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Global Air Quality Inequality over 2000-2020 
 
 

Abstract 
 
Air pollution generates vast health burdens and economic costs around the world. Pollution 
exposure varies greatly, both between countries and within them. But the degree of air quality 
inequality and its’ trajectory have not been quantified at a global level. I use economic inequality 
indices to measure global inequality in exposure to ambient fine particles smaller than 2.5 microns 
(PM2.5). I find high and rising levels of global air quality inequality. The global PM2.5 Gini Index 
rose from 0.30 in 2000 to 0.35 in 2020, exceeding levels of income inequality in many countries. 
Air quality inequality is mostly driven by differences between countries and less so by variation 
within them, as decomposition analysis shows. A large share of those facing the highest levels of 
PM2.5 exposure live in only a few countries. Building on the Global Burden of Disease 
framework, I find that mortality associated with PM2.5 exposure is even more unequal than 
pollution exposure itself. The findings suggest that the common focus on inequality within 
countries overlooks an important global dimension of environmental justice. 
JEL-Codes: D630, I140, Q530. 
Keywords: air pollution, inequality, health, environmental justice. 
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1 Introduction

Elevated levels of air pollution generate vast damages to human health (Landrigan et al.,

2018; Murray et al., 2020) and productivity (Aguilar-Gomez et al., 2022) worldwide.

Lowering pollution levels is increasingly recognized as a key step towards achieving the

United Nation’s Sustainable Development Goals (Sachs et al., 2019). At the same time,

exposure to ambient air pollution varies substantially within countries, often in ways that

correlate with socio-demographic characteristics (Jbaily et al., 2022; Currie et al., 2023;

Sager and Singer, 2024). Research efforts and the public discourse around environmental

justice tend to focus on these within-country differences (Mohai et al., 2009; Banzhaf et al.,

2019; Drupp et al., 2024). But pollution exposure also varies greatly between countries

(Southerland et al., 2022; Sicard et al., 2023) and is often worse in poorer countries (Apte

et al., 2021; Rentschler and Leonova, 2023).

Less is known about how unequal air quality is distributed globally, and how differ-

ences between and within countries shape the global air pollution exposure distribution.

In this article, I investigate global air quality inequality between 2000 and 2020 by com-

bining gridded population data with annual concentration estimates of fine particles

with 2.5 microns or less in diameter (PM2.5). PM2.5 is one of the pollutants most strongly

linked to premature deaths and other damages (Landrigan et al., 2018; Murray et al.,

2020; Aguilar-Gomez et al., 2022). The final sample covers 85% of the world population

in 2020 spread across 80.1 million grid cells in 231 countries or territories.

To quantify global air quality inequality, I employ indices typically used to measure

economic inequality. I calculate the ratio of the 90th to the 10th percentile of the global

PM2.5 exposure distribution (R9010), the global PM2.5 Gini Index (Gini, 1921), and three

Generalized Entropy measures including the common Theil Index (Shorrocks, 1980).

Some of these indices have been used in previous work to characterize the distribution

of air pollution levels within countries (Clark et al., 2014; Boyce et al., 2016; Rosofsky

et al., 2018; Pisoni et al., 2022) and to study the distribution of benefits from air quality

regulation (Levy et al., 2007; Fann et al., 2011; Holland et al., 2019; Mansur and Sheriff,

2021). Here, I use them to quantify air quality inequality at the global level, accounting

for variation both between and within countries.

1



By calculating indices to describe global air quality inequality, I contribute a new

perspective to a literature that has thus far focused on describing exposure differences

between countries, regions and cities (Southerland et al., 2022; Sicard et al., 2023; Apte

et al., 2021; Rentschler and Leonova, 2023). In particular, the indices allow me to assess

whether and by how much global air quality inequality has increased between 2000 and

2020. As some indices allow for sub-group decomposition (Shorrocks, 1984; Mookherjee

and Shorrocks, 1982), I can further quantify the relative contributions of between-country

and within-country differences in shaping global air quality inequality.

A key motivation in studying the distribution of pollution exposure is the association

with health damages and overall welfare loss. As the relationship between exposure and

damages may be non-linear and mediated by other factors, the level of inequality in the

final health burden may differ from the inequality in pollution exposure. That is why,

in addition to measuring pollution exposure inequality, I also measure inequality of the

resulting health burden. Specifically, I rely on the Global Burden of Disease (GBD) 2019

assessment of mortality that can be attributed to PM2.5 exposure (Murray et al., 2020;

Vos et al., 2020). I first replicate the country-level GBD 2019 mortality estimates for six

leading causes and then extend the analysis to include within-country variation. The

results confirm the highly unequal mortality burden from PM2.5 exposure, which for

certain exceed the inequality in pollution exposure itself.

Finally, I investigate the dimension of absolute, instead of relative, deprivation in

the global air quality distribution. I find that a large share of people exposed to the

highest levels of PM2.5 levels live in just a few countries, especially in South Asia. Taken

as a whole, the results from using inequality indices to quantify global air quality

inequality showcase the highly unequal and geographically concentrated nature of

pollution exposure and health burdens.
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2 Data and methods

To quantify global air quality inequality between 2000 and 2020, I calculate inequality

indices based on a gridded data set combining population counts with estimates of fine

particle (PM2.5) concentrations.

2.1 Data

Population counts are from Gridded Population of the World (GPW v4.11) from CIESIN

(2018). I use UN WPP-adjusted population counts for 241 countries/territories in 2000,

2005, 2010, 2015 and 2020 at a 30 arc-second (0.0083 degree) resolution. PM2.5 data are

from Van Donkelaar et al. (2021) [V5.GL.04], using annual mean surface-level PM2.5

concentrations in 2000, 2005, 2010, 2015 and 2020 at a 0.01 arc-degree resolution.1

The spatial unit of analysis is the grid cell from the GPW v4.11 population data. In

each year and for each population grid cell, PM2.5 is assigned as follows: Where available,

I assign the PM2.5 level at the pollution grid point closest (in arc-degrees) to the centroid

of the population grid cell. When that PM2.5 level is missing, I use the mean of the

non-missing values from the 8 surrounding points in arc-degree space. Doing so extends

sample coverage, but does not significantly alter the results, as shown in Appendix Table

A1 where I limit my sample to only cells matched to the nearest PM2.5 reading.

