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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• First spatially explicit analysis of the
field size to farm size relationship.

• Data on 3.4 M fields and 169,000 farms
representing 54% of German agricul-
tural area.

• Positive relationship confirmed across
federal states and crop types.

• Farm size reasonably well predicted in
the range of 50–7,000 ha.

• Emerging opportunities for enhancing
knowledge on farm size and its
dynamics.
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A B S T R A C T

CONTEXT: Farm size is a key indicator associated with environmental, economic, and social contexts and out-
comes of agriculture. Farm size data is typically obtained from agricultural censuses or household surveys, but
both are usually only available in infrequent time intervals and at aggregate spatial scales. In contrast, spatially
explicit and detailed data on individual fields can be accessed from cadastral information systems or agricultural
subsidy applications in some regions or can be derived from Earth observation data. Empirically exploring the
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Farming systems
Remote sensing
Land tenure

field-size-to-farm size relationship (FFR) is a lever to enhance our understanding of spatial patterns of farm sizes
by assessing field sizes. However, our currently limited empirical knowledge does not allow for the character-
ization of the FFR over large spatial extents.
OBJECTIVE: We analyze the FFR using data from the Integrated Administration and Control System (IACS) for
Germany. The IACS manages agricultural subsidy applications in the European Union; therefore, the data include
spatial information on the extent of all fields and farms for which farmers have applied for subsidies.
METHODS:We developed a Bayesian multilevel model and a machine learning model to estimate farm size based
on field size, controlling for contextual factors such as crop types, state boundaries, topography, and neigh-
borhood effects.
RESULTS AND CONCLUSIONS: We found that farm size generally increased with field size for almost all federal
states and crop type groups, but the FFR varied considerably in magnitude. Farm size predictions were accurate
for medium-sized and large farms (50–7,000 ha, representing 66% of the data) with mean absolute percentage
errors of 40–114%, but estimates for smaller farms had higher errors. To evaluate the relationship at the
landscape level, we spatially aggregated the predictions into hexagons with a diameter of 15 km. This resulted in
more accurate predictions (mean absolute percentage errors of 37%) than at the field level.
SIGNIFICANCE: Our study presents the first empirical insights into the FFR, opening future research directions
towards producing spatially explicit farm size predictions at scale. Such information is key for monitoring scale
transitions in agricultural systems, facilitating the design of timely and targeted interventions, and avoiding
undesired outcomes of such processes.

1. Introduction

Farm size - commonly defined as the total agricultural area covered
by all plots of a farm (Eurostat, 2022; Lowder et al., 2016; Samberg
et al., 2016) - is a key indicator associated with environmental, eco-
nomic, and social contexts and outcomes of agriculture. Farm size re-
lates to land and labor productivity, labor intensity, land management,
household economics, off-farm activities (Chiarella et al., 2023; Helfand
and Taylor, 2021; Liebert et al., 2022; Meyfroidt, 2017), and biodiver-
sity (Noack et al., 2022; Ricciardi et al., 2021). Many agricultural sub-
sidy schemes, such as the Common Agricultural Policy (CAP) of the
European Union (EU), include area-specific payments proportional to
farm size, leading to competitive advantages for larger farms (Pe’er
et al., 2014; Scown et al., 2020). These policies aggravate the general
trend of concentration of land ownership (Williams et al., 2023), leading
to increasing farm size (Debonne et al., 2022). While knowledge about
farm size, its spatial patterns, and its dynamics provides valuable in-
sights for better understanding the trade-offs between the economic,
social, and environmental impacts of agriculture, the global paucity of
accurate, timely, and spatially detailed farm size data represents a key
empirical blind spot, which is hampering science-based design of sus-
tainability policies in the agricultural sector.
Data on farm area size is typically obtained from agricultural cen-

suses or household surveys. Both are challenging and expensive to
collect, thus infrequently available, and rarely allow for tracking
household and farm properties over time. Self-reported farm and field
size in such data collections is subject to severe misreporting, such as a
systematic overestimation of small and underestimation of large units
(Bevis and Barrett, 2020; Carletto et al., 2013; De Groote and Traoré,
2005). Household surveys tend to underrepresent larger farms and non-
family farms and often fail to capture information about farms from
owners who reside elsewhere (Jayne et al., 2022). Besides, few censuses
or household surveys collect spatially explicit information, such as GPS
locations of fields or field boundaries. Moreover, for privacy reasons,
most datasets report farm size in aggregated form at the national level or
for subnational administrative units. Such spatially aggregated data
does not allow to assess patterns, dynamics, causes, and impacts of farm
size, and analyses at aggregate levels are prone to the ecological fallacy
(Meyfroidt, 2017).
However, many land use and land management variables correlate

with the size of farms. For instance, the presence of a particular crop
type or land management practice may help distinguish different
farming systems that correspond to different farm size categories (e.g.,
small-scale semi-subsistence farming versus commercial farming by
larger farms) (Bey et al., 2020). Similarly, field sizes (or categories

thereof) may relate to categories of actors defined by farm size (Bran-
thomme et al., 2023; Dang et al., 2019). In many high-income countries,
cadastral data or data for agricultural subsidy applications are system-
atically collected, for example, in the EU via the Integrated Adminis-
tration and Control System (IACS) (Leonhardt et al., 2023). The IACS
administers and controls farmers’ applications for agricultural subsidies,
whereby they must specify the spatial extent and location of each plot,
the crop planted on each field, as well as basic farm-level variables, such
as organic or conventional farming. The IACS data, therefore, contain
field-level information on field size and land use. A unique identifier of
the subsidy applicant allows assigning fields to farms and thus, the
calculation of farm sizes. The paying agencies of each EU country (or
each federal state in some countries) manage the subsidy applications.
The IACS data, and especially the farm identifiers, are generally not
publicly available but some countries release the IACS data without the
farm identifier. Additionally, they may be requested for scientific pur-
poses. Due to the decentralized data collection system, the IACS data
requires harmonization to be consistent across jurisdictions. Despite
these drawbacks, IACS data represent a unique data source for assessing
dynamics, patterns, and impacts of field and farm sizes. For regions
where such data is not available, recent developments in Earth obser-
vation (EO) and computer vision also present emerging opportunities to
produce spatially detailed and timely estimates of field size (Waldner
and Diakogiannis, 2020) and other spatially explicit information on land
use (Kuemmerle et al., 2013; Verburg et al., 2011).
Leveraging field size estimates for farm size estimation requires un-

