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Commitment and Conflict in Unanimity Bargaining

Topi Miettinen and Christoph Vanberg∗

Abstract

We theoretically investigate how the application of unanimity rule can lead to inefficient delay in collective
decision making. We do so in the context of a distributive multilateral bargaining model featuring strategic
pre-commitment. Prior to each bargaining round, players can declare a minimum share that they must
receive in return for their vote. Such declarations become binding with an exogenously given probability.
We characterize the set of stationary subgame perfect equilibria under all q-majority rules. Our results
suggest that unanimity rule is uniquely inefficient. All other rules, including all-but-one, are fully efficient.
Keywords: bargaining, commitment, conflict, delay, international negotiations, climate negotiations, leg-
islative, multilateral, voting, majority, unanimity
JEL Codes: C7, D7

“The unanimity rule has meant that some key proposals for growth, competitiveness and tax fairness in the
Single Market have been blocked for years.” (European Commission press release, Jan 15th 2019).

A fundamental constitutional choice facing organizations such as the European Union (EU) concerns the
voting rules to be used in decision making bodies, e.g. the Council of Ministers. Many organizations, including
the EU, require the unanimous consent of all members at least for certain types of decisions. This rule has the
important advantage that it ensures that all decisions reached constitute Pareto improvements over the status
quo. However, politicians and expert observers alike have often complained that unanimity rule is responsible for
inefficient delays and even gridlock. Prominent EU officials, including former and current Commission presidents
Jean-Claude Juncker and Ursula von der Leyen, have therefore proposed the expanded use of qualified majority
rule (QMR). The call for such a reform seems to have gained momentum as the number of member states has
grown. Other international organizations, including the World Trade Organization (WTO), The United Nations
Framework Convention on Climate Change (UNFCCC), and the North Atlantic Treaty Organization (NATO),
face similar challenges.1

Despite this public debate, there is little game-theoretic literature formally investigating the effect of alter-
native decision rules on inefficient delay. The goal of the present paper is to develop such a formalization. We
therefore consider a setting where immediate agreement would be efficient. In addition to unanimity rule, we
investigate the potential efficiency properties of qualified majority rules. Our model builds on the seminal Baron
and Ferejohn (1989) model of legislative bargaining, to which it adds a capacity to precommit. In particular,
we add a commitment stage at the beginning of each round of negotiations. At this stage, each player can
attempt to commit to rejecting, in the subsequent bargaining stage, any proposal where she receives less than
a self-imposed threshold. Between the commitment and bargaining stages, any such attempted commitment
fails with an exogenously given probability.2 The commitment status is assumed common knowledge at the

∗Miettinen: Helsinki GSE & Hanken School of Economics, Arkadiankatu 7, P.O. Box 479, Fi-00101 Helsinki, Finland;
topi.miettinen@hanken.fi. Vanberg: Department of Economics, University of Heidelberg, Heidelberg, Germany; vanberg@uni-
hd.de. Thanks to Volker Britz, Colin Campbell, Josh Ederington, Tore Ellingsen, Hülya Eraslan, Guillaume Frechette, Faruk Gul,
B̊ard Harstad, Emin Karagözoglu, Duozhe Li, Brian Rogers, Ariel Rubinstein, Tomas Sjöström, Jonathan Weinstein, Alexander
Wolitzky, three anonymous reviewers, and the seminar audiences at BEET 2019, SING 2019, EEA-ESEM 2021, EPCS 2022, Nordic
Theory Group Online Seminar, BI Norwegian Business School, Helsinki GSE, Princeton, Rutgers, University of Kentucky, Univer-
sity of Michigan, University of Miami, and Washington University St. Louis for comments and feed-back. Financial support of
the Fulbright Finland Foundation, the Norwegian Research Council (250506), the Yrjö Jahnsson Foundation (20187090), and the
German Science Foundation (314978473) is gratefully acknowledged.

1The WTO was not able to meet the December 2002 deadline imposed in paragraph 6 of the Doha declaration on the TRIPS
agreement since a single member prevented consensus (Ehlermann and Ehring, 2005). UNFCCC has not been able to reach a
comprehensive and binding agreement on how to limit carbondioxide emissions (Pizer, 2006; Nordhaus, 2006; Stern, 2008; Gollier
and Tirole, 2017). A recent example of aggressive commitment tactics is the public posturing of the Turkish president in connection
with the NATO membership bids by Finland and Sweden. Expert obervers interpreted this as an attempt to extract concessions
from the U.S. and other NATO members (https://www.bloomberg.com/news/articles/2022-05-17/what-turkey-wants-from-sweden-
and-finland-in-nato-expansion-spat). Similar negotiation tactics have been employed by the Hungarian prime minister Viktor Orbàn
both in EU and NATO contexts.

2We adopt the simplest such model where each player’s probability of failing is independent of the failures of the commitment
attempts of other players and, moreover, each individual commitment attempt has an equal chance of failing. Also, for the sake of
simplicity, we assume that commitments need to be re-established at the commitment stage of each round.

1



bargaining stage. Thus, we pursue a rational, complete information explanation for conflict.3 Once commit-
ment attempts have been made and their success determined, one of the players is randomly drawn to make
a proposal to which all others respond by either accepting or rejecting. Agreement arises if, according to an
exogenously given consent rule, sufficiently many players accept.

We find that, under unanimity rule, an inefficient stationary subgame perfect equilibrium (SSPE) with delay
always exists. This equilibrium involves all players making maximally agressive commitments, essentially betting
on the event that all other players’ commitments fail. When all players adopt such a tough stance, the only
way to increase the chance of agreement would be for a player to reduce her commitment to her continuation
value, leading to a strictly lower payoff. Perhaps more surprisingly, we find that when the commitment success
probability is small enough, every SSPE is inefficient. The reason is that, when all players adopt moderate (i.e.
mutually compatible) bargaining positions, at least one player will have an incentive to adopt a more aggressive
stance in an attempt to capture the surplus that becomes available whenever one or more commitments fail.
Moreover, the commitment success probability required for an efficient equilibrium to exist is increasing in the
number of players. As a consequence, delay and inefficiency become more severe as the number of players grows.

In contrast, there can be no delay or inefficiency in any SSPE under any less-than-unanimity rule. Giving
up unanimity and instead requiring all but one party to agree is enough to restore full efficiency in our model.
The mechanism underlying this result is that proposers exclude the most “expensive” players when building
minimum winning coalitions, inducing Bertrand-style competition in commitments.4

Our model highlights the role of aggressive precommitment as a mechanism contributing to inefficient delay
in unanimity decision making. In seminal work, Buchanan and Tullock (1965) posited a fundamental tradeoff
between what they called the “external costs” and the “decision costs” associated with a given q-majority rule.
The larger is the required majority, the smaller is the chance that a given individual will be harmed by a
collective decision. Conversely, Buchanan and Tullock conjectured that more demanding majority requirements
will be associated with greater expected “decision costs” in the form of delay and possibly gridlock. Our
modeling approach provides a simple game-theoretic micro-foundation for the latter conjecture in a purely
distributive bargaining model. By design, we do not investigate complexities generated by externalities or
incomplete information. By focusing on the distributive element, our model offers a tractable and transparent
framework to understand the effects of (i) commitment, (ii) decision rule, and (iii) number of parties involved
on what Buchanan and Tullock coined the decision costs. It thereby contributes to a deeper understanding of
such inefficiencies and how they might be reduced by moving to qualified majority rule.

The idea that being committed to an aggressive bargaining position can be advantageous within negotiations
can be traced back to Schelling (1956), who discussed several means by which such pre-commitment could be
achieved. One example he provides is that national representatives taking part in an international negotiation
often “create a bargaining position by public statements, statements calculated to arouse a public opinion
that permits no concessions to be made.”5 Another example involves sending delegates who have limited and
observable mandates to agree only on certain terms.6 In both cases, exogenous events may later undermine the
commitment attempt. For example, public announcements of a bargaining position will usually be associated
with some form of justification which may subsequently be undermined if new information becomes available,
giving the bargainers an “excuse” to reconsider the position.7

Crawford (1982) formalizes some of Schelling’s arguments in a bilateral bargaining framework with both
strategic ex-ante pre-commitment and ex-post revoking of commitments.8 He shows that with sufficiently
low commitment success probability, both players make aggressive pre-commitments in the unique equilibrium,
which is inefficient since the commitments are mutually incompatible. Ellingsen and Miettinen (2008) show that
impasse may be considerably more likely and inefficiency more severe if there is a small cost of commitment.
Ellingsen and Miettinen (2014) analyze stochastic commitments in a bilateral dynamic infinite horizon setting.
Our paper is the first to apply the stochastic commitment approach in the multilateral case and to compare the

3Although inspired by (Schelling, 1960), our model thus falls outside the canonical explanations of rational conflict (Fearon,
1995; Jackson and Morelli, 2011). Another such model is Wolitzky (2023) who shows that imperfectly observed offers or claims can
unavoidably result in inefficient conflict with positive probability.

4The theoretical principle that “expensive” players are excluded from winning coalitions receives empirical support in the
experiment by Miller, Montero and Vanberg (2018).

5Putnam (1988) suggests informally that “one effective way to [commit] to a position (...) is to rally support from one’s
constituents” in order to induce audience costs (1988, p.450). A recent bilateral model which captures some of Putnam’s intuition
is provided by Basak and Deb (2020) where concession costs depend on political support, which in turn depends on the stochastic
realization of an underlying state of nature.

6This idea has formalized, among others, by Jones (1989) and Harstad (2010).
7In climate negotiations, the basis for the bargaining position or mandate could be that measures to combat climate change in

each country should be proportional to per capita net emissions. Suppose that between the date when the commitment position
goes public and the following COP meeting starts, new scientific evidence is published that net emissions per capita in the respective
country are higher than expected. Then the negotiating party will have more room to maneuver and the commitment fails.

