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Abstract. The n-player Tullock contest with complete information is known to admit

explicit solutions in special cases, such as (i) homogeneous valuations, (ii) constant

returns, and (iii) two contestants. But can that model be solved more generally? In

this paper, we show that key characteristics of the equilibrium, such as individual

efforts, winning probabilities, and payoffs cannot, in general, be expressed in terms of

the primitives of the model using basic arithmetic operations plus the extraction of

roots alone. In this sense, the Tullock contest is intractable. We argue that our formal

concept of tractability captures the intuitive understanding of the notion.

Keywords. Tullock contest · Pure-strategy Nash equilibrium · Solution by radicals ·

Galois theory

JEL codes. C02, C72, D72

*) For useful discussions, I am indebted to Dmitry Ryvkin and Marco Serena.

�) Department of Economics, University of Zurich, Schönberggasse 1, 8001 Zurich,

Switzerland; christian.ewerhart@econ.uzh.ch.



1 Preliminaries

1.1 Introduction

In the standard n-player Tullock (1980) contest with complete information, each con-

testant i ∈ {1, . . . , n} independently chooses an effort level xi ≥ 0 so as to maximize

the payoff function

Πi =
xR
i

xR
1 + . . .+ xR

n

Vi − xi, (1)

where Vi > 0 is contestant i’s valuation of winning, and R > 0 is a parameter of the

model that measures the extent to which effort, rather than luck, determines the win-

ner of the contest.1 As usual, the ratio in equation (1) is understood to assume the

value 1
n
if the denominator vanishes. Moreover, by renaming the contestants if neces-

sary, it may be assumed w.l.o.g. that V1 ≥ . . . ≥ Vn. The game described above has

found widespread applications in various areas such as marketing, lobbying, electoral

competition, and sports (Konrad, 2009).2

One of the reasons why Tullock’s model has been so fruitful is that its equilibrium in

pure strategies admits a convenient representation in important special cases. Solution

formulas are available if (i) valuations are homogeneous, i.e., V1 = . . . = Vn, (ii) returns

from effort are constant (i.e., R = 1), and (iii) there are n = 2 contestants. In those

cases, the system of necessary Karush-Kuhn-Tucker conditions for an optimal choice

of effort,

∂Πi

∂xi

=
RxR−1

i (xR
1 + . . .+ xR

i−1 + xR
i+1 + . . .+ xR

n )

(xR
1 + . . .+ xR

n )
2

Vi − 1 ≤ 0,

1Indeed, in the limit case R ↘ 0, each contestant wins with the same probability 1
n regardless of

efforts, whereas in the other limit case R ↗ ∞, the highest effort wins with certainty, just as in the
all-pay auction.

2In line with the relevant parts of the literature, we will assume that contestants differ in valuations
only. All our results can, however, be readily adapted to a setup where contestants may differ, in
addition, in abilities (i.e., individual weight factors put in front of the xR

i terms) and marginal costs.
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with equality if xi > 0, turns out to be tractable under suitable restrictions on the

remaining parameters. However, it has remained an open question for some time if

further generalization is feasible.3

This paper provides evidence showing that the search for further generalization

is, in a sense, bound to be futile. To this end, we show that the n-player Tullock

contest with heterogeneous valuations and non-constant returns cannot, in general,

be solved by radicals. That is, it is not feasible to express endogenous characteristics

of the equilibrium, such as efforts, winning probabilities, or payoffs, in terms of the

primitives of the model using basic arithmetic operations such as addition, subtraction,

multiplication, and division, as well as the extraction of roots alone. We also argue,

but cannot prove of course, that our formal definition of tractability is equivalent to

what is intuitively understood by the notion.4

The derivation of our main result, the intractability of the Tullock contest, proceeds

in two steps. The first step is simple. Recalling that the probabilistic contest is an ag-

gregative game,5 we combine the necessary first-order conditions to a single polynomial

equation whose unique positive solution pins down the equilibrium values of individual

efforts, winning probabilities, and payoffs for all players. The issue of tractability of

the Tullock contest is thereby boiled down to the question if a polynomial equation

can be solved by radicals or not.6 The second step of the analysis, however, is based on

3Cf. the discussion in Ryvkin (2007). The lack of a complete solution complicates, in particular,
the comparison with the standard all-pay auction for which a complete solution is available (Baye
et al., 1996).

4The term “radical” appears also in Hilbert’s Nullstellensatz (Kubler et al., 2014, Thm. 2.1). There,
it refers to the radical of an ideal, whereas here, it corresponds to the extraction of an N -th root.

5In an aggregative game, individual payoffs are functions of the player’s own action and some
aggregate of the actions of the other players. See, e.g., Corchón (1994).

6Thus, the initial step of our analysis is analogous to the application of the Shape Lemma (Kubler
and Schmedders, 2010a) that finds, under general conditions, a single univariate polynomial equation
from which the solutions to a whole system of polynomial equations in several variables can be derived
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tools from Galois theory, which is a core topic in abstract algebra (van der Waerden,

1931). Specifically, we construct an example with n = 5 contestants and parameter

R = 1
2
, and show that the associated polynomial equation derived in the first step

cannot be solved by radicals. That result is extended, first to general valuations, and

then to an arbitary number of contestants n ≥ 5. As any general solution formula for

n contestants must solve, in particular, the case R = 1
2
, we obtain our impossibility

result.7

1.2 Galois theory

In the early 19th century, the French mathematician Évariste Galois developed the the-

ory named after him, concomitantly with the theory of permutation groups, to address

questions of tractability of polynomial equations of degree five and beyond.8 The idea

of his theory is that the roots of a polynomial constitute a finite set whose elements can

be permuted, i.e., reshuffled like a deck of cards.9 The Galois group of a polynomial

consists of those permutations of the roots that leave all multivariate algebraic rela-

tionships with rational coefficients between the roots intact. The fundamental insight

of Galois was that the structure of the Galois group of a polynomial g(X) contains

information about the solvability of the associated polynomial equation g(X) = 0 by

radicals. That is, the Galois group encodes if, and if so how, the roots of a polyno-

mial equation can be computed from the coefficients of the polynomial using the basic

in a straightforward way.
7While this settles the issue in the general case, we will also explain why it is unlikely that solution

formulas for other values of R will be found.
8In fact, at the time, Galois’ theory allowed solving other long-standing problems related to the

trisection of the angle, the doubling of the cube, and the construction of regular polygons (Edwards,
1984). More recently, Galois representations featured prominently in AndrewWiley’s proof of Fermat’s
last theorem.

9As usual, a complex number z ∈ C is called a root of the polynomial g(X) if g(z) = 0.
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arithmetic operations of addition, subtraction, multiplication, and division, plus the

extraction of roots. To obtain a definite answer for a specific polynomial equation, it

is crucial to check:

(i) if the polynomial is irreducible, i.e., it does not decompose into a product of

simpler polynomials, and

(ii) provided that the polynomial is irreducible, that the Galois group of the polyno-

mial is solvable.10

Thus, if the relevant polynomial is irreducible and the Galois group lacks the property

of solvability, one may conclude that its roots cannot be represented “in explicit terms.”

In this paper, we use Galois theory to study the tractability of the n-player Tullock

contest.

1.3 Contribution

To evaluate the contribution of the present paper, it is essential to understand why

our main result, the intractability of the Tullock contest, is not a straightforward

consequence of the Abel-Ruffini impossibility theorem.11 In short, that theorem says

that, in contrast to polynomials of degree at most four, there is no general solution

to polynomial equations of degree five or higher. On a superficial level, that seems

to settle our research question, because it is not too difficult to find specifications of

the primitives of the n-player Tullock contest for which the equilibrium conditions can

be combined into a polynomial equation of arbitrarily high degree. However, there do

10Definitions will be provided below.
11Cf. Kubler et al. (2014, fn. 5). An accessible exposition of the Abel-Ruffini theorem can be found

in Rosen (1995). Dummit (1991) and Kobayashi and Nakagawa (1992) derived formulas for the roots
of solvable equations of degree five. Spearman and Williams (1994) characterized such equations.
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exist families of polynomial equations of degree five and above that admit an explicit

solution. And in fact, this matters in the case of the Tullock contest, as the following

examples illustrates.