derstanding the field size to farm size relationship (hereafter: FFR). The
current evidence materializes as two general observations stating (1) a
generally positive relationship between farm size and field size, where
farm size naturally puts an upper bound on the size of fields therein, and
(2) a notable regional variability and scale dependency in the relation-
ship between both measures (Levin, 2006). However, the strength and
shape of the relationship between field and farm size and the predictor
variables describing the contextual settings influencing this relationship
are unknown. Farm and field size vary across space and time, influenced
by many factors. Farm-level decisions on allocating agricultural land
into fields are path-dependent and include choices and constraints
regarding crop types, farm-level crop diversity, available labor, inputs
(e.g., fertilizer and pesticides), mechanization, livestock integration, or
irrigation. Landscape-level biophysical factors, such as soil types, slope,
water availability, climate, population density, or the quality and
availability of agricultural land shape within-farm land allocation. At
the administrative level, agricultural policies, land reforms, land prices,
accessibility, inheritance patterns (and hence culture and demography),
ownership structure, and land-use history may influence the division of
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agricultural landscapes into farms and fields of various sizes (Dannen-
berg and Kuemmerle, 2010; Sikor et al., 2009). Consequently, the FFR
can be expected to vary in space and time but remains unobserved to
date.
The paucity of farm size data and the increasing availability of IACS

data or EO-based field delineations call for assessing the opportunities
for using field size as a proxy for farm size. The overarching aim of this
study is to analyze the FFR and its variation in a setting with very good
data availability on field- and farm sizes and different predictor vari-
ables describing the contextual settings. We define farm size as the total
area covered by all farm plots. We selected Germany as our study region
due to the availability of data from the Integrated Administration and
Control System (IACS), which contains all farms and fields for five
federal states in Germany. We have three specific objectives. First, we
aim to understand the statistical relationship between farm size, field
size, and other predictor variables describing the contextual settings
using a Bayesian multilevel model. Second, we estimated farm size using
the Bayesian multilevel model and a machine learning regression model
to assess the influence of methodological choices on the quality of farm
size estimates. Third, we produced an in-depth error diagnosis to assess

which farm sizes we can (or cannot) produce estimates with acceptable
uncertainty.

2. Data & methods

The pre-processing and analysis followed the workflow represented
in Fig. 1. In total, we conducted three analyses: First, we developed a
Bayesian multilevel model to assess the statistical relationship between
farm size, field size, and additional predictors in the study region. Sec-
ond, we trained a random forest regression model (RFR) to estimate
farm size with the same predictor variables to compare the performance
of the RFRwith the Bayesianmodel. Third, we assessed the accuracy and
precision of farm size predictions obtained from both models. This
involved quantifying the uncertainties associated with the predictions
and the heteroscedasticity across farm sizes. The entire analysis is
available online at: https://github.com/clejae/field_farm_size_rel
ationship.

Fig. 1. Overview of the processing workflow. All boxes with rounded corners represent processing steps, e.g. sampling, matching or prediction, while all boxes with
sharp corners represent datasets, e.g. training or reference samples or estimates.

C. Jänicke et al.
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2.1. Field & farm data

Our study area comprises five federal states in Germany, namely
Bavaria, Brandenburg, Lower Saxony, Saxony-Anhalt, and Thuringia.
The study area covers more than 90,000 km2 of agricultural land, or
54% of the total agricultural area of Germany (Fig. 2). Bavaria and
Lower Saxony were part of the former Federal Republic of Germany
(henceforth West Germany); Brandenburg, Saxony-Anhalt, and Thur-
ingia were part of the former German Democratic Republic (henceforth
East Germany).
We used data from the Integrated Administration and Control System

(IACS) reported in EU subsidy applications for 2018. The data contains
3.4 million field delineations of all cropland and grassland fields with a
farm identifier (Table 1). Farm and field sizes and the number of farms
and fields vary considerably across the federal states, especially between
East and West Germany (Fig. 3). The average field and farm sizes in the
East German states are 8.0 ha and 225.0 ha, respectively, compared to
1.6 ha and 29.9 ha in the West German states. Our data comprises
153,041 farms in West Germany and 15,967 farms in East Germany.
We removed small landscape elements and objects that were

delimiting features, such as hedges or tree rows, as these landscape el-
ements are unlikely to be recognized as a field in a remote sensing study
aimed at deriving field boundaries from satellite imagery. Approxi-
mately 46% of the total number of fields are planted with crops and 43%
are grasslands; the remaining fields are other types of land cover or land
use, such as permanent crops, flower strips, or herbal fields. Crop fields
are on average more than twice as large as grassland fields (4.0 ha vs.
1.8 ha), and account for a larger total area (61,950 km2 cropland and
25,933 km2 grassland). Each field has a farm identifier that allows
computing the size of all farms (N = 169,203).
For each field and year, the data contain information on more than