8For various modeling approaches, see Crawford (1982); Muthoo (1996); Myerson (1991); Fearon (1994, 1997); Levenotoğlu and
Tarar (2005); Jackson and Morelli (2007); Güth, Ritzberger and Van Damme (2004) for instance. Subtle differences in assumptions
about the way commitment is built and how it may be lost lead to differences in predicted outcomes. See Muthoo (1999) and
Miettinen (2022) for reviews.
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performance of alternative decision rules.
A closely related modeling approach is based on the idea that players adopt a tough bargaining stance in

an attempt to mimic an obstinate behavioral type. Among bilateral bargaining models using this reputational
framework (e.g. Myerson, 1991; Abreu and Gul, 2000; Compte and Jehiel, 2002; Kambe, 1999; Fanning and
Wolitzky, 2022), some (but not all) predict inefficient delay.9 Notice that such models effectively assume una-
nimity rule. While these models have generated interesting insights and have been widely applied, they quickly
become intractable when extended to n-player multilateral settings.10 An exception is Ma (2023), who analyzes
the three-player case with majority rule. He shows that there exists an equilibrium with efficient outcomes and
that player’s equilibrium payoff in that equilibrium is non-monotone in the probability of obstinacy.

Naturally, our paper also relates to the literature on multilateral bargaining in the tradition of Baron and
Ferejohn (1989). Complete information models of this type typically predict immediate agreement in settings
where delay is inefficient. This is true irrespective of the decision rule or the number of players (Banks and
Duggan, 2000; Eraslan and Evdokimov, 2019). Some authors have analyzed settings in which delay can be
efficient, in which case majority rule may lead to inefficient early agreement such that unanimity becomes the
more efficient rule (Merlo and Wilson, 1995, 1998; Eraslan and Merlo, 2002).

Finally, our result concerning the sharp contrast between unanimity and less-than-unanimity rules bears some
relation to results obtained in the information aggregation literature. Beginning with non-strategic analysis
of Condorcet (1785), a number of authors have highlighted the effectiveness of majority rule in aggregating
information when interests are aligned. Feddersen and Pesendorfer (1997, 1998) show that, with strategic
voting, information aggregates efficiently for all rules other than unanimity. In these models, the proposal being
considered is exogenously given. Bond and Eraslan (2010) consider a model in which the group is voting on an
endogenous offer made by a proposer. There, unanimity rule can be strategically advantageous for responders,
and may even be Pareto superior to majority rule.

The paper is structured as follows. Section 1 presents the model. Section 2 analyzes the simplest multilateral
case of three players. Section 3 presents the general analysis and the main results. Section 4 concludes.

1 Model

The bargaining game involves n ≥ 3 players and takes place in discrete time with infinite horizon. In each
period t ∈ {1, 2, ...}, actions are taken in two stages – the commitment stage and the bargaining stage. At
the commitment stage, players can attempt to make short-lived commitments which last at most the current
period.11 That is, each player i chooses a commitment attempt xi ∈ [0, 1], where xi = 0 (or indeed any value
below a player’s continuation payoff) can be interpreted as a choice not to commit. In between the two stages,
each player’s commitment attempt may fail independently with probability 1 − ρ. With a nod to Schelling’s
original contributions, we will say that a player whose commitment attempt fails has a loophole. The probability
that a commitment attempt is successful is ρ. The realization of the attempt, the commitment status, is denoted
by si and equals xi with probabiliy ρ and 0 with probability 1− ρ.

At the bargaining stage, each player becomes the proposer with probability 1/n. With probability (n−1)/n,

a player becomes a responder. The proposer proposes a deal d = (d1,..., dN ), with
∑N

i=1 di ≤ 1, where we refer to
di as the offer made to player i. Each player then votes to accept or reject. Yet, any player i with commitment
status si > di will automatically reject the proposal. The proposed deal is implemented if at least q players
(including the proposer) vote to accept. If not, a new period begins with the commitment stage. If a deal d is
implemented in period t, player i′s payoff equals δt−1di. Players are impatient, with (common) discount factor
δ ∈ (0, 1).

Our equilibrium concept is Stationary Subgame Perfect Equilibrium (SSPE). A stationary strategy for
player i, denoted ψi, specifies a commitment attempt xi chosen at the commitment stage in any period, a
proposal strategy for any realized commitment status profile s = (s1, ..., sn), and an accept/reject action given
any commitment status profile s, proposer j, and proposed deal d (the latter being relevant only at player i
nodes where si ≤ di). An SSPE is a collection of stationary strategies ψ∗ = (ψ∗

1 , ..., ψ
∗
n) which induce a Nash

Equilibrium after every history. As is common in the literature on Baron-Ferejohn bargaining, we assume that
players do not use weakly dominated strategies at the voting stage. See Appendix A.1 for the proof of the

9Myerson (1991) introduces obstinate types in a reputational model of bargaining and illustrates how delay occurs to screen
the true type. In Kambe (1999), agreement may be immediate even if negotiators are obstinate with a positive probability. In
Abreu and Gul (2000), delay occurs in the continuous time limit when players are obstinate with a strictly positive probability. See
Fanning and Wolitzky (2022) for a recent review.

10In a multilateral bargaining model with obstinate types, each player would have to form beliefs about the obstinacy of each of
the other players, and the actions specified by equilibrium strategies would depend on these beliefs and affect how they are updated
at various histories. Thus, the dimensionality of the model grows exponentially with the number of players.

11In this respect, our model differs from Ellingsen and Miettinen (2014), which involves persistent commitments in a bilateral
context. Limiting persistence to at most one period is necessary to make the model tractable for larger n, as otherwise the
dimensionality of the state space on which even stationary strategies would be defined grows exponentially.
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following Lemma.

Lemma 1. Let (x∗1, ..., x
∗
n) be the vector of commitment attempts that is part of an SSPE strategy profile ψ∗.

And let (v∗1 , ..., v
∗
n) be the vector of expected utilities associated with that equilibrium. Then, the equilibrium

strategies in the bargaining stage, given any commitment status profile s = (s1, ..., sn), satisfy the following
conditions:

1. Player i votes to accept iff she is offered at least di ≥ x̂i(si) ≡ max{δv∗i , si}.

2. Let Ci be (one of) the “cheapest coalition(s)” consisting of q − 1 responders other than i. If x̂i(si) ≤
1 −

∑
j∈Ci

x̂j(sj), then when player i proposes, he offers x̂j(sj) to each member j of Ci, the residual to
himself, and votes to accept. (If there are multiple “cheapest” coalitions, he may randomize between them.)
Otherwise, he makes a proposal that fails.

Define πi(x|ψ∗) as the expected utility that would be achieved by player i if, at the initial commitment stage, (1)
players attempted committing to x = (x1, ..., xn) and (2) all players followed the equilibrium strategy ψ∗ starting
at the immediately ensuing bargaining stage.12Then the commitment attempts x∗i satisfy the following:

x∗i ∈ argmaxπi(xi, x
∗
−i|ψ∗)

Finally, the equilibrium expected utilites v∗i satisfy

v∗i = πi(x
∗|ψ∗).

2 Symmetric equilibria in the three player case

In this section, we illustrate our main results within a simple three-player model, focusing on symmetric equilibria
in which all players make the same commitment attempt x∗. A more general analysis for n players and
asymmetric equilibria is presented in Section 3. We characterize equilibria under majority and unanimity rule.

Subsection 2.1 considers majority rule and shows that all symmetric equilibria are efficient. Subsection 2.2
considers unanimity rule. There, commitment attempts can conceivably be of three types: An efficient com-
mitment is compatible in the sense that a deal can be reached even if no player has a loophole. A moderately
aggressive commitment is such that a deal requires at least one player to have a loophole. Finally, the most
aggressive commitment permits a deal only if at least two players have a loophole (i.e. at most one player is com-
mitted). We show that under unanimity rule, an inefficient symmetric equilibrium involving the most aggressive
commitments always exists. Finally, subsection 2.3 shows that an equilibrium with efficient commitments exists
under unanimity rule if and only if the probability that commitments stick (ρ) is large enough.

2.1 Efficiency of majority rule

Consider the case of three players and majority rule, i.e. q = 2. It is easy to see that a commitment profile in
which no player attempts to commit constitutes an equilibrium. In such an equilibrium, agreement is immediate
and the common expected equilibrium payoff is v∗ = 1/3. Due to stationarity, the common continuation value is
δv∗. Any player who deviates to a commitment above δv∗ would be excluded from a deal when his commitment
sticks and he is responder. If he is proposer, the deviation will either have no effect, or prevent him from making
a deal that yields him (1 − δv∗) > δv∗. Any deviation to a commitment below δv∗ has no effect. Thus, no
deviations from the no-commitment profile are profitable.

Indeed, this is the (essentially) unique symmetric equilibrium. To see this, suppose first that there exists a
symmetric equilibrium with inefficient delay. Then, the inefficiency implies that δv∗ < 1/3, and delay implies
that x∗ > 1/2 (otherwise, a deal including two players can be reached even when all players are committed).
On the other hand, x∗ must be such that it allows for the formation of a coalition consisting of one committed
and one uncommitted player, i.e. x∗ ≤ 1−δv∗ (otherwise, a player is never included in a deal when committed).
It follows that a deal occurs if and only if at least one player has loophole. One such event is when only player
1 has a loophole and he is chosen to propose. Then, either player 2 or player 3 is included in that deal with
probability less than one. Since x∗ > δv∗, this player could deviate to a slightly less aggressive commitment
attempt y = x∗− ϵ. For ϵ small enough, this would guarantee that he is included for sure in the event described
(and other events), and since ϵ can be arbitrarily small, this deviation is otherwise costless. (As proposer,
the deviation does not affect his payoff, as he obtains the residual from agreement in all cases.) Therefore
the deviator’s payoff increases, a contradiction. This establishes that no symmetric equilibrium with inefficient
delay exists.

12This payoff is pinned down by the conditions already outlined for the bargaining stage and by the additional condition that,
in case no deal is made, player i’s expected utility is given by δv∗i . (The formal details are cumbersome to express explicitly but
will be clearly developed in the subsequent analysis.)
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Next, suppose there exists an efficient symmetric equilibrium with commitment x∗ > δv∗. Agreement occurs
in all events. One such event is when player 1 is proposer and all players are committed. Then again, either
player 2 or player 3 is included with probability less than one in this event. By the same argument as above,
this player can increase his payoff by deviating to y = x∗ − ϵ for ϵ sufficiently small. A contradiction. It follows
that any symmetric equilibrium involves x∗ ≤ δv∗, equivalent to not committing, and thus outcome-equivalent
to the standard Baron-Ferejohn result.