Due to computational constraints, I further limit the sample as follows. First, grid

cells with population estimates below 1 are dropped. This reduces the number of

grid cells by over 50% but maintains 99.7% of the population coverage. Second, I

omit 10 countries/territories with populations smaller than 10,000 in 2020.2 Finally,

the sample only includes grid cells that can be matched to a PM2.5 estimate using the

procedure described above. This final sample contains N=80,109,345 grid cells in 231

countries/territories and covers 85% of the world population as shown in Figure 1.3

1GPW v4.11 is available at https://doi.org/10.7927/H4F47M65. WUSTL ACAG Surface PM2.5
version V5.GL.04 is available at https://sites.wustl.edu/acag/datasets/surface-pm2-5.

2The 10 omitted territories are: Falkland Islands, Holy See, Montserrat, Niue, Norfolk Islands,
Pitcairn, Saint Helena, Saint Pierre and Miquelon, Svalbard and Jan Mayen Islands, and Tokelau.

3GPW v4.11 contains a total population of 7,758,982,599 in 2020, of which I match 6,570,286,387
to PM2.5 levels. Countries and territories are based on the classification in CIESIN (2018) and popu-
lation counts are UN WPP-adjusted versions from GWP v4.11. The full list of countries/territories
is shown in Appendix Table A2.
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Figure 1: Sample coverage of population and pollution data

(a) Population in 2020

(b) PM2.5 concentrations in 2020

Notes: Sample of N=80,109,345 grid cells. Population data from CIESIN (2018). PM2.5 exposure
data from Van Donkelaar et al. (2021).
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2.2 Inequality measures

While economic inequality indices usually describe the distribution of total income or

wealth across the population, I use them here to describe the distribution of exposure to

ambient PM2.5 particles across the world population. In a given year, each geographic

grid cell 𝑖 is assigned PM2.5 concentration 𝑃𝑖 . Population counts of grid cells (𝑛𝑖) are

used as weights to quantify pollution exposure across the world population (𝑁 =
∑

𝑖 𝑛𝑖).

Population-weighted global mean PM2.5 exposure is 𝑃 = 1
𝑁

∑
𝑖 𝑛𝑖𝑃𝑖 and higher moments

of the distribution are calculated in a similar way.

Concentrations of PM2.5 are measured in weight per volume (𝜇𝑔𝑚−3), averaged over

the year. One interpretation of my approach is that, assuming all persons inhale similar

volumes of outdoor air per year, I capture the global distribution of fine particles (by

weight) inhaled. As inequality indices are generally derived from welfare economic

principles, I also translate PM2.5 exposure into mortality burdens that more directly

measure the welfare costs of pollution exposure.

I employ five common inequality indices, which mainly differ in the weight they place

on different characteristics of the pollution exposure distribution. R9010 is calculated

as the ratio of the 90th and the 10th percentiles of the population-weighted global

PM2.5 distribution. The Gini Index is defined as a ratio of weighted sums across grid

cells so that Gini =

∑
𝑖 𝑛𝑖

∑
𝑗 𝑛 𝑗 |𝑃𝑖−𝑃𝑗 |

2𝑃𝑁2
. The three remaining indices are members of the

Generalized Entropy (GE) class with different values of the inequality aversion parameter

𝛼. When 𝛼 = 0, GE(0), also called the Mean Log Deviation (MLD), is defined as

𝐺𝐸(0) = 1
𝑁

∑
𝑖

[
𝑛𝑖 𝑙𝑜𝑔( 𝑃𝑃𝑖

)
]
. When 𝛼 = 1, GE(1), also called the Theil Index, is defined

as 𝐺𝐸(1) = 1
𝑁

∑
𝑖

[
𝑛𝑖

𝑃𝑖

𝑃
𝑙𝑜𝑔(𝑃𝑖

𝑃
)
]
. And when 𝛼 = 2, GE(2), equal to half the square of the

coefficient of variation, is defined as 𝐺𝐸(2) = 1
2

( [∑
𝑖
𝑛𝑖
𝑁

𝑃𝑖

𝑃

]2
− 1

)
.

The GE(𝛼) measures are additively separable and can be decomposed into within- and

between-country inequality (Shorrocks, 1980, 1984), such that 𝐺𝐸(𝛼) = 𝐺𝐸𝑊 (𝛼) +𝐺𝐸𝐵(𝛼).

Here, inequality within countries (𝑘) is defined as 𝐺𝐸𝑊 (𝛼) =
∑

𝑘

[
(𝑁𝑘

𝑁 )
(
𝑃𝑘

𝑃

)𝛼
𝐺𝐸𝑘(𝛼)

]
where 𝐺𝐸𝑘(𝛼) is calculated as standalone inequality measure for country 𝑘. Gini In-

dex decomposition is not exact when subgroup distributions overlap (Mookherjee and

Shorrocks, 1982), which is why I do not focus on it here.
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3 Results

The global distribution of ambient PM2.5 exposure is plotted in Figure 2 (left panel).

