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1 Introduction

Understanding the underlying factors that drive asset returns is a pivotal challenge

in both academic research and practical finance. While traditional factor models

are well-established tools for capturing these dynamics, the Conditional Autoen-

coder (CAE) proposed by Gu et al. (2021) represents a significant advancement.

The CAE uses neural networks from the autoencoder family to perform dimension

reduction, estimating latent factors and capturing nonlinear factor exposures based

on asset characteristics. It ensures no-arbitrage and significantly reduces out-of-

sample pricing errors compared to traditional linear models.

In this study, we study how well the CAE model generalizes to data and scenar-

ios not covered in the original work. Our contribution is twofold: first, we assess the

model under economic constraints; second, we apply it to an international context.

Specifically, we investigate the effects of the exclusion of microcaps and illiquid firms

as well as the inclusion of transaction costs. We find that while excluding illiquid

firms decreases portfolio profitability, accounting for transaction costs actually in-

creases net returns on the liquid sample compared to the full sample. Notably, in

the U.S., the profitability of the short side of the portfolio is heavily concentrated

in illiquid and small firms, a pattern that is also observed internationally but to a

lesser extent. By applying the model to international markets, we observe results

consistent with the U.S. results, further validating the model’s applicability.

The CAE model leverages neural networks from the autoencoder family to assist

in dimension reduction, capturing the intricate dynamics of asset returns through a

flexible nonlinear function of covariates while adhering to the no-arbitrage condition.

This model builds on the earlier Instrumental Principal Component Analysis (IPCA)

model by Kelly et al. (2019), which also incorporates firm characteristics but under

linear assumptions. Relaxing this assumption in the CAE model allows for a more

nuanced understanding of the factors driving asset returns. The original study

demonstrated superior results in terms of statistical criteria, achieving higher total

and predictive R2, and economic performance, evidenced by higher Sharpe ratios of

portfolios, compared to simpler models.

Recent literature has explored various machine-learning approaches to asset pric-

ing, highlighting the broader potential of these techniques. To name some influential

examples, Bryzgalova et al. (2019) and Gu et al. (2020) provide insights into using

advanced machine learning methods, demonstrating significant improvements in pre-
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dictive accuracy. Building on these advancements, Yang et al. (2024) further refined

the CAE model by introducing the Conditional Quantile Variational Autoencoder

(CQVAE), which enhances the accuracy of mean return estimates by focusing on

conditional quantiles.

Even though the application of machine learning has significantly improved the

predictability of stock returns in recent years, it is essential to consider liquidity

constraints for the practical applications of asset pricing models. Hou et al. (2020)

examine individual anomalies and their replicability under various liquidity con-

straints, emphasizing the importance of market conditions. Similarly, Avramov et

al. (2023) investigate the impact of economic constraints on the performance of

machine learning models in the U.S. market, finding that excluding microcaps, dis-

tressed stocks, or periods of high market volatility significantly reduces profitability.

Furthermore, literature focused on transaction costs underscores the need to account

for trading expenses in asset pricing applications. DeMiguel et al. (2020) examine

the transaction costs of multiple anomalies, while Novy-Marx and Velikov (2019)

and Nechvátalová (2024) consider various cost mitigating techniques and their per-

formance.

The majority of asset pricing research is conducted in the U.S. only (Andrew

Karolyi, 2016). International evidence thus provides crucial out-of-sample valida-

tion, as results found in the U.S. do not necessarily translate to other markets.

Building upon the methodology of Gu et al. (2020), Tobek and Hronec (2021) apply

machine learning techniques to developed countries, while Hanauer and Kalsbach

(2023) focus on emerging markets, demonstrating the broader applicability of these

methods. Moreover, Jiang et al. (2023) show that price patterns can predict returns

both in the U.S. and internationally, further validating the potential of machine

learning in diverse market conditions.

While Gu et al. (2021) demonstrated the effectiveness of the CAE model using

the U.S. equity dataset, our study replicates their results and extends the analysis

to an international context, as well as introducing economic constraints critical for

practical asset management. Additionally, we employ a different set of firm char-

acteristics for the international analysis, further validating the model’s robustness

across diverse datasets.

