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Abstract: 
This paper aims to estimate the optimal environmental policy in the elektricity 
generation sector for each of the EU countries maximizing total welfare. The study 
uses a recently proposed theoretical corporate finance model and empirically 
estimate each of its components using the current state of the literature to derive the 
estimated optimal investment size and greenhouse gas abatement activities. Results 
indicate that a social planner would not significantly reduce the carbon intensity of 
the EU electricity generation sector but rather keep its industry size well below 
current levels. 
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1. Introduction

Global climate change impacts are well established (IPCC, 2022). Consid-

ered as a threat, governments must take both mitigation and adaptation mea-

sures (IPCC, 2022). As part of the former, a control of the net concentration

of carbon dioxide in the atmosphere is an essential part of controlling climate

change (Begum et al., 2022). This control can be achieved by reducing emis-

sions, capturing carbon dioxide at production, or taking it out of the carbon

cycle using negative emission technologies such as growing forests (Parmesan

et al., 2022). Firms will have to invest in such abatement activities and adopt

more sustainable technologies requiring new investment and capital (Heider and

Inderst, 2023). Narrowing to the power sector, our main research question asks

which industry size and how much abatement activities a social planner would

set to maximize total welfare.

Heider and Inderst (2023) proposed a corporate finance model incorporating

emission externalities and industry equilibrium. Particularly, they proposed a

theoretical framework to determine what a social planner would choose in terms

of investment size (in terms of produced quantity) and abatement activity in a

single sector of the economy in order to maximize total welfare. In Heider and

Inderst (2023), the outcome obtained within the above framework is referred to

as the first-best outcome.

In this paper, we choose to use the above-mentioned framework to esti-

mate the optimal investment size in the electricity generation sector for each of

the European Union (EU) countries assuming a closed European market. As

detailed in Section 2.3, other frameworks such as The Integrated MARKAL-

EFOM1 System (TIMES) energy systems models or multi-objective models can

be used to answer the same research question. Our choice among the differ-

ent frameworks was motivated by the desire to provide feedback on this newly
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proposed theoretical framework.

At the time the current paper is written, the above-mentioned theoretical

framework was still being developed. Therefore, a key point to keep in mind is

that our paper will discuss the empirical results of each of the two latest versions

of the above-mentioned theoretical framework (Heider and Inderst, 2021, 2023).

These theoretical frameworks include a number of components, which will

have to be estimated from real-world data and the existing literature as part of

its application to the electricity sector. The set of components to be estimated

include the electricity demand function, the social cost of carbon (SCC), the

carbon intensity of electricity for all firms and low-polluting firms, and the

marginal abatement cost curve (MACC).

The rest of this paper is structured as follows. In the second section, a

brief review of literature on the estimation of electricity demand, the SCC,

and the MACC as well as models generating optimal environmental policy are

provided. In the third section, data sources and variable measurements involved

are described. In the fourth (resp. fifth) section, the results from the application

of the first (resp. second) version of Heider and Inderst (2023), are presented.

The sixth section quantitatively compares our empirical results with those of

the existing literature. The last section concludes.

2. Literature review

The first two subsections are intended to provide lights on the existing liter-

ature for the electricity demand modelling and the estimation of the SCC and

the MACC, all of which are essential components of the theoretical framework

proposed by Heider and Inderst (2021). The last subsection reviews the cur-

rent state of the literature on determining the optimal environmental policy

maximizing the total welfare.
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2.1. Electricity demand in the EU

Eskeland and Mideksa (2010) studied the relationship between the European

electricity consumption and outdoor temperature as well as other variables such

as income, demography, and technology. The results show that the outdoor tem-

perature has a significant effect on electricity consumption, however the authors

argue that a change in temperature will have a smaller impact on electricity con-

sumption compared to the other variables mentioned above.

Damm et al. (2017) provided information on the impact of a +2°C global

warming scenario on the heating and cooling electricity demand for 26 European

countries. Findings reveal that energy policy is a more important factor than

climate in electricity consumption for heating and cooling.

Cialani and Mortazavi (2018) examined the determinants of both residential

and industrial electricity demand in 29 European countries using data on a

relatively long period (1995-2015). Using the Generalized Method of Moments

(GMM) and the Maximum Likelihood (ML) approaches, they found very small

price elasticities and relatively large income elasticities. It is worth mentioning

that the data and methods used in Cialani and Mortazavi (2018) to model the

electricity demand are replicated in our present paper.

2.2. Social Cost of Carbon and Marginal Abatement Cost Curve

The SCC represents the economic cost caused by an additional ton of carbon

dioxide emissions or its equivalent (Nordhaus, 2017). Pearce (2003), Tol (2011),

and Havranek et al. (2015) are three meta-analyses providing an overview of

past estimates of the SCC. Tol (2011) concludes that estimates are highly un-

certain and are very sensitive to the researcher’s assumptions with respect to

the people’s views on the far future. However, it is found that estimates of the

Willingness-To-Pay (WTP) to avoid greenhouse gas emissions at the margin are

similar to the estimates of the SCC. Havranek et al. (2015) examined potential
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bias in the literature on the SCC using a set of 809 estimates from 101 studies

and found the mean reported SCC corrected for the selective reporting bias to be

between USD 0 and 134 per ton of carbon at 2010 prices for emission year 2015.