400 crop types planted. We aggregated crop types into crop-type groups
based on similar functional types and similar average field sizes
(Table 2).
Farms can operate on fields that are located outside of the federal

state where the farm is registered. This has two effects: First, the number
of farms is inflated as the farm identifiers are not uniform across all
federal states. In Brandenburg, Saxony-Anhalt, and Thuringia the farm
identifiers are the same across state borders, so that farms can be traced

across state borders. In Bavaria and Lower-Saxony the farm identifiers
follow different principles. Thus, it is possible that farms from Bavaria
and Lower-Saxony that also have fields in one of the other states, or vice
versa, are artificially split into several farms. The second effect is that
farm sizes are underestimated in some cases. This may happen because
some fields, which belong to a farm within our study region, are in
federal states outside of our study region. Another case is that fields
within our study region could belong to farms located outside of the
study region. To assess the magnitude of this effect, we calculated the
number of farms which operate across federal states for Brandenburg,
Saxony-Anhalt, and Thuringia, while this was not possible for the West
German states. We found that 12% of farms operated in more than one
state; only accounting for the primary location of farm property would
lead to an average farm size underestimation of 13.8% (±13.3% stan-
dard deviation). These farms were mostly located in proximity to
administrative boundaries.
We hypothesized that the strength of the association between farm

size and field size increases when a farm has fewer fields, up to the
extreme case with one field per farm where farm size equals field size.
We conducted simulation experiments (see Appendix 1) with randomly
generated field and farm data to confirm this hypothesis. We found that
the positive association is indeed stronger for farms that have fewer
fields and this association approaches zero the more fields a farm has. To
avoid potential biases from this effect, we modeled farm size indepen-
dently from the size of the field under investigation by subtracting the
area of each field from associated farm size. Consequently, our outcome
variable represents the remaining farm size excluding the area of the
field of interest. Importantly, while this approach was primarily
implemented to avoid biases in the model introduced by the (unknown)
number of fields for each farm, the total farm size can be obtained by
simply adding the prediction of remaining field size and the size of the
field under study. In the cases when a farm had only one field (7,249
farms in our dataset), the model predicted a value of remaining farm size
close to zero, in line with expectations.

2.2. Predictors

We compiled a set of twelve predictors to model the FFR. The pre-
dictors were selected based on scientific literature, data exploration, or
hypothesized relationships with farm size (Table 3). Partly, the selection
was constrained by data availability. For example, data on land prices,
land management (e.g., livestock densities, irrigation, fertilizer input),
or designated markets (crop production for food, fodder, or bioenergy)
were hypothesized to have an influence on the FFR but were not
available in the sufficient spatial detail and timeliness for our analyses.
Further, the number of livestock, organic agriculture, or other farm-
related management indicators arguably can influence field size distri-
butions, but farm-level data covering all states were unavailable to us
and we hence had to exclude these variables from the analyses.
For data preparation, we first log-transformed the predictor variables

field size and average surrounding field size to reduce skewness and
improve symmetry. To facilitate model convergence and setting mean-
ingful priors, we scaled and centered all predictors including the log-
transformed ones to zero mean and unit standard deviation. We detec-
ted correlation between terrain ruggedness and surrounding field sizes
(− 0.5), which changed the direction of the effect of terrain ruggedness
(Appendix 4). We therefore assumed a confounding effect of this vari-
able pair and excluded terrain ruggedness as we considered surrounding
field size more important for estimating farm size.
We used a 25% sample from the entire dataset for training our

models. As the soil quality rating dataset had spatial gaps, a simple
random sample would have included fields with no information on soil
quality. We suspected the missing information to not be randomly
distributed. To obtain a random sample without data gaps in soil quality
we first drew a random sample that contained fields with no information
on soil quality. Then we created a new dataset with only fields that

Fig. 2. Overview map of the study area. East Germany refers to the federal
states of the former German Democratic Republic. West Germany refers to the
states of the former Federal Republic of Germany.

C. Jänicke et al.
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contained soil quality information and then used propensity score
matching (PSM) to find matches for the random sample. This allowed us
to construct a sample that was not strictly drawn randomly, but that was
very similar to the random sample, and with consistent soil quality in-
formation for each observation. For more details on the PSM, see Ap-
pendix 5.

2.3. Bayesian model description

We aimed at investigating the effect of field size and the selected
predictor variables on the magnitude and variance of farm size. To
represent the dependency of this relationship on other predictors, such
as administration and management, we allowed for additional variance
at the level of federal state and crop type. Therefore, we used a Bayesian
multilevel modelling approach, which offers two main advantages.
Firstly, it allowed us to estimate parameter uncertainty by estimating
probability density functions instead of point estimates for parameter

coefficients. Consequently, we could assess the likelihood and related
uncertainty of predicted farm sizes for every specific field size. Secondly,
it allowed us to implement a multilevel model structure, which offers
flexibility for modelling statistical phenomena that occur on different
levels, such as the farm level and higher administrative levels. Each level
has its own set of parameters, which are influenced by the estimates at
another level. This permits to capture both aggregate trends and local
variations in the relationships between predictors and the response.
The model’s overarching goal is to understand the relationship be-

tween field size and farm size while accounting for crop-specific vari-
ability and state-specific differences, as well as the field size and
proportion of agricultural area. Therefore, we modeled farm size as a
function of a lognormal distribution, with its mean value and the stan-
dard deviation being a function of our predictor variables. To capture
the variability across different crops and states, we included group-level
intercepts and slopes, as well as group-level intercepts for sigma. These
group levels are based on the combination of federal state and crop type.

Table 1
Overview of the number of fields and farms in IACS data per state. The farm numbers refer to the farms that operate in the respective state and not to the number of
farms that have their farmstead in the state.

State Region Number of fields Number of farms Average farm size [ha] Average field size [ha] Total agricultural area [km2]

Bavaria West Germany 1,950,442 105,844 30 1.6 31,653
Lower-Saxony West Germany 905,247 47,197 55 2.9 25,840
Brandenburg East Germany 165,630 6,032 225 8.0 13,300
Saxony-Anhalt East Germany 138,990 4,897 245 8.5 11,830
Thuringia East Germany 141,062 5,038 151 5.7 80,705
All West German states 2,855,689 153,041 29.9 1.6 57,493
All East German states 445,682 15,967 225.0 8.0 33,200
Total 3,382,990 169,203 54 2.6 90,836

Fig. 3. Number of farms, number of fields, mean field size (ha), and mean farm size (ha) for Bavaria, Brandenburg, Lower Saxony, Saxony-Anhalt, and Thuringia.
Data are aggregated to hexagons with a vertical and horizontal diameter of 15 km (~195 km2). Grey lines indicate federal states of Germany and thick black line
indicates the former border between West and East Germany as well as the national border of Germany.