Proposition 1. In the three-player game under majority rule, there exists a unique symmetric equilibrium
involving no commitments and immediate agreement. The agreement allocates δ/3 to one responder, zero to the
other, and 1− δ/3 to the proposer.

As in the standard Baron Ferejohn game, majority rule leads to asymmetries in the final allocation: One
responder is excluded, the included responder receives her continuation value (less than 1/3), and the proposer’s
share is always greater than 2/3 of the pie. When the discount factor approaches zero (equivalently, a one period
game), the outcome is maximally unequal with the proposer receiving the entire pie.

2.2 Aggressive equilibrium under unanimity rule

Next, consider unanimity rule, i.e. q = n = 3. Suppose that a symmetric stationary equilibrium with ag-
gressive commitments exists, and denote the common expected equilibrium payoff by v∗. Due to stationarity,
each player’s continuation value is δv∗. The most aggressive conceivable commitment is targeted to allow for
agreement only in the event that exactly one player is committed. The largest commitment compatible with
agreement in that event is given by

x∗ = 1− 2δv∗. (1)

This commitment leaves the uncommitted players indifferent between a deal and continuation: they each receive
the continuation value δv∗, and the player who is the only one to succeed with her commitment receives the
residual.

If all players commit to x∗, three things can happen with positive probability in a given round. If exactly
one player is committed, an agreement will be reached in which the committed player receives x∗ and the others
receive δv∗. This outcome is unaffected by the identity of the proposer. If no player is committed, a deal is
reached in which both responders receive δv∗ and the proposer receives 1− 2δv∗ = x∗. Note that, in the latter
case, the proposer’s payoff can be written as δv∗ + (x∗ − δv∗). This reflects the fact that, in the event of an
“extra” loophole (beyond the minimum number required for agreement), the proposer secures an additional
“chunk” of size (x∗ − δv∗). We will encounter this type of logic again in the more general analysis. Finally, if
two or more players are committed, no agreement will be reached, and the game moves to round t+ 1.

Thus, the equilibrium involves a positive probability of inefficient delay. Concretely, the probability of
agreement in a given round is (1 − ρ)3 + 3ρ(1 − ρ)2 = (1 − ρ)2(1 + 2ρ) ≡ ξ. Conditional on agreement, the
sum of payments is one. Therefore, the expected discounted sum of utilities is

∑
i v

∗ =
∑∞

t=1 ξ(1− ξ)t−1δt−1 =
ξ

1−δ(1−ξ) < 1, and so the expected equilibrium payoff for each player is given by

v∗ =
1

3

ξ

1− δ (1− ξ)

Note that v∗ is strictly less than 1/3, reflecting the inefficiency. It is straightforward to verify that equilibrium
payoffs increase, and commitments become less aggressive, if players are more patient (δ increases) or if they
are less likely to succeed with their commitments (ρ decreases).

The following proposition establishes that this equilibrium always exists in the three-player game under
unanimity rule.

Proposition 2. In the three-player game under unanimity rule, there always exists a symmetric SSPE with
aggressive commitments and delay.

To prove the proposition, let us verify that the commitment profile (1) constitutes part of an equilibrium.
By construction, if all players attempt commitment x∗ = 1− 2δv∗, there can be no beneficial deviation at the
bargaining stage. Consider then deviations at the commitment stage.

Note that such deviations affect the deviator’s payoff only in case he is committed in the ensuing bargaining
stage. Thus we must determine its payoff consequences in that event. An upward deviation to y > x∗ cannot
pay off because no agreement can occur when such a commitment sticks, resulting in a payoff of δv∗ instead of
a positive probability of receiving x∗ (and a guaranteed payoff of δv∗ otherwise). A downward deviation can
be beneficial only if it increases the chance of a deal. Thus, it would have to allow for a deal in the event that
another player’s commitment sticks: y ≤ 1 − x∗ − δv∗ = δv∗. But this deviation would guarantee a payoff of

5



δv∗ instead of a positive probability to earn x∗. Thus, no deviation (up or down) can be beneficial. It follows
that under unanimity rule, the most aggressive commitment attempt always constitutes an equilbrium.

Notice that the final outcome in the aggressive equilibrium may be highly asymmetric: All players except
for the one whose commitment sticks (or the proposer) receive their continuation value. When δ tends to zero,
a single player secures the entire pie - as under majority rule. In addition, the inefficiency of the equilibrium
implies that continuation values may be close to zero even if δ is large, especially if the probability of a loophole
is small. Thus, in addition to the process being inefficent, the final outcome can be more unequal than under
majority rule.

2.3 Efficient equilibrium under unanimity rule

Suppose that an efficient symmetric equilibrium exists. As above, denote the (common) expected equilibrium
payoff by v∗. (Clearly, v∗ = 1/3.) Then it can be argued that x∗ = 1/3, i.e. the commitment is targeted to
permit a deal including 3 committed players. Given such commitments, agreement is immediate and so the
equilibrium is efficient. The following proposition establishes that this equilibrium exists if and only if ρ is large
enough.

Proposition 3. In the three-player game under unanimity rule, an efficient symmetric equilibrium exists if and

only if ρ ≥
√

2
5 . In this equilibrium, all players commit to x∗ = 1/3 and achieve an expected payoff v∗ = 1/3.

To understand why the efficient symmetric equilibrium may fail to exist, note that whenever a player has
a loophole, the total price of the cheapest coalition is reduced by (x∗ − δv∗). When k players have a loophole,
the proposer can therefore allocate to herself a share that exceeds her own price by k(x∗ − δv∗). This implies
a potential incentive to deviate at the commitment stage. Specifically, a player may want to increase his
commitment in an attempt to appropriate, in the event that he is responder and another player (or two) has a
loophole, the extra (one or two) “chunks” of size (x∗ − δv∗) that otherwise accrue to the proposer.

Consider then an upward deviation tailored such that (at least) k ∈ {1, 2} loopholes are needed for a deal
to be made. Such a deviation can affect the deviator’s payoff only when his own commitment sticks. We
therefore analyze its payoff consequences in that event. The best deviation aiming at a single loophole (k = 1)
is y = x∗ + (x∗ − δv∗), seeking to capture the single “chunk” that becomes available when one other player has
a loophole. Then, agreement will no longer occur if both others’ commitments stick. Thus, with probability ρ2

the committed deviator loses (x∗ − δv∗). The only other condition under which the deviator’s payoff changes
is when he is responder and at least one other player (proposer or responder) has a loophole. This occurs
with probability 2

3 (1 − ρ2). In these cases, he gains one “chunk” (x − δv∗) which otherwise would have gone
to the proposer. Summing up, conditional on his commitment sticking, the change in payoff induced by the

“one-chunk” deviation is given by 2
3 (1 − ρ2)(x∗ − δv∗) − ρ2(x∗ − δv∗). This is positive iff ρ <

√
2
5 . It can

be shown that a “two-chunk” deviation aiming at k = 2 loopholes can be profitable only if the “one-chunk”
deviation is profitable.13 This will also apply in our more general analysis below.

In the efficient symmetric equilibrium, the pie is shared equally whenever both responder commitments
succeed. Each responder loophole results in the reallocation of one “chunk” worth (x∗ − δv∗) = (1 − δ)/3 to
the proposer. For δ close to 1, these chunks are close to zero and the final allocation is equal irrespective of
realized commitment statuses. When δ tends to zero, each chunk equals one third of the pie, and so the possible
outcomes range from perfect equality to the proposer grabbing the entire pie, as he does under majority rule.
Overall, the final outcome is more equal than in the unique efficient equilibrium under majority rule. Therefore,

when ρ ≥
√

2
5 both efficiency and equality favor unanimity rule in the case of three players, provided that

coordination on the efficient equilibrium can be guaranteed. As we will see, the relevant threshold value for ρ
increases rapidly once we consider larger n.

3 General analysis

We now turn to a more general analysis of the n-player game. Subsection 3.1 shows that for any q−majority
rule with q < n, the (essentially) unique equilibrium involves no commitments above the common continuation
value and immediate agreement (Theorem 1). Thus, any non-unanimous decision rule is fully efficient.

We then turn to unanimity rule. In Subsection 3.2, we begin by constructing symmetric commitment profiles,
each of which is tailored to achieve agreement only when a certain number of commitment attempts fail. In

13The best deviation aiming at two loopholes is y = x∗ + 2(x∗ − δv∗). Then, agreement will occur only when both other players
have a loophole. Thus, with probability 1− (1−ρ)2 the committed deviator loses (x∗−δv∗). The only other condition under which
the deviation affects his payoff is when he is responder and both others have loopholes. This occurs with probability 2

3
(1 − ρ)2.

In these cases, he gains 2(x − δv∗). Summing up, conditional on his commitment sticking, the change in the deviator’s expected

payoff is given by 2
3
(1− ρ)22(x∗ − δv∗)−

(
1− (1− ρ)2

)
(x∗ − δv∗). This is positive iff ρ < 1−

√
3
7
<

√
2
5
.
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subsection 3.3, we show that the most aggressive symmetric profile, requiring all but one of the commitments
to fail, always constitutes part of an SSPE (Theorem 2).

In subsection 3.4, we show that the efficient symmetric profile, which permits agreement even when all
commitments succeed, constitutes an equilibrium if and only if ρ is sufficiently large (Lemma 2). Building
on this, we prove the more general result, that all SSPE (symmetric or not) are inefficient if and only if ρ is
sufficiently small (Theorem 3).

Given that these results are developed in a discrete time framework, it is of interest to ask whether the
results would extend to a continuous time framework with frequent negotiations. In subsection 3.5, we analyze
such a version of our model and show that both an efficient equilibrium and inefficient equilibria exist when the
length of the time period separating consecutive negotiation rounds tends to zero.

3.1 Effiency of q-majority rules

When majority rule is used, players who commit aggressively may be left out of winning coalitions when
successful. It is therefore intuitive to expect Bertrand-like competition in commitments, possibly leading to
full efficiency. Although the formal details turn out to be more complicated (see Appendix A.2 for a complete
proof), this intuition is helpful to understand the following result.

Theorem 1. Under any q-majority rule with q < n, there exists an (essentially) unique SSPE in which no
player attempts a commitment exceeding his continuation value and agreement is immediate. Expected payoffs
are v∗i = 1

n for all i, all players are included with the same probability as responders, and each included responder

is paid δ
n .