Nordhaus (2007, 2011, 2014) progressively valued the SCC at 28.1 USD/tC,

44.0 USD/tC, and 18.6 USD/tCO2, respectively, at 2005 price levels. Based

on a revised Dynamic Integrated model of Climate and the Economy (DICE),

Nordhaus (2017) estimated the SCC to be at USD 31 per ton of carbon dioxide

at 2010 prices for emission year 2015, consistent with the findings of Havranek

et al. (2015). In a recent study, Barrage and Nordhaus (2023) documented a

significant rise in the estimated social cost of carbon dioxide, which was assessed

61 USD/tCO2 at 2019 price levels.

The MACC reflects the required carbon tax level for certain emission re-

duction targets. Enkvist et al. (2007) have developed cost curves for various

environmental policy scenarios, globally and by region and sector, including

the power generation sector. For the latter, the author argues that low-tech

abatement is more important than technological R&D in a 2030 perspective.

Additionally, reducing demand, carbon capture and storage, renewables, nu-

clear power, and improving the greenhouse gas efficiency of fossil fuel plants

are the five key groups of abatement measures which would cost less than EUR

40 per ton of carbon dioxide. Notably, Liu and Feng (2018) investigated the

factors influencing the marginal abatement costs of carbon dioxide emissions

using data from 165 countries from 2000 to 2014. They found that the rela-

tionship between the marginal abatement costs and the economic development

is represented by a U-shaped curve. Furthermore, it is found that energy and

industrial structure and carbon dioxide emissions are negatively correlated with

marginal abatement costs. Tang et al. (2020) simulated the marginal abate-

ment cost curves of various sectors in China’s carbon emission trading system
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(ETS) and found a negative relationship between the marginal abatement cost

and the sector involvement. Finally and particularly, Yue et al. (2020) derived

a system-wide MACCs using scenario ensembles from TIMES energy systems

model. It is found that MACCs are highly dependent on the model assumptions

and the availability of abatement technologies. A ranking and classification of

key mitigation measures is also provided.

2.3. Optimal environmental policy and the power sector

As explained in the introduction, our paper directly applies to the electricity

sector the two latest versions of the theoretical framework generating the first-

best outcome proposed by Heider and Inderst (2021, 2023). In the first version

(Heider and Inderst, 2021), the authors provided the set of equations deter-

mining the industry/investment size and abatement activity set by an uncon-

strained social planner maximizing aggregate welfare. These equations involve

four key components: the demand function, the SCC, the carbon intensity, and

the MACC. In the second version (Heider and Inderst, 2023), the authors have

simplified this set of equations into a single equation solving for total invest-

ment involving three key components: the demand function, the SCC, and the

carbon intensity of low-polluting firms. To our knowledge, there is no existing

literature on the application of this specific framework.

Another approach to determine the optimal environmental policy is to gen-

erate the outcomes from a TIMES energy system model. Mondal et al. (2019)

used this approach to examine Egypt’s energy policy goals with a focus on the

electricity generation sector. Results suggested a greater diversification in the

electricity generation mix to improve energy security, reduce the usage of fossil

fuel-based power plants, and reduce carbon dioxide emissions.

Lastly, there exist other alternative models for optimizing social welfare.

Geng et al. (2017) explores mitigating air pollution in China via power sector

6



strategies. Three stochastic scheduling models and a multi-objective model

are discussed, offering insights for policymakers on balancing societal welfare,

emissions, and renewables. Lykidi and Gourdel (2015) determined how flexible

nuclear power plants have to be operated in order to maximize social welfare.

The authors found that such power production management involves a constant

thermal production and a totally flexible nuclear production through sufficient

nuclear capacity.

To the authors’ knowledge, there is no existing literature on determining the

level of power production and the level of carbon dioxide emissions that maxi-

mize social welfare utilizing a theoretical framework such as the ones proposed

by Heider and Inderst (2021, 2023), at least for EU countries and most likely

for any part of the globe.

3. Data sources and variable measurements

Although shifting of the carbon emission costs between global regions cer-

tainly exists, we assume a closed European market. We applied this theoretical

framework on the power sector in EU countries at the country-level on the

2000-2020 time period. In other words, for each country in the EU and for each

year in the above-mentioned time range, our objective was to determine the

investment size (in terms of produced quantity, e.g., Kilowatt-hour (kWh)) and

to some extent the abatement activities (in terms of reduced greenhouse gas

emission per unit of output, e.g., tCO2eq/kWh) that an unconstrained social

planner would choose to maximize total welfare. The electricity demand func-

tion, the SCC, the MACC, and the carbon intensity of electricity generation are

key components of the theoretical framework to be estimated. Their estimation

requires data collection. For each of these quantities, the data used to estimate

them are described in the following subsections.
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3.1. Electricity demand