Population-weighted mean exposure stood at 34.7𝜇𝑔𝑚−3 in 2020, an increase of 16%

relative to 2000 (29.7𝜇𝑔𝑚−3). In 2020, over 99% of the sample population faced PM2.5

levels exceeding the 5𝜇𝑔𝑚−3 guideline level set by the World Health Organization in 2021

and 91% faced levels exceeding the previous 10𝜇𝑔𝑚−3 threshold.4

3.1 Global air quality inequality

Exposure to PM2.5 is highly unequal and has become more unequal over time. Figure 2

(left panel) shows that the global PM2.5 distribution has stretched, with the 90th percentile

rising from 52.9𝜇𝑔𝑚−3 in 2000 to 68.3𝜇𝑔𝑚−3 in 2020. Meanwhile, the 10th percentile fell

from 12.3 to 10.1𝜇𝑔𝑚−3. Consequently, the ratio of the 90th to the 10th percentile (R9010)

increased from 4.3 to 6.8 (right panel). That means that the least-polluted member of

the top decile in 2020 was exposed to seven times more air particulates than the most

polluted member of the bottom decile. Similarly, the Global Air Quality Gini Index grew

from 0.30 in 2000 to 0.35 in 2020. While this is much lower than the Global Income

Gini Index, which stood at 0.67 in 2020 (Chancel and Piketty, 2021), global air quality is

substantial. The global Gini Index for PM2.5 exposure rose from 0.30 in 2000 to 0.35 in

2020, an increase comparable to moving from income inequality levels in France (0.31 in

2020) to those in Russia (0.36 in 2020) according to World Bank (2020). The Theil Index

also increased, from 0.15 to 0.19, as did the other measures shown in Table 1. Lorenz

curves shown in Appendix Figure A1 visually confirm the increase in inequality.

The changes are primarily driven by changing concentration levels rather than popu-

lation movement. This can be seen when pairing 2020 PM2.5 levels with 2000 population

counts, as done in the bottom panel of Table 1, which yields similar mean exposure (33.6

𝜇𝑔−3) and nearly identical inequality indices (R9010=6.8, Gini=0.35, Theil=0.20).

4WHO pollutant guidelines are based on a systematic review and meta-analysis of the literature
linking long-term exposure to PM and all-cause and cause-specific mortality (WHO, 2021).
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Figure 2: Global distribution of PM2.5 exposure between 2000 and 2020.
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Notes: Left panel: Population-weighted Gaussian Kernel density estimates for PM2.5 exposure in
2000 and 2020. Solid lines indicate global mean PM2.5 exposure and dashed lines are 10th and
90th percentiles. Right panel: Inequality indices for global PM2.5 exposure 2000-2020 in 5-year
intervals, measured as ratio of 90th to 10th percentile (R9010, right axis), Gini and Theil Index
(left axis). Theil Index decomposition into between- and within-country components following
Shorrocks (1984). Population and pollution data from CIESIN (2018) and Van Donkelaar et al.
(2021). Sample of N=80,109,345 grid cells in 231 countries/territories.

Table 1: Global PM2.5 Exposure Inequality and Decomposition

Mean R9010 Gini MLD Theil 0.5CV2

2000 29.7 4.3 0.30 0.15 0.15 0.15
between 0.11 0.09 0.09
within 0.05 0.05 0.07

2020 34.7 6.8 0.35 0.22 0.19 0.20
between 0.16 0.13 0.12
within 0.06 0.06 0.08

2020 (2000 pop) 33.6 6.8 0.35 0.22 0.20 0.21
between 0.17 0.14 0.13
within 0.06 0.06 0.08

Notes: Based on population data from CIESIN (2018) and PM2.5 concentrations from
Van Donkelaar et al. (2021). Sample of N=80,109,345 grid cells in 231 countries/territories. ‘Mean’
is population-weighted annual mean PM2.5 exposure (in 𝜇𝑔𝑚−3); ‘R9010’ is the ratio of the 90th
to the 10th percentile; ‘Gini’ is the Gini Index; ‘MLD’ is the mean log deviation or GE(0); ‘Theil’ is
the Theil Index or GE(1); 0.5CV2 is half of the squared coefficient of variation or GE(2). ”2020
(2000 pop)” indicates that 2000 population weights are paired with 2020 PM2.5 concentrations.
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3.2 Decomposition analysis

The bulk of global air quality inequality can be attributed to differences between countries

rather than variation within them. Using the Theil Index, which is exactly decomposable

(Shorrocks, 1984), in Figure 2 (right panel) we see that two thirds of global air quality

inequality (0.14 out of 0.20) were due to differences between countries in 2020. Put

differently, even if PM2.5 exposure was fully equalized within every country in the world,

two thirds of global air quality inequality would remain.5 Similar and even higher

between-country contributions are shown by the other GE measures in Table 1.

Moreover, most of the increase in global air quality inequality is accounted for by

rising exposure differences between countries. The between-country portion of the Global

PM2.5 Theil Index rose from 0.09 to 0.14 between 2000 and 2020, while the within-country

portion grew only slightly from 0.05 to 0.06. Another way to see this is in Figure 3, which

shows divergence in country-level PM2.5 exposure between 2000 and 2020 (left panel).

Many countries with high PM2.5 levels in 2000 had even higher levels in 2020. This is

visible for South Asian countries such as India, Pakistan and Bangladesh, but also for

China, Saudi Arabia and others. Meanwhile, many of the less polluted countries in

Europe and North America saw stagnating or even falling PM2.5 levels. This reinforced a

trend whereby PM2.5 levels tend to be higher in low-income countries as shown in Figure

4. This confirms that air quality inequality likely compounds global economic inequality,

as argued by previous work (Apte et al., 2021; Rentschler and Leonova, 2023).

On the other hand, within-country PM2.5 inequality, measured by the Gini Index

(right panel of Figure 3), increased in some countries but fell in others. Taken together,

the analysis shows that global PM2.5 inequality is largely and increasingly driven by

differences between countries.