Example 1 Suppose that for n = 5 contestants, valuations are given by

(V1, V2, V3, V4, V5) = (27, 18, 12, 7, 2).

Suppose also that R = 1
2
. Then, as detailed in Appendix A.1, the analysis of the first-

order conditions leads to a quintic, i.e., to a polynomial equation of degree five. Still,

the unique equilibrium is given by x∗
i =

24
(1+48/Vi)2

, or more explicitly, by

(x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5) = (1944

625
, 216
121

, 24
25
, 1176
3025

, 24
625

)

= (3.11, 1.79, 0.96, 0.39, 0.04).

The example shows that there exist tractable examples even in cases in which the

analysis leads to a polynomial equation of degree larger than four. Thus, the main

result of the present paper indeed does not easily follow from the Abel-Ruffini theorem.

1.4 Related literature

The present paper lies on the intersection of two strands of literature. The first is the

literature on contests. Since Tullock’s (1980) seminal work, explicit solutions of the

probabilistic contest model have been derived under various sets of assumptions. Key

contributions identifying pure-strategy solutions in the basic model, such as Hillman

and Riley (1989), Pérez-Castrillo and Verdier (1992), Nti (1999), Stein (2002), and

Cornes and Hartley (2005), will be reviewed in the next section.12 Most prominently,

12Pérez-Castrillo and Verdier (1992) and Cornes and Hartley (2005) documented the possibility of
multiple pure-strategy equilibria in Tullock contests with increasing returns and more than two players.
Mixed-strategy equilibria of the Tullock contest have been characterized by Baye et al. (1994), Alcalde
and Dahm (2010), Ewerhart (2015, 2017a, 2017b), and Feng and Lu (2017).
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Ryvkin (2007) pointed out the unavailability of explicit solutions for the n-player Tul-

lock contest with heterogeneous valuations and non-constant returns. To address the

issue, he employs first-order Taylor approximations around the tractable case of homo-

geneous valuations.13

The second strand of literature concerns the use of algebraic methods in game

theory. Nash and Shapley (1950) characterized equilibria in behavior strategies in

terms of roots of polynomial equations. In seminal work, Blume and Zame (1994)

pointed out that the set of sequential equilibria of a finite extensive-form game is semi-

algebraic, i.e., it may be understood as the set of solutions of a system of polynomial

equalities and inequalities. Nau et al. (2004) noted that an irrational Nash equilibrium

of a finite normal-form game with rational coefficients cannot be a corner point of

the set of correlated equilibria. Datta (2003) showed that any real algebraic variety

may be understood as the set of totally mixed equilibria of some finite normal-form

game. Kubler and Schmedders (2010a, 2010b) proposed constructing Gröbner bases

for semi-algebraic sets that characterize equilibria of various kinds. Nie and Tang

(2024,2024) obtained algorithmic solutions to Nash equilibrium problems that are given

by polynomial functions. None of those papers, however, employed Galois theory. As

far as we know, there have been very few applications of Galois theory to game theory

so far. Specifically, in response to the question by McKelvey and McLennan (1997) as

to whether the computation of the equilibrium set could be simplified by starting from

one equilibrium considered as known, Gandhi and Chatterji (2015) used Galois theory

to construct new equilibria from a given sample equilibrium.14 That approach led, in

particular, to novel algorithms for the computation of mixed Nash equilibria in games

13See also Ryvkin (2013).
14See also Gandhi (2011) and Chatterji and Gandhi (2011).
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with rational payoffs and irrational equilibria. However, those contributions are not

directly related to our impossibility result.15

1.5 Overview

The remainder of the paper is structured as follows. Section 2 provides the necessary

background on Galois theory. Section 3 reviews existing equilibrium characterizations

for the Tullock contest. Section 4 presents our main result. Section 5 offers some

discussion. Section 6 concludes. An Appendix contains material omitted from the

body of the paper.

2 Background on Galois theory

This section provides the necessary background on Galois theory. We will discuss

polynomial equations (Subsection 2.1), the Galois group (Subsection 2.2), and the

Galois equivalence (Subsection 2.3).

2.1 Polynomial equations

We will consider equations of the type g(X) = 0, where

g(X) = aNX
N + . . .+ a1X + a0

is a polynomial with rational coefficients a0, . . . , aN .
16 If aN ̸= 0, then N is the degree

of g(X).

15The notion of algebraic tractability developed below also clearly differs from the widely used
notion of computational tractability, which refers to deterministic computability in polynomial time
in the context of the P vs. NP-problem (e.g., von Stengel and Forges, 2008).

16Thus, we restrict attention to polynomials over the field of rational numbers Q = {p
q : p, q integers,

q ̸= 0}.
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A polynomial equation g(X) = 0 is said to be solvable by radicals if its roots

can be found from the coefficients by repeatedly taking sums, differences, products,

and quotients, as well as by extracting roots. Here, the individual operations are

understood to be finite in nature so that, e.g., infinite series are not allowed. Further,

one should note that the definition does not change if we allow the formula to make

use of arbitrary rational numbers as well, because those than be computed easily from

any nonzero coefficient using the beforementioned arithmetic operations. Finally, the

extraction of roots refers to the inverse of the power map z 7→ zN , where N ≥ 2 is an

integer.17

For instance, the polynomial equation X5 − 2 = 0 is solvable by radicals because

one solution is given by X = 5
√
2, and the other solutions can be easily found by

multiplying the known solution with a fifth unit root. In contrast, X5−X +1 = 0 is a

classic example of a quintic not solvable by radicals. Proving that a specific equation

is not solvable, however, requires the methods of Galois theory that will be reviewed

below.

2.2 The Galois group

To decide if a polynomial equation is solvable, it is obviously sufficient to restrict

attention to polynomials that cannot be easily factored. Formally, a polynomial is

called irreducible if it cannot be written as a product of two or more polynomials

of degree at least one with rational coefficients.18 A useful and well-known fact is

17For positive z > 0, the inverse map is simply z 7→ N
√
z. For complex z, however, the power map

is not globally invertible. Instead, any z ̸= 0 admits precisely N pre-images that differ by powers of
the N -th unit root. This multiplicity issue must be kept in mind when extracting roots from complex
numbers.

18While the irreducibility of a given polynomial may, with some luck, be verified by hand using
Gauss’ lemma, parameter transformations, and Eisenstein’s criterion, we used a computer algebra
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that the roots of a polynomial g(X) that is irreducible over Q have multiplicity one

(Stewart, 2015, Prop. 9.14). Thus, the number of distinct roots equals the degree of

the polynomial.

Consider an irreducible polynomial g(X) of degree N with rational coefficients. Let

r1, . . . , rN denote the different roots of g(X). Given that {r1, . . . , rN} is a finite set, we

may study its permutations, i.e., one-to-one mappings of this set. The set of all such

permutations forms a group, known as the symmetric group SN .
19 Now, the roots may

jointly satisfy an algebraic relationship, say h(r1, . . . , rN) = 0, where h(Y1, . . . , YN) is a

multivariate polynomial with rational coefficients. The Galois group of g(X), denoted

by G, consists of those permutations π of the roots with the property that any algebraic

relationship h(r1, . . . , rN) = 0 satisfied by the roots remains satisfied after applying π

to the roots, i.e., h(rπ(1), . . . , rπ(N)) = 0. We illustrate the concept with an example.

Figure 1: The permutation π0 operates on the roots of the polynomial g0(X).

software instead. See Appendix A.7 for details.
19In abstract algebra, a finite group consists of a finite set of elements (here: a set of permutations

of the roots of a polynomial), a binary operation (here: the composition of permutations), and a unit
element (here: the trivial permutation that keeps all roots fixed) such that (i) the group operation is
associative, (ii) every element has an inverse, and (iii) the group operation with the unit element has no
effect. E.g., in S3 = {(), (12), (13), (23), (123), (132)}, the neutral element is (), and the permutation
(123) maps roots r1 to r2, r2 to r3, and r3 to r1. Moreover, the group operation corresponds to the
execution of the permutations from right to left. E.g., in S3, we have (12)(123) = (23). It is important
to realize that the group operation need not be commutative. And indeed, (123)(12) = (13) ̸= (23).

