want to majorize supθ∈ρB

∥∥∥ ˙̃F (θ)− Ḟ (θ)
∥∥∥
2

for D = 1 or D = 2 and supθ∈ρB

∥∥∥ ¨̃F (θ)− F̈ (θ)
∥∥∥
2

for D = 2. Using the triangle inequality, for S = 1 we have

∥∥∥
[
DiF̃ (θ)−DiF (θ)

]∥∥∥
2

≤
∥∥∥
[
Dix′

D (θ) (X′X)
−1

X′y −Dix′
D (θ)β

]∥∥∥
2

+
∥∥[Dix′

D (θ)β −DiF (θ)
]∥∥

2

+
∥∥∥
[
Dix′

D (θ) (X′X)
−1

X′ε
]∥∥∥

2
(8.31)

where β will be chosen below. For S = 2, the inequality is the same, with Dij replacing Di. In the following,

we will use Dk instead of either Di or Dij .

For the last term in (8.31), we have

∥∥∥
[
Dkx′

D (θ) (X′X)
−1

X′ε
]∥∥∥

2
≤
∥∥∥
[
Dkx′

D (θ) (X′X)
−1

X′ε
]∥∥∥

F

=


∑

|k|=S

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ε

∣∣∣
2




1
2

≤


∑

|k|=S

∥∥DkxD (θ)
∥∥2
2

∥∥∥(X′X)
−1

X′
∥∥∥
2

2
∥ε∥22




1
2

≤ K
S
2 max

|k|=S

∥∥DkxD (θ)
∥∥
2

∥∥∥(X′X)
−1

X′
∥∥∥
2
∥ε∥2

≤
K

S
2 S!

√∑D
d=S

(
d
S

)2
ρ2(d−S) ∥ε∥2√

λmin (X′X)
=

K
S
2 S!

√∑D
d=S

(
d
S

)2
ρ2(d−S) ∥ε∥2

P
1
2hD

√
λmin

(
1
P
X′

0X0

) .

In the second term of (8.31), let β be the vector of coefficients of the Taylor expansion of order D of

F (θ) around 0. Then,

∥∥[Dkx′
D (θ)β −DkF (θ)

]∥∥
2
=





∥∥∥Ḟ (θ)− Ḟ (0)
∥∥∥
2
≤ L1 ∥θ∥2 , S = 1, D = 1,

∥∥∥Ḟ (θ)− Ḟ (0)− F̈ (0)θ
∥∥∥
2
≤ L2

2 ∥θ∥22 , S = 1, D = 2,
∥∥∥F̈ (θ)− F̈ (0)

∥∥∥
2
≤ L2 ∥θ∥2 , S = 2, D = 2.

The őrst one comes from Lip-1, the second one from the third inequality in Lemma 2, the third one from

Lip-2.

The őrst term in (8.31) is a polynomial. In the case S = 1, it can be majorized through the generalization
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of Markov brothers’ inequality in Kellogg (1928, Theorem VI) seen above:

sup
θ∈ρB


∑

|k|=1

∣∣∣Dkx′
D (θ) (X′X)

−1
X′y −Dkx′

D (θ)β
∣∣∣
2




1
2

≤ D2

ρ
sup
θ∈ρB

∣∣∣x′
D (θ) (X′X)

−1
X′y − x′

D (θ)β
∣∣∣ .

In the case S = 2 and D = 2, the same inequality yields

sup
θ∈ρB


∑

i

∑

j

∣∣∣Dijx′
D (θ) (X′X)

−1
X′y −Dijx′

D (θ)β
∣∣∣
2




1
2

≤



∑

i





sup
θ∈ρB


∑

j

∣∣∣Dijx′
D (θ) (X′X)

−1
X′y −Dijx′

D (θ)β
∣∣∣
2




1
2





2



1
2

≤


∑

i

{
(D − 1)

2

ρ
sup
θ∈ρB

∣∣∣Dix′
D (θ) (X′X)

−1
X′y −Dix′

D (θ)β
∣∣∣
}2



1
2

≤ K
1
2 (D − 1)

2

ρ2
sup
i

sup
θ∈ρB

∣∣∣Dix′
D (θ) (X′X)

−1
X′y −Dix′

D (θ)β
∣∣∣

≤ K
1
2 (D − 1)

2
D2

ρ2
sup
θ∈ρB

∣∣∣x′
D (θ) (X′X)

−1
X′y − x′

D (θ)β
∣∣∣ .