5These results are different from those for income, where much of global income inequality
are due to within-country differences (68% in 2020 according to Chancel and Piketty (2021)).
However, a similar share of global inequality in household carbon footprints is explained by
differences between countries (64% in 2019 according to Chancel (2022)).
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Figure 3: Country-level PM2.5 exposure and inequality in 2000 and 2020.
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Notes: Left panel: Country-level population-weighted mean PM2.5 exposure (𝜇𝑔𝑚−3) in 2000 and
2020. Right panel: Country-level Gini Index for PM2.5 exposure in 2000 and 2020. Circle size
indicates population in 2020, color indicates continent. Diagonal line represents equal levels in
2000 and 2020. Population and pollution data from CIESIN (2018) and Van Donkelaar et al.
(2021). Sample of N=50 countries/territories (out of 231 total) with largest 2020 population.

Figure 4: Country-level GDP per capita and mean PM2.5 exposure in 2020.

Notes: Population and pollution data from CIESIN (2018); Van Donkelaar et al. (2021). Plot shows
N=191 countries/territories (out of 231 total) with available GDP per capita in 2020 (current
international dollars, PPP) from World Bank (2020). Circle size indicates population in 2020, color
indicates continent. Line is fitted from a local polynomial regression with 95% confidence bands.
Name labels limited to the 50 countries with largest 2020 population.
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4 The unequal health burden of PM2.5 exposure

The above analysis has focused on variation in PM2.5 exposure across the world popula-

tion. However, pollution exposure matters mainly due to the resulting adverse effects

on health an well-being. With non-linear concentration-response functions, the resulting

distribution of those damages may differ from the exposure distribution. In this section,

I quantify inequality in resulting health burden based on the Global Burden of Disease

(GBD) 2019 framework (described in Murray et al., 2020; Vos et al., 2020).

GBD 2019 quantifies the global health burden in 204 countries and territories, sepa-

rately for 364 causes, 286 of them fatal, as well as 87 risk factors. PM2.5 exposure is used

as the main measure of the air pollution risk factor. It is linked to mortality from six

causes separately by age group: ischemic heart disease (IHD), stroke, chronic obstructive

pulmonary disease (COPD), lung chancer (LC), lower respiratory infections (LRI) and

type II diabetes (DM). I translate PM2.5 exposure into annual mortality rates using the

concentration-response (CR) functions from GBD 2019 paired with country-level baseline

mortality rates (using data and methods provided by McDuffie et al., 2021).6 To capture

within-country variation, I calculate mortality rates for each grid cell, assuming constant

baselines within countries.

Global PM2.5-related mortality risk is shown in Table 2. In my sample covering 85%

of the world population, 3.3 million deaths per year are attributed to PM2.5 exposure,

for an average mortality rate of 507 per million.7 The number for the 90th percentile

was 991, 8.2 times higher than for the 10th percentile (121), as shown in Table 2. The

Gini index of PM2.5-related mortality was 0.36. The mortality burden is more unequal

than PM2.5 exposure itself. Again, decomposition analysis shows that the bulk of it (0.18

out of 0.21 for the Theil Index) stems from between-country differences. Separating the

causes shows that PM2.5-related mortality risk from Stroke, COPD and lung cancer is

substantially more unequal than that from respiratory illness or diabetes.

6CR curves translate PM2.5 exposure into relative risk of disease, which are then multiplied
with baseline disease levels by country. If two locations have identical PM2.5 levels, identical
mortality shares are assigned to pollution, but the total can differ if baselines differ.

7McDuffie et al. (2021) attribute 4.1 million deaths in 204 countries/territories to PM2.5 exposure
in 2019. I replicate those numbers exactly with their pollution data but get a total of 3.8 million
deaths when using country-level pollution from my data in 2020. Restricting this to the grid cells
within my sample, which covers 85% of the world population, this falls to 3.3 million
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Table 2: Global PM2.5-related mortality inequality in 2020

Mean R9010 Gini MLD Theil 0.5CV2

TOTAL 507 8.2 0.36 0.26 0.21 0.21
between 0.22 0.18 0.17
within/rest 0.04 0.03 0.04

IHD 174 8.7 0.37 0.31 0.23 0.24
between 0.27 0.21 0.21
within/rest 0.03 0.02 0.03

Stroke 151 14.9 0.45 0.41 0.34 0.37
between 0.37 0.30 0.32
within/rest 0.04 0.03 0.05

COPD 79 20.2 0.49 0.56 0.41 0.41
between 0.50 0.36 0.34
within/rest 0.05 0.04 0.07

Lung cancer 40 27.8 0.55 0.65 0.52 0.61
between 0.62 0.49 0.55
within/rest 0.04 0.03 0.06

LRI 34 6.5 0.36 0.25 0.22 0.25
between 0.19 0.17 0.19
within/rest 0.06 0.05 0.06

Type II diabetes 28 5.5 0.31 0.19 0.17 0.19
between 0.17 0.15 0.17
within/rest 0.02 0.02 0.03

Notes: Sample of N=80,021,591 grid cells in 204 countries/territories that could be matched to
PM2.5-attributable mortality following the Global Burden of Disease data and methodology
outlined in McDuffie et al. (2021). Based on population data from CIESIN (2018) and PM2.5

concentrations from Van Donkelaar et al. (2021). ‘Mean’ is population-weighted annual mean
mortality due to PM2.5 exposure (per million residents); ‘R9010’ is the ratio of the 90th to the 10th
percentile; ‘Gini’ is the Gini Index; ‘MLD’ is the mean log deviation or GE(0); ‘Theil’ is the Theil
Index or GE(1); 0.5CV2 is half of the squared coefficient of variation or GE(2).
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5 ‘Air quality poverty’ and the ‘Choking Billion’

High overall PM2.5 exposure combined with pronounced inequality imply that a substan-

tial portion of the world population faces excessive levels of air pollution. Continuing

the analogy with economic inequality, we can designate a group of the most exposed

people as suffering from ‘air quality poverty’. To illustrate this, I focus on the 1 billion

people in my sample that faced the highest PM2.5 levels in 2020. I refer to this group as

the ‘Choking Billion’.8 It was exposed to PM2.5 levels of 59.5𝜇𝑔𝑚−3 or higher in 2020,

twelve times higher than the WHO proposed limit of 5𝜇𝑔𝑚−3.