The electricity demand function is one of the key components of the theo-

retical framework that have to be estimated. With this regard, we replicated

the work of Cialani and Mortazavi (2018) requiring the variables described in

Table 1. Yearly data were collected from Eurostat and the International En-

ergy Agency (IEA) for 20 countries with observable time period depending on

the available data of each country (see Table 8 in the Appendix A). Typical

descriptive statistics are provided in Table 2.
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https://ec.europa.eu/eurostat/databrowser/view/NAMQ_10_PE/default/table?lang=en&category=na10.namq_10.namq_10_aux
https://ec.europa.eu/eurostat/databrowser/view/NRG_CHDD_A/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/NRG_CHDD_A/default/table?lang=en


Statistic N Mean St. Dev. Min Max

elechh 417 30.252 39.627 0.634 168.129
elecind 417 42.776 53.384 1.506 239.307
pricehh 417 0.179 0.064 0.043 0.390
priceind 417 0.101 0.037 0.033 0.266
gdpcap 417 28,621.020 17,179.270 6,533.997 87,559.120
gdp 417 499.966 694.066 11.954 2,986.827
pop 417 18.541 23.029 0.412 83.194
cdd 417 50.122 77.504 0.000 409.640
hdd 417 3,186.154 1,063.845 1,007.580 6,179.750

Table 2: Electricity demand estimation: Descriptive statistics of explanatory variables.
elechh, elecind, and gdp were divided by one bilion; pop by one million.

3.2. Social Cost of Carbon

Table 3 contains the SCC estimates directly derived from baseline scenarios

in Pearce (2003); Nordhaus (2007, 2011, 2014); Barrage and Nordhaus (2023).

Emission period Social Cost of Carbon
1991-2000 6.4 USD2000/tC
2001-2005 28.1 USD2005/tC
2006-2015 31.0 USD2010/tCO2

2016-2020 61.0 USD2019/tCO2

Table 3: Social Cost of Carbon from baseline scenarios in Pearce (2003); Nordhaus (2007,
2011, 2014); Barrage and Nordhaus (2023).

Incorporating these SCC estimates into our framework necessitates convert-

ing units to nominal prices in euros per ton of carbon dioxide, EUR/tCO2.

Firstly, any instances of tC units are transformed into tCO2 units units by di-

viding by a factor of 3.67 1. Secondly, fixed USD prices are converted into nom-

inal prices in euros using the yearly average USD/EUR exchange rates sourced

from Eurostat, along with calculations of the inflation factor for the European

Union (EU) as a whole for each year between 1995 and 2020. These inflation

1Carbon dioxide is composed of one atome of carbon and two atomes of oxygen with
atomic weights 12 and 16, respectively. Therefore 1 tCO2 contains 12

2×16+12
tC ≈ 1

3.67
tC.

As a result, priceUSD
1tC

= priceUSD
3.67tCO2

.
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factors are computed concerning the price levels of reference years such as 2000,

2005, 2010, and 2019. Specifically, the inflation factor for each year, A with

respect to the reference year, refY is calculated as follows:

(1 +
avgAinf

100
)A−refY , (1)

where avgAinf denote the average inflation between the reference year refY and

year A.

The resulting inflation factors are represented in the Appendix in Figure 11.

3.3. Carbon intensity of electricity generation

Lastly, the carbon intensity of electricity generation is another key com-

ponent of the theoretical framework. In our case, carbon intensity must be

understood as the quantity of greenhouse gases emitted per unit of output, e.g.,

tCO2eq/kWh (Heider and Inderst, 2021). However, there is an important dis-

tinction between the one in Heider and Inderst (2021) and in Heider and Inderst

(2023) to consider. The former uses the averaged carbon intensity of electricity

generation among all firms while the later uses the averaged carbon intensity of

electricity generation of low-polluting firms.

Keeping these two distinctions in mind, we first present the observed yearly

averaged carbon intensity of electricity generation (all firms included) expressed

in tCO2eq/kWh retrieved from Our World in Data for 26 countries from 2000

to 2021. As an example, Figure 1 showcases the carbon intensity of power

generation for five EU countries (namely, Germany, Spain, France, Italy, and

Netherlands).

The approach used to approximate the yearly average carbon intensities of

electricity generation of low-polluting firms for each country will be discussed

in section 5.1. This assumption requires data on time-variant country-specific

power generation mixes. Figure 2 showcases the electricity generation mix for
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Figure 1: Carbon intensity of electricity generation - all firms. Data downloaded from Our
World in Data.

Germany.

Figure 2: Electricity generation mix of Germany. Data downloaded from Our World in Data.

4. The first-best outcome: including abatement activity

Heider and Inderst (2021) hypothesize Lemma 1.

Lemma 1. An unconstrained social planner maximizing aggregate welfare would

implement monitoring, an abatement activity sFB as given by c′(sFB) = v, and

industry size IFB as given by P (IFB) = 1 + v(y − sFB) + c(sFB).