10



Example 2 The polynomial g0(X) = X3 − 9X − 9 has the three real roots r1 = 3.41,

r2 = −1.18, and r3 = −2.23, as illustrated in Figure 1.20 The Galois group G0 of g0(X)

turns out to be the cyclic group of order three,21 a generator of which is the permutation

π0 = (123) that maps rν to rν+1 if ν ∈ {1, 2} and r3 to r1. To understand why

some permutations are members of the Galois group, while others are not, consider the

following two illustrations. First, the algebraic relationship (r1− r2)(r2− r3)(r1− r3) =

27 remains valid if π0 is applied to the roots. One can show that this is actually true for

any algebraic relationship in the three variables r1, r2, and r3 with rational coefficients.

This means by definition that π0 is a member of G0. Second, the very same relationship

becomes invalid if, for instance, the permutation π1 = (12) is applied, because

(rπ1(1) − rπ1(2))(rπ1(2) − rπ1(3))(rπ1(1) − rπ1(3)) = (r2 − r1)(r1 − r3)(r2 − r3) = −27 ̸= 27.

Thus, π1 is not a member of G0.

2.3 Galois’ equivalence22

The gist of Galois theory is that the knowledge of the Galois group of an irreducible

polynomial allows to decide if the correponding polynomial equation can be solved by

radicals or not. In particular, for a polynomial g(X) of degree five that is irreducible

over the rationals, it suffices to show that the Galois group is, e.g., the full symmetric

group S5 to be able to deduce that g(X) = 0 cannot be solved by radicals.

20This polynomial happens to arise in the analysis of a Tullock contest with n = 3, (V1, V2, V3) =
(6, 3, 2), and R = 1

2 . See Appendix A.4.
21The order of a finite group is the number of its elements.
22The main result of Galois theory (over the field of rational numbers) is the inclusion-reversing

isomorphism of the respective lattices of (i) subfields of a field extension K over Q, and (ii) subgroups
of the Galois group associate with K. That result, known as Galois’ correspondence, is used to derive
Galois’ equivalence (cf. Lemma 1 below).
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By definition, the group G is solvable if there is a finite sequence of subgroups

{1} = G(0) ⊊ G(1) ⊊ · · · ⊊ G(K) = G, (2)

such that each G(k) is a normal subgroup of G(k+1), and all quotient groups G(k+1)/G(k)

are abelian.23 Intuitively, a non-abelian quotient group in a maximally refined sequence

(2) is a “smoking gun” for the existence of a root that cannot be found by basic

arithmetic operations and the extraction of roots alone.

Lemma 1 (Galois) Let g(X) be an irreducible polynomial. Then, the following state-

ments are equivalent:

(i) g(X) = 0 is solvable by radicals;

(ii) the Galois group of g(X) is solvable.

Proof. See Stewart (2015, Thms. 15.8 and 18.21). □

We illustrate Lemma 1 by returning to our earlier example.

Example 2 (continued) The cyclic group of order three, Z/3Z ⊆ S3, which is gen-

erated by the permutation π0 = (123), admits the trivial decomposition

G(0) ⊆ G(1)

q q
{1} ⊆ Z/3Z.

Thus, Z/3Z is solvable. By Lemma 1, this is equivalent to the statement that the

equation g0(X) = 0 is solvable by radicals. And indeed, an application of Cardano’s

23A subgroup N of a group G is called normal if πNπ−1 = N for all elements π ∈ G. It is a basic
result in group theory that the cosets πN form a group, known as the quotient group. A group G is
called abelian if the group operation is commutative.
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formula yields r1,2,3 = 3

√
9+

√
−27
2

+ 3

√
9−

√
−27
2

, where the three solutions result from

choosing different values for the cubic roots (see Appendix A.3). Thus, the solutions

of g0(X) = 0 may indeed be represented using basic arithmetic operations and the

extraction of roots alone.24

In the example, we knew of course about the existence of an explicit formula before,

because the degree of g0 (X) is just three, but the point is that Lemma 1 holds for

polynomials of any degree.

3 Tractable cases of the Tullock contest

In this section, we review the main results in the literature that provide an explicit so-

lution of the Tullock contest in special cases. For convenience, we will restrict attention

to equilibria in pure strategies and to cases in which the equilibrium is unique.

3.1 Homogeneous valuations

Suppose first that V1 = . . . = Vn ≡ V > 0, i.e., all contestants possess the same positive

valuation of winning. Assuming that the solution is symmetric, so that x1 = . . . = xn,

the necessary first-order condition simplifies and yields equilibrium efforts of

x∗
i =

(n− 1)RV

n2
. (3)

Clearly, each contestant wins with equal probability p∗i =
1
n
. The corresponding equi-

librium payoffs are, therefore, given by

Π∗
i =

(n− (n− 1)R)V

n2
. (4)

24Contrary to what one might expect, the explicit representation in this and similar examples may
require (i) extracting roots from complex numbers even if the polynomial has only real roots (van der
Waerden, 1931, pp. 188-189), and (ii) taking repeated radicals even if the extension is cyclic and of
prime degree (Kang, 2000, Thm. 1).
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A closer inspection of the equilibrium conditions shows that these formulas indeed

characterize the unique Nash equilibrium in pure strategies if R ≤ n
n−1

.25

Proposition 1 Suppose that V1 = . . . = Vn ≡ V and that R ≤ n
n−1

. Then, the pure-

strategy Nash equilibrium is unique, symmetric, interior, and characterized by (3) and

(4).

Proof. For R ≤ 1, the claim follows from Pérez-Castrillo and Verdier (1992, Prop. 4a).

Suppose next that R > 1. In that case, our condition that R ≤ n
n−1

is equivalent to

n ≤ R
R−1

. Under that latter condition, however, the equilibrium property as well as

uniqueness has been established by Pérez-Castrillo and Verdier (1992, Prop. 4b). □

3.2 Constant returns

Suppose next that R = 1. Again, contestant i’s necessary first-order condition simpli-

fies and turns into

X − xi

X2
Vi − 1 = 0,

where X = x1 + . . . + xn denotes the aggregate effort level. Hence, individual efforts,

winning probabilities, and payoffs may be computed from Σ via the formulas

xi = X

(
1− X

Vi

)
, (5)

pi = 1− X

Vi

, (6)

Πi =

(
1− X

Vi

)2

Vi. (7)

25For R ∈ ( n
n−1 , 2], there are multiple asymmetric equilibria in pure strategies. In that case, which

obviously requires n ≥ 3, the number of contestants ñ exerting a positive effort may vary, but the
equilibrium efforts and payoffs of those active contestants are characterized as above with n replaced
by ñ. For R > 2, there is no equilibrium in pure strategies. See Cornes and Hartley (2005, Thm. 7)
and Ryvkin (2007, Sec. 3).

14



Adding the n equations for the effort and rewriting yields

X =
(n− 1)V n

n
, (8)

where V n = n
(
V −1
1 + . . .+ V −1

n

)−1
denotes the harmonic mean of contestants’ val-

uations. An inspection of the optimality of entry shows that this indeed character-

izes an interior Nash equilibrium in pure strategies if Vn > n−1
n
V n, or equivalently, if

Vn > n−2
n−1

V n−1.

Proposition 2 Suppose that R = 1 and Vn > n−2
n−1

V n−1. Then, the pure-strategy Nash

equilibrium is unique, interior, and characterized by (5)-(8).

Proof. The equilibrium property has been established by Hillman and Riley (1989,

Prop. 5). The observation that the equilibrium is unique has been made by Stein (2002,

Prop. 1).26 □

If the condition on the valuations is not satisfied, then contestant n exerts zero effort,

and the characterization applies analogously with (n−1) replacing n. Proceeding recur-

sively, the set of contestants exerting a positive effort in the likewise unique equilibrium

in which some of the contestants exert zero effort can be easily identified.