The map in Figure 5 shows that, while there are pockets of air poverty in many

countries, a few geographic clusters accounted for most of the ‘Choking Billion’ in 2020.

The biggest cluster spans Northern India, Bangladesh, Pakistan and Nepal, followed

by other big clusters in and around Eastern China, Northern Nigeria, and the Arab

peninsula. India alone was home to almost half (479 million) of the ‘Choking Billion’ in

2020, followed by China (184m), Bangladesh (128m) and Pakistan (85m), as shown in

Table 3. Some smaller countries also had high rates of air quality poverty. For example,

three quarters of the population of Saudi Arabia, half the population in Niger, and a

third of people in Nigeria were part of the ‘Choking Billion’ in 2020, as were around 9

The excessive PM2.5 exposure levels faced by the ’Choking Billion’ translate into high

health burdens as well. Using again the GBD methodology discussed in Section 4, I find

that the ’Choking Billion’ on average face a 57% higher rate of PM2.5-related mortality

than the rest of the world population. While they represent 15% of the global population,

they shoulder 22% of the PM2.5-related mortality burden.

8The notion of the ‘Choking Billion’ to describe clusters of extreme air pollution exposure is
inspired by the ‘Bottom Billion’ used to describe clusters of economic poverty (Collier, 2008).

9PM2.5 estimates from Van Donkelaar et al. (2021) include mineral dust, which can represent a
larger portion of the total count in regions close to deserts.
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Figure 5: The ‘Choking Billion’.

Notes: Location of 1 billion people facing annual PM2.5 over 59.5 𝜇𝑔𝑚−3 in 2020 (sub-sample of
N=4,143,990 grid cells out of 80,109,345). Shading indicates population density.

Table 3: The ‘Choking Billion’ by country

‘Choking’ ‘Choking’ Coverage Total Pop.
(million) (in %) (in %) (million)

India 478.7 38 91 1389
China 184.3 14 92 1403
Bangladesh 128.3 80 94 170
Pakistan 84.6 44 93 208
Nigeria 53.1 34 76 207
Saudi Arabia 22.6 77 85 34
Iraq 7.8 23 82 42
Nepal 7.8 27 95 30
Niger 7.8 53 61 24
Cameroon 6.9 41 64 26
Iran (Islamic Republic of) 4.8 7 82 83
South Africa 3.1 6 94 57
Yemen 2.3 12 64 30
Qatar 2.1 99 87 2
United Arab Emirates 1.9 22 86 10
Kuwait 1.8 51 83 4
Chad 1.4 14 62 16

Notes: N=17 countries/territories (out of 231) with over 1 million residents exposed to PM2.5 over
59.5𝜇𝑔𝑚−3 in 2020 (‘Choking’). % is share of country population in sample. ‘Coverage’ is sample
share in total population (‘Total Pop.’) in CIESIN (2018).
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6 Conclusion

The inequality indices calculated here document high and rising levels of global air

quality inequality, as measured by annual ambient PM2.5 exposure. Notably, levels of

air quality inequality are similar in magnitude as levels of economic inequality. The

associated health burden, measured by PM2.5-related mortality rates, is even more

unequally distributed. The bulk of this inequality comes from exposure differences

between countries rather than variation within them. This contrasts with research efforts

and public debates around environmental justice, which tend to focus on air quality

differences within countries (Mohai et al., 2009; Banzhaf et al., 2019; Drupp et al., 2024).

While a focus on within-country differences can be important, especially in national

policy contexts, the global perspective taken here highlights another important dimension

of global environmental inequality.

Underlying rising mean exposure and exposure inequality is an increase at the upper

tails of the PM2.5 distribution. The bulk of those exposed to the highest levels of ambient

PM2.5 live in just a few countries in Asia and Africa. Much like economic poverty, ‘air

quality poverty’ is geographically concentrated, often in places that also face economic

hardship (Apte et al., 2021; Rentschler and Leonova, 2023). The international community,

which increasingly recognizes the importance of clean air for sustainable development

(Sachs et al., 2019), might benefit from focusing on these pollution clusters.

The findings are subject to several limitations. Firstly, mismeasurement of either

population counts or pollution levels may affect the results, which thus rely on the

assumptions underlying the estimates in CIESIN (2018) and Van Donkelaar et al. (2021).

Secondly, the spatial resolution of 30 arc-seconds (500-900 meters depending on latitude)

used here necessarily overlooks variation at smaller scales. Finally, remotely-sensed

measures of pollution concentrations only measure outdoor pollution and may not

represent peoples combined exposure from outdoor and indoor sources (Jones, 1999).

Despite these limitations, the inequality indices calculated here offer a new, quanti-

tative perspective on global air quality inequality. Similar indices may prove useful in

describing other dimensions of environmental inequality. In particular, future research

may test if air pollutants other than PM2.5 are subject to similar inequality levels.
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Appendix

Figure A1: Lorenz curves for global PM2.5 exposure in 2000 and 2020.