Consistent with the findings of Avramov et al. (2023), we show that portfolio

returns and profitability decrease when restricting our analysis to a liquid subset

of stocks in the U.S. market. However, after accounting for transaction costs, the
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net returns and profitability actually increase in the liquid sample compared to the

full sample. This indicates that focusing on more liquid stocks can enhance overall

portfolio performance once transaction costs are considered. Using predictions from

the CAE model to create portfolios offers limited economic benefit in the U.S., where

the profitability of the short side is concentrated in illiquid firms. Consequently, only

the long-only decile portfolio on the liquid sample outperforms the S&P index after

transaction costs, achieving a Sharpe ratio of 0.75 (equal-weighted) and 0.81 (value-

weighted).

Extending our analysis to international markets, we find results that align with

the U.S. outcomes in both statistical performance, measured by total and predic-

tive R2, and economic performance, reflected in portfolio returns. In contrast to

the U.S. results, for international portfolios, the long-short strategy on the liquid

sample is more effective, with a Sharpe ratio of 0.91 (equal-weighted) and 0.63

(value-weighted), both outperforming the market index. This demonstrates the

CAE model’s robustness and reliability across different datasets and firm character-

istics, providing valuable insights into the practical applicability of advanced ma-

chine learning techniques in asset pricing. It highlights the importance of considering

economic constraints in practical asset management, as these factors significantly

influence portfolio performance.

The rest of this paper is organized as follows: Section 2 provides methodology

and dataset description. Section 3 presents empirical results for the U.S. dataset

and internationally, and finally Section 4 concludes the paper.

2 Methodology and Data

2.1 Conditional Autoencoder model

In this section, we describe the CAE model used in our study. Introduced by Gu et

al. (2021), it incorporates firm characteristics and characteristic-managed portfolios

to estimate latent factors and conditional betas. The main equation, which captures

the essence of the model’s structure, is:

ri,t = β′
i,t−1ft + ui,t, (1)
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where ri,t represents the excess return of asset i at time t, βi,t−1 denotes the

factor loadings, ft represents the latent factors, and ui,t is the error term.

Figure 1 shows the overall structure of the conditional autoencoder model. The

left part of the network is modelling conditional betas as a nonlinear function of

firm characteristics. The right side shows how we model the latent factors as a

linear function of a set of characteristic-managed portfolios xt. The portfolios xt are

calculated as follows:

xt =
(
Z ′

t−1Zt−1

)−1
Z ′

t−1rt, (2)

where Zt−1 is the matrix of firm characteristics at time t−1, and rt is the vector

of returns at time t. Compared to simply using rt as input to obtain factor loadings,

using xt reduces the dimensionality dramatically from the number of firms to the

number of firm characteristics. It also allows for an incomplete panel dataset, using

only non-missing observations to obtain xt.

...

g g g g...

...

Dot product

Beta output layer
βi,t-1  ∈ RK

Hidden layer(s)

Input layer 1
   zi,t-1 ∈ RP

Output layer
ri,t   ∈  R1

Factor output layer
ft ∈ RK

Input layer 2
xt  = (Z't-1  Zt-1 )-1 Zt-1 rt  ∈ RP

Factor loadings side Latent factor side

Figure 1: Conditional Autoencoder Model

The left-hand side of the figure illustrates the process of obtaining factor loadings βi,t−1 using firm
characteristics zi,t−1 as input. It involves one or more hidden layers with a nonlinear activation
function g. The right-hand side shows how P characteristic-managed portfolios xt are linearly
transformed to derive the latent factor ft.

The conditional betas βi,t−1 (left side of Figure 1) are derived through a series

of transformations of the firm characteristics zi,t−1:
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z
(0)
i,t−1 = zi,t−1, (3)

z
(l)
i,t−1 = g

(
b(l−1) +W (l−1)z

(l−1)
i,t−1

)
, l = 1, . . . , Lβ, (4)

βi,t−1 = b(Lβ) +W (Lβ)z
(Lβ)
i,t−1. (5)

Here, z
(l)
i,t−1 represents the firm characteristics transformed through l-th layer of

the neural network with the nonlinear activation function g. In the empirical part,

we use Rectified Linear Unit (ReLU) as the nonlinear activation function g and one

to three hidden layers.