Table 2
Crop type groups with their acronyms and a description of the included crops.

Crop type
group

Acronym Description Average field size in
study area [ha]

Average field sizes in West
German states [ha]

Average field sizes in East
German states [ha]

Maize MA All types of maize, e.g., silage maize, grain corn, or
maize for biogas product etc.

3.53 2.77 13.15

Cereals CE Summer and winter barley, rye, wheat, and triticale. 4.14 2.71 12.78
Oilseed rape OR Summer and winter rape. 6.48 3.10 16.20
Beets SU Sugar beet, fodder beet, and other beets. 5.48 4.27 17.82
Potato PO Table potatoes, seed potatoes, and starch potatoes. 3.69 3.34 9.33
Legumes LE Extensive and intensive legumes and lupins, peas,

vetches, lucernes, clover, etc.
2.48 1.69 7.10

Grasses GR Arable grasses and permanent grassland. 1.78 1.50 3.65
Other OT Other crops (e.g., herbals or flowers), permanent

crops, vegetables etc.
0.96 0.63 2.22

C. Jänicke et al.
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We conducted a model selection using leave-one-out cross-validation
and reported our results based on the best selected model. This model
included the variables field size, surrounding field size, crop type group,
federal state, and proportion of agriculture.
We used a lognormal likelihood function to model farm sizes (FS)

with a location parameter μ and a scale parameter σ (Eq. 1).

FSi ∼ Lognormal(μi, σi) (1)

The location parameter μ controls the location of the peak of the
distribution whereas a higher value for the scale parameter σ translates
to a larger spread or width of the distribution. Note that increasing
location parameter values lead to a wider spread on the outcome scale,
too. The priors for the parameters were set on the log scale while the
predictions were on the original scale (farm size in ha). The location and
the scale parameter were modeled in separate linear models described
below.
The location parameter μ was modeled with a multilevel linear

model of the predictors (Eq. 2).

μi = α + αSTATE_CropT[i] + βSTATE_CropT[i]logFieldSizei + β1 logFieldSizei

+ β2 sur fieldsizei + β3 propAg1000i
+ β4 propAg1000i*sur fieldsizei + β5 SQRAvrgi (2)

The model included a global intercept (Eq. 3) and population level
parameters (Eq. 4). We set an informed prior for the global intercept
parameter at 4.5 (Eq. 3), which roughly represents the average log farm
size in the 5 federal states.

α ∼ Normal(4.5,1) (3)

β1,…β5 ∼ Normal(0,0.5) (4)

Additionally, we allowed the intercepts and slopes of field sizes to
vary by federal state and crop type group. For the sigma parameter
reflecting the varying intercepts (Eq. 5), we set an informed prior at
Halfnormal(1, 0.5) (Eq. 6) to reflect the considerably varying farm size
between the federal states and crop type groups. The smallest farms are
in Bavaria with a log farm size of 3.4 and the largest in Thuringia with
5.6. The prior reflects these differences because it allows deviations from
the global intercept to cover both Thuringia and Bavaria. Based on data
exploration (Fig. 3), we assumed the variation of farm size between
states to be greater than between crops. The varying intercepts can be
interpreted as the deviation from the global intercept (Eq. 3).

αSTATE CropT[i] ∼ Normal
(
0, σαSTATE CropT[i]

)
(5)

σαSTATE CropT[i] ∼ Halfnormal(1,0.5) (6)

Table 3
Predictor variables for farm size with expected effects on farm size, underlying hypotheses, description of the variables, and data sources. A “+” stands for a positive
expected effect of the predictor on the company size, a “-” for a negative expected effect and a “±” means that we expect an effect that can go in either direction,
depending on the value of the predictor.

Predictor Effect on farm size Reasoning & description Data source

Field size + We assume a positive correlation between field size and (remaining) farm size,
beyond the mere mathematical fact that for any given field size, the farm to which it
belongs cannot be smaller than the size of that field (which indicates that larger
fields result in larger farms).

IACS 2018

Crop type groups
(new_IDKTYP)

± (group specific) Field sizes differ between farms with different specializations, hinting towards
different field sizes between crop types (Roschewitz et al., 2005). We assume that
different crop types are typically characterized by distinct forms of management,
levels of mechanization, and economies of scale, leading to different field size across
crops. We indeed observed a strong variation in field sizes among the different crop
type groups (Table 2) and in the relationship between field sizes and farm sizes
(Appendix 2).

IACS 2018

Federal state
(federal_st)

± (group specific) Field and farm sizes in Germany are determined by political legacies. While family
farms were strongly favored in West Germany, large agricultural cooperatives and
state farms emerged in the East Germany (Wolz et al., 2010). These differences are
still reflected in the average farm sizes today (Noack et al., 2022). Additionally,
other state-level policies could be captured by this variable. We represent this in our
model using a categorical variable indicating in which federal state the field is
located.

IACS 2018

Surrounding field sizes (surrf_mean,
surrf_std, surrf_min, surrf_max)

+ (surrf_mean,
surrf_min, surrf_max)
±

(surrf_std)

There are large variations in field sizes within the federal states. Our explorative
analysis revealed that large farms, such as those found in East Germany, also
cultivate small fields close to their large fields. For these small fields, we therefore
deduce that the size of the neighboring fields can serve as an indicator of farm size.
We considered the mean, standard deviation, minimum and maximum of the field
sizes within 1000 m distance of each field.