We can write the term in the right-hand side of both equations as

∣∣∣x′
D (θ) (X′X)

−1
X′y − x′

D (θ)β
∣∣∣ ≤

∣∣∣x′
D (θ) (X′X)

−1
X′y − F (θ)

∣∣∣+ |F (θ)− x′
D (θ)β| .

As above,

∥∥∥x′
D (θ) (X′X)

−1
X′y − F (θ)

∥∥∥
ρB

≤
(
1 + CD (P0)

(
1 + P

1
2

))
inf

p∈PD

∥F (θ)− p (θ)∥ρB

≤
(
1 + CD (P0)

(
1 + P

1
2

))
∥F (θ)− p⋆ (θ)∥ρB

where p⋆ is the Taylor expansion of order D of F (θ) around 0. Therefore,

|F (θ)− p⋆ (θ)| =





∣∣∣F (θ)− F (0)− θ′Ḟ (0)
∣∣∣ ≤ L1

2 ∥θ∥22 , D = 1,
∣∣∣F (θ)− F (0)− θ′Ḟ (0)− θ

′F̈ (0)θ
2

∣∣∣ ≤ L2

6 ∥θ∥32 , D = 2.

The statement follows by collecting the terms. QED

Proof of Theorem 10. The proof of the őrst result follows the one of Theorem 9. Indeed, we can write

EDkF̃ (θ)−DkF (θ) = Dkx′
D (θ) (X′X)

−1
X′y −DkF (θ) +Dkx′

D (θ) (X′X)
−1

X′
Eε,
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so that it is apparent that the result is the same as in Theorem 9, with max|k|=S

∥∥∥EDkF̃ (θ)−DkF (θ)
∥∥∥
ρB

replacing max|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
ρB

and Eε replacing ε.

Now we turn to the second result. As

DkF̃ (θ)− EDkF̃ (θ) = Dkx′
D (θ) (X′X)

−1
X′ (ε− Eε) ,

from Lemma 11, we have

max
|k|=S

max
θ∈ρB

E

∣∣∣DkF̃ (θ)−DkF (θ)− E

(
DkF̃ (θ)−DkF (θ)

)∣∣∣
2

= max
|k|=S

max
θ∈ρB

E

∣∣∣DkF̃ (θ)− EDkF̃ (θ)
∣∣∣
2

= max
|k|=S

max
θ∈ρB

E

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ (ε− Eε)

∣∣∣
2

≤ max
|k|=S

max
θ∈ρB

∥∥DkxD (θ)
∥∥2
2

∥∥∥(X′X)
−1

X′
∥∥∥
2

2
E ∥ε− Eε∥22

≤ (S!)
2

(
D∑

d=S

(
d

S

)2

ρ2(d−S)

)∥∥∥(X′X)
−1

X′
∥∥∥
2

2
max
θ∈ρB

E ∥ε− Eε∥22

≤ h−2D (S!)
2

λmin (X′
0X0)

(
D∑

d=S

(
d

S

)2

ρ2(d−S)

)
max
θ∈ρB

E ∥ε− Eε∥22 .

QED

8.4 Proofs of Results Specific to the Approximating Algorithm

Proof of Corollary 4. Using AUB,

∥ε∥2 =

√√√√
P∑

j=1

ε2j =

√√√√
P∑

j=1

(
F̂ (θj)− F (θj)

)2
≤ P

1
2 aN .

From Theorem 9, under Fun-D, one gets

(
δ
(i)
1

)2
=
∑

|k|=1

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K max
|k|=1

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

,

δ
(i)
1 ≤ K

1
2 max
|k|=1

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

≤ ρ−D
ρD0 K

1
2

√∑D
d=1 d

2ρ2(d−1)

√
λmin

(
1
P
X′

0X0

) aN

+




(
2 + CD (P0)

(
1 + P

1
2

))
D2K

D − 1
+ 1


 KD− 1

2 ρD |F |D,1

(D − 2)!

and

(
δ
(i)
2

)2
=
∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

2
≤
∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

F
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=
∑

|k|=2

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K2 max
|k|=2

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

,

δ
(i)
2 ≤ K max

|k|=2

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

≤ ρ−D
2ρD0 K

√∑D
d=2

(
d
2

)2
ρ2(d−2)

√
λmin

(
1
P
X′

0X0

) aN

+




(
2 + CD (P0)

(
1 + P

1
2

))
D2 (D − 1)K2

D − 2
+ 1


 KD−1ρD−1 |F |D,1

(D − 3)!
.