In this section, we provide an empirical framework to estimate time-variant

electricity demand functions, P (.), for each EU country, the time-variant EU’s

MACC, c(.), and the time-variant EU’s SCC, v. Using Heider and Inderst

(2021)’s lemma, the observed time-variant country-level historical carbon in-

tensities and our estimations mentioned above, we derive an estimation of the

12



first-best investment size, IFB , and the abatement activities, sFB , in section

4.3.

4.1. Electricity demand

The electricity demand function is estimated for each country and year fol-

lowing the empirical framework developed by Cialani and Mortazavi (2018).

Specifically, we decompose the electricity consumption into the household and

industrial consumptions as follows:

e = ehh + eind, (2)

where e, ehh, eind represent the total, household, and industrial electricity con-

sumption, respectively.

We posit that the formulations presented in Cialani and Mortazavi (2018)

accurately capture the characteristics of the broader population under consid-

eration, i.e.,

ln(ehhi,t ) = βhh
1 + βhh

2 ln(ehhi,t−1) + βhh
3 ln(pricehhi,t ) + βhh

4 ln(gdpcapi,t)

+ βhh
5 ln(popi,t) + βhh

6 cddi,t + βhh
7 hddi,t + βhh

8 yeart + ϵhhi,t

(3)

ln(eindi,t ) = βind
1 + βind

2 ln(eindi,t−1) + βind
3 ln(priceindi,t ) + βind

4 ln(gdpi,t)

+ βind
5 cddi,t + βind

6 hddi,t + βind
7 yeart + ϵindi,t

(4)

which can be rewritten as follows:
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ln(ehhi,t ) − βhh
2 ln(ehhi,t−1) =βhh

1 + βhh
3 ln(pricehhi,t ) + βhh

4 ln(gdpcapi,t)

+ βhh
5 ln(popi,t) + βhh

6 cddi,t + βhh
7 hddi,t

+ βhh
8 yeart + ϵhhi,t

ln(eindi,t ) − βind
2 ln(eindi,t−1) =βind

1 + βind
3 ln(priceindi,t ) + βind

4 ln(gdpi,t)

+ βind
5 cddi,t + βind

6 hddi,t + βind
7 yeart + ϵindi,t ,

where ehhi,t , eindi,t , pricehhi,t , priceindi,t represent the household and industry elec-

tricity consumption and price for household and industry in country i at year t

respectively, gdpi,t, gdpcapi,t, popi,t, cddi,t, hddi,t are the GDP, GDP per capita,

population, Cooling and Heating Degree Days in country i at year t respectively,

yeart is the year at t, and ϵhhi,t ∼ N (0, σhh) and ϵindi,t ∼ C(0, γind) are the error

terms with σhh > 0 and γind > 0.

At equilibrium ejt = ejt−1, j ∈ {hh, ind}, equation (2) can be rewritten as

e = (hhh)−1 ◦mhh(p) + (hind)−1 ◦mind(p), (5)

where

hj(e) = (1 − βj
2)ln(e), for j in {hh, ind} (6)

mhh(p) = βhh
1 + βhh

3 ln(p) + βhh
4 ln(gdpcap) + βhh

5 ln(pop) + βhh
6 cdd

+ βhh
7 hdd + βhh

8 year + ϵ

(7)

mind(p) = βind
1 + βind

3 ln(p) + βind
4 ln(gdp) + βind

5 cdd + βind
6 hdd

+ βind
7 year + ϵ.

(8)
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Equation (5) leads to the inverse total electricity demand function

P (e) =
(
(hhh)−1 ◦mhh + (hind)−1 ◦mind

)−1
(e). (9)

Detailed derivations leading to Equation (5) are provided in the Appendix B.1.

Using equations (6), (7), (8), and (9), we have

P−1(p) = exp(A)exp

(
βhh
3

1 − βhh
2

ln(p)

)
+ exp(B)exp

(
βind
3

1 − βind
2

ln(p)

)
,

where

A =
1

1 − βhh
2

(
βhh
1 + βhh

4 ln(gdpcap) + βhh
5 ln(pop) + βhh

6 cdd + βhh
7 hdd + βhh

8 year + ϵ
)

B =
1

1 − βind
2

(
βind
1 + βind

4 ln(gdp) + βind
5 cdd + βind

6 hdd + βind
7 year + ϵ

)
,

which can simply be rewritten as

P−1(p) = Ãpa + B̃pb, (10)

where

Ã = exp(A)

B̃ = exp(B)

a =
βhh
3

1 − βhh
2

b =
βind
3

1 − βind
2

.

(11)

The function P−1(.) in Equation (10) is the total electricity demand function

that we want to estimate. Its estimation requires the estimation of quantities
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Ã, B̃, a, and b through the estimation of the coefficients βi
j .

Similar to Cialani and Mortazavi (2018), the above-mentioned coefficients in

equations (3) and (4) are estimated by taking the estimate having the highest

likelihood among 100 Maximum Likelihood (ML) estimates on the data de-

scribed in section 3.1 for each of the households and industry sector. Figure 3

shows the estimated total power demand function for five EU countries (namely,

Germany, Spain, France, Italy, and Netherlands).

Figure 3: Estimated total power demand functions for five EU countries in 2020.