3.3 Two active contestants

Suppose that n = 2. In this case, the two first-order conditions read

RxR−1
1 xR

2

(xR
1 + xR

2 )
2
V1 = 1,

RxR−1
2 xR

1

(xR
1 + xR

2 )
2
V2 = 1.

26See also Matros (2006).
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Dividing the two equations yields

x2 = λx1,

with λ = V2/V1, which allows eliminating the unknown x2 in the first-order condition

of contestant 1. Rearranging, one arrives at effort levels

x∗
i =

RλR

(1 + λR)2
Vi. (9)

From this, we obtain winning probabilities p∗i = Vi/(V1 + V2), as well as payoffs

Π∗
1 =

1 + (1−R)λR

(1 + λR)2
V1 (10)

Π∗
2 =

λ2R + (1−R)λR

(1 + λR)2
V2. (11)

It can now be checked that those equations characterize the unique Nash equilibrium

in pure strategies if R ≤ 1 + λR.27

Proposition 3 Suppose that n = 2 and that R ≤ 1 + λR. Then, the pure-strategy

Nash equilibrium is unique, interior, and characterized by (9)-(11).28

Proof. See Nti (1999). □

Apart from the cases surveyed above, we are not aware of any explicit characterizations

of the pure-strategy Nash equilibrium in the literature. It is known, however, that the

solution is unique and interior in the case R ∈ (0, 1) regardless of V1 ≥ . . . ≥ Vn > 0

(Szidarovszky and Okuguchi, 1997). We will therefore focus on that case in the sequel.

27For n = 2 and R > 1 + λR, there are no equilibria in pure strategies. If R ∈ (1 + λR, 2], then
contestant 1 uses a pure strategy while contestant 2 uses a mixed strategy (this case obviously requires
V2 < V1). See Ewerhart (2017b) and Feng and Lu (2017). For R > 2, the equilibrium is in mixed
strategies (Baye et al., 1994; Alcalde and Dahm, 2010; Ewerhart, 2015, 2017a).

28It apparently went unnoticed in the literature that, in the case of strictly increasing returns to
scale, Proposition 3 admits a straightforward extension to the case of n ≥ 3 contestants. For details,
see Appendix A.2.
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4 A limitation of tractability

This section documents our main contribution. We start by providing a formal defi-

nition of tractability (Subsection 4.1), then present an example (Subsection 4.2), and

finally, derive the main result of the present paper (Subsection 4.3).

4.1 A formal definition of tractability

We fix n ≥ 2 and R > 0. By the primitives of the model, we mean the exogenous

parameters V1 ≥ . . . ≥ Vn > 0. We define tractability as follows.

Definition 1 We say that the n-player Tullock contest with parameter R > 0 is solv-

able by radicals if its key endogenous characteristics, including individual equilibrium

efforts, winning probabilities, and payoffs, may be determined from the primitives of

the model by repeatedly taking sums, differences, products, and quotients, as well as

extracting roots.29

For the applied economist, the definition might seem restrictive at first sight. E.g.,

additional functions could be added to the set of admissible operations. However, as

will be discussed below, there are good reasons to assume that the definition captures, in

the considered class of games, what is intuitively understood by tractability. Definition

1 also seems to be the first formal definition of algebraic tractability in the economics

literature, i.e., it might be of independent interest.

It should be noted that the tractable cases surveyed above all satisfy the definition.

A particular case is Proposition 3, which exhibits the term λR = (V2/V1)
R in the

29If the contest admits multiple equilibria, one might want to require that all equilibria may be
characterized explicitly. However, this question will be of minor relevance in the sequel as all our
examples feature equilibrium uniqueness.
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solution formulas. If R = p
q
is a rational number, however, then λR = λp/q =

q
√
λp is

representable using radicals. Thus, given that the set of rational numbers is dense in

the reals, there is little that is lost.

Our main result (Theorem 1 below) says that the n-player Tullock contest is, in

general, not solvable by radicals. It will even show that none of the individual charac-

teristics, viz. effort levels, winning probabilities, and payoffs, can be determined using

basic arithmetic operations and the extraction of roots alone.

4.2 An intractable example

The following example illustrates that, beyond the cases surveyed in the previous sec-

tion, it may be impossible to solve the n-player Tullock contest using radicals.

Example 3 Suppose that there are n = 5 contestants, with valuations

(V1, V2, V3, V4, V5) = (5, 4, 3, 2, 1).

Suppose, in addition, that R = 1
2
. Then, there is a unique Nash equilibrium in pure

strategies

x∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4, x

∗
5)

= (0.53, 0.38, 0.25, 0.13, 0.04),

but for none of the players, equilibrium efforts nor winning probabilities nor payoffs

can be derived from the primitives of the model using basic arithmetic operations and

the extraction of roots alone.

Next, we explain why Example 3 is not tractable. For R = 1
2
, but still general n ≥ 2

and general valuations, the necessary first-order conditions may be rewritten as
√
X −√

xi

2
√
xiX

Vi − 1 = 0,
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where X = (
√
x1 + . . . +

√
xn)

2 is a generalized aggregate of individual efforts. One

notes that these conditions are also sufficient because the marginal return is infinite at

the zero effort level, so that all contestants choose a positive effort.30 Solving for
√
xi

yields

√
xi =

√
XVi

2X + Vi

.

Summing over all contestants, and subsequently dividing by
√
X > 0, one obtains the

key equation

V1

2X + V1

+ . . .+
Vn

2X + Vn

= 1. (12)

Given that the left-hand side assumes the value n for X = 0 and is continuously

diminishing in X, this equation uniquely characterizes the equilibrium value X∗ > 0.

Moreover, given X∗, one obtains

x∗
i =

X∗V 2
i

(2X∗ + Vi)2
, (13)

p∗i =

√
X∗V 2

i

(2X∗ + Vi)2
, (14)

Π∗
i =

√
X∗(Vi −

√
X∗)V 2

i

(2X∗ + Vi)
2 . (15)

Conversely, if for some i ∈ {1, . . . , n}, just one of the endogenous characteristics x∗
i ,

p∗i , or Π
∗
i could be expressed in explicit terms, then we could easily derive the value of

X∗ by solving quadratic equations.

From the above, the generalized aggregate X in our example satisfies

5

2X + 5
+

4

2X + 4
+

3

2X + 3
+

2

2X + 2
+

1

2X + 1
= 1.

30Indeed, using a suitable substitution (e.g., Szidarovszky and Okuguchi, 1997), this case may be
rephrased as a Tullock contest with constant returns and quadratic costs.
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Multiplying through and collecting terms, one finds that X∗ is the unique positive root

of the polynomial

g5(X) = 8X5 − 170X3 − 450X2 − 411X − 120. (16)

Ignoring negative solutions,31 one numerically finds the root X = 5.72.

Our discussion so far may be summarized as follows.

Lemma 2 The following statements are equivalent:

(i) For some player i, the equilibrium effort x∗
i is solvable by radicals;32

(ii) for some player i, the equilibrium winning probability p∗i is solvable by radicals;

(iii) for some player i, the equilibrium payoff Π∗
i is solvable by radicals;

(iv) g5(X) = 0 is solvable by radicals.

Proof. See the text above. □

To establish that Example 3 is not tractable, we will show that g5(X) is not solvable

by radicals. In view of Lemma 1, it suffices to check the following facts.

Lemma 3 The following statements are true:

(i) g5(X) is irreducible;

(ii) the Galois group of g5(X) is the full symmetric group S5;

31Indeed, in addition to the unique positive solution, equation (12) has a total of (n − 1) negative
solutions, each of which is strictly located between some pair of neighboring poles.

32Note the abuse of the terminology. We mean here that x∗
i , etc., may be expressed by repeatedly

applying basic arithmetic operations and roots to rational numbers.
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(iii) S5 is not solvable.

Proof. For convenience, parts (i) and (ii) have been established using the software tool

Sage. See Appendix A.7 for details. (iii) The fact that S5 is not solvable is well-known.