Under MaV2, we have

∥Eε∥2 =

√√√√
P∑

j=1

(
EF̂ (θj)− F (θj)

)2

≤

√√√√
P∑

j=1

(
E

∣∣∣E
(
F̂ (θj) |Fi

)
− F (θj)

∣∣∣
)2

≤ P
1
2Bi

and

E ∥ε− Eε∥22 =

P∑

j=1

E (εj − Eεj)
2

≤
P∑

j=1

Eε2j ≤
P∑

j=1

EE

((
F̂ (θj)− F (θj)

)2
|Fi

)
≤ PΣi.

Now we turn to E

(
δ
(i)
1

)2
and E

(
δ
(i)
2

)2
. We note that, using the triangle inequality,

E

(
δ
(i)
1

)2
= E

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
=
∑

|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K max
|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K

{
max
|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣

+max
|k|=1

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

≤ K

{(
max
|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣
2
) 1

2

+max
|k|=1

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2
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and

E

(
δ
(i)
2

)2
= E

∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

2
≤ E

∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

F

=
∑

|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K2 max
|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K2

{
max
|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣

+max
|k|=2

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

≤ K2

{(
max
|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣
2
) 1

2

+max
|k|=2

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

.

The őnal formulas are easily obtained through Theorem 10.

Now we consider bi and σi as deőned in Assumption MaV. From the inequality

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2

=




∑

|k|=1

∣∣∣E
[
DkF̃ (θ) |Fi

]
−DkF (θ)

∣∣∣
2





1
2

≤ K
1
2 max
|k|=1

∥∥∥E
[
DkF̃ (θ) |Fi

]
−DkF (θ)

∥∥∥
θ(i)⊕ρB

,

we note that we can take, from Theorem 10,

bi = ρ−D
ρD0 K

1
2

√∑D
d=1 d

2ρ2(d−1)

√
λmin

(
1
P
X′

0X0

) Bi

+




(
2 + CD (P0)

(
1 + P

1
2

))
D2K

(D − 1)!
+

1

(D − 2)!


KD− 1

2 ρD |F |D,1 .

We also have

E

(
δ
(i)
1

)2
= E

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
= E

{
E

(∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
|Fi

)}
≤ Eσi = σi.

Therefore, we can take the upper bound on E

(
δ
(i)
1

)2
as σi. QED

Proof of Theorem 11. From Corollary 4, under AUB and Fun-D, δ
(i)
1 = O

(
ρ−D
i aN + ρDi

)
= O

(
iDρ−α + i−Dρ

)

and δ
(i)
2 = O

(
ρ−D
i aN + ρD−1

i

)
= O

(
iDρ−α + i−(D−1)ρ

)
and one can indeed take two constants K8 > 0 and

K9 > 0 such that δ
(i)
1 ≤ K8 (i+ 1)

−(α−Dρ)∧(Dρ)
(1 + o (1)) and δ

(i)
2 ≤ K9 (i+ 1)

−(α−Dρ)∧((D−1)ρ)
. This

implies that we can identify, in Theorem 2, ξ = (α−Dρ)∧ ((D − 1) ρ) and δ = (α−Dρ)∧ (Dρ). Moreover,

Fun-2 implies that Lip-2 holds with L2 = K |F |2,1.
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Now we pass to the conditions in Theorem 2 (i). The őfth condition,
δ
(i)
1

m−δ
(i)
2

≤ c3 (i+ 1)
−δ

(1 + o (1)), is

ensured by taking δ = (α−Dρ)∧ (Dρ) and c3 large enough, i.e. such that K8

m
≤ c3. Taking c1 =

3K|F |2,1
2m ∆,

the fourth condition, 1

m−δ
(i)
2

(
δ
(i)
2 M

m
+ 3L2

2 ∆

)
≤ c1

(
1 + c2 (i+ 1)

−ξ
)
, can be written as

δ
(i)
2 ≤

3mK |F |2,1 ∆c2 (i+ 1)
−ξ

2M + 3K |F |2,1 ∆+ 3K |F |2,1 ∆c2 (i+ 1)
−ξ

. (8.32)

If we take ξ = (α−Dρ) ∧ ((D − 1) ρ), it is possible to choose K9 in such a way that

δ
(i)
2 ≤

3mK |F |2,1 ∆c2 (i+ 1)
−ξ

2M + 3K |F |2,1 ∆+ 3K |F |2,1 ∆c2 (i+ 1)
−ξ

≤ K9 (i+ 1)
−ξ

.