IACS 2018

Local proportion of agricultural area
(proportAgr)

+ Non-agricultural land uses, such as forestry and urban areas, compete with and limit
the available agricultural land in a region. We assume that increasing land-use
competition and limited availability of agricultural land constrains the presence of
large farms and fields (although contextually this may vary, as described in
Appendix 3). We considered the proportion of agricultural area within a 1000 m
radius of each field.

IACS 2018

Terrain ruggedness (TRI_avrg0,
TRI_avrg1000)

− We assume that rugged terrain (as a measure of elevation differences in a region)
limits the possibility of creating larger fields and farms. We considered the mean
terrain ruggedness for each field and within a 1000 m radius of each field.

(European Environment
Agency (EEA), 2016)

Elevation (ElevationA) − We assume that elevation influences farm and field sizes. We assume smaller sizes
with increasing elevation due to increasingly suboptimal agroclimatic conditions.
We considered the mean elevation for each field.

(European Environment
Agency (EEA), 2016)

Soil quality rating (SQRAvrg) ± Soil quality has a positive impact on farmland prices (Meissner andMusshoff, 2022),
and the best soils tend to be acquired by farms with high capital endowments. To
take advantage of economies of scale, these farms establish large fields on these
soils. Additionally, soil quality can have an indirect effect on farm size, as better soils
produce higher yields, which leads to higher profits and eventually larger farms.
However, low soil quality can also have a positive effect on the size of fields, as
larger areas of low quality are required to achieve similar overall production levels
(although contextually this may vary, as described in Appendix 3).

(BGR, 2013)
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We introduced varying slopes (Eq. 7) to allow the effect of field size
to vary by crop type and state. For instance, we suspected grassland
fields to have a different relationship with farm size compared to, e.g.,
potato fields, and that this differential effect also varies across states. We
thereby explicitly include the fact that some states have smaller farms,
and that some crops are cultivated on larger fields than others. The
interaction between the two categorical variables for the federal state
and the crop type groups yielded 40 combinations (“STATE_CropT”),
and we modeled intercepts and slopes for each of these combinations.
The scale parameter of the varying intercepts was set with a prior of
Halfnormal(0.5, 0.5) (Eq. 8). Again, the varying intercepts represent the
deviation from the population level (Eq. 4).

βSTATE CropT[i] ∼ Normal
(
0, σβSTATE CropT[i]

)
(7)

σβSTATE CropT[i] ∼ Halfnormal(0.50.5) (8)

The scale parameter σ was modeled with a varying intercept linear
model, i.e., a multilevel model (Eq. 9). We used a log link function to
ensure that sigma is positive. The varying intercept linear model allowed
us to understand the uncertainties of the farm size predictions. The scale
parameter σ is a function of field sizes, of a global intercept (Eq. 10), and
of the varying intercepts that vary by federal state and crop type groups
(Eqs. 11 & 12). To deal with heteroscedasticity in the data with
increasing field sizes, we added βσ (Eq. 13), which allows sigma to
change with increasing field sizes.

Log(σi) = ασ + αSTATE_CropT[i] + βσ logFieldSizei (9)

ασ ∼ Normal(1,0.5) (10)

ασSTATE CropT[i] ∼ Normal
(
0, σασSTATE CropT[i]

)
(11)

σασSTATE CropT[i] ∼ Halfnormal (0.5,0.5) (12)

βσ ∼ Normal( − 0.1, 0.2) (13)

2.4. Implementation

To obtain the parameter estimates, we sampled 4,000 realizations of
the posterior distribution using Markov Chain Monte Carlo with four
sampling chains running for 2,000 iterations and a warm-up period of
1,000 iterations each. Convergence was verified using the R-hat statistic
and examination of trace plots. We evaluated model fit based on prior
and posterior predictive checks, that is, predicting new hypothetical
data sampled from the posterior predictive distribution and comparing it
to a random draw of observed data (Appendix 6& Appendix 7). Further,
we determined out-of-sample predictive accuracy using the leave-one-
out expected log predictive density method with the R package loo
(Vehtari et al., 2021). We performed all modelling through the brms
package in R (Bürkner, 2018) as an interface to the Bayesian inference
engine Stan (Carpenter et al., 2017). For predicting farm size, we
sampled from the posterior distribution and calculated the median (i.e.,
the geometric mean of the lognormal distribution) for the samples.

2.5. Random forest regression model

We also calibrated a random forest regression (RFR) to compare its
farm size predictions to those of the Bayesian model. The RFR is a ma-
chine learning algorithm that operates on the principle of ensemble
learning, by constructing many decision trees. Each tree is trained
independently on a random subset of the data and provides its own
prediction. The final prediction is then determined by aggregating (e.g.,
averaging) the predictions of all individual trees. We chose the RFR, as it
is a widely used non-parametric machine learning technique that is easy
to implement and excels in handling complex relationships between

many input features and the target variable. RFR models are robust in
high dimensional feature-spaces and have very good predictive abilities
across a variety of tasks (Breiman, 2001).
For our RFR, we used the same training sample, same predictors, and

same pre-processing to compare the RFR against the Bayesian model.
Additionally, we tested if the performance of the RFR improves by
including all predictors that were excluded in the Bayesian model, for
instance because of high correlation (Appendix 4). The hyperparameters
for the RFR were chosen with a grid search on the number of trees, the
maximum depth, and the maximum variables. We used 1,000 trees, a
maximum of eight splits per tree, and six variables tried at each node.
We performed all random forest regression modelling through the scikit-
learn package in python (Pedregosa et al., 2011).