The latent factor ft (right side of Figure 1) is obtained from the characteristic-

managed portfolios xt:

x
(0)
t = xt, (6)

ft = b̃(0) + W̃ (0)x
(0)
t . (7)

Here, x
(0)
t is the initial input which is the characteristic-managed portfolios, and

Equation 7 shows the linear transformation used to transform xt into the latent

factor ft.

The final output from the CAE model is obtained by taking the dot product of

the conditional betas βi,t−1 and the latent factors ft.

2.2 Data

U.S. Equity Dataset

For the U.S., we use individual stock returns from the CRSP database, with the

three-month Treasury bill rate serving as a proxy for the risk-free rate to calculate

excess returns. The dataset spans from 1957 to 2018.

We incorporate 94 firm characteristics as used and provided by Gu et al. (2021,

2020), comprising 61 annual, 13 quarterly, and 20 monthly updated characteristics.

To avoid forward-looking bias, the characteristics are appropriately lagged. For a

comprehensive list of characteristics and additional details, refer to Gu et al. (2020).
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International Equity Dataset

The international dataset includes the U.S. and 22 other developed countries1. These

countries are further divided into four regions: U.S., Europe, Japan, and Asia Pa-

cific. The international dataset is obtained from Datastream by Refinitiv. The data

preprocessing procedure follows Nechvátalová (2024).

For the firm characteristics in the international dataset, we utilize a set of 153

anomalies used by Tobek and Hronec (2021), comprising 93 fundamental charac-

teristics, 43 market friction characteristics, and 11 I/B/E/S characteristics. The

fundamental characteristics are based solely on annual data. To ensure consis-

tency between the U.S. and international datasets, we exclude quarterly fundamental

characteristics due to their limited availability internationally. Refer to Tobek and

Hronec (2021) for comprehensive implementation details.

Liquidity filters

For the U.S. full sample, we do not apply additional filtering to maintain consistency

with the dataset used by Gu et al. (2021). For the international full sample, we

exclude observations with a price lower than $1 ($0.10 for Asia Pacific) at the end

of the previous month.

The liquid sample excludes microcap stocks, discarding illiquid and small firms

that would be costly or impossible to trade. First, we sort firms by market cap-

italization and exclude the lowest market-cap firms each month. Specifically, we

remove the least capitalized firms until the excluded firms’ total market capitaliza-

tion equals 5% of the region’s total market capitalization. We also apply a similar

filter based on trading volume over the last 12 months. Firms with low trading vol-

umes are excluded until the total trading volume of the excluded firms equals 5% of

the region’s total traded volume. If a firm lacks trading volume data, it is excluded

if it falls within the lowest 10% based on market capitalization. For non-U.S. stocks,

we require a market capitalization exceeding the lowest decile of NYSE market cap

for the given month, ensuring non-U.S. firms have capitalization levels comparable

to U.S. stocks. As in the full sample, firms must have a stock price exceeding one

dollar at the end of the previous month, or $0.10 for firms in the Asia Pacific region.

1. Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,
the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, Japan, Aus-
tralia, New Zealand, Hong Kong, and Singapore.

6



Missing firm characteristics are replaced by the cross-sectional median of that

characteristic within the region. To stabilize learning and mitigate the influence of

outliers, we cross-sectionally rank normalize all characteristics to be within the (-1,

1) interval for each region. For excess returns, we clip observations below -3 and

above 3 to avoid the effect of severe outliers.

Table 1 presents descriptive statistics for both datasets for the full sample and

the liquid subsample. In the U.S., the number of firms per month is on average over

5000 for the full sample and around 1000 for the liquid subsample. Internationally,

we have on average almost 17000 firms in the full dataset each month, which reduces

to 3000 firms in the liquid sample.

Table 1: Descriptive statistics for U.S. and international datasets

Panel A presents descriptive statistics for the U.S. dataset spanning the period from 1957 to 2018.
Panel B covers the international dataset, including the U.S. and 22 developed countries, from 1990
to 2018. We report the monthly mean, standard deviation, and the 25%, 50%, and 75% quantiles
for excess returns (in %), market capitalization (in millions of dollars), and the number of firms
per month. The statistics are provided for both the full sample (left) and the liquid subsample
(right).