See, e.g., Stewart (2015, Cor. 14.8). □

Thus, we may conclude that Example 3 is not solvable by radicals.

4.3 A general result

We arrive at the main result of this paper.

Theorem 1 The n-player Tullock contest with parameter R > 0 is, in general, not

solvable by radicals.

Proof. See Appendix A.5. □

Theorem 1 is obtained by contradiction. If a formula existed for the equilibrium in the

n-player contest, given valuations V1 ≥ . . . ≥ Vn > 0 and a parameter R > 0, possibly

with case distinctions, then it should specialize, in particular, to a formula in the case

R = 1
2
. In the Appendix, we determine the general form of equation (16) as

gn(X;V1, . . . , Vn) =
∑n

k=0(1− k)σk(V1, . . . , Vn)(2X)n−k,

where σk(V1, . . . , Vn) denotes the elementary symmetric polynomial of degree k in the

variables V1, . . . , Vn.
33 As discussed above, with economically meaningful choices of

the valuation vector, gn(X;V1, . . . , Vn) has n distinct roots of multiplicity one, and the

generalized aggregate X∗ = X∗(V1, . . . , Vn) as its sole positive root. We show that

33Thus, σ0 = 1, σ1 = V1 + . . .+ Vn, σ2 = V1V2 + . . .+ Vn−1Vn, and so on, up to σn = V1 · . . . · Vn.
Cf. Stewart (2015, Sect. 18.2).
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the Galois group of gn(X;V1, . . . , Vn) over the function field Q(V1, . . . , Vn) contains the

Galois group of gn−1(X;V1, . . . , Vn−1) as a subgroup. That result is obtained using

the concept of specialization in Galois theory (van der Waerden, 1931, §61). Intu-

itively, we replace Vn by the value zero, which amounts to a well-defined mapping from

the integral domain of parameterized polynomials Q(V1, . . . , Vn)[X] onto its subring

Q(V1, . . . , Vn−1)[X], even though we cannot do this in any solution formula.34 Hence,

by induction, we can make our way down to g5(X;V1, . . . , V5). The Galois group of that

polynomial over Q(V1, . . . , V5), however, can be shown to be the full symmetric group

S5, because it specializes to Example 3. As S5 is not solvable, we may use Lemma 1

to deduce that gn(X;V1, . . . , Vn) is not solvable by radicals over Q(V1, . . . , Vn).

5 Discussion

This section offers some discussion. We first argue that, for the considered class of

games, our concept of tractability is unlikely to be affected if we were to add addi-

tional elementary functions as admissible operations (Subsection 5.1). Next, we point

out that, whatever definition we ultimately choose, there will always be a need for

a postulate that the preferred definition captures the intuitive notion of tractability

(Subsection 5.2). Finally, we explain why explicit solutions can also not be expected

for values of the parameter R other than 1
2
(Subsection 5.3).

5.1 Adding elementary functions

As noted before, one might argue that the notion of tractability promoted in this study

is of limited interest because economists are familiar with a number of elementary

34Indeed, Vn might occur in the denominator of the solution formula, so that setting Vn = 0 may
not be a well-defined operation.
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functions, such as the exponential, the logarithm, and various trigonometric functions,

for instance. Upon reflection, however, it seems very unlikely that the addition of

elementary functions would resolve the tractability issue for the Tullock contest. After

all, this would imply, for instance, that the quintic constructed in the discussion of

Example 3 is tractable by allowing for elementary functions. But the properties of

unsolvable quintics have been studied very thoroughly by mathematicians for more

than two centuries, making this indeed a very remote possibility. Thus, even if our

definition of tractability excludes the use of elementary functions, it seems to capture

quite accurately which polynomial equations are tractable in a practical sense and

which are not.35

5.2 The need for a postulate

There is, however, another problem that cannot be wiped away so easily, viz. that the

tractability of a model is a rather vague concept. The situation is reminiscent of the

problem of defining effective computability in computer science. It requires a postulate,

such as the Church-Turing thesis, to assert that computability in the intuitive sense

(i.e., by a scientist) is equivalent to computability in the formal sense (e.g., by a Turing

machine). Similarly here, it seems to require a postulate to assert that tractability in

the practical sense is equivalent to tractability in the formal sense.36

35The mathematical literature has identified ways to deal with the implications of Galois’ theory.
According to a survey poster (Wolfram Research, 2005), there are solution approaches for general
polynomial equations based on continued fractions, modular forms, theta functions, infinite series
representations, Mellin integrals, hypergeometric functions, and elliptic Siegel functions. Such ap-
proaches, however, tend to add a multivariate transcendental function to the set of admissible oper-
ations (Umemura, 2007). The extent to which those methods are suitable for economic analysis is,
therefore, still to be explored.

36Conversely, one might also argue that Definition 1 is too generous in some cases, e.g., if the
resulting formulas are difficult to interpret or to work with. Given the purpose of the present paper,
however, which is an impossibility result, we are on the safe side with respect to that concern.
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5.3 Alternative values of R

Theorem 1 is a partial result in the sense that there might exist values of the parameter

R different from 1
2
for which a solution formula exists. However, that possibility is

likewise unlikely. In Appendix A.6, we show that, for R = p
q
, with (relatively prime)

integers q > p > 0, the unique vector of equilibrium efforts solves a system of algebraic

equations. As has been seen, for p = 1 and q = 2, that system can be reduced by hand

to a single polynomial equation for the generalized aggregate X. For other values of R,

however, that simplification is not available. As a result, the univariate polynomial in

the Gröbner basis becomes more complex. Table I illustrates this fact by reporting the

degree d of the univariate polynomial in the Gröbner basis produced by Mathematica

using the default monomial order in a three-player Tullock contest with valuations

(V1, V2, V3) = (3, 2, 1).37 In some cases, the degree could be further lowered using a

suitable substitution. E.g., x2
3 is replaced by y3, x

4
3 by y23, etc. For those cases, the

lowered degree d′ is shown as well.

p/q 1/2 1/3 2/3 1/4 3/4 1/5 2/5 3/5 4/5

d 6 21 19 46 40 83 93 83 69

d′ 3 7 - - 20 - - - -

Table I: Degrees of the univariate polynomial in a Gröbner basis

The only other case in which we were able to determine a Galois group was p = 1

and q = 3, corresponding to R = 1
3
. In that case, the polynomial was of degree d = 7,

irreducible, and of Galois group S7, which is unsolvable. In all other cases, the degree

of the univariate polynomial in the Gröbner basis is so large that, even if an example

37We work with specific values here because the parameterized Gröbner basis had several million
terms.
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could be found in which the Galois group is solvable, the resulting explicit formula

either might never be found or, if it can be found, would be of little practical value.38

6 Concluding remarks

In this paper, we have shown that the pure-strategy Nash equilibrium of the n-player

Tullock contest cannot, in general, be expressed in terms of the primitives of the model

using basic arithmetic operations and the extraction of roots alone. We have also

explained why the issue cannot be easily resolved by adding familiar functions such as

the exponential or the logarithm. Thus, the analysis clearly delineates the boundaries

of tractability for the Tullock model.

What is the scope of the methods developed in this paper? We believe that the

formal definition of tractability should be applicable in other contexts as well. Indeed,

in numerous economic models such as Bertrand pricing games, Walrasian exchange

economies, and arms races with incomplete information, equilibria may be charac-

terized as solutions of systems of polynomial equations, possibly involving additional

inequalities (Judd et al., 2012). Applications of the shape lemma, followed by an anal-

ysis in line with what has been accomplished in the present paper, might then allow

to decide, once and for all, if such models are solvable by radicals or not. Like in the

case of the Tullock contest dealt with in the present paper, this might help to end

speculations about possible generalizations of important classes of economic models.

38The story that might come to one’s mind is that, at the end of the 19th century, the German
mathematician Johann Gustav Hermes spent a decade to showcase the construction of the regular
65537-gon with straightedge and compass.
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A Appendix

This appendix contains material that has been omitted from the body of the paper.