2.6. Accuracy assessment

To test the accuracy of both models, we calculated mean error (ME)
(Eq. 14), root mean squared error (RMSE) (Eq. 15), mean absolute
percentage error (MAPE) (Eq. 16) and precision (P) (Eq. 17). The ME
provides insights whether our models systematically under- or over-
estimate farm size. The RMSE represents how strongly our model esti-
mates deviate from the observed data. MAPE is a relative error,
indicating the proportion of the error relative to the true value. P is the
statistical deviation around the true values corrected for the bias and is a
measure of repeatability. A high precision means that the estimates are
internally consistent, although they might come with consistent biases.
The measures are calculated with the following formulas:

ME =
1
n
∑n

i=0
εi (14)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=0
ε2i

√

(15)

MAPE =
1
n
∑n

i=0

εi

ri
(16)

P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=0
(εi − RMSE)2

√

(17)

where, n is the number of reference samples, ri is the reference and εi

is the difference between the estimation and ri. We calculated all mea-
sures for the entire reference dataset, which included all observations
that were not used for training. To test the model performance across
farm sizes, we also stratified the reference dataset into non-equally sized
bins of farm size (0–5 ha, 5–10 ha, 10–20 ha, 20–50 ha, 50–100 ha,
100–200 ha, 200–500 ha, 500–1,000 ha, 1,000–7,000 ha) and calcu-
lated the accuracy measures per farm size bin.
To explore the performance of the farm size estimation for different

downstream applications, we further tested a spatial aggregation of the
estimated farm sizes. For this, we calculated the mean of the estimated
farm sizes for all fields within 15 km diameter hexagons. Note that this
averages farm size estimates across all fields and does not reflect the
average size of farms per hexagon, as this would require knowledge of
the ownership of fields. We included this analysis, assuming that field-
level estimation is subject to high uncertainties emerging from the
multitude of factors influencing farm size, as described above, and
therefore expecting better performance at aggregate spatial scales. We
calculated the same error metrics in this experiment to be able to
compare performance between field-level and spatially aggregated farm
size estimation.

3. Results

3.1. Explaining farm size at the population-level

We found that field size and surrounding field sizes are both
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positively associated with farm size (Fig. 4). Field size has a positive
effect of 0.43 with a confidence interval between 0.35 and 0.51
(Table 4). This means that according to our model a 1 ha field is more
likely part of a smaller farm than a 10-ha field. The effect of surrounding
field size was also positive, but weaker (0.13) and with narrower con-
fidence intervals (0.13–0.14). This means, that a 10-ha field surrounded
by substantially larger fields is more likely part of a larger farm than a
10-ha field surrounded by substantially smaller fields. The effects of
agricultural area per region and soil quality rating on farm size are
negative but close to zero. Likewise, the interaction between sur-
rounding field size and agricultural area per region has a slightly
negative but close to zero effect. The interaction suggests that a given
field with an area of, for example, 10 ha, which is surrounded by
average-size fields and a moderate amount of agricultural area, is more
likely to belong to a larger farm than a 10-ha field which is surrounded
by large fields and a high amount of agricultural area.

3.2. Heterogeneous effects by crop type groups and Federal States

We found a clear distinction between East and West German states
regarding the group specific variation from the population level inter-
cept (Fig. 5A). East German states had a similar or higher intercept than
the population level intercept, except for potatoes in Saxony-Anhalt and
Brandenburg. West German states had a lower intercept than the pop-
ulation level with no exceptions.
We found that most East German states have positive deviations from

the population level effect of field size (Fig. 5B), which translate into a
stronger effect of field size on farm size. An exception is the “Other
crops” group, for which we found slopes consistently below the popu-
lation level and close to zero when the population level effect was
included. This implies close to horizontal lines at the intercept, and
hence, no association between field and farm size for this group. For
sugar beet (except in Bavaria), cereals (except in Lower Saxony), and
potato, the effect of field size on farm size was stronger than the crop-
specific average. The effect of grassland was close to the population
level effect or below, except for Thuringia. In general, the effect of sugar
beet, potato, and cereals was stronger than for grassland and legumes.
The variability in slopes was relatively high, with slopes ranging from
negative slopes, e.g., for the “Other crops” group in Thuringia (mean
effect of about − 0.1) to slopes of about twice the value of the population
level, e.g., for potato in Brandenburg (0.95) and Thuringia (0.92). A
wider distribution of the model term, such as the sugar beet group in
Thuringia, reflects a higher uncertainty in that estimate (e.g., due to
small sample size in that group). Our model also included varying in-
tercepts for the sigma parameter of our log normal likelihood function,
for which the results can be found in Appendix 8.
The interplay between all parameters (e.g., the varying intercepts

and slopes) is difficult to discern by merely assessing individual effects.
Therefore, we used response curves stratified by the combinations of
crop types and federal states for field size while keeping all other pre-
dictors at their respective means (Fig. 6). For almost all combinations,
larger field size is associated with larger farm sizes except for the “Other
crops” group, and for grassland in Bavaria. Large potato fields frequently
belonged to large farms. For West German states, the model predicts
much smaller farm sizes than for East German states. For Bavaria, our
model predicts the smallest farms for most crop types. In Lower Saxony
field size has a stronger effect on farm size and wider prediction intervals
for all crop types. For the East German states, Thuringia has the stron-
gest effect of field size on farm size and widest prediction intervals. This
makes sense because we predict larger farms in Thuringia and the width
of the log normal distribution increases with increasing mean even
though sigma decreases with increasing field sizes (on the log scale we
would see decreasing width of the intervals). In general, the prediction
intervals are wide, indicating high uncertainties.