Full Sample Liquid Sample

Statistic Excess Return MC # Firms Excess Return MC # Firms

Panel A: U.S. dataset

Mean -2.79 1504.49 5242 -3.10 6008.72 1097
Std 17.72 10318.30 2267 11.72 22232.25 249
25% -10.35 21.13 2594 -9.24 348.30 945
50% -3.45 90.70 5704 -3.10 1152.09 1041
75% 3.27 445.87 6787 2.95 3746.23 1248

Panel B: international dataset

Mean -1.30 1665.98 16918 -1.81 7946.65 2998
Std 20.72 10377.43 1195 11.92 22755.74 431
25% -8.98 25.40 16494 -7.91 957.37 2655
50% -2.39 101.42 17102 -1.87 2290.75 3009
75% 4.24 489.65 17812 4.08 6034.42 3223

2.3 Model estimation

To estimate our model, we divide our dataset into training, validation and testing

datasets while maintaining the temporal ordering of the data. We train the model

with various hyperparameter configurations on the training set and evaluate them

on the validation set. The best set of hyperparameters is based on mean square
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error over the validation sample. The testing sample is used to obtain out-of-sample

predictions on previously unseen data.

To avoid overfitting, we follow the Gu et al. (2021) approach, using l1 LASSO

penalization and taking an ensemble of ten best models based on the validation

sample. The objective function to optimize the parameters of the model is:

L(θ; ·) = 1

NT

T∑
t=1

N∑
i=1

∥∥ri,t − β′
i,t−1ft

∥∥2
+ λ

∑
j

|θj| (8)

where the second part of the objective function is the regularization term, apply-

ing the LASSO penalty to the network’s weights. The regularization strength pa-

rameter λ is determined using the validation sample during hyperparameter tuning.

We implement early stopping to terminate training if the validation loss increases,

preventing overfitting. The Adam algorithm (Kingma and Ba, 2014), an extension

of stochastic gradient descent with adaptive learning rates, is used for optimiza-

tion. Additionally, batch normalization (Ioffe and Szegedy, 2015) is applied to each

hidden layer to stabilize and accelerate training.

In our analysis, we implement an expanding window approach, sequentially train-

ing and evaluating our models over various time periods. This method allows us to

obtain more precise estimates by incorporating more recent data. For the training of

our first model, we divide the dataset into an 18-year training period (1957–1974),

a 12-year validation period (1975–1986), and a 31-year out-of-sample testing period

(1987–2018). To save computational costs, we refit the model every five years, ex-

tending the training sample by five years each time while keeping the validation

sample size fixed.

In our analysis, we keep the number of latent factors K = 3. We perform a

hyperparameter search to select a suitable model. The number of hidden layers on

the factor loadings side is either one, two, or three, with 32 neurons in the first

hidden layer, 16 in the second, and 8 in the third. The learning rates checked were

0.01, 0.001, 0.0001, and 0.00001. The strength of the LASSO regularization λ can

be 0, 0.0001, 0.00001 or 0.000001. The batch size is either 64 or 128.
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3 Empirical results

3.1 Statistical performance

To evaluate the out-of-sample statistical performance of the model, we use the total

and predictive R2 metrics proposed by Kelly et al. (2019).

The total R2 measures how well the model explains the current factor realiza-

tions, evaluating its effectiveness in capturing individual stock riskiness:

R2
total = 1−

∑
(i,t)∈OOS(ri,t − β̂′

i,t−1f̂t)
2∑

(i,t)∈OOS r
2
i,t

. (9)

where OOS denotes the out-of-sample testing subsample for a given model, com-

prising data not used for training the model or selecting hyperparameters

The predictive R2 evaluates how accurately the model forecasts future individual

excess stock returns, indicating its capability to capture variations in risk compen-

sation across the panel. It is defined as:

R2
pred = 1−

∑
(i,t)∈OOS(ri,t − β̂′

i,t−1λ̂t−1)
2∑

(i,t)∈OOS r
2
i,t

, (10)

where λ̂t−1 is exponentially weighted moving average of the estimated latent

factor f̂ up to month t− 1 with smoothing factor α = 0.5.