A.1 Details on Example 1

We first check the equilibrium property directly. Given that R < 1, it is never optimal

for any contestant to exert an effort of zero. Moreover, payoff functions are globally

strictly concave in own effort in the interior. It therefore suffices to check the first-order

conditions. Indeed, define the generalized aggregate

X∗ = (
√

x∗
1 +

√
x∗
2 +

√
x∗
3 +

√
x∗
4 +

√
x∗
5)

2

=

(√
1944
625

+
√

216
121

+
√

24
25

+
√

1176
3025

+
√

24
625

)2

= 24.

One may now check mechanically that the claimed value for each x∗
i satisfies the first-

order condition √
X∗ −

√
x∗
i

2X∗
√

x∗
i

Vi − 1 = 0.

This shows that we have indeed identified an equilibrium.

To understand why this special case is tractable, we aggregate the five first-order

conditions into the single polynomial equation (cf. the details on Example 3 provided

in the body of the paper)

ĝ(X) = 4X5 − 1553X3 − 15864X2 − 50139X − 40824 = 0.

But ĝ(X) fails to be irreducible. In fact, one can check that

ĝ(X) = (X − 24) (4X4 + 96X3 + 751X2 + 2160X + 1701),

so that X∗ = 24 is a solution for the generalized aggregate.
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A.2 Extension of Proposition 3

We did not find a reference for the following result.

Proposition A.1 Suppose that V1 ≥ . . . ≥ Vn > 0 with n ≥ 3. Suppose also that

R ∈ [1, 1 + λR], and that

V3 ≤ V1
λR(

1 + λR
)2−1/R

R2

(R− 1)1−1/R
. (A.1)

Then, the n-player Tullock contest admits a pure-strategy Nash equilibrium character-

ized by (9)-(11) for contestants i ∈ {1, 2}, and by x∗
i = p∗i = Π∗

i = 0 for contestants

i ∈ {3, . . . , n}.

Proof. It follows from Proposition 3 that contestants 1 and 2 play a best response.

To establish that none of the contestants i ∈ {3, . . . , n} have an incentive to deviate, it

certainly suffices to consider contestant i = 3. By Cornes and Hartley (2005, Prop. 4),

the zero bid is a best response for contestant 3 given effort levels x1 = x∗
1, x2 = x∗

2, and

xj = 0 for any j ≥ 4, if and only if

(x∗
1)

R + (x∗
2)

R ≥ V R
3

(R− 1)R−1

RR
.

Using (9), this transforms into (A.1). □

In the constant-returns case R = 1, we have (R− 1)1−1/R = 00 = 1, so that inequality

(A.1) becomes V3 ≤ 1
2
V 2. Thus, this simply brings us back to the case dealt with in

Proposition 2.

The equilibrium identified in Proposition A.1 need not be unique, however. To see

this, it suffices to consider the case where R = 1 + λR. Then, inequality (A.1) reads

V3 ≤ V2R
1/R, which is automatically fulfilled. Thus, by continuity, for R close to 1+λR
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and valuations close to identical, there are multiple pure-strategy equilibria, viz. one

for each pair of active contestants.

A.3 The principal value of the N-th root

This section provides further background regarding the N -th root. It also prepares the

analysis of the case N = 3 and R = 1
2
dealt with in the next section. As discussed in

the body of the paper, the N -th root N
√
z of a complex number z ̸= 0 is defined only

up to a unit-root factor. Thus, any z ̸= 0 admits precisely N pre-images that differ by

powers of the N -th unit root ζN = exp(2π
√
−1/N). To resolve the resulting ambiguity,

one may refer to the principal value of N
√
z, which is defined as follows. Given z ̸= 0,

we find unique polar coordinates r > 0 and φ ∈ (−π, π] such that z = r exp(φ
√
−1).

Then, using de Moivre’s identity,

N
√
z = N

√
r exp

( φ
N

√
−1
)

is a N -th root of z, known as the principal value of the N -th root.

A special case of interest is a root of a complex number with positive real part.

Lemma A.1 Let z = x + y
√
−1, with x > 0 and y real. In this case, the principal

value of the N-root of z is given by

N
√
z = 2N

√
x2 + y2

(
cos(

1

N
arctan(

y

x
)) +

√
−1 sin(

1

N
arctan(

y

x
))

)
.

Proof. In the considered case, r =
√

x2 + y2 and φ = arctan(y/x). Hence, the

principal value is given as

N
√
z = 2N

√
x2 + y2 exp

(√
−1

N
arctan(

y

x
)

)
.

The claim follows now from Euler’s formula exp(φ
√
−1) = cosφ+

√
−1 sinφ. □
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A.4 The case n = 3 and R = 1
2

It follows from the present analysis that the case R = 1
2
is tractable for any n ≥ 2,

provided that valuations are taken from at most four different values. For example,

the Tullock contest with n = 5 players, where V1 = V2 > V3 > V4 > V5 > 0 and R = 1
2
,

admits an explicit solution, because the analysis of first-order conditions leads to a

polynomial equation of degree four, which can always be solved using radicals (van der

Waerden, 1931, §58). Below, we derive the explicit solution for n = 3.

Proposition A.2 Suppose that there are n = 3 contestants, with valuations V1 ≥ V2 ≥

V3 > 0. Suppose also that R = 1
2
. Then, the solution of the Tullock contest is given by

equations (13-15) in the body of the paper, where

X∗ =
1

√
cacg

· cos

(
1

3
arctan

{(
ca
cg

)3

− 1

})
, (A.2)

and where ca and cg denote, respectively, the arithmetic and geometric means of the

reciprocal valuations 1
V1
, 1

V2
, and 1

V3
.

Proof. Suppose first that valuations are homogeneous, i.e., V1 = V2 = V3 ≡ V . Then,

from Proposition 1, x∗
1 = x∗

2 = x∗
2 =

V
9
. Hence,

X∗ =
(√

x∗
1 +

√
x∗
2 +

√
x∗
3

)2
= V .

But equation (A.2) delivers the same result because ca = cg = 1
V

in that case. This

proves the claim in the case of homogeneous valuations. Suppose next that not all val-

uations are identical. Then, cg < ca (Hardy et al., 1934, p. 17). Under the assumptions

made, equation (12) reads

V1

2X + V1

+
V2

2X + V2

+
V3

2X + V3

= 1.
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Multiplying through with the common denominator and collecting terms, we obtain a

depressed39 cubic equation

X3 + pX + q = 0, (A.3)

where p = −3ca/c
3
g and q = −2/c3g. The discriminant is

D = −4p3 − 27q2 =
22 · 33

c6g

((
ca
cg

)3

− 1

)
> 0.

Thus, the cubic has three real solutions, one of which is positive and two of which

are negative. We are in the casus irreducibilis, i.e., any explicit solution by radicals

requires the extraction of roots from complex numbers. The solution is X∗ = C − p
3C

,

with a total of six possibilities for

C =
3

√
−q

2
+

√
q2

4
+

p3

27
=

1

cg

3

√
1±

√
1− (ca/cg)

3.

Hence,

X∗ =
1

cg

 3

√
1±

√
1− (ca/cg)

3 +
(ca/cg)

3

√
1±

√
1− (ca/cg)

3

 , (A.4)

where the ± in front of the square roots assume the same value and the cubic roots take

the same value. To select the values of the roots, one notes first that the right-hand

side of equation (A.4) does not depend on the sign in front of the square root. Indeed,

regardless of the choice of the cubic root, the first term in the large brackets can be

easily seen to be the complex conjugate of the second term. We may therefore, without

loss of generality, select the positive sign in front of the square root. Further, we know

that X∗ is the unique positive solution of equation (A.3). But the only way to arrive

39A cubic equation is called depressed if there is no quadratic term.
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at a positive value in equation (A.4) is to select the principal value for the cubic root.

It now suffices to apply Lemma A.1 to obtain the claimed formula for X∗. □

Equation (A.2) uses trigonometric functions to circumvent the extraction of roots from

complex numbers. This approach goes back to Viète, who proposed it to avoid the use

of complex numbers in the casus irreducibilis of Cardano’s analysis (cf. Plante, 2018).40

We illustrate the use of Proposition A.2 with an example.