The equilibrium is unique in the sense that in any equilibrium, x∗i ≤ δv∗i for each i and all players are included
with the same probability as responders. Multiplicity remains only in the sense that each player can choose any
commitment attempt satisfying x∗i ≤ δv∗i , and players could randomize differently over coalition partners when
proposing - so long as all players are included with the same probability from an ex ante perspective.

The intuition for this result is as follows. Those who attempt to commit too aggressively will be left out
of any winning coalition when successful. This implies that their continuation payoff must be lower than that
of players whose commitment attempts permit inclusion to some winning coalition with positive probability.
Therefore, players with aggressive commitments have room to deviate down to a less aggressive commitment,
such that in fact everyone must be included with positive probability. If all responders commit in a way such
that they are included with positive probability, at least one will have an incentive to “undercut” another’s
commitment in order to be included more often. This triggers a Bertrand-like competition in commitments.
In equilibrium, no player’s commitment can exceed their continuation value. Thus, no aggressive commitments
are made. The outcome is efficient and coincides with that of the Baron and Ferejohn (1989) model.

The analysis starting from the next subsection shows that, contrary to supermajority decision making,
commitment strategies are used in any equilibrium, and inefficiency due to delay is often unavoidable under
unanimity.

3.2 Symmetric commitment profiles under unanimity rule

We begin our analysis of unanimity rule by considering symmetric commitment profiles as equilibrium can-
didates. As can be anticipated from the three player example in Section 2, any symmetric SSPE will have
the property that there is some number ℓ ∈ {0, ..., n− 1} such that at least ℓ players must have a loophole
for an agreement to be reached. We therefore denote the common commitment attempt xSℓ . It must be such
that, in the event that exactly ℓ loopholes arise, the ℓ uncommitted players are exactly indifferent between
agreement and continuation when the other (n − ℓ) players are paid xSℓ . (Otherwise, any player can bene-
fit by slightly increasing his commitment attempt without affecting the probability of agreement.) That is,
(n− ℓ)xSℓ + ℓδvSℓ = 1. Furthermore, the expected payoff in a symmetric equilibrium, vSℓ , is fully determined by
assuming that all players attempt committing to xSℓ in every period.

These observations together constitute a set of necessary conditions for a symmetric commitment profile to
be part of an SSPE. We therefore begin by deriving, for any given ℓ ∈ {0, ..., n− 1}, candidate commitments
xSℓ and associated expected payoffs vSℓ that satisfy these conditions. Rearranging the condition for indifference
of uncommitted players, we obtain the candidate

xSℓ =
1− ℓδvSℓ
n− ℓ

, (2)

If all players commit to xSℓ , agreement will be reached whenever at least ℓ players have a loophole. It will be
useful to establish the following definition.
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Definition 1. The probability that at least k out of m players have a loophole is denoted

η (k,m) =

m∑
l=k

f (l,m) ,

where f (l,m) =

(
m
l

)
(1 − ρ)lρm−l is the pdf of a binomial probability distribution with loophole probability

(1− ρ).

Assuming that all players consistently commit to xSℓ in every period, the probability that agreement is reached
at period t is η(ℓ, n)(1− η(ℓ, n))(t−1). Thus, the expected total payoff would be η(ℓ, n)

∑∞
t=1[(1− η(ℓ, n))δ](t−1),

and so the expected payoff associated with this candidate profile is given by

vSℓ =
1

n

η(ℓ, n)

1− δ (1− η(ℓ, n))
. (3)

Note that vSℓ is decreasing in ℓ, with vS0 = 1
n and vSℓ < 1/n for all ℓ > 0. Thus, if xSℓ with ℓ > 0 constitutes a

symmetric SSPE commitment profile, the corresponding equilibrium is inefficient, and the inefficiency is larger
the more loopholes are required for a deal to be made. At the same time, xSℓ increases with ℓ and thus,
conditional on succeeding with one’s own commitment, the earned share when the deal arises is larger the
higher is ℓ. Thus, commitment profiles with higher ℓ generate longer conflict duration, greater inefficiency and
greater asymmetries in the shares that the parties receive conditional on reaching an agreement. The symmetric
commitment profile candidates can therefore be naturally ordered from the least aggressive and efficient (ℓ = 0)
to the most aggressive and inefficient (ℓ = n− 1). Our subsequent analysis will focus on these polar cases.14

As stated at the beginning of this subsection, the candidate profiles were constructed to satisfy the necessary
condition that the uncommitted players be made indifferent in the event that exactly ℓ players have a loophole.
This implies that no player wishes to deviate at the commitment stage in a way that does not affect the proba-
bility of agreement. To verify that a given candidate profile indeed constitutes an SSPE, we must additionally
verify that no player wishes to engage in larger deviations which would affect the probability of agreement. In
the following subsections, we investigate the incentives for such deviations from the most aggresive (ℓ = n− 1)
and the least aggressive and efficient (ℓ = 0) candidate profile, respectively. We will conclude that deviations
from the most aggressive profile are never profitable, and that deviations from the efficient profile will be prof-
itable if and only if ρ is small enough. Finally, we will show that the latter condition is necessary and sufficient
for the existence of any efficient equilibrium, both symmetric and asymmetric.

3.3 Existence of inefficient equilibrium under unanimity rule

Consider the most aggressive symmetric commitment profile, in which all players attempt commitment to

xSn−1 = 1− (n− 1)δvSn−1.

This profile is such that each player aims to extract the entire surplus from agreement (beyond the sum of
continuation values) in the case where all ℓ = n − 1 other players have a loophole. If this profile is part of a
symmetric SSPE, the associated expected payoff equals

vSn−1 =
1

n

η(n− 1, n)

1− δ (1− η(n− 1, n))
,

where the probability that an agreement arises in each period, η(n−1, n) = nρ(1−ρ)n−1+(1−ρ)n is small if n
and ρ are large. In that case, the expected delay at this profile is long, thereby severely undermining efficiency.

Agreement occurs only in two cases: (i) only one of the commitment attempts succeeds (probability nρ(1−
ρ)n−1) or (ii) none of the commitment attempts succeed (probability (1− ρ)n). In both cases, n− 1 players will
get exactly the continuation value, and the residual, 1− (n− 1)δvSn−1, is secured either by the only committed
player or (in case ii) by the proposer.

In order to check whether this is an equilibrium, we must verify that no player wishes to deviate at the
commitment stage. To understand the effects of deviations, it will be useful to note that deviating to any
y ̸= xSn−1 affects the deviator’s payoff only if her commitment sticks. Therefore, the analysis that follows
focuses exclusively on the payoffs achieved in that event.

Following any upward deviation to y > xSn−1, no deal is made even in the most favorable instance where
all players except the deviator have a loophole such that their price equals the continuation value. So a more
aggressive commitment cannot be profitable. Consider then a downward deviation to y < xSn−1. Since the

14In a working paper version, we also discuss “intermediate” equilibria (Miettinen and Vanberg, 2023).

8



payoff achieved conditional on commitment success and agreement would then be lower than if the player did
not deviate, such a deviation can only be beneficial if the probability of an agreement is increased. Therefore,
a profitable deviation must have the property that a deal will be reached in cases where the deviator’s own
commitment attempt as well as k ≥ 1 others succeed. The largest commitment that will be met when (at most)
k = 1 additional player’s commitment sticks is such that (n− 2) uncommitted players are left with the common
continuation value δvSn−1 after giving xSn−1 to one succesful player and y to the deviator, i.e.

(n− 2)δvSn−1 + xSn−1 + y = 1

But substituting xSn−1 = 1− (n− 1)δvSn−1 we see that this boils down to

y = δvSn−1.

To understand this, note that in the symmetric aggressive equilibrium, a deal requires that each committed
player be paid one “chunk” (xSn−1 − δvSn−1) more than if they had a loophole. A deviation which increases the
probability of a deal is one which increases the number of committed players who can be paid. To increase this
number by one, the deviation must concede exactly one chunk to an additional committed player. Conceding
one chunk amounts to reducing one’s commitment from xSn−1 to δvSn−1.

15

Note that a deviation to this y will not affect the deviator’s payoff in case he is drawn to propose: As
committed proposer, he would now form an agreement in case one responder is committed, where before he
would have made a proposal that fails. Either way, his payoff equals the continuation value. But in all instances
where he is committed and a responder, his payoff drops to the continuation value δvSn−1, whereas if he stays
with the equilibrium commitment, he will get xSn−1 in case all of the other players have a loophole. It follows
that this deviation reduces his expected payoff.

It’s clear that the argument can be extended to say that for all k > 1, there is also no profitable commitment
that would be met if the deviating player’s and k additional commitments stick, i.e. deviations of the type

y = 1− kxSn−1 − (n− 1− k)δvSn−1,

since a fortiori these commitments would be strictly smaller than the continuation value. We can conclude that
there always exists an SSPE in which all players attempt the most aggressive symmetric commitment xSn−1.
This is enough to establish the following theorem.

Theorem 2. Under unanimity rule, an inefficient symmetric SSPE always exists.

Before moving on, we comment briefly on the comparative statics of this most aggressive equilibrium. The
comparative statics with respect to ρ is obvious: delay increases in ρ. The number of loopholes at a given
round follows the binomial distribution.16 The number of required loopholes, n− 1, increases with the number
of players n. It is thus intuitive that the duration of the conflict increases with the number of players. As a
consequence, the equilibrium payoff, vSn−1, and the continuation value, δvSn−1, which is allocated to each flexible
responder when the deal is done, decreases with n. Therefore, the fraction of the pie that the deal allocates to
the unique successful player, xSn−1, as well as the difference of the final shares, xSn−1 − δvSn−1, increases as the
number of players increases.17

3.4 Existence of efficient equilibria under unanimity rule

Now consider the opposite extreme, a symmetric commitment profile requiring no loopholes, i.e. ℓ = 0. If
all players commit to this profile, agreement is immediate and thus vS0 = 1/n and the optimal commitment
characterized in equation (2) yields

xS0 =
1

n
. (4)

Clearly, a deviation to a less aggressive commitment y < xS0 cannot be beneficial because it would not
increase the probability of a deal. Thus, consider a deviation to a more aggressive commitment y > xS0 . Any

15The same logic applies to “intermediate” inefficient equilibria, which require fewer than n − 1 loopholes for agreement to be
reached. As a consequence, all inefficient equilibria have the property that a deviation which increases the probability of agreement
would require stepping down to the continuation value. For an explicit discussion of “intermediate” equilibria, see our working
paper (Miettinen and Vanberg, 2023).