In addition to Cialani and Mortazavi (2018), we provide a residual analysis

for both households and industry estimations. Coefficients in the household

electricity demand model equation (3) are estimated assuming independence

and normal distribution of its residuals. Table 4 and Figure 4a support these

assumptions. As for the industry, coefficients in the industry electricity demand

model equation (4) are estimated assuming independence and Cauchy distribu-

tion of its residuals to allow for tighter tails. Similarly, Table 5 and Figure 4b

support these assumptions.

(a) Households: distribution against N (0, 1) (b) Industry: distribution against C(0, 1)

Figure 4: Observed distributions of reduced residuals against their distribution assumption.
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Statistic Overall DE ES FR IT NL

N 395 16 15 17 25 16
Mean 0.002 −0.531 0.071 0.271 −0.022 −0.448

St. Dev. 1.001 0.655 0.781 0.906 0.849 0.651
Min −3.145 −1.447 −1.130 −1.424 −1.250 −1.169

Median −0.045 −0.690 −0.073 0.408 0.012 −0.620
Max 3.680 0.611 1.764 1.588 1.296 0.910

Skewness 0.282 0.234 0.444 −0.186 −0.122 0.631
Kurtosis 2.940 1.864 2.608 1.882 1.668 2.220
Shapiro 0.990∗∗ 0.952 0.970 0.944 0.923 0.909

Jarque-Bera 5.301∗ 1.005 0.588 0.983 1.910 1.468
ARCH-LM 67.442∗∗∗ 2.224 0.496 2.144 6.563∗ 3.192

ADF −7.612∗∗∗ −0.614 −3.844∗∗∗ −0.058 −0.604 −1.390
KPSS 0.088∗ 0.623∗∗ 0.714∗∗ 0.762∗∗∗ 0.722∗∗ 0.583∗∗

Table 4: Households electricity demand estimation: the descriptive statistics, diagnostics, and
unit root tests results of reduced residuals.
Note: *, **, and *** represents significance at 10%, 5% and 1% level respectively. ARCH-LM
test performs the LM test for Autoregressive Conditional Heteroskedasticity with the null
assumption of no ARCH effects. Unit roots are tested using the Augmented Dicky and Fuller
(ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests.

Statistic Overall DE ES FR IT NL

N 395 16 15 17 25 16
Mean −0.411 0.524 −1.688 −0.459 −0.256 −0.497

St. Dev. 2.747 2.535 3.260 2.077 2.030 2.396
Min −12.061 −6.476 −10.101 −6.535 −7.759 −6.531

Median −0.070 0.596 −1.330 −0.070 −0.010 −0.116
Max 18.052 6.258 2.350 2.419 2.642 3.099

Skewness −0.126 −0.655 −1.190 −1.636 −2.005 −1.306
Kurtosis 9.765 6.053 4.051 5.603 8.714 4.360

ARCH-LM 5.753 1.160 0.168 0.096 0.277 0.348
ADF −20.123∗∗∗ −0.524 −2.866∗∗ −3.827∗∗∗ −4.446∗∗∗ −1.096
KPSS 0.122∗ 0.151∗ 0.211∗ 0.080∗ 0.199∗ 0.183∗

Table 5: Industry electricity demand estimation: the descriptive statistics, diagnostics, and
unit root tests results of reduced residuals.
Note: *, **, and *** represents significance at 10%, 5% and 1% level respectively. ARCH-LM
test performs the LM test for Autoregressive Conditional Heteroskedasticity with the null
assumption of no ARCH effects. Unit roots are tested using the Augmented Dicky and Fuller
(ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests.
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4.2. Social Cost of Carbon and Marginal Abatement Cost Curve

Another key component of the first-best outcome framework is the SCC. In

our analysis, its estimation over time is provided for the EU as a whole gathering

all the prepared elements from section 3.2. The estimed SCCs from Table 3 are

first converted into euros using the USD/EUR yearly average exchange rates and

then spread out over time using the inflation factors for the respective emission

periods. Figure 5 shows the assumed evolution of the SCC over time.

Figure 5: Estimated SCC for the EU as a whole.

MACCs, the last key component, are modelled for the EU as a whole and for

each year using the constraints from Heider and Inderst (2021), the estimations

from Yue et al. (2020) and additional empirical assumptions, that is:

Assumption 1. For all α > 0, β > 1, and any carbon intensity reduction

si ≥ 0, the MACC is in the form c(si) = αsβi .

Assumption 2. Denoting ymax
2000 the highest country-level carbon intensity ob-

served in the EU in 2000, c′(ymax
2000) = 1012, assuming that 1012 is an infinite

number.

Assumption 3. c
(

ymax
2000

2

)
= 200CC2018/tCO2.

The above assumptions may be interpreted as follows. First, EU countries

face the same marginal abatement costs and therefore share the same technol-

ogy at the same price. Second, 1012 is supposed to be an infinite number: at the
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ymax
2000 carbon intensity reduction level, an additional reduction of 1 tCO2/kWh

requires an investment of 1 trillion euros. Third, the unconstrained social plan-

ner begins to manage abatement activities in the year 2000. Lastly, Ireland

estimated MACCs are a proxy for those of the EU.