Example A.1 Suppose that (V1, V2, V3) = (8, 2, 1). Then, ca =
1
3
( 1
V1

+ 1
V2

+ 1
V3
) = 13

24
=

0.54 and cg = 1/ 3
√
V1V2V3 = 1

4
= 0.25. Hence, X∗ = 2.401. Individual efforts are,

therefore, given by x∗
1 = 0.94, x∗

2 = 0.21, and x∗
3 = 0.07. Winning probabilities are

p∗1 = 0.57, p∗2 = 0.27, and p∗3 = 0.16. Payoffs are Π∗
1 = 3.64, Π∗

2 = 0.33, and Π∗
3 = 0.09.

In the case captured by Proposition A.2, the discriminant D is known to determine the

Galois group. Specifically, if D is not a square of a rational number, then the Galois

group is S3. An example is (V1, V2, V3) = (3, 2, 1). Then, D = 22 · 359 is not a square.

And indeed, the corresponding polynomial g(X) = 4X3 − 11X − 6 is irreducible with

Galois group S3. If, however, D happens to be square, then that Galois group is the

cyclic group of order three, i.e., Z/3Z. An example is (V1, V2, V3) = (6, 3, 2). Then,

D = 26 ·36 is a square. And indeed, the corresponding polynomial g(X) = X3−9X−9

is irreducible with cyclic Galois group Z/3Z (cf. Example 2).

A.5 Proof of Theorem 1

Let V1 ≥ . . . ≥ Vn > 0 denote contestants’ valuations, and let R > 0 be the returns-

to-scale parameter of the Tullock technology. Suppose that there exists an explicit

40We do not know, however, if that trick works for the Tullock contest also if n ≥ 4.
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formula

x∗
i = fn,R(V1, . . . , Vn)

for the equilibrium effort for some player i ∈ {1, . . . , n}, such that fn,R can be computed

from the primitives V1, . . . , Vn using basic arithmetic operations and by extracting roots

alone. Then, in particular for R = 1
2
, we have a representation

x∗
i = fn,R= 1

2
(V1, . . . , Vn).

From the above, we know that

x∗
i =

X∗V 2
i

(2X∗ + Vi)2
,

where X∗ is the unique positive solution of

0 =
V1

2X + V1

+ . . .+
Vn

2X + Vn

− 1.

Rewriting yields {
n∑

i=1

Vi

∏
j ̸=i

(2X + Vj)

}
−

n∏
i=1

(2X + Vi)

n∏
i=1

(2X + Vi)
= 0. (A.5)

For k ∈ {0, . . . , n}, let σk(V1, . . . , Vn) denote the elementary symmetric polynomial of

degree k in the variables V1, . . . , Vn. That polynomial may be defined recursively by

σk(V1, . . . , Vn) = σk(V1, . . . , Vn−1) + Vnσk−1(V1, . . . , Vn−1),

where the initial condition is

σk() =

{
1 if k = 0

0 otherwise.
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It is not hard to check by induction that

n∏
i=1

(2X + Vi) =
∑n

k=0 σk(V1, . . . , Vn)(2X)n−k,

n∑
i=1

Vi

∏
j ̸=i

(2X + Vj) =
∑n

k=0 kσk(V1, . . . , Vn)(2X)n−k.

The numerator in (A.5) is, therefore, given by

gn(X;V1, . . . , Vn) =
∑n

k=0(1− k)σk(V1, . . . , Vn)(2X)n−k.

The following lemma is commonly used to compute Galois groups modulo prime num-

bers, but it can be used also in our setting.

Lemma A.2 (Specialization) Let R be an integral domain with unity allowing for

unique factorization into primes and let P be a prime ideal of R. If g(X) is a poly-

nomial with coefficients in R, and the image g(X) of g(X) under the canonical epi-

morphism R → R = R/P has no multiple roots, then the Galois group of g(X) is a

subgroup of g(X).

Proof. See van der Waerden (1931, §61). □

The next lemma completes the proof of Theorem 1.

Lemma A.3 The following statements are true:

(i) gn(X;V1, . . . , Vn) does not have multiple roots; moreover, gn(0;V1, . . . , Vn) ̸= 0;

(ii) gn(X;V1, . . . , Vn−1, 0) = 2X · gn−1(X;V1, . . . , Vn−1);

(iii) the Galois group of gn−1(X;V1, . . . , Vn−1) over Q(V1, . . . , Vn−1) is a subgroup of

the Galois group of gn(X;V1, . . . , Vn) over Q(V1, . . . , Vn);
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(iv) g5(X;V1, V2, V3, V4, V5) has the Galois group S5 over Q(V1, V2, V3, V4, V5);

(v) the Galois group gn(X;V1, . . . , Vn) over Q(V1, . . . , Vn) contains S5 as a subgroup.

Proof. (i) This was shown in the body of the paper. (ii) By the recursive definition

of the elementary symmetric polynomials,

σk(V1, . . . , Vn−1, 0) =

{
σk(V1, . . . , Vn−1) if k < n

0 if k = n.

Hence,

gn(X;V1, . . . , Vn−1, 0) =
∑n

k=0(1− k)σk(V1, . . . , Vn−1, 0)(2X)n−k

=
∑n−1

k=0(1− k)σk(V1, . . . , Vn−1)(2X)n−k

= 2X ·
∑n−1

k=0(1− k)σk(V1, . . . , Vn−1)(2X)n−1−k

= 2X · gn−1(X;V1, . . . , Vn−1),

as has been claimed. (iii) Consider the integral domain Rn = Z[V1, . . . , Vn], i.e., the

ring of polynomials in the variables V1, . . . , Vn with rational coefficients. InRn, we have

the prime ideal Pn = ⟨Vn⟩ generated by the polynomial Vn. There is an isomorphism

Rn= Rn/Pn≃ Rn−1.

Moreover, the image of gn(X;V1, . . . , Vn) under the canonical epimorphism Rn → Rn

is

gn(X;V1, . . . , Vn) = gn(X;V1, . . . , Vn−1, 0) = 2X · gn−1(X;V1, . . . , Vn−1),

and by part (i) free of multiple zeros. By the specialization lemma (Lemma A.2,

the Galois group of gn−1(X;V1, . . . , Vn−1) is indeed a subgroup of the Galois group
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of gn(X;V1, . . . , Vn). (iv) We have seen above that g5(X) has the Galois group S5

over Q. By another application of the Lemma A.2, this implies that S5 is a subgroup

of the Galois group of g5(X;V1, V2, V3, V4, V5) over Q(V1, V2, V3, V4, V5). Given that

g5(X;V1, V2, V3, V4, V5) is of degree five in X, this implies the claim. (v) The claim

follows via induction from parts (iii) and (iv). □

It follows from the above that the equilibrium efforts of any player cannot be expressed

from the valuations vector using basic arithmetic operations and by extracting roots.

The argument for the winning probability and equilibrium payoff of any individual

contestant is now entirely analogous and, therefore, omitted.

A.6 The case of rational R

Suppose that R = p
q
, with 0 < p < q integers. Then, the first-order conditions read

x
(2p−q)/q
i − x

(p−q)/q
i Xp/q +

qX2p/q

pVi

= 0,

where X = (x
p/q
1 + . . .+ x

p/q
n )q/p. Letting yi = x

1/q
i , we obtain

y2p−q
i − yp−q

i Y p +
qY 2p

pVi

= 0, (A.6)

with Y = (yp1+ . . .+ypn)
1/p = X1/q. Plugging the explicit expression for Y into equation

(A.6) and rearranging, we arrive at the system of polynomial equations

pVi(y
p
1 + . . .+ ypi−1 + ypi+1 + . . .+ ypn)− qyq−p

i (yp1 + . . .+ ypn)
2 = 0. (A.7)

We illustrate these equations with an example.