16This approaches the normal distribution with mean n(1− ρ) and standard deviation
√

n(1− ρ)ρ as n tends to infinity.
17The probability of agreement in a given round is (1− ρ)n + nρ(1− ρ)n−1 = (1− ρ)n−1(1 + (n− 1)ρ) ≡ ξ(n). Conditional on

agreement, the sum of payments is one. Therefore, the expected discounted sum of utilities is
∑

i v
∗ =

∑∞
t=1 ξ(n)(1−ξ(n))t−1δt−1 =

ξ(n)
1−δ(1−ξ(n))

< 1, and so the expected equilibrium payoff for each player is given byv∗ = 1
n

ξ(n)
1−δ(1−ξ(n))

.Then

xS
n−1−δvSn−1 = 1−nδvSn−1 = 1−δ

ξ(n)
1−δ(1−ξ(n))

where the factor
ξ(n)

1−δ(1−ξ(n))
is decreasing in n. Thus, the chunk size is increasing

in n and approaches 1 as n tends to infinity.
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such deviation will have the property that it permits agreement when the deviator is committed and at least
k ≥ 1 of the other players have a loophole. The most aggressive commitment that permits agreement given
exactly k loopholes is

yk = xS0 + k
(
xS0 − δvS0

)
. (5)

Intuitively, a player deviating to yk is increasing his demand by k “chunks” of size
(
xS0 − δvS0

)
, which he

is hoping to capture from the proposer in all events where he is a committed responder and at least k other
players (proposer or responder) have a loophole.

Let us consider the payoff consequences of such a deviation conditional on the deviator’s commitment
succeeding. In all cases where fewer than k of the other n− 1 players have a loophole, agreement will fail and
the deviating player will lose

(
xS0 − δvS0

)
. This is true irrespective of who is chosen to propose, and occurs

with probability 1 − η (k, n− 1). In all cases where at least k of the other n − 1 players have a loophole, the
deviation does not affect the deviator’s payoff if he proposes, as he would secure the extra “chunks” that become
available anyway. If, on the other hand, he is a responder in such events, he gains k

(
xS0 − δvS0

)
. This occurs

with probability η (k, n− 1) n−1
n . Therefore the deviation does not strictly increase his payoff if and only if

η (k, n− 1)
n− 1

n
k
(
xS0 − δvS0

)
≤ (1− η (k, n− 1))

(
xS0 − δvS0

)
,

which boils down to (
1 + k

n− 1

n

)
η(k, n− 1) ≤ 1. (6)

It follows that an efficient symmetric equilibrium exists if and only if this condition is satisfied for every
conceivable deviation, k ∈ {1, ..., n − 1}. Lemma 4 in the Appendix establishes that if (6) is true for k = 1,
then it is true for all k. Thus, the efficient symmetric equilibrium exists if and only if η(1, n − 1) ≤ n

2n−1 , or

equivalently ρ ≥
(

n−1
2n−1

) 1
n−1

. We have thus established the following result regarding the existence of efficient

symmetric equilibria.18

Lemma 2. An efficient symmetric SSPE requiring no loopholes for agreement to be reached exists iff ρ ≥(
n−1
2n−1

) 1
n−1

.

Note that Lemma 2 refers only to symmetric SSPE. A natural question to ask is whether efficient asymmetric
equilibria can exist even when the condition of the Lemma is violated. The answer is no, as can be established
by extending part of the logic underlying the Lemma as follows. (For details, see the proof of Theorem 3 in
Appendix A.4). Suppose that an efficient equilibrium exists in which players are not identically committed.
Denote by x∗ = (x∗1, .., x

∗
n) and v∗ = (v∗1 , .., v

∗
n) the (asymmetric) equilibrium commitment and payoff profile,

respectively. Order players according to the size of the “chunk” (x∗i − δv∗i ) that becomes available when their
own commitment fails. Then consider a deviation by player 1, with the smallest such “chunk”, in which he
increases his commitment attempt by exactly (x∗1 − δv∗1). As in the case of a symmetric equilibrium, player 1
will then gain this extra “chunk” whenever he is a committed responder and at least one other player has a
loophole. Conversely, he will lose that same “chunk” in all other events. Thus, the condition under which a
“one chunk” deviation does not pay off for player 1 is the same as condition 6 derived above. Therefore, that
condition constitutes a necessary condition for the existence of an efficient equilibrium (symmetric or not). And
since Lemma 2 provides a sufficient condition, the following more general result follows. (See Appendix A.4 for
a proof.)

Theorem 3. Under unanimity rule, all SSPE are inefficient iff ρ <
(

n−1
2n−1

) 1
n−1

.

As n increases, the probability that at least one loophole arises also increases, so that any efficient equilibrium
will eventually be destabilized. The condition in the theorem can therefore be interpreted to implicitly define the

maximal n for which an efficient equilibrium exists, i.e. n̂ such that ρ <
(

n̂−1
2n̂−1

) 1
n̂−1

. This is displayed in Figure

3.4. For ρ < 1
3 , n̂ < 2, so an efficient equilibrium does not exist for any n > 1.19 However, as ρ approaches

zero, commitments become less relevant. In the limit, the model reduces to the standard Baron-Ferejohn game,
and all equilibria are efficient.20 Remark also that n̂ rapidly falls as we move down from ρ close to one. For
example, n̂ is small (less than 10) even for ρ = 0.9.21

18Notice that the condition for the existence of the efficient equilibrium does not depend on δ, as would be typical for non-
stationary equilibria supported by trigger strategies.

19Although we did not explicitly include the case n = 2 in our analysis, it is easy to verify that an efficient equilibrium involving
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Figure 1: Maximum n such that an efficient equilibrium exists

3.5 Frequent negotiations under unanimity rule

So far we have considered the effects of three institutional features, namely the decision rule being applied, the
number of negotiating parties, and the likelihood of commitment success. Let us now analyse another parameter,
namely how frequently negotiation rounds take place. Unlike in many face-to-face bilateral negotiations, it is
by no means obvious that in international multilateral negotiations, proposals could be made and voted on very
frequently.22

In such institutionally rich settings, it is not entirely obvious how to think about the frequency of negotations.
A commonly used approach in the bargaining literature is to consider a continuous time formulation where
discounting over two consecutive negotiation rounds is parametrized by the time gap between the rounds, t,
and given by the factor δ = exp(−rt). Here r is the discount rate reflecting the cost associated with the passage
of a naturally given time interval such as a year, and t is the delay between negotiation rounds expressed as
a fraction of the natural time interval. For example, if negotiation rounds take place once a year and the
yearly interest rate equals 3%, then δ = exp(−0.03) ≈ 0.97; if negotiation rounds occur once in every six
months δ = exp(−0.03/2) ≈ 0.985. A typical question addressed in this setting is what happens when all
institutional frictions constraining frequency of rounds are lifted and the rounds rather follow each other in an
almost continuous sequence. Formally, what happens when t approaches zero?

In order to formulate that limit, we must first take a stand on what happens to the process of commitments
and the exogenous, but stochastic, arrival of loopholes. A straigthforward generalization of the model presented
in the previous sections would assume that each player’s individual loophole arrivals follow an i.i.d. memoryless
Poisson process with an arrival rate of λ. Then within a time period of length t, the probability that no loophole
arises for this player, i.e. that his commitment sticks, is given by

ρ(t) = exp(−λt).

Not surprisingly, the probability of commitment success tends to one as t tends to zero.23 Equation (3), giving
the expected payoff associated with a symmetric equilibrium candidate in the discrete time formulation of the
model, can be adjusted to the continuous time formulation, as a function of n, ℓ, λ, r and t, as follows

vSℓ =
1

n
· η(ℓ, n, t)

1− exp(−rt)(1− η(ℓ, n, t))
,

where η(ℓ, n, t) denotes the probability of at least ℓ loopholes arriving in a round of length t, obtained by
substituting ρ(t) for ρ in Definition 1. Note that for any ℓ > 0, η(ℓ, n, t) tends to zero as t tends to zero. That

commitments x∗ = 1/2 exists iff ρ ≥ 1/3.
20The expected payoff in any equilibrium (including the most inefficient) approaches 1/n as ρ approaches zero.
21One might ask whether the non-existence of efficient equilibria is driven by the assumption that commitment attempts are

chosen simultaneously. If instead players moved sequentially in the commitment stage, would efficient equilibria always exist? The
answer is no. For n = 3, it can be shown that an efficient equilibrium of the sequential move version exists under unanimity rule
only if ρ is sufficiently large. See also Chung and Wood (2019) for a similar comparison of simultaneous and sequential commitment
in the two-player case based on Ellingsen and Miettinen (2008).

22In the European Union, a summit where all heads of state gather together takes place once every six months (June and
December), the Doha round of the WTO has had nine comprehensive meetings since the start of the round in 2001 (and are by
and large inconclusive by the time of writing this manuscript). In climate change negotiations, general meetings (Conference of the
Parties, COP) take place once a year (the 28th COP was organized in Dubai in December 2023 and ended without any conclusive
agreement on measures or timeline on how to reach the targets set in Paris 2015).

23Despite its simplicity and tractability, this approach implicitly assumes, perhaps unrealistically, that as t tends to zero com-
mitments can be reformulated at an increasing pace between bargaining rounds. In more realistic formulations, one might decouple
the process of re-establishing commitments from the frequency of negotiation rounds, but we leave that for future research.
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is, the probability of obtaining any positive number of loopholes in a given round tends to zero in the limit.
Mirroring our prior analysis, let us now consider the efficient (ℓ = 0) and the most aggressive (ℓ = n − 1)
symmetric commitment profiles as equilibrium candidates and ask if they exist in the limit as t tends to zero
and, if so, what the associated equilibrium payoffs are.