3.3. Error diagnoses for farm size predictions

We report size-specific performance statistics for the farm size pre-
dictions obtained from the Bayesian model and the two RFR models
(Fig. 7, Appendix 9). The comparison of the mean error (ME), root mean
squared error (RMSE), mean absolute percentage error (MAPE) and
precision (P) across bins of farm size for the Bayesian model and the two
RFRmodels (with selected predictors as in the Bayesian model, and with
all predictors) revealed detailed insights on model performance and
error distribution. We structure this section following a context-specific
definition of small (0–50 ha), medium (50–500 ha), and large farms
(500–7,000 ha).
Generally, and across all models, the size of small farms (0–50 ha)

was overestimated, particularly for the smallest farm sizes. The ME for
the Bayesian model reached 63 ha for the smallest farm size category
(0–5 ha). However, the ME decreased to 38 ha for the largest category
(20–50 ha) in this range. Logically, these moderate absolute errors
translate into excessively high relative errors for very small classes. As
such, the MAPE indicated significant discrepancies for farms of 0–5 ha,
where the model predicted farm size with a MAPE of about 4,000% (0–5
ha, Bayesian model) or about 10,000% (0–5 ha, both RFR models). Note
that this category also includes farms consisting of one field, for which
we expect the model to predict a remaining farm size close to zero.
Within the small farm sizes (0–50 ha), MAPE scores strongly decreased
with increasing farm size, reaching the lowest values for farms of 20–50
ha with 125% (Bayesian model) to about 350% (RFR models).
The model predicts medium (50–500 ha) and large farm sizes

(500–7,000 ha) reasonably well. Farms in these size classes represent
about 66% of the fields contained in the data (Appendix 9). In this
category, MAPE scores ranged from 50 to 70% (Bayesian model) and
40–114% (both RFR models). For the RFR models, MAPE scores
remained below 81% for farm sizes above 100 ha. This tendency also
translates into ME scores as low as 6 ha (Bayesian model) for farm sizes
of 50–100 ha, which represents the largest category in the test data
(287,596 fields). Similarly, a MAPE score of 50% was observed for farm
sizes of 50–100 ha for the Bayesian model. The lowest MAPE scores of
the RFR models were observed for farms of 500–1,000 ha (both 40%).
The ME were pronounced and negative for large farms (500–7000

ha), which revealed an underestimation in this category. For instance,
large negative ME scores of − 1,156 ha (RFR with all variables) and up to
− 1,401 ha (Bayesian model) were observed for the very large farms
(1,000–7,000 ha). Relative errors in the large farms, however, were
moderate with MAPE scores of 52% (500–1,000 ha) up to 68%
(1,000–7,000 ha) for the Bayesian, and 40 (500–1,000 ha) to 55%
(1,000–7,000 ha) for the RFR models.
Overall, the model uncertainties and precision (RMSE, P) were lower

for the small and medium farm sizes (Bayesian model), or only in the
large farm size categories (RFR models). RMSE and P scaled approxi-
mately with ME, indicating a relatively good performance in farm size
categories below 200 ha but increasing rapidly for larger farms.
Regarding the overall model statistics, the Bayesian model’s negative

ME of − 104 ha indicated an overall underestimation of farm sizes. The
two RFRmodels had lower absolute ME (~ − 7 ha) and thus only slightly
underestimated farm sizes. The large overall RMSE of the Bayesian
model (451 ha) and the RFR models (427 ha when using selected vari-
ables, and 423 ha, when using all variables) were comparable. The mean
absolute percentage error (MAPE) revealed that farm size estimations
were, on average, 250% off for the Bayesian model and 590% (selected
variables), or 586% (all variables) off for the RFRmodels. This trend was
mainly driven by the high MAPE scores for smaller farms, as described
above. The high P scores of 439 ha for the Bayesian model and some-
what better scores for the RFR models with 427 ha (selected variables)
and 423 ha (all variables) indicated inconsistent predictions. Note that
all aggregate scores are highly sensitive to the outliers in the tails of the
distribution, where small absolute deviations in the smallest farm size
categories strongly penalize the MAPE scores, and the large absolute

C. Jänicke et al.



Agricultural Systems 220 (2024) 104088

9

deviations in the largest farm size categories have a strong effect on ME,
RMSE, and P. Aggregate statistics thus mask the very heterogenous
performances of the models across the entire distribution of farm size
and are not necessarily suitable to judge the performance of the
approach as such.
To summarize: (i) in all models, medium (50–500 ha) and large

(500–7,000 ha) farm sizes – which represent 66% of the data - were
reasonably well predicted, depending on the model and the evaluation
metric chosen (Fig. 7, Appendix 9); (ii) predictions in the small farm size
category (0–50 ha) were inaccurate, and precision was low in the large
farm sizes (1,000–7,000 ha), which reflected in high MAPE, and high
RMSE and P values, respectively; and (iii) the RFR model incorporating
all variables yielded the best overall performance statistics, but

differences in model performance were partly marginal and other
models may outperform in specific farm size categories.
We further compared average farm size predictions with average

reference farm sizes at an aggregated spatial level for the Bayesian
model and the RFR with all variables (Fig. 8). For both models, MAPE,
RMSE, and P improved substantially with spatial aggregation, with
MAPE scores of 37% for both the Bayesian model and the RFR model.
With regards to ME, the performance decreased from − 104 ha at the
field-level to − 171.1 ha at the aggregate level for the Bayesian model,
and from − 7 ha at the field level to –35 ha at the aggregate level. The
comparison revealed that both models captured the strong differences
between the different states well, i.e., they predicted larger farm sizes for
East Germany than for West Germany. However, both models strongly

Fig. 4. Population level effect of (log) field size on farm size (left), and population level effect of surrounding field size on farm size (right). The axes are log-scaled,
with labels representing values in hectares. The curves show the mean effect (black line) and 95% credible interval (blue shade) of the posterior distribution when all
other model predictors are set to their mean value. Green shades depict density of observed data points. For the density the plane is divided into rectangles and the
number of cases in each rectangle is counted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 4
Model summary statistics. Parameters are summarized using mean (estimate) and the central 95% credible intervals. We report model summary
statistics of the population-level and group-level effects. Population level effects represent the average relationship between predictors across the
entire population (all crop type groups and all federal states), whereas group-level effects capture the variation that is specific to each group or
cluster in the data. The group level effects describe the variation between groups, with higher values indicating more variation between groups. The
varying slopes refer to the deviation from the population level effect of field size on farm size given federal state and crop type group.

Population-level Effects Estimates CI (95%)

Intercept (Eq. 3) 4.83 4.60–5.04
Sigma intercept (Eq.10) 0.24 0.17–0.30
Field size (Eq. 4) 0.43 0.35–0.51
Surrounding field size (Eq. 4) 0.13 0.13–0.14
Agricultural area per region (Eq. 4) − 0.04 − 0.04 to − 0.03
Soil quality rating (Eq. 4) − 0.03 -0.03 – − 0.03
Interaction: Surrounding field size - agricultural area per region (Eq. 4) − 0.02 − 0.03 to − 0.02
Sigma field size (Eq. 13) − 0.13 − 0.13 to − 0.13

Group-level Effects Estimates CI (95%)

Varying slopes (Eq.8) 0.25 0.25–0.32
Varying intercepts (Eq. 6) 0.69 0.55–0.85
Varying intercepts sigma (Eq. 12) 0.21 0.17–0.26
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Fig. 5. A: Varying intercepts of the multilevel model for the location parameter mu. Values on the x-axis represent the group level effect added to the population level
intercept. B: Varying slopes of log field size for the multilevel model. The x-axis shows the group-level slopes added to the population level effect. The colors represent
crop type groups, black lines represent East German states and red dotted lines represent West German states. Vertical red lines indicate population level effect. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. A: Response curves for field size stratified by crop types for Bavaria and Lower Saxony. All other predictor variables are kept at their mean. We calculated the
median posterior estimate and the posterior prediction intervals comprising both parameter uncertainty and predictive uncertainty. B: Response curves for field size
stratified by crop types for Brandenburg and Saxony-Anhalt, and Thuringia. All other predictor variables are kept at their mean. We calculated the median posterior
estimate and the posterior prediction intervals comprising both parameter uncertainty and predictive uncertainty. The axes are log-scaled, with labels representing
values in hectares.
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underestimated mean farm sizes above a certain threshold, which was
approximately 700 ha for the Bayesian model and 1,000 ha for the RFR.
As a result, spatial outliers of very large farms were not captured pre-
cisely in our predictions, particularly in the East German federal states.
In the West German federal states, the RFR captured the intra-state
variability better, e.g., it predicted the increasing farm sizes along the
West-East gradient in Lower Saxony. Nevertheless, the exact locations of
the spatial outliers were also incorrectly predicted by the RFR, which
emphasizes that our models capture the general tendencies of farm size
patterns, but not the local spatial variations.

4. Discussion

We analyzed the field size to farm size relationship (FFR) and its
variation under different contextual settings in Germany. We modeled
farm size based on field size and included variables on field (e.g., soil
quality), administration (e.g., state), and site characteristics (e.g., pro-
portion of agricultural land in a 1,000 m buffer). Our research objectives
were motivated by the fact that spatially explicit knowledge about farm
sizes is lacking for most regions, while information about field size can
be derived from satellite imagery globally. Therefore, we constructed a
Bayesian multilevel model and Random Forest Regression models to
evaluate how effectively unknown farm sizes can be estimated based on
readily available and spatially explicit data.

Fig. 7. ME, RMSE, MAPE and P for predictions by a) the Bayesian model, b) the random forest regression with the same observations and variables for training as the
Bayesian model and, c) the random forest regression with the same observations but all available variables for training. Validation measurements are given across
farm size categories (line plot) and across all observations (annotation). Bar plots indicate the number of fields per farm size category. A table with the exact values of
all accuracy measures can be found in Appendix 9 and a table with summary statistics stratified by the farm size classes can be found in Appendix 10.
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4.1. Understanding the FFR

Our results support the commonly assumed positive relationship
between field size and farm size. Farms generally aim to create fields
that match farm-level access to labor and machinery, which often means
that field sizes increase along with capitalization and mechanization of
farming. Larger consolidated fields can increase profitability and effi-
ciency by benefiting from economies of scale (Clough et al., 2020;
Heinrichs et al., 2021; Latruffe and Piet, 2014) due to optimized use of
machinery. Given the limited financial resources of smaller farms, the
possibilities of creating and managing large fields may thus be limited.
We suspect that a mutual causation might occur. Farms with larger fields
may have an economic advantage and thus be able to increase in size,
and conversely, farms of growing sizes strive for consolidating larger
fields to be able to benefit from economies of scale. Further, larger farms
would focus more on specific field crops (Weigel et al., 2018), for which
economies of scale can be achieved, which likely leads to larger field
sizes. Our results suggest that this is especially the case for sugar beet
and potato as large fields with these crops more likely belong to larger
farms than other fields with a similar size but different crop.
However, our results underline the multifactorial and often complex

nature of the FFR. In East Germany, for instance, the relationship be-
tween farm and field size is stronger than in West Germany, and it is
weakest in Bavaria, where farms and fields are smallest. The observed
difference between East and West Germany is a political legacy, as in
former times, the government of the former German Democratic

Republic implemented land consolidation programs, while western
Germany promoted smaller family-owned farms (Noack et al., 2022).
Our findings highlight that the implementation of territorial policies
likely has a strong effect on the FFR, to a degree that outweighs within-
state effects related to the biophysical context of agricultural land, e.g.
soil quality, or landscape configurations, e.g. agricultural area per re-
gion or surrounding field sizes.
Furthermore, we found that the FFR varied considerably between

crop type groups. For instance, our model suggested that a 100-ha potato
field in Thuringia is more likely to belong to a larger farm than a 100-ha
maize field. This may suggest that large potato fields are economically
rather viable for large farms, while large maize fields can be managed by
smaller farms, too. For many crop groups (cereals, grassland, legumes,
maize, potatoes, and sugar beet), the FFR in East Germany was stronger
than in West Germany. Only for rapeseed, the relationship was stronger
in West German, as compared to East German states. In addition, for the
crop type group “other”, we observed no relationship between field size
and farm size, and wide predictions intervals for smaller