Notes: Based on population data from CIESIN (2018) and PM2.5 concentrations from
Van Donkelaar et al. (2021). Population-weighted percentiles calculated from sample of
N=80,109,345 grid cells in 231 countries/territories.
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Table A1: Replication of Table 1 (sample restricted to nearest neighbor PM2.5)

Mean R9010 Gini MLD Theil 0.5CV2

2000 29.3 4.3 0.31 0.16 0.15 0.16
between 0.11 0.10 0.09
within 0.05 0.05 0.07

2020 32.3 6.7 0.35 0.22 0.19 0.21
between 0.17 0.14 0.14
within 0.05 0.05 0.07

2020 (2000 pop) 31.1 6.6 0.35 0.22 0.20 0.21
between 0.17 0.15 0.14
within 0.05 0.05 0.07

Notes: Replication of Extended Data Table 1, using restricted sample of N=44,493,936 grid cells in
231 countries/territories assigned non-missing PM2.5 readings from only the single closest
pollution grid cell (accounting for 47% of world population in 2020). Based on population data
from CIESIN (2018) and PM2.5 concentrations from Van Donkelaar et al. (2021). ‘Mean’ is
population-weighted annual mean PM2.5 exposure (in 𝜇𝑔𝑚−3); ‘R9010’ is the ratio of the 90th to
the 10th percentile; ‘Gini’ is the Gini Index; ‘MLD’ is the mean log deviation or GE(0); ‘Theil’ is
the Theil Index or GE(1); 0.5CV2 is half of the squared coefficient of variation or GE(2). ”2020
(2000 pop)” indicates that 2000 population weights are paired with 2020 PM2.5 concentrations.
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Table A2: Data coverage by country or territory.

ISO Name of Country or Territory Pop. in 2020 Coverage PM2.5 in 2000 PM2.5 in 2020
(thousands) (%) (𝜇𝑔𝑚−3) (𝜇𝑔𝑚−3)

1 ABW Aruba 105 46.3 10.3 10.5
2 AFG Afghanistan 36452 89.0 29.3 34.8
3 AGO Angola 29262 55.8 21.0 20.2
4 AIA Anguilla 15 81.6 10.1 8.9
5 ALA Åland Islands 30 91.4 6.6 4.9
6 ALB Albania 2936 92.2 21.1 17.4
7 AND Andorra 69 45.2 12.7 9.1
8 ARE United Arab Emirates 9809 85.6 57.3 54.0
9 ARG Argentina 45530 84.3 15.0 14.7
10 ARM Armenia 3041 80.0 24.9 28.3
11 ASM American Samoa 56 91.2 3.9 4.4
12 ATG Antigua and Barbuda 96 79.8 10.3 9.3
13 AUS Australia 25595 90.1 5.4 6.5
14 AUT Austria 8660 71.7 16.4 12.0
15 AZE Azerbaijan 10232 80.4 26.4 23.8
16 BDI Burundi 13106 69.1 34.9 38.3
17 BEL Belgium 11641 90.7 14.5 10.6
18 BEN Benin 12355 77.9 40.2 42.0
19 BES Bonaire Saint Eustatius and Saba 26 76.1 11.3 11.0
20 BFA Burkina Faso 20865 60.5 45.5 41.3
21 BGD Bangladesh 170397 94.1 51.2 69.2
22 BGR Bulgaria 6909 89.7 28.2 20.8
23 BHR Bahrain 1486 88.3 54.9 51.7
24 BHS Bahamas 410 88.8 7.3 5.4
25 BIH Bosnia and Herzegovina 3757 89.9 30.7 29.8
26 BLM Saint-Barthelemy 12 74.4 10.8 9.3
27 BLR Belarus 9362 90.2 17.3 14.0
28 BLZ Belize 398 93.7 16.1 18.4
29 BMU Bermuda 61 94.0 6.7 5.1
30 BOL Bolivia (Plurinational State of) 11550 87.2 25.5 29.3
31 BRA Brazil 215984 76.0 12.0 13.8
32 BRB Barbados 288 59.9 12.0 11.9
33 BRN Brunei Darussalam 450 76.9 5.8 8.4
34 BTN Bhutan 834 94.2 21.7 28.4
35 BWA Botswana 2458 87.2 15.1 15.0
36 CAF Central African Republic 5399 79.2 37.7 36.1
37 CAN Canada 37599 87.9 8.3 6.7
38 CHE Switzerland 8653 74.2 15.1 10.3
39 CHL Chile 18841 89.0 19.4 20.6
40 CHN China 1402773 92.2 37.4 41.8
41 CIV Côte d’Ivoire 25566 93.5 22.7 22.8
42 CMR Cameroon 26350 64.0 56.2 55.2
43 COD Democratic Republic of the Congo 90176 75.4 34.7 37.5
44 COG Congo 5262 66.5 25.9 36.6
45 COK Cook Islands 21 98.6 3.9 4.0
46 COL Colombia 50230 73.2 16.7 19.3
47 COM Comoros 883 66.0 9.1 9.8
48 CPV Cape Verde 553 84.1 30.1 21.1
49 CRI Costa Rica 5045 71.7 15.5 18.6
50 CUB Cuba 11366 93.5 12.1 9.6
51 CUW Curaçao 164 73.6 11.1 11.6
52 CYM Cayman Islands 64 98.2 10.7 11.6
53 CYP Cyprus 1218 80.3 19.5 17.4
54 CZE Czech Republic 10576 73.0 21.0 14.9
55 DEU Germany 80389 69.9 15.1 10.4
56 DJI Djibouti 946 66.8 39.4 41.8
57 DMA Dominica 74 61.5 11.9 11.6
58 DNK Denmark 5776 61.0 13.4 8.3
59 DOM Dominican Republic 11112 95.1 12.3 12.8
60 DZA Algeria 43007 82.7 16.5 15.4
61 ECU Ecuador 17340 70.3 14.6 18.5
62 EGY Egypt 100524 94.0 41.5 41.8
63 ERI Eritrea 5893 68.9 31.8 34.2
64 ESH Western Sahara 634 70.2 34.5 29.5
65 ESP Spain 46178 84.2 13.3 11.0
66 EST Estonia 1293 88.7 8.9 6.8
67 ETH Ethiopia 111983 65.3 18.6 24.5
68 FIN Finland 5555 86.8 6.8 5.3
69 FJI Fiji 915 98.9 6.5 6.1
70 FRA France 65734 84.2 13.6 10.4
71 FRO Faeroe Islands 49 90.0 4.9 4.8
72 FSM Micronesia (Federated States of) 108 83.9 3.9 3.8
73 GAB Gabon 1919 56.7 22.0 29.9
74 GBR United Kingdom 66699 78.8 12.6 10.0
75 GEO Georgia 3980 80.0 18.0 18.8
76 GGY Guernsey 63 78.0 10.2 8.9
77 GHA Ghana 30548 79.8 33.6 30.5
78 GIB Gibraltar 34 84.0 12.0 12.0
79 GIN Guinea 14354 50.9 30.7 28.7
80 GLP Guadeloupe 419 81.5 11.8 10.9
81 GMB Gambia 2319 63.0 45.2 39.0
82 GNB Guinea-Bissau 2070 52.9 38.4 33.7
83 GNQ Equatorial Guinea 970 53.5 35.1 41.6
84 GRC Greece 10828 87.9 19.4 15.2
85 GRD Grenada 109 64.6 12.1 11.5
86 GRL Greenland 56 60.4 1.9 1.6
87 GTM Guatemala 18015 71.6 28.9 27.5
88 GUF French Guiana 305 63.8 14.3 14.8
89 GUM Guam 180 64.7 3.0 3.8
90 GUY Guyana 787 70.0 15.8 17.0