From Assumption 1., Assumption 2., and Assumption 3., α and β are derived

using a standard calculator. The reader is encouraged to note that since As-

sumption 3 involves 2018 prices, 200CC2018/tCO2 is converted in nominal prices2

and therefore there is one MACC for each year. Figure 6 showcase the estimated

MACCs for the EU as a whole for the subset of years 2000, 2012, and 2021.

Figure 6: Estimated MACCs for the EU as a whole for the subset of years 2000, 2012, and
2021.

4.3. Investment size and Abatement activity

As a final step, we derive an estimation of the first-best investment size, IFB ,

measured in kWh and the abatement activities sFB measured in tCO2/kWh

from our estimations in sections 4.1 and 4.2, the observed historical country-level

carbon intensity, and Heider and Inderst (2021)’s Lemma 1.

One can show that Heider and Inderst (2021)’s Lemma 1, Equations (1),

(10), and (11) imply the following system of equations (12)

2200CC2018/tCO2 is converted in nominal prices for each year in the period 2000-2021 using
a similar formula for the inflation factor as in Equation (1), replacing year 2010 by 2018.
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IFB = Ã(p∗)a + B̃(p∗)b

sFB = exp

(
1

β − 1
ln

(
v

αβ

))
,

(12)

where

p∗ = 1 + v

[
y − exp

(
1

β − 1
ln

(
v

αβ

))]
+ α× exp

(
β

β − 1
ln

(
v

αβ

))
,

and Ã and B̃ are time-variant country-specific parameters, a and b are time-fixed

country-fixed parameters, and β and α are time-variant country-fixed parame-

ters, all defined in the system of equations (11) and Assumption 1.

With estimations in section 4.1 and 4.2 at hand, Figure 7 showcases the esti-

mated investment size in TWh set by an unconstrained social planner for five

EU countries (namely, Germany, Spain, France, Italy, and Netherlands) for the

country’s specific longest available period. A social planner would set the in-

vestment size much lower than the observed historical electricity production,

especially in the 2000-2015 period.

These results should however be taken with a grain of salt given the uncer-

tainty of the estimation of the power demand functions. The later is achieved

by repeating 100 estimations of βhh
1 , βhh

2 , ... , βind
6 , and βind

7 using the Limited-

memory Broyden–Fletcher–Goldfarb–Shanno Bound optimizer (L-BFGS-B) and

the initial parameter distributions provided in Appendix B.2. Among these 100

estimations, the one producing the highest Log-likelihood is retained as the final

estimate for the β coefficients. The authors repeated this estimation procedure

100 times and descriptive statistics of the estimated β coefficients, provided in

Table 6, clearly show that there is a large uncertainty in the estimation.

As shown in Figure 8, the estimated carbon intensity set by an unconstrained so-

cial planner would remain roughly constant over time, keeping large differences
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Statistic N Mean St. Dev. Min Max

βhh
1 100 −14.998 4.444 −28.972 −10.085

βhh
2 100 0.971 0.076 0.571 1.174

βhh
3 100 −0.079 0.068 −0.239 0.074

βhh
4 100 0.042 0.050 −0.077 0.274

βhh
5 100 0.033 0.082 −0.188 0.467

βhh
6 100 0.00002 0.0001 −0.0002 0.0003

βhh
7 100 0.00002 0.00002 −0.00004 0.0001

βhh
8 100 0.007 0.002 0.005 0.014

βind
1 100 1.654 3.434 0.017 18.075

βind
2 100 0.975 0.028 0.862 0.993

βind
3 100 −0.040 0.069 −0.270 0.078

βind
4 100 0.018 0.029 −0.0003 0.130

βind
5 100 0.0001 0.0001 0.0001 0.0003

βind
6 100 0.00000 0.00001 −0.00001 0.00004

βind
7 100 −0.001 0.002 −0.009 0.0001

Table 6: The estimation procedure of the power demand functions was repeated 100 times.
The table shows descriptive statistics of the estimated beta coefficients.

Figure 7: Estimated investment size for five EU countries over time.

in carbon intensity between countries.

Figure 8: Carbon intensities deducting social planner’s abatement activities for five EU coun-
tries over time.
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5. The first-best outcome: with low-polluting firms only

Heider and Inderst (2023) hypothesize Lemma 2.

Lemma 2. Given the linear production technology, only low-polluting firms,

j = l, should be active, and marginal social surplus should be zero at investment

and output IFB, P (x = IFB) = 1 + vyl, which equates marginal consumer

welfare to marginal social costs of production.

We employ the empirical framework from section 4 to estimate time-variant

electricity demand functions, P (.), for each EU country and the time-variant

EU’s SCC, v. Compared to the theoretical framework in section 4, the difference

resides in the marginal social cost of production, 1 + vyl, from the addition of

the carbon intensity of low-polluting firms, yl, expressed in tCO2/kWh, and the

deletion of the marginal abatement activities, sFB . In this section 5, we extend

our empirical framework to estimate the carbon intensity of low-polluting firms,

yl, in section 5.1, and discuss the resulting estimated first-best investment sizes,

IFB , in section 5.2.