The efficient profile (requiring no loopholes for agreement) is associated with an expected payoff of vS0 = 1
n

for any t, as in the discrete time framework. With strictly positive delay between bargaining rounds, Theorem
3 says that an efficient equilibrium does not exist when ρ(t) is sufficiently small. This is because a deviation to
a more aggressive commitment can be profitable whenever a loophole is sufficiently likely to arrive before the
ensuing bargaining stage. As the time between the negotiation rounds gets shorter, ρ(t) increases, loopholes are
less likely to arrive, an so an aggressive deviation is less likely to succeed. In the limit, ρ(t) tends to one and
the deviation cannot succeed, so that an efficient equilibrium always exists.

Next, consider the most aggressive symmetric profile, requiring (n−1) loopholes for agreement. As shown in
the discrete time analysis, this profile constitutes an equilibrium for all values of ρ(t) and thus for all t (Theorem
2). The probability of agreement in a given round is given by η(n− 1, n, t) = nρ(t)(1− ρ(t))n−1 + (1− ρ(t))n,
and the expected equilibrium payoff is given by

vSn−1 =
1

n
· η(n− 1, n, t)

1− exp(−rt)(1− η(n− 1, n, t))
.

Note that vSn−1 tends to zero as t tends to zero, as can be shown by applying L’Hopital’s rule. The reason is
that the expected waiting time before a deal is reached, given the aggressive profile, tends to infinity as t tends
to zero. This establishes the following Proposition.

Proposition 4. When the length of the time period t tends to zero, both the efficient and the most aggressive
equilibrium exist under unanimity rule. The expected payoffs associated with these equilibria satisfy vS0 = 1/n
and limt→0 v

S
n−1 = 0.

Notice moreover that the commitments in the most aggressive equilibrium satisfy

limt→0x
S
n−1 = limt→0

[
xSn−1 − exp(−rt)vSn−1

]
= 1

and an agreement requires n− 1 loopholes to arise. Yet in the limit, multiple loopholes never arrive in the same
round.24 Thus, each player’s expected payoff is zero whichever commitment the player chooses. The maximally
aggressive commitment, zero payoff, and each player’s indifference between own stratgies in equilibrium are all
reminiscient of the inefficient equilibrium of the Nash demand game. The co-existence of efficient and inefficient
equilibria is another feature shared with the Nash demand game. Indeed in the limit when t tends to zero,
inefficiency is the result of coordination failure in our game. This is in contrast to less frequent negotiations, in
which the efficient equilibrium does not exist, and thus inefficiency is unavoidable in equilibrium, and not due
to coordination failure.

Finally, we will make some remarks on the symmetric commitment profile requiring just one loophole, with
associated payoff

vS1 =
1

n
· η(1, n)

1− exp(−rt)(1− η(1, n))
=

1

n
· 1− (exp(−λt))n

1− exp(−rt)(exp(−λt))n
.

This profile is of particular interest since the expected time of first arrival of a single loophole is 1/λ, which is
finite. This suggests that the profile leads to some loss of surplus but still strictly positive payoffs limt→0v

S
0 =

1/n > limt→0v
S
1 > limt→0v

S
ℓ>1 = 0. It can indeed be shown that, in the limit, the symmetric commitment

profile xS1 is part of an equilibrium and, thus, there is an equilibrium requiring one loophole for an agreement
to arise.25 Applying l’Hôspital’s rule yields the limit payoff

limt→0v
S
1 =

1

n
· λn

r + λn
(7)

which is indeed strictly between 0 and 1/n. Equation (7) reveals that, when offers are generated very frequently,
the efficiency losses in the inefficient one-loophole equilibrium increase in the discount rate r and decrease in
the loophole arrival rate λ and the number of players n.26

24This reflects the property of Poisson processes according to which the probability of multiple loopholes arriving at the same
instant in continuous time is zero, so that the probability of n − 1 loopholes arriving within any round in the future approaches
zero as t tends to zero. Indeed, the same reasoning implies that all symmetric commitment profiles for ℓ > 1 constitute equilibrium
commitment profiles in the limit, and all such profiles are associated with the same expected payoff, namely zero.

25Intuitively, an upward deviation requiring two (or more) loopholes will never be conceded to, as two (or more) simultaneous
loopholes never arrive. As before, a downward deviation would require stepping down to the continuation value. See also section
4.5. of our working paper version (Miettinen and Vanberg, 2023).

26Notice also that, because the arrival probability of the first loophole is independent of the length of the time period, the
expected length of conflict and the equilibrium payoff vS1 are independent of the length of the time period, too.

12



4 Conclusion

International and supranational organizations, including the North Atlantic Treaty Organization, the World
Trade Organization, and the European Union, typically require unanimous consent to make decisions in impor-
tant policy areas. This requirement has the advantage of guaranteeing that all decisions are mutually beneficial.
However, many experts and practioners have criticized unanimity rule on the grounds that it often leads to
excessive delay and gridlock. Many EU practitioners have proposed expanding the use of QMR to sensitive
areas such as foreign policy or taxation.

In this paper, we have presented a tractable model of multilateral bargaining that predicts inefficient delay
under unanimity decision making. The mechanism our model highlights is that unanimity rule creates incentives
for players to commit to a tough bargaining stance prior to negotiating. Our analysis suggests that the associated
inefficiencies grow more severe when the number of players is large. We also show that any less-than-unanimity
rule circumvents this problem in the context of our model. Our analysis also suggests that inefficiencies might
be reduced by increasing the frequency of negotiations.

Our model abstracts from potentially important details of the applied contexts mentioned. Nevertheless,
the substantive predictions fit the empirical patterns in the EU and WTO, and NATO contexts. In all of
these international organizations, the number of members is large and has increased prior to the observed
impasses: the WTO Doha round failed after the enlargement of the organization in the late 1990’s and early
this Millennium, and EU decision making in sensitive areas has stalled ever since the enlargement of 2004.

Our analysis would seem to lend support to proposals to shift to the use of qualified majority rule, as such
a change may lead to a sharp rise in efficiency. An important caveat to this interpretation is that our model
assumes that delay or failure to agree are indeed inefficient. In reality, the expanded use of QMR could also
increase the risk of decisions that impose external costs on non-consenting members, an aspect that is absent
from our model. Thus, there exists a trade-off between the expected “external costs” and anticipated “decision
costs,” to borrow terminology introduced by Buchanan and Tullock (1965). By design, our analysis restricts
attention to the latter aspect.

Perhaps due to the anticipation of such external costs, the proposal to expand the use of QMR has faced
significant resistance from a number of member states. This is well documented among others by Koenig (2020),
who conducts a confidential expert survey with diplomatic sources and concludes that only six member states
support the expanded use of QMR (as currently defined). Given this resistance, it is perhaps interesting to
emphasize that our model suggests that even a move to an all-but-one rule - merely preventing a single member
from blocking agreement - may help to dramatically improve the EU’s decision making capacity. It seems
reasonable to assume that the “external costs” to be expected from such an all-but-one rule will be substantially
lower than those to be expected under the currently established - and much less demanding - QMR.27 It stands
to reason that a proposal to introduce a novel, highly demanding, QMR may be more acceptable to many
member states than the extension of the currently established procedures.28

References

Abreu, D., and F. Gul. 2000. “Bargaining and Reputation.” Econometrica, 68(1): 85–117.

An, Mark Yuying. 1997. “Log-concave probability distributions: theory and statistical testing.” Duke Uni-
versity Dept of Economics Working Paper, , (95-03).

Banks, Jeffrey, and John Duggan. 2000. “A Bargaining Model of Collective Choice.” American Political
Science Review, 94(1): 73–88.

Baron, David P., and John A. Ferejohn. 1989. “Bargaining in legislatures.” American Political Science
Review, 83(4): 1181–1206.

Basak, Deepal, and Joyee Deb. 2020. “Gambling over Public Opinion.” American Economic Review,
110(11): 3492–3521.
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Fearon, James D. 1994. “Domestic political audiences and the escalation of international disputes.” American
Political Science Review, 88(3): 577–592.

Fearon, James D. 1995. “Rationalist explanations for war.” International Organization, 49(3): 379–414.

Fearon, James D. 1997. “Signaling foreign policy interests: Tying hands versus sinking costs.” Journal of
Conflict Resolution, 41(1): 68–90.

Feddersen, Timothy, and Wolfgang Pesendorfer. 1997. “Voting behavior and information aggregation in
elections with private information.” Econometrica, 1029–1058.

Feddersen, Timothy, and Wolfgang Pesendorfer. 1998. “Convicting the innocent: The inferiority of
unanimous jury verdicts under strategic voting.” American Political Science Review, 92(1): 23–35.

Fudenberg, Drew, and Jean Tirole. 1991. Game theory. MIT press.

Gollier, Christian, and Jean Tirole. 2017. “Effective Institutions against Climate Change.” In Global
Carbon Pricing: The Path to Climate Cooperation. , ed. Peter Cramton, Axel Ockenfels and Steven Stoft.
MIT Press.
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A Appendix

A.1 Proof of Lemma 1

Part 1 If di > δvi, this follows from the elimination of weakly dominated strategies. Given this, it is without
loss of generality to assume that responders vote “yes” when di = δvi = x̂i(si). To see this, suppose there
exists an equilibrium in which some player i votes “no” on a proposal d (made by some proposer j given some
commitment status profile s) in which i is being offered exactly x̂i(si) = δvi. (This proposal need not actually
be made along the equilibrium path.) If i is not pivotal, there exists an outcome-equivalent equilibrium in which
he votes “yes” in this event. Suppose that i is pivotal. That is, the proposal d fails in equilibrium but it would
pass if i were to vote “yes”. Suppose that the proposal actually made by j at profile s is y ̸= d and it passes.
If j (the proposer) weakly prefers passing y over passing d, there exists an outcome-equivalent equilibrium in
which i would vote “yes” on d (so it would pass) but j does not propose it. If j strictly prefers passing d over
passing y, then she could make a proposal arbitrarily close to d (increasing di slightly so that i strictly prefers
to vote “yes”) and improve over proposing y (recall that i is pivotal), a contradiction. Finally, suppose that the
proposal made in this event fails (it could be d itself). Then the cheapest available coalition of q − 1 players
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other than j, given s, must cost at least 1− x̂j(sj). (Otherwise j would strictly prefer to make a proposal that
passes.) If the cheapest coalition costs strictly more than 1− x̂j(sj), there is an outcome-equivalent equilibrium
in which i votes “yes” on d but j does not propose it (strictly preferring delay). If the cheapest coalition costs
exactly 1− x̂j(sj), either the proposer or at least one of the responders in the cheapest coalition (say k) must
be committed to xk > δvk (since the sum of continuation values is strictly less than one). Then if player k
(it could be j, the proposer) reduces his commitment by an arbitrarily small amount, j will make a deal that
includes k and k improves his payoff (relative to the proposal failing). The cost of this deviation is arbitrarily
small, and so k’s payoff increases, a contradiction.