Continued on next page
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Table A2 – continued from previous page

ISO Code Name of Country or Territory Pop. in 2020 Coverage PM2.5 in 2000 PM2.5 in 2020
(thousands) (%) (𝜇𝑔𝑚−3) (𝜇𝑔𝑚−3)

91 HKG Hong Kong 7619 89.9 22.6 20.1
92 HND Honduras 8656 68.9 28.7 33.0
93 HRV Croatia 4164 80.5 21.6 17.8
94 HTI Haiti 11373 93.9 13.9 15.9
95 HUN Hungary 9684 89.6 23.2 16.2
96 IDN Indonesia 271854 76.1 15.0 19.7
97 IMN Isle of Man 91 78.5 8.4 7.8
98 IND India 1388953 90.9 38.2 52.2
99 IRL Ireland 4875 81.2 9.4 7.8
100 IRN Iran (Islamic Republic of) 83401 82.1 38.7 38.3
101 IRQ Iraq 41963 81.7 50.0 49.7
102 ISL Iceland 342 81.3 4.6 4.8
103 ISR Israel 8733 83.5 20.7 21.8
104 ITA Italy 59743 66.3 20.7 17.0
105 JAM Jamaica 2840 93.9 18.2 19.4
106 JEY Jersey 105 88.9 10.4 9.1
107 JOR Jordan 8167 83.9 29.3 34.4
108 JPN Japan 125039 89.7 15.8 12.0
109 KAZ Kazakhstan 18626 82.0 15.8 19.4
110 KEN Kenya 52175 71.3 17.1 22.0
111 KGZ Kyrgyzstan 6426 91.2 18.8 18.8
112 KHM Cambodia 16809 67.4 17.3 19.4
113 KIR Kiribati 122 39.8 4.1 4.4
114 KNA Saint Kitts and Nevis 58 80.3 10.2 9.5
115 KOR Republic of Korea 51252 89.6 23.3 22.7
116 KOS Kosovo 2027 89.4 23.6 22.7
117 KWT Kuwait 4314 83.0 59.3 59.5
118 LAO Lao People’s Democratic Republic 7407 89.8 22.2 27.6
119 LBN Lebanon 5897 84.4 28.6 30.1
120 LBR Liberia 5093 69.3 17.4 20.0
121 LBY Libya 6700 67.8 25.8 21.1
122 LCA Saint Lucia 192 62.8 11.9 11.3
123 LIE Liechtenstein 39 47.5 15.0 11.0
124 LKA Sri Lanka 21157 76.7 19.8 22.6
125 LSO Lesotho 2241 95.9 24.4 27.1
126 LTU Lithuania 2795 89.2 15.6 12.8
127 LUX Luxembourg 599 92.3 14.0 9.8
128 LVA Latvia 1920 88.2 17.8 14.7
129 MAC Macau 632 99.9 26.6 24.9
130 MAF Saint-Martin (French part) 46 69.8 9.6 8.9
131 MAR Morocco 36457 85.7 18.5 18.9
132 MCO Monaco 26 75.9 16.4 12.5
133 MDA Republic of Moldova 4015 91.1 18.4 15.8
134 MDG Madagascar 27799 82.9 11.3 13.2
135 MDV Maldives 393 56.8 14.3 14.5
136 MEX Mexico 134787 93.7 18.7 17.7
137 MHL Marshall Islands 53 78.0 4.3 4.6
138 MKD Macedonia 2087 90.0 28.9 24.1
139 MLI Mali 20458 65.2 43.5 37.6
140 MLT Malta 423 64.2 12.7 11.4
141 MMR Myanmar 56256 93.1 26.3 35.4
142 MNE Montenegro 626 90.1 23.2 20.6
143 MNG Mongolia 3180 68.9 30.5 47.6
144 MNP Northern Mariana Islands 56 91.6 2.8 3.0
145 MOZ Mozambique 32025 75.6 14.0 13.8
146 MRT Mauritania 4569 63.1 55.9 47.8
147 MTQ Martinique 395 62.9 15.2 15.3
148 MUS Mauritius 1291 80.9 15.7 14.3
149 MWI Malawi 19993 65.6 13.8 17.0
150 MYS Malaysia 32374 68.0 14.8 16.3
151 MYT Mayotte 273 62.7 11.0 11.3
152 NAM Namibia 2722 77.4 14.8 15.9
153 NCL New Caledonia 280 98.1 6.4 5.8
154 NER Niger 24316 61.4 67.2 67.4
155 NGA Nigeria 206824 76.4 59.3 58.6
156 NIC Nicaragua 6416 70.5 18.9 21.0
157 NLD Netherlands 17184 89.9 14.9 10.1
158 NOR Norway 5490 65.2 8.2 5.6
159 NPL Nepal 30197 95.1 35.8 47.0
160 NRU Nauru 10 100.0 4.3 4.8
161 NZL New Zealand 4730 88.8 6.4 7.0
162 OMN Oman 4826 85.1 44.8 42.8
163 PAK Pakistan 208366 92.9 47.9 55.9
164 PAN Panama 4230 69.4 13.4 16.0
165 PER Peru 33317 72.6 22.8 25.6
166 PHL Philippines 108436 72.7 21.0 22.0
167 PLW Palau 22 90.3 4.8 5.4
168 PNG Papua New Guinea 8413 89.1 9.8 13.6
169 POL Poland 38409 88.3 25.3 19.1
170 PRI Puerto Rico 3675 94.8 8.2 7.2
171 PRK Democratic People’s Republic of Korea 25760 89.8 22.6 25.7
172 PRT Portugal 10163 67.1 11.9 9.4
173 PRY Paraguay 7064 84.8 14.7 17.5
174 PSE State of Palestine 5317 83.9 22.0 23.7
175 PYF French Polynesia 296 97.0 4.5 4.5
176 QAT Qatar 2452 87.1 85.3 101.0
177 REU Réunion 892 83.4 6.7 6.3
178 ROU Romania 18829 88.4 21.2 17.8
179 RUS Russian Federation 142900 80.3 14.9 12.8
180 RWA Rwanda 13013 53.9 36.6 38.4
181 SAU Saudi Arabia 34371 85.1 62.8 70.4
182 SDN Sudan 45307 70.2 34.8 36.7