Example A.2 Let n = 2, p = 1, and q = 2. Then, system (A.7) reads

V2y1 − 2y2(y1 + y2)
2 = 0,

V1y2 − 2y1(y1 + y2)
2 = 0.
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Following Kubler et al. (2014), one may use Mathematica to compute a parameterized

Gröbner basis, which yields

x∗
i =

√
V1V2

2(
√
V1 +

√
V2)2

· Vi,

consistent with Proposition 3.

A.7 Computer-assisted parts of the proofs

The computation of the Galois group in Example 3 has been accomplished with the

help of the Sage software tool. The tool is freely accessible as a web application

on sagecell.sagemath.org. The following code has been used to check that g1(X) is

irreducible in the field of rational numbers Q. The last line is the output produced by

the tool.

R.<X>=PolynomialRing(QQ)

(8*X^5-170*X^3-450*X^2-411*X-120).is_irreducible()

True

Similarly, the code below allows to compute the Galois group of g1(X), where again,

the last line is the Sage output.

R.<X> = PolynomialRing(QQ)

g(X) = 8*X^5-170*X^3-450*X^2-411*X-120

K.<a> = NumberField(g(X))

K.galois_group()

Galois group 5T5 (S5) with order 120
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To replicate the computer-assisted parts of our derivations, it suffices to copy any of

the above two code snippets (deleting accidental spaces at the beginning of each input

line and dropping the output line entirely) to the Sage input box and click on the

evaluate button.
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Alcalde, José and Matthias Dahm (2010) “Rent seeking and rent dissipation: A neutral-

ity result,” Journal of Public Economics, 94 (1), 1–7, 10.1016/j.jpubeco.2009.11.005.

6, 16

Baye, Michael R., Dan Kovenock, and Casper G. de Vries (1994) “The solution to

the Tullock rent-seeking game when R > 2: Mixed-strategy equilibria and mean

dissipation rates,” Public Choice, 81 (3), 363–380, 10.1007/BF01053238. 6, 16

(1996) “The all-pay auction with complete information,” Economic Theory, 8

(2), 291–305, 10.1007/BF01211819. 3

Blume, Lawrence E. and William R. Zame (1994) “The Algebraic Geometry of Perfect

and Sequential Equilibrium,” Econometrica, 62 (4), 783–794, 10.2307/2951732. 7

Chatterji, Samaresh and Ratnik Gandhi (2011) “Computing equilibria with group ac-

tions,” ACM Communications in Computer Algebra, 45 (1/2), 115–116, 10.1145/

2016567.2016583. 7

Corchón, Luis C. (1994) “Comparative statics for aggregative games the strong con-

cavity case,” Mathematical Social Sciences, 28 (3), 151–165, 10.1016/0165-4896(94)

90001-9. 3

37

http://dx.doi.org/10.1016/j.jpubeco.2009.11.005
http://dx.doi.org/10.1007/BF01053238
http://dx.doi.org/10.1007/BF01211819
http://dx.doi.org/10.2307/2951732
http://dx.doi.org/10.1145/2016567.2016583
http://dx.doi.org/10.1145/2016567.2016583
http://dx.doi.org/10.1016/0165-4896(94)90001-9
http://dx.doi.org/10.1016/0165-4896(94)90001-9


Cornes, Richard and Roger Hartley (2005) “Asymmetric contests with general tech-

nologies,” Economic Theory, 26 (4), 923–946, 10.1007/s00199-004-0566-5. 6, 14,

27

Datta, Ruchira S. (2003) “Universality of Nash Equilibria,” Mathematics of Operations

Research, 28 (3), 424–432, 10.1287/moor.28.3.424.16397. 7

Dummit, D. S. (1991) “Solving solvable quintics,” Mathematics of Computation, 57

(195), 387–401, 10.1090/S0025-5718-1991-1079014-X. 5

Edwards, Harold M. (1984) Galois Theory, New York: Springer, http://drhuang.

com/science/mathematics/book/. 4

Ewerhart, Christian (2015) “Mixed equilibria in Tullock contests,” Economic Theory,

60 (1), 59–71, 10.1007/s00199-014-0835-x. 6, 16

(2017a) “Contests with small noise and the robustness of the all-pay auction,”

Games and Economic Behavior, 105, 195–211, 10.1016/j.geb.2017.07.003. 6, 16

(2017b) “Revenue ranking of optimally biased contests: The case of two play-

ers,” Economics Letters, 157, 167–170, 10.1016/j.econlet.2017.05.012. 6, 16

Feng, Xin and Jingfeng Lu (2017) “Uniqueness of equilibrium in two-player asymmetric

Tullock contests with intermediate discriminatory power,” Economics Letters, 159,

61–64, 10.1016/j.econlet.2017.07.017. 6, 16

Gandhi, Ratnik (2011) Algebraic approach to Nash equilibria for finite normal form

games Ph.D. Thesis, Dhirubhai Ambani Institute of Information and Communication

Technology, http://drsr.daiict.ac.in//handle/123456789/314. 7

38

http://dx.doi.org/10.1007/s00199-004-0566-5
http://dx.doi.org/10.1287/moor.28.3.424.16397
http://dx.doi.org/10.1090/S0025-5718-1991-1079014-X
http://drhuang.com/science/mathematics/book/
http://drhuang.com/science/mathematics/book/
http://dx.doi.org/10.1007/s00199-014-0835-x
http://dx.doi.org/10.1016/j.geb.2017.07.003
http://dx.doi.org/10.1016/j.econlet.2017.05.012
http://dx.doi.org/10.1016/j.econlet.2017.07.017
http://drsr.daiict.ac.in//handle/123456789/314


Gandhi, Ratnik and Samaresh Chatterji (2015) “Applications of Algebra for Some

Game Theoretic Problems,” International Journal of Foundations of Computer Sci-

ence, 26 (01), 51–78, 10.1142/s0129054115500033. 7

Hardy, G.H., J.E. Littlewood, and G. Polya (1934) Inequalities : Cambridge University

Press, http://archive.org/details/in.ernet.dli.2015.278938. 29

Hillman, Arye L. and John G. Riley (1989) “Politically Contestable Rents and Trans-

fers,” Economics & Politics, 1 (1), 17–39, 10.1111/j.1468-0343.1989.tb00003.x. 6,

15

Judd, Kenneth L., Philipp Renner, and Karl Schmedders (2012) “Finding all pure-

strategy equilibria in games with continuous strategies,” Quantitative Economics, 3

(2), 289–331, 10.3982/QE165. 25

Kang, Ming-chang (2000) “Cubic Fields and Radical Extensions,” American Mathe-

matical Monthly, 107 (3), 254–256, 10.1080/00029890.2000.12005188. 13

Kobayashi, Sigeru and Hiroshi Nakagawa (1992) “Resolution of solvable quintic

equation,” Mathematica Japonica, 37, 883–886, https://cir.nii.ac.jp/crid/

1571698599899117952. 5

Konrad, Kai A. (2009) Strategy and Dynamics in Contests, London School of Eco-

nomics Perspectives in Economic Analysis, Oxford, New York: Oxford University

Press, https://doi.org/10.1093/oso/9780199549597.001.0001. 2

Kubler, Felix, Philipp Renner, and Karl Schmedders (2014) “Chapter 11 - Computing

All Solutions to Polynomial Equations in Economics,” in Schmedders, Karl and

39

http://dx.doi.org/10.1142/s0129054115500033
http://archive.org/details/in.ernet.dli.2015.278938
http://dx.doi.org/10.1111/j.1468-0343.1989.tb00003.x
http://dx.doi.org/10.3982/QE165
http://dx.doi.org/10.1080/00029890.2000.12005188
https://cir.nii.ac.jp/crid/1571698599899117952
https://cir.nii.ac.jp/crid/1571698599899117952
https://doi.org/10.1093/oso/9780199549597.001.0001


Kenneth L. Judd eds. Handbook of Computational Economics, 3 of Handbook of

Computational Economics Vol. 3, 599–652: Elsevier, 10.1016/B978-0-444-52980-0.

00011-6. 3, 5, 36

Kubler, Felix and Karl Schmedders (2010a) “Tackling Multiplicity of Equilibria with
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