Part 2 This is immediate if the price of the cheapest coalition is not equal to 1 − δvi, as in that case the
proposer strictly prefers to pass a proposal if his commitment status allows. What remains to be shown is
that i must make a proposal that passes in the case where the cheapest coalition costs exactly 1− δvi and the
proposer’s own “price” is x̂i(si) = δvi. To see this, suppose that there exists some event (i.e. a commitment
status profile s and a proposer i) such that x̂i(si) = δvi and

∑
j∈Ci

x̂j(sj) = 1−δvi for the cheapest coalition Ci,
but the proposer makes a proposal that fails. Then at least one k ∈ Ci must be committed to xk > δvk (since
the sum of continuation values is strictly less than one). Then if k reduces his commitment by an arbitrarily
small amount, i will make a deal that includes k and k improves his payoff (relative to the proposal failing).
The cost of this deviation is arbitrarily small, and so k’s payoff increases, a contradiction.

Equilibrium commitments The condition x∗i ∈ argmaxπi(xi, x
∗
−i|ψ∗) follows from the one-stage deviation

principle, which requires that for each i there must not exist a commitment attempt x̃i ̸= x∗i with the property
that player i could strictly increase his payoff by deviating to x̃i in the initial commitment stage and reverting
to equilibrium play thereafter. (See Fudenberg and Tirole (1991) Theorem 4.2 and note that our game satisfies
their Definition 4.1 due to discounting.)

A.2 Proof of Theorem 1

Lemma 3. It is without loss of generality to assume the following:

(a) xi ≥ δvi for all i.

(b) If player j is never included as responder when his commitment sticks, then xj = δvj.

Proof. Part (a) is obvious. Assume it for what follows. For part (b), suppose there exists j who is never
included when his commitment sticks, but xj > δvj . We will argue that then there exists an equivalent
equilibrium in which xj = δvj and everything else is the same, in particular, player j is still never included
when his commitment sticks. The intuition is that player j would deviate down to a lower commitment if this
caused him to be included some of the time. So the fact that he does not do so means that his committing to
δvj makes no difference.

Suppose there is a commitment status profile s and a proposer k ̸= j such that (i) j is uncommitted in s, (ii)
every set of the cheapest (q−1) responders includes j, and (iii) the cost of these sets (denote it X =

∑
i∈Ck

x̂i(s))
satisfies X < 1− x̂k(s). Then player j could deviate down to commitment attempt δvj + ϵ, and for ϵ sufficiently
small, a deal that includes j would be made whenever k is proposer and faced with a commitment profile
identical to s except that j is committed. Conditional on being responder, j thus obtains δvj + ϵ in at least one
event where he previously obtained at most δvj . And since he is never included when his commitment xj sticks,
there are no events in which a downward deviation lowers his payoff as responder. As proposer, he is at least
as well off with the smaller commitment, as he will only make a deal if it earns him more than his continuation
payoff. A contradiction. Thus, there does not exist a commitment status profile of the type considered.

Suppose that there exists a commitment status profile s and a proposer k ̸= j such that (i) j is uncommitted
in s, (ii) every set of the cheapest (q − 1) responders includes j, and (iii) the cost of these sets satisfies
X = 1− x̂k(s). (The difference to the previous case is that k would not make a deal with j if he is committed
to more than δvj .) Then it follows that either the proposer k or at least one responder i ̸= j in each of the
cheapest coalitions Ck must be committed to xi > δvi. (Otherwise X =

∑
i∈Ck

δvi < 1 − δvk = 1 − x̂k(s),
contradicting iii.) But then consider a modified event, identical to s except that one of these players has a
loophole. Then still j is included in each of the cheapest set(s) of (q − 1) responders, but now its cost satisfies
X < 1 − x̂k(s) and, hence, the argument above applies. A contradiction. Thus, again there does not exist a
commitment status profile of the type considered.

Thus, there does not exist a status profile s and a proposer k ̸= j such that (i) j is uncommitted in s, (ii)
every set of the cheapest (q − 1) responders includes j, and (iii) the cost of these sets satisfies X ≤ 1 − x̂k(s).
That is, there is no commitment status profile s such that some player k must make a deal that includes an
uncommited j. It follows that j could deviate to commitment attempt δvj (or smaller), and all proposers could
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continue to make the same deals (or not make deals) as they do prior to that deviation. Therefore, there exists
an equivalent equilibrium strategy profile that is identical except xj = δvj (or smaller) and equilibrium play is
the same in all events. Q.E.D.

Proof of the Theorem

Proof. Order players such that
x1 ≤ x2 ≤ .... ≤ xq ≤ ... ≤ xn

and assume without loss of generality that xi ≥ δvi and that xj = δvj for any player who is never included as
responder when his commitment sticks. (See Lemma 3.)

Define H = {h : xh > xq}, and assume that H is not empty. Then any h ∈ H is never included as responder
when his commitment sticks. Then by Lemma 3 δvh = xh > xq, and so in fact h is never included as responder
(even with a loophole). Define L = {l : xl ≤ xq}, and note that it is not empty. Then vh > vl for all h ∈ H and
l ∈ L.

Let z = #L. Define PL, PH as the average probability that a member of L and H makes a deal when
proposing. It can be argued that PL ≥ PH .29

Let PF = 1− z
nPL − n−z

n PH be the probability that no deal is reached in a given round. Note that all deals
include only members of L as responders. Let XHL be the average total payments to responders in L when a
member of H makes a deal. Then the average expected payoff among members of H is

v̄h = PF δv̄h +
1

n
PH (1−XHL)

and the average expected payoff among members of L is

v̄l = PF δv̄l +
z

n
PL

1

z
+
n− z

n
PH

XHL

z
,

where the second part of the sum reflects the fact that whenever a member of L makes a deal, the entire pie is
shared in some way between the z members of L. But then

(1− δPF ) (v̄l − v̄h) =
PL − PH

n
+ PH

XHL

z
> 0,

contradicting vh > vl for all h ∈ H and l ∈ L. It follows that H is empty, i.e. xj = xq for all j ≥ q.

x1 ≤ x2 ≤ .... ≤ xq = xq+1 = ... = xn.

Now redefine H = {h : δvh = xq} and L = {l : δvl < xq}. (Note that these sets are exhaustive because
δvj ≤ xj ≤ xq for all j.) Suppose both sets are nonempty. Again define z = #L, as well as the other notation
introduced above. Note that x̂h(s) = xh = δvh = xq for all h and all commitment status profiles s. Also,
vh > vl for all h ∈ H and l ∈ L, and the argument in footnote 29 still applies, thus PL ≥ PH .

Suppose z ≥ q. Then any h ∈ H is never included as a responder. (To see this, suppose a deal does include
some h ∈ H. Then h is paid xq. Moreover, at least one l ∈ L is excluded. It follows that l is committed to
xq > δvl. But then l can deviate to xq − ϵ > δvl and he will be included for ϵ arbitrarily small.) Then the
argument above can be repeated to show that the average payoffs satisfy v̄l > v̄h, a contradiction.

Thus z ≤ q− 1. Then any deal must include all members of L either as proposer or responder. (To see this,
suppose a deal is made that does not include some l ∈ L. Then it includes at most q − 2 members of L, and so
must include at least one responder h ∈ H, who is paid xq. It follows that l is committed to xq. But then l can
deviate to xq− ϵ and he will be included for ϵ arbitrarily small.) In addition to the notation already introduced,
let XLH = (q − z)xq be the total payment made to responders in H when a member of L makes a deal. Then
the average expected payoff among members of H is

v̄h = PF δv̄h +
n− z

n
PH

1−XHL

n− z
+
z

n
PL

XLH

n− z

and the average payoff for members of L is

v̄l = PF δv̄l +
z

n
PL

1−XLH

z
+
n− z

n
PH

XHL

z
,

29Consider any commitment status profile s such that some h ∈ H would make a deal if chosen to propose. Let Ih be the set
of responders included by h. Then x̂h(s) ≤ 1 −

∑
j∈Ih

x̂j(s). Take any l ∈ L. Note that x̂l(s) ≤ xl ≤ xq < xh = δvh = x̂h(s). If

l /∈ Ih, then x̂l(s) < x̂h(s) ≤ 1−
∑

j∈Ih
x̂j(s), and so l could make a deal with the same coalition Ih (or some other coalition). If

l ∈ Ih, then x̂l(s) ≤ 1−
∑

j∈Ih\{l} x̂j(s)− x̂h(s). Therefore l can make a deal with (Ih \ {l})∪{h} (or some other coalition). Thus

for any commitment status profile at which a member of H makes a deal, any member of L will also make a deal.
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where again each element of the sums reflects the way that the pie is shared among the members of both sets
in the event of a deal. Then

v̄L − v̄h = PF δ (v̄L − v̄h) +
PL (1−XLH)

n
− PH (1−XHL)

n
+

n− z

nz
PHXHL − z

n (n− z)
PLXLH

= PF δ (v̄L − v̄h) +
PL − PH

n
+

(
1

n
+

n− z

nz

)
PHXHL −

(
1

n
+

z

n (n− z)

)
PLXLH

= PF δ (v̄L − v̄h) +
PL − PH

n
+

PHXHL

z
− PLXLH

n− z

Then using PF =
(
1− z

nPL − n−z
n PH

)
,

v̄L − v̄h =
(
1− z

n
PL − n− z

n
PH

)
δ (v̄L − v̄h) +

PL − PH

n
+

PHXHL

z
− PLXLH

n− z
,

and thus

(1− δ) (v̄L − v̄h) =
PL − PH

n
+

PHXHL

z
− PLXLH

n− z
− 1

n
(zPL + (n− z)PH) δ (v̄l − v̄h)

=
PL − PH

n
(1− zδ (v̄l − v̄h)) +

PHXHL

z
− PLXLH

n− z
− PHδ (v̄l − v̄h)

=
PL − PH

n
[1− zδv̄l − (n− z) δv̄h] + PH

(
XHL

z
− δv̄l

)
+ PL

(
δv̄h − XLH

n− z

)
Note that all elements of the final sum are positive: The first because the sum of continuation values is less
than one, the second because XHL ≥ zδv̄l, given that any deal includes all members of L and each is paid at
least his continuation value. Finally, the last is positive because XLH = (q − z)δv̄h since any deal made by a
member of L includes q− z members of H who are each paid exactly their (common) continuation value. Thus
v̄l ≥ v̄h, contradicting vh > vl for all h ∈ H and l ∈ L.