Continued on next page
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Table A2 – continued from previous page

ISO Code Name of Country or Territory Pop. in 2020 Coverage PM2.5 in 2000 PM2.5 in 2020
(thousands) (%) (𝜇𝑔𝑚−3) (𝜇𝑔𝑚−3)

183 SEN Senegal 17493 59.8 47.5 43.5
184 SGP Singapore 6007 44.8 17.1 16.4
185 SLB Solomon Islands 640 78.1 5.9 9.3
186 SLE Sierra Leone 7160 55.1 23.2 23.7
187 SLV El Salvador 6227 70.1 28.4 30.5
188 SMR San Marino 31 58.2 17.8 14.5
189 SOM Somalia 12436 62.3 19.2 18.0
190 SRB Serbia 6645 90.2 22.8 21.7
191 SSD South Sudan 14116 71.9 23.0 23.7
192 STP Sao Tome and Principe 211 97.5 17.9 16.5
193 SUR Suriname 565 74.9 16.3 16.2
194 SVK Slovakia 5434 89.3 22.3 16.4
195 SVN Slovenia 2077 65.1 20.1 15.4
196 SWE Sweden 10121 74.5 8.4 5.7
197 SWZ Swaziland 1366 95.8 20.7 17.0
198 SXM Sint Maarten (Dutch part) 42 83.1 10.0 9.6
199 SYC Seychelles 99 67.6 9.2 8.4
200 SYR Syrian Arab Republic 20987 81.2 30.2 32.6
201 TCA Turks and Caicos Islands 37 94.0 9.7 7.2
202 TCD Chad 16422 61.6 44.0 45.0
203 TGO Togo 8273 63.5 40.0 37.0
204 THA Thailand 68596 76.4 21.3 24.4
205 TJK Tajikistan 9416 91.0 25.2 30.6
206 TKM Turkmenistan 5702 80.0 33.5 28.3
207 TLS Timor-Leste 1317 64.7 11.2 11.6
208 TON Tonga 111 99.1 4.9 4.3
209 TTO Trinidad and Tobago 1378 61.0 14.4 13.9
210 TUN Tunisia 11836 62.2 22.0 17.5
211 TUR Turkey 82262 86.1 24.8 25.6
212 TUV Tuvalu 10 91.4 4.2 5.1
213 TWN Taiwan 23402 93.5 23.5 18.6
214 TZA United Republic of Tanzania 62280 65.4 17.2 22.0
215 UGA Uganda 45836 73.8 30.1 33.9
216 UKR Ukraine 43678 85.5 19.2 16.5
217 URY Uruguay 3492 82.1 12.2 12.5
218 USA United States of America 333422 90.3 12.9 8.0
219 UZB Uzbekistan 31709 88.4 29.1 31.0
220 VCT Saint Vincent and the Grenadines 111 76.2 11.6 11.6
221 VEN Venezuela (Bolivarian Republic of) 33118 69.0 18.5 20.2
222 VGB British Virgin Islands 33 94.6 7.4 6.7
223 VIR United States Virgin Islands 107 91.8 7.1 6.8
224 VNM Viet Nam 98139 80.5 21.6 26.6
225 VUT Vanuatu 294 87.7 7.3 7.0
226 WLF Wallis and Futuna Islands 13 77.8 4.4 4.9
227 WSM Western Samoa 199 70.8 4.7 4.7
228 YEM Yemen 30029 63.9 42.1 46.8
229 ZAF South Africa 56689 93.9 24.8 27.8
230 ZMB Zambia 18889 72.3 17.1 20.8
231 ZWE Zimbabwe 17464 93.8 14.0 15.6

Notes: The N=231 countries or territories in the sample, sorted by 2020 population. Names and
population estimates from CIESIN (2018). ‘Coverage’ shows the sample share in the total country
population. ‘PM2.5 in 2000/2020’ are population-weighted mean exposure levels in 2000 and 2020
respectively, based on Van Donkelaar et al. (2021)
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