5.1. Carbon intensity of low-polluting firms

Switching to the delicate case of carbon intensity of electricity generation of

low-polluting firms, we are not aware of any data which measures this quantity.

Therefore, we first assume that low-polluting firms generate electricity from

all of the existing low-carbon technologies (namely, hydro and nuclear power

plants, solar and wind farms, and other renewables) in a given country and year,

leaving the high-polluting firms with all of the existing high-carbon technologies

(coal, oil, and gas power plants). As for our second assumption, we quantify

the averaged carbon intensity for each low-carbon electricity generation type as

described in Table 7. From the above two assumptions and the time-variant

country-specific power generation mix data provided in section 3.3, we define
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the averaged carbon intensity of electricity generation of low-polluting firms, yl,

expressed in tCO2eq/kWh, as

yl =
hydro× 24 + nuc× 12 + solar × 30 + wind× 11.5 + otherrenew × 100

hydro + nuc + solar + wind + otherrenew
,

where hydro, nuc, solar, wind, otherrenew are the hydroelectric, nuclear, solar,

wind, and other renewables production shares in a given country and year,

respectively.

Production type Assumed carbon intensity
(tCO2eq/GWh)

Hydroelectricity power plants 24
Nuclear power plants 12
Solar farms 30
Wind farms 11.5
Other renewables (includes biomass) 100

Table 7: Carbon intensities by low-carbon electricity production type in the EU.

Figure 9 showcases the estimated carbon intensities of low-polluting firms,

yl, over time for five EU countries.

Figure 9: Estimated carbon intensities of low-polluting firms over time for five EU countries.

5.2. Investment size

Similar to section 4.3, we derive an estimation of the first-best investment

size, IFB , measured in kWh from our estimations in sections 4.1, 4.2 (leaving

the estimated MACCs aside), 5.1, and Heider and Inderst (2023)’s Lemma 2.
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We show that Heider and Inderst (2023)’s Lemma 2, Equations (10), and

(11) imply the time-variant country-specific investment size in Equation (13)

IFB = Ã(p∗)a + B̃(p∗)b, (13)

where

p∗ = 1 + vyl,

and Ã and B̃ are time-variant country-specific constants, and a, b are time-fixed

country-fixed constants, all defined in the system of equations (11).

With the estimated time-variant country-specific electricity generation demand

functions from section 4.1, the estimated time-variant SCC from section 4.2,

and the estimated carbon intensities of low-polluting firms from section 5.1

at hand, Figure 10 showcases the estimated first-best investment size, IFB ,

set by an unconstrained social planner for five EU countries (namely, France,

Germany, Italy, Netherlands, and Spain). Similar to section 4.3, a social planner

would set the investment size much lower than the observed historical electricity

production.

Figure 10: Estimated industry sizes for five EU countries over time.
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6. Empirical Results Versus Literature Comparison

In this section, we contrast our results with studies that provide estimates

of the power generation industry size for EU countries, focusing on maximizing

social welfare.

Carraro et al. (2013) analyzes various scenarios for European energy markets

to assess their alignment with economic incentives and climate goals, focusing

on the role of natural gas in different climate policy contexts. Their welfare

maximizing power generation in the EU27 under various scenarios and policy

assumptions exceed our estimates by a factor of three to five.

Su et al. (2020) explored EU’s 2030 climate goals, applying Pinch Analysis

to identify renewable energy pathways for major electricity producers, consider-

ing socio-economic and technological factors. While their objective focused on

maximizing the deployment of renewable electricity sources, we align our study

results with theirs, even though our goal is broader in optimizing total welfare.

Their country-level estimates of the electricity production exceed our estimates

by a factor of two to five.

Misconel et al. (2022) employ diverse model approaches, including the Pow-

erACE model, which encompasses modeling of the Germany electricity system.

PowerACE is an agent-based simulation model developed for analyzing Euro-

pean spot electricity markets at hourly resolution using long-term scenarios. All

supply agents within this framework prepare hourly supply and demand bids

that are auctioned across the market area, with the overarching goal of maxi-

mizing welfare. Their projections for German electricity production exceed our

findings by a margin ranging from 15 to 98%.

Overall, our socially optimal power output estimates fall significantly lower

than those found in the existing literature. This study consequently questions

either the theoretical frameworks of Heider and Inderst (2021, 2023), or the
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empirical techniques used to quantity their individual components, or the em-

pirical findings from the existing literature on the optimal power production in

EU countries. Given the results from repeated estimation of the power demand

functions and their importance in the estimation of the optimal investment size,

the authors conclude that further research is required to accurately estimate

power demand functions.