(As an example, K9 = mc2.) The third condition, δ
(i)
2 < m, using (8.32), is guaranteed if

δ
(i)
2 ≤

3mK |F |2,1 ∆c2 (i+ 1)
−ξ

2M + 3K |F |2,1 ∆+ 3K |F |2,1 ∆c2 (i+ 1)
−ξ

< m,

or 0 < 2mM + 3mK |F |2,1 ∆ and this is automatically true. The second condition, δ
(i)
1 + δ

(i)
2

(
1 + M

m

)
∆ ≤(

m− 3L2

2 ∆
)
∆, is reproduced as it is in the statement. From 1 > c1 > 0, we have 2m

3K|F |2,1
> ∆ > 0. From

Theorem 2, the őnal result follows. QED

Proof of Theorem 12. We őrst identify c1 and c2 in Theorem 5 as C1 and C2 in this theorem. From the

inequalities on ρi and aN , from Corollary 4 and Remark 15, δ
(i)
1 = O

(
ρ−D
i aN + ρDi

)
= O

(
iDρ−α + i−Dρ

)
,

and one can take a constant K10 > 0 such that δ
(i)
1 ≤ K10 (i+ 1)

−(α−Dρ)∧(Dρ)
(1 + o (1)). As a result, in

Theorem 5, δ = (α−Dρ) ∧ (Dρ) and the őnal result follows. QED

Proof of Theorem 13. The result follows replacing in Theorem 3 and Corollary 2 the formulas of Corollary

4. QED

Proof of Theorem 14. We apply Theorem 7 and Corollary 4. From the latter, we have

bi ≍ ρ−D
i Bi + ρDi ≍ iDρ− ν

2 + i−Dρ,

σi ≍
{
ρ−D
i

(
Σ

1
2
i +Bi

)
+ ρDi

}2

≍ i2Dρ−ν + i−2Dρ.

Therefore, β =
(
ν
2 −Dρ

)
∧ (Dρ), ζ =

(
ν
2 −Dρ

)
∨ (Dρ) and σ = (ν − 2Dρ)∧ (2Dρ). Note that the constants

c3, c4 and c5 do not really matter for the őnal result. The condition 1 < γ+ ζ boils down to γ+ ν
2 > 1+Dρ

and γ +Dρ > 1. As a result,

(σ + 1) ∧ β = (ν − 2Dρ+ 1) ∧ (2Dρ+ 1) ∧
(ν
2
−Dρ

)
∧ (Dρ) =

(ν
2
−Dρ

)
∧ (Dρ)

and

(γ + σ) ∧ β = (γ + ν − 2Dρ) ∧ (γ + 2Dρ) ∧
(ν
2
−Dρ

)
∧ (Dρ) =

(ν
2
−Dρ

)
∧ (Dρ) ,

and the őnal result follows. QED
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8.5 Proofs of Computation Results

Proof of Proposition 1. We start from the nearest matrix in the Frobenius norm and we follow the notation

in Higham (1988). First, note that our matrix is automatically symmetric so that the skew-symmetric matrix

C in Higham (1988, Theorem 2.1) is identically equal to 0. Then, the nearest psd matrix in the Frobenius

norm is given in the proof of Theorem 2.1 in Higham (1988) (the formulation in the statement of the same

result is less interesting for us). From the same source, it is apparent that the Frobenius distance between

the two matrices is: ∥∥∥ ¨̃F (θ)−UΛ+U
′
∥∥∥
F
=

√ ∑

j:λj<0

λ2
j .

It can be shown that in our case, as the matrix ¨̃F (θ) is symmetric and normal, UΛ+U
′ is also a nearest

psd matrix in the spectral norm (see Halmos, 1972). However, as Halmos (1972) is cast in a more general

framework, we provide a proof. From the statement of Theorem 3.1 in Higham (1988), using the fact that

C = 0, the distance between the matrix ¨̃F (θ) and the set of psd matrices is:

δ2

(
¨̃F (θ)

)
= min

{
r ≥ 0 : ¨̃F (θ) ≥ rI

}
= max {0,−λmin} .

Now, from the proof of Lemma 3.5 in Higham (1988), it is easy to see that
∥∥∥ ¨̃F (θ)−UΛ+U

′
∥∥∥
2
= max {0,−λmin},

so that δ2

(
¨̃F (θ)

)
is attained by UΛ+U

′. QED
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