In Table 2 is the total and predictive R2 for both datasets. We replicate the

results of Gu et al. (2021) using the U.S. dataset, achieving a total R2 of 14.70%

and a predictive R2 of 0.32%. In comparison, Gu et al. (2021) report a total R2

of 12.5% and a predictive R2 of 0.52%. These differences may be attributed to the

varying set of hyperparameters tested and a slightly different out-of-sample period,

as their dataset ends two years earlier. Unlike Gu et al. (2021), who separate the

results for models with one, two, or three hidden layers, we aggregate these models

in our analysis. This likely does not affect our results, as they report very similar

R2 values across these models.

For the international dataset, we observe a total R2 of 9.06%, and the predictive

R2 is 0.52%. These results demonstrate the model’s effectiveness in capturing the
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complexity of asset returns across different markets, highlighting its robustness and

applicability beyond the U.S. context.

Table 2: Out-of-sample R2 values

Out-of-sample R2
total and R2

pred for individual stocks are reported. The U.S. dataset covers the
period from 1987 to 2018 and the international period from 1995 to 2018. Values are in percentages.

Dataset R2
total R2

pred

U.S. 14.70 0.32
International 9.06 0.52

3.2 Evidence from the U.S. equity dataset

To evaluate the economic performance of our models we construct long-short decile

portfolios based on the out-of-sample predicted returns. Each month, we sort the

return forecasts and buy the top 10% while selling the bottom 10% of the firms.

To estimate transaction costs, we utilize the closing quoted spread as described

by Chung and Zhang (2014). For missing observations, we fill them using the volatil-

ity over volume method proposed by Fong et al. (2018). Any remaining gaps are

assumed to have a transaction cost rate of 5%. Portfolio returns with transaction

costs are calculated iteratively to account for these estimated firm-month-specific

transaction costs (Nechvátalová, 2024).

The portfolio turnover is the sum of absolute values of trade sizes divided by the

gross exposure. A turnover of 200% in a given month indicates that all currently

held positions were liquidated and new firms were added to the portfolio on both

the long and short sides.

Table 3 reports monthly mean returns, standard deviation, annualized Sharpe

ratio, and monthly portfolio turnover. We report equal-weighted as well as value-

weighted portfolios, trained on the full dataset. We show performance over the full

sample and liquid subsample, with and without transaction costs.

The results for the equal-weighted and value-weighted portfolios differ signifi-

cantly when evaluated on the full sample. For the liquid samples, the performance

of value-weighted and equal-weighted portfolios is comparable. As we restrict our

analysis to a liquid subsample, the returns are reduced by approximately half. The

decrease in the Sharpe ratio is more pronounced for the equal-weighted portfolio

due to the greater impact of small firms.
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Table 3: Performance of portfolios in the U.S.

This table presents monthly mean returns, standard deviations, annualized Sharpe ratios, and
turnover rates for U.S. equal-weighted (Panels A, B, C) and value-weighted portfolios (Panels D,
E, F) from 1987 to 2018. The results are shown for long-short, long-only, and short-only decile
portfolios, both with and without transaction costs. Models are trained on the full sample and
evaluated on either the full sample or a liquid subsample. All values are expressed as percentages,
except for the Sharpe ratio.

Equal-weight Without Transaction Costs With Transaction Costs

Training Testing Mean Std Sharpe Mean Std Sharpe Turnover

Panel A: Long-Short

Full Full 3.69 5.04 2.54 -1.68 5.02 -1.16 126
Full Liquid 1.37 6.53 0.73 0.75 6.50 0.40 116

Panel B: Long side

Full Full 2.82 8.78 1.11 -0.29 8.44 -0.12 124
Full Liquid 1.51 5.45 0.96 1.18 5.42 0.75 122

Panel C: Short side

Full Full 0.87 8.16 0.37 -1.39 7.98 -0.60 128
Full Liquid -0.14 8.78 -0.06 -0.42 8.76 -0.17 109

Value-weight Without Transaction Costs With Transaction Costs

Training Testing Mean Std Sharpe Mean Std Sharpe Turnover

Panel D: Long-Short

Full Full 2.14 6.68 1.11 -0.86 6.68 -0.45 137
Full Liquid 1.28 5.94 0.75 0.84 5.91 0.49 129

Panel E: Long side

Full Full 1.93 7.67 0.87 -0.10 7.58 -0.04 149
Full Liquid 1.47 5.18 0.98 1.21 5.17 0.81 141

Panel F: Short side

Full Full 0.21 7.71 0.09 -0.77 7.65 -0.35 125
Full Liquid -0.19 7.82 -0.08 -0.37 7.80 -0.17 118
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When transaction costs are included, the full sample portfolio strategies are

not profitable. However, strategies trading on liquid samples remain profitable but

with much lower Sharpe ratios, at 0.4 for the equal-weighted and 0.5 for the value-

weighted portfolios. For comparison, investing in a buy-and-hold S&P would yield

a mean monthly return of 0.64% and a Sharpe ratio of 0.53.

Examining the long-only portfolio metrics, the long side is more profitable in

the liquid subsample than in the long-short portfolio. As expected, both the short-

leg and long-leg of the portfolio are less profitable without transaction costs in the

liquid sample compared to the full sample, as we exclude microcap and illiquid

firms. For both sides of the portfolio, after accounting for transaction costs, the

liquid subsample has higher returns and Sharpe ratios compared to the full sample.

The results evaluated on the full sample are consistent with Gu et al. (2021) for

both equal-weighted and value-weighted portfolios. Avramov et al. (2023) report

results for value-weighted portfolio returns of CAE with two hidden layers and five

latent factors across various subsets; however, their full sample metrics are signif-

icantly worse than those reported by us or by Gu et al. (2021). Their reported

Sharpe ratio is 0.78 compared to 1.45 in the study by Gu et al. (2021) for a com-

parable model. They also have mean returns one percentage point lower compared

to our model with only three latent factors. Our portfolio’s performance on the

liquid sample is very similar to their ’nonmicrocaps’ sample, even though the liquid

sample includes only half the number of firms, with their ’nonmicrocaps’ sample

having over 13,000 firms. This suggests that their models might be suboptimal and

underperforming. Nevertheless, they also observe the common pattern of decreasing

profitability in more liquid samples without transaction costs.

The turnover of the long-short strategy is 137% and 129% for the value-weighted

portfolio on the full and liquid sample, respectively, which is comparable to Avramov

et al. (2023) results.

As the current model was trained on the full sample dataset, the performance of

the portfolios is likely to be improved by training specifically on the liquid subsample.

3.3 International evidence

In this section, we report results for the international dataset, which includes the

U.S. and 22 other developed countries. The out-of-sample period spans from 1995

to 2018 due to data availability.
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Table 4 presents performance metrics for the equal-weighted and value-weighted

long-short decile portfolios. Values are shown for both the full and liquid samples,

as well as before and after accounting for transaction costs. For the full sample with-

out transaction costs, Sharpe ratios are higher compared to the U.S. results, with

Sharpe ratios of 4.49 and 1.40 for the equal-weighted and value-weighted portfolios,

respectively. This difference mostly disappears after considering transaction costs,

but the value-weighted global portfolio remains the only one with positive returns

(0.45%) on the full sample, albeit with a Sharpe ratio of only 0.35. For compari-

son, investing in a buy-and-hold strategy of the MSCI World Index would yield a

monthly mean return of 0.45% with a Sharpe ratio of 0.37 for the same period.

When we restrict the investing universe to the liquid sample, we observe the same

pattern as with the U.S. portfolios. Before including transaction costs, the returns

and Sharpe ratios are lower for the liquid subsample, but this reverses after including

transaction costs, where the liquid subsample becomes superior. The equal-weighted

portfolio has a Sharpe ratio of 0.91 for the liquid subsample after transaction costs

(0.63 for the value-weighted). For the international portfolios, there is a greater dif-

ference between the equal-weighted and value-weighted portfolios, even in the liquid

subsample after transaction costs. This could be due to better investment options

with a larger number of firms of different sizes across regions. As we include firm-

specific transaction costs, these estimates should be reasonably reliable, especially

for the liquid sample.

The turnover of portfolios is slightly higher but similar to that of the U.S. port-

folios. Compared to the U.S. case, the long-short portfolio performs better than the

long-only portfolio, as the short side of international portfolios is more effective.

Overall, the results for the international portfolios are very similar to those for the

U.S. portfolios, suggesting that the conditional autoencoder model is robust across

different datasets and firm characteristics. However, we find limited economic benefit

after accounting for transaction costs or when restricting to the liquid subsample.
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Table 4: Performance of Portfolios Internationally

This table presents monthly mean returns, standard deviations, annualized Sharpe ratios, and
turnover metrics for international portfolios from 1995 to 2018. It includes results for equal-
weighted portfolios (Panels A, B, C) and value-weighted portfolios (Panels D, E, F). The results are
shown for long-short, long-only, and short-only decile portfolios, both with and without transaction
costs. Models are trained on the full sample and evaluated on either the full sample or a liquid
subsample. All values are expressed as percentages, except for the Sharpe ratio.

Equal-weight Without Transaction Costs With Transaction Costs

Training Testing Mean Std Sharpe Mean Std Sharpe Turnover

Panel A: Long-Short

Full Full 5.16 3.98 4.49 -1.40 3.69 -1.31 126
Full Liquid 1.61 3.66 1.52 0.96 3.64 0.91 128

Panel B: Long side

Full Full 3.97 7.61 1.81 -0.05 7.22 -0.02 125
Full Liquid 1.21 5.93 0.71 0.89 5.91 0.52 134

Panel C: Short side

Full Full 1.18 6.01 0.68 -1.35 5.75 -0.81 127
Full Liquid 0.40 6.07 0.23 0.06 6.03 0.04 123

Value-weight Without Transaction Costs With Transaction Costs

Training Testing Mean Std Sharpe Mean Std Sharpe Turnover

Panel D: Long-Short

Full Full 1.80 4.45 1.40 0.45 4.43 0.35 147
Full Liquid 1.24 4.13 1.04 0.75 4.12 0.63 136

Panel E: Long side

Full Full 1.41 6.67 0.73 0.69 6.67 0.36 158
Full Liquid 1.07 5.47 0.68 0.84 5.47 0.53 141

Panel F: Short side

Full Full 0.39 6.07 0.22 -0.23 6.01 -0.13 136
Full Liquid 0.17 5.70 0.11 -0.09 5.68 -0.06 132
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4 Conclusion

In this paper, we extended the application of the CAE model, demonstrating its

ability to capture complex nonlinear relationships in asset returns. We evaluated

the model under economic constraints and applied it to international markets. Our

findings provide a comprehensive assessment of the CAE model’s robustness and

practical applicability, showing its effectiveness across different datasets and high-

lighting the importance of incorporating liquidity and transaction costs in asset

pricing models.

Our findings reveal that excluding microcap and illiquid firms decreases portfolio

profitability, a result documented in the U.S. context by Avramov et al. (2023).

However, when accounting for transaction costs, net returns actually increase in the

liquid sample compared to the full sample. This suggests that focusing on more

liquid stocks can enhance overall portfolio performance once transaction costs are

considered.

Internationally, the CAE model’s performance aligns with U.S. outcomes in both

statistical and economic metrics. While the model offers limited economic benefit

in the U.S. due to the concentration of short-side profitability in illiquid firms, the

long-only decile portfolio on the liquid sample still outperforms the S&P index after

transaction costs. More promising results are observed for international portfolios,

where the long-short strategy on the liquid sample achieves solid Sharpe ratios,

outperforming the market index.

Our work underscores the potential of advanced machine learning techniques,

such as the CAE model, in the field of asset pricing. It highlights both the strengths

and limitations of these approaches, providing valuable insights for future research

and practical asset management. We demonstrate that incorporating factors such

as liquidity and transaction costs is crucial for a nuanced understanding of asset

returns, as these elements can significantly alter the final conclusions. Additionally,

by including international evidence, we show that the model is generalizable beyond

the U.S. dataset.
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