7. Conclusion and Policy Implications

Climate change mitigation can be achieved by reducing emissions, capturing

carbon dioxide at production, or taking out of the carbon cycle using negative

emission technologies. In this context, firms require new investments in such

abatement activities. Focusing on the power sector, this empirical paper esti-

mates the industry size and how much abatement activities an unconstrained

social planner would set in each EU country from 2000 to 2020 to maximize ag-

gregate welfare. To this extent, we estimate EU time-variant country-level power

demand functions, time-variant social cost of carbon, time-variant marginal

abatement cost curves and apply the theoretical framework of Heider and In-

derst (2021) as well as its updated version in Heider and Inderst (2023) under

the closed European market assumption.

Findings suggest that an unconstrained social planner would not significantly

reduce the carbon intensity of the EU electricity generation sector but rather

keep the industry size well below current levels. Assuming the empirical findings

are valid, implications for investors and policymakers include the introduction

of energy saving policies, such as renovating buildings, and lower investments in

costly carbon dioxide abatement activities in the electricity generation sector.

Additionally, our empirical study essentially tests whether the theoretical frame-

works proposed by Heider and Inderst (2021, 2023) are empirically relevant and

can be operationalized, providing feedback to the authors mentioned above. Our
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estimates of power generation are significantly lower than those reported in the

existing literature. This discrepancy may partly stem from inaccuracies in the

estimation of the power demand functions. The authors therefore advocate for

further research in the power demand function estimation.
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Start End

AT 2004 2020
BE 1995 2020
CZ 2000 2020
DE 2004 2020
DK 1995 2020
EE 2002 2020
ES 2005 2020
FI 1995 2020
FR 2003 2020
HU 1995 2020
IE 2005 2020
IT 1995 2020
LT 2004 2020
LU 1995 2020
LV 2004 2020
NL 2000 2020
PL 2001 2020
PT 2005 2020
SE 1997 2020
SI 1995 2020

Table 8: Electricity demand estimation: Observable time period by country.

Figure 11: The calculated EU inflation factors. Inflation rates are downloaded from Eurostat.
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Appendix B The first-best outcome: including abatement activity

B.1 Derivation of the power demand function

The following derivations are provided for the households (hh) as an example

but these are obviously adjustable for the industry (ind).

Proposition 1. If ∀t ∈ N+,∀ehht ∈ R∗
+,∃phht ∈ R∗

+,

ln(ehht ) − βhh
2 ln(ehht−1) =βhh

1 + βhh
3 ln(phht ) + βhh

4 ln(gdpcapt)

+ βhh
5 ln(popt) + βhh

6 cddt + βhh
7 hddt

+ βhh
8 yeart + ϵt,

then ∀ehh ∈ R∗
+,∃p ∈ R∗

+, e
hh = (hhh)−1 ◦mhh(p) at equilibrium, where hhh is

invertible on R∗
+ and

hj(e) = (1 − βj
2)ln(e), for j in {hh, ind},

mhh(p) = βhh
1 + βhh

3 ln(p) + βhh
4 ln(gdpcap) + βhh

5 ln(pop) + βhh
6 cdd

+ βhh
7 hdd + βhh

8 year + ϵ.

Proof:

∀t ∈ N+,∀ehht ∈ R∗
+,∃phht ∈ R∗

+,

ln(ehht ) − βhh
2 ln(ehht−1) =βhh

1 + βhh
3 ln(phht ) + βhh

4 ln(gdpcapt)

+ βhh
5 ln(popt) + βhh

6 cddt + βhh
7 hddt

+ βhh
8 yeart + ϵt,
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ehh
t =ehh

t−1=ehh

=⇒

∀ehh ∈ R∗
+,∃phh ∈ R∗

+,

ln(ehh) − βhh
2 ln(ehh) =βhh

1 + βhh
3 ln(phh) + βhh

4 ln(gdpcap)

+ βhh
5 ln(pop) + βhh

6 cdd + βhh
7 hdd

+ βhh
8 year + ϵ

=⇒

∀ehh ∈ R∗
+,∃phh ∈ R∗

+,

(1 − βhh
2 )ln(ehh) =βhh

1 + βhh
3 ln(phh) + βhh

4 ln(gdpcap)

+ βhh
5 ln(pop) + βhh

6 cdd + βhh
7 hdd

+ βhh
8 year + ϵ

=⇒
∀ehh ∈ R∗

+,∃phh ∈ R∗
+,

hhh(ehh) = mhh(phh)

=⇒
∀ehh ∈ R∗

+,∃phh ∈ R∗
+,

ehh = (hhh)−1 ◦mhh(phh).

B.2 Power demand function estimation: Optimization

When performing the estimation of the β coefficients involved in the power

demand function population equation, the authors used the L-BFGS-B opti-

mizer and the distributions for the initial parameters,
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βhh
1 ∼ −10U [1,3],

βhh
2 ∼ 10U [−1,1],

βhh
3 , βind

3 ∼ −10U [−3,−1],

βhh
4 , βhh

5 , βind
2 , βind

4 , βind
5 ∼ 10U [−2,0],

βhh
6 , βhh

7 , βind
6 ∼ 10U [−3,−1],

βhh
8 , βind

7 ∼ −10U [−4,−2],

σhh, γind ∼ U [0, 1],

βind
1 ∼ 10U [−2,2].
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