It follows that one of the sets, L or H, must be empty. Suppose H is empty, i.e. δvj < xq for all j. Then by
Lemma 3, all i ≥ q are included with positive probability when committed to xq > δvi. But any such deal would
have to exclude some responder, and so that responder must also be committed to xq. Then this responder
could deviate to xq − ϵ for ϵ arbitrarily small and be included. A contradiction.

Thus, the set L is empty and therefore xq = δvj for all j. Combined with the ordering already established,
it follows that

δvi = xi = xj = δvj

for all i, j. Thus, since no player is committed to more than his continuation value, the unique equilibrium is
both efficient and symmetric. Q.E.D.

A.3 Lemma 4

Lemma 4. If
(
1 + k · n−1

n

)
· η(k, n− 1) ≤ 1 for k = 1, then the same holds for all k ∈ {1, ..., n− 1}.

Proof. Define the statement

C(k) ≡
[(

1 + k · n− 1

n

)
· η(k, n− 1) > 1

]
We will show: If there exists k̂ ≥ 2 such that C(k̂), then C(k̂ − 1). We treat separately the case that k̂ − 1 is
below or above the expected number of loopholes, (1− ρ)(n− 1).

Case 1: Suppose k̂− 1 < (1− ρ)(n− 1) A property of the binomial distribution is that the median number
of loopholes m satisfies

⌊(1− ρ)(n− 1)⌋ ≤ m ≤ ⌈(1− ρ)(n− 1)⌉

Therefore in Case 1 we have η(k̂ − 1, n − 1) ≥ 1/2. (Recall that this is the probability of having at least

k̂ − 1 loopholes.) It follows that the left hand side (LHS) of statement C(k̂ − 1) is strictly greater than
1
2

(
1 + (k̂ − 1) · n−1

n

)
. This quantity is strictly greater than one if k̂ − 1 > n

n−1 . Thus, C(k̂ − 1) follows

immediately for the subcase where n
n−1 < k̂− 1 < (1− ρ)(n− 1). Then consider the subcase k̂− 1 < n

n−1 . Note

that n
n−1 ≤ 3

2 for all n > 2. Thus k̂− 1 < n
n−1 implies k̂ ≤ 5

2 and so the only conceivable k̂ satisfying k̂ ≥ 2 and

k̂ − 1 < n
n−1 is k̂ = 2. So, assume k̂ = 2 and suppose C(2):(

1 + 2 · n− 1

n

)
· η(2, n− 1) > 1.
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This unpacks as follows: (
1 + 2 · n− 1

n

)
· [1− f(0, n− 1)− f(1, n− 1)] > 1

where, recall, f(ℓ, n− 1) is the probability of encountering ℓ loopholes out of n− 1 players. Thus we have(
1 + 2 · n− 1

n

)
·
[
1− ρn−1 − (n− 1) ρn−2(1− ρ)

]
> 1.

This can be rearranged to yield

ρn−1

(
1 + (n− 1) (

1− ρ

ρ
)

)
<

2n− 2

3n− 2

Given we are in Case 1, we have 1 < (1 − ρ)(n − 1), i.e. ρ < n−2
n−1 , implying 1−ρ

ρ > 1
n−2 , and so we have

ρn−1
(
1 +

(
n−1
n−2

))
< 2n−2

3n−2 , equivilantly ρ
n−1 < 2n−2

3n−2
n−2
2n−3 . It can be shown that for n ≥ 2, 2n−2

3n−2
n−2
2n−3 <

n−1
2n−1 .

30

Thus we have ρn−1 < n−1
2n−1 which implies C(1). To see this, note that

C(1) ≡
[(

1 + 1 · n− 1

n

)
· η(1, n− 1) > 1

]
=

[(
1 +

n− 1

n

)
·
(
1− ρn−1

)
> 1

]
=

[(
n− 1

2n− 1

)
> ρn−1

]

Case 2: Suppose k̂ − 1 ≥ (1 − ρ)(n − 1) Again, suppose C(k̂). Since the binomial distribution is discrete

log concave, it has the property that f(k,m)
η(k,m) is non-decreasing in k (see An (1997) Proposition 10), which

implies η (k − 1,m) ≥ f(k−1,m)
f(k,m) η (k,m). Further, it can be shown that f(k−1,m)

f(k,m) = k
m+1−k

ρ
1−ρ . Therefore

η (k − 1,m) ≥ k
m+1−k

ρ
1−ρη (k,m). Substituting m = n− 1 gives us that

η (k − 1, n− 1) ≥ k

n− k

ρ

1− ρ
η (k, n− 1)

From the definition of Case 2 we have ρ
1−ρ ≥ n−k̂

k̂−1
and thus

η
(
k̂ − 1, n− 1

)
≥ k̂

k̂ − 1
η (k, n− 1)

This give us(
1 + (k̂ − 1) · n− 1

n

)
· η(k̂ − 1, n− 1) ≥

(
1 + (k̂ − 1) · n− 1

n

)
· k̂

k̂ − 1
η
(
k̂, n− 1

)
(which by C(k̂)) >

1 + (k̂ − 1) · n−1
n

1 + k̂ · n−1
n

· k̂

k̂ − 1

To see that the RHS of this inequality is greater than one, note that

n− 1

n
k̂ < 1 + k̂ · n− 1

n

⇔ −n− 1

n
k̂ > −

(
1 + k̂ · n− 1

n

)
⇔

(
1 + k̂

n− 1

n

)
k̂ − n− 1

n
k̂ >

(
1 + k̂ · n− 1

n

)
k̂ −

(
1 + k̂ · n− 1

n

)
⇔

(
1 + (k̂ − 1) · n− 1

n

)
k̂ >

(
1 + k̂ · n− 1

n

)(
k̂ − 1

)
It follows that (

1 + (k̂ − 1) · n− 1

n

)
· η(k̂ − 1, n− 1) > 1,

i.e. C(k̂ − 1).

30To see this, note that the difference between the LHS and the RHS is

2n− 2

3n− 2

n− 2

2n− 3
−

n− 1

2n− 1
= −

(n− 1)(2n2 − 3n+ 2)

(2n− 3)(2n− 1)(3n− 2)

which is negative for n ≥ 3/2.
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Summary We have shown that if there exists k̂ ≥ 2 such that C(k̂), then C(k̂−1). It follows that ∼ C(1) ⇒∼
C(k) for all k ∈ {2, ..., n− 1}. Q.E.D.

A.4 Proof of Theorem 3

Proof. Suppose there exists an efficient equilibrium under unanimity rule, and let the associated commitment
profile be {xi}ni=1. Without loss of generality, assume that xi ≥ δvi for all i. Note that

∑n
i=1 vi = 1 and∑n

i=1 xi = 1. (If
∑n

i=1 xi > 1, no agreement would be reached when all commitments stick. If
∑n

i=1 xi < 1,
any player could increase his commitment to y = 1 −

∑
j ̸=i xj without affecting the prospects for agreement

but improving his payoff when he is a committed responder.) . Also, note that xi > δvi for all i. To see this,
suppose there is i with xi = δvi. Conditional on being responder, player i’s payoff is δvi. (Agreement is certain,
he is always included, and his “price” is δvi irrespective of his commitment status.) As proposer, his payoff is
δvi plus (xj − δvj) for every j that has a loophole. Let j be the player (other than i) for whom that “chunk”
is smallest. Suppose i deviates to δvi + (xj − δvj). Conditional on the commitment sticking, this deviation
prevents agreement only in cases where no other player has a loophole, in which case i’s payoff is unchanged at
δvi (irrespective of his proposer status). If at least one other player has a loophole, i will gain the extra chunk
if he is responder and still make the same deals as proposer. Thus, the deviation never yields a lower payoff
and sometimes yields a greater payoff, so it pays off.

Without loss of generality, order players such that 0 < x1 − δv1 ≤ ... ≤ xn − δvn. Suppose player 1 deviates
to y1 = x1 + (x1 − δv1). Then, conditional on Player 1 being committed (either as proposer or as responder),
agreement will occur if and only if at least one of the n− 1 other players has a loophole. (To see this, suppose
any player k > 1 has a loophole. Then

n∑
j=1

x̂j(s) =
∑
j ̸=1

x̂j(s) + y1 =

n∑
j ̸=1

x̂j(s) + x1 + (x1 − δv1)

≤
n∑

j=1

xj + (x1 − δv1)− (xk − δvk) ≤
n∑

j=1

xj = 1,

and so a deal will be reached irrespective of which player proposes.) In that event (i.e. whenever at least one
other player has a loophole), Player 1’s payoff increases by (x1 − δv1) if he is responder, and does not change if
he is proposer. In all other events (i.e. if no player has a loophole), the deviation will result in a deal not being
reached, in which case player 1 would lose (x1 − δv1) as a result of the deviation (irrespective of whether he is
proposer or responder). Thus, the net benefit of the deviation equals η · n−1

n (x1 − δv1) − (1− η) · (x1 − δv1),
where η = η (1, n− 1) is the probability of at least 1 loophole among the n− 1 players other than 1. Therefore,

the deviation pays off if and only if this is strictly positive, equivalently η (1, n− 1) > n
2n−1 , or ρ <

(
n−1
2n−1

) 1
n−1

.

It follows that an efficient equilibrium (symmetric or not) does not exist if ρ <
(

n−1
2n−1

) 1
n−1

. By Lemma 2, an

efficient symmetric equilibrium exists iff ρ ≥
(

n−1
2n−1

) 1
n−1

. Q.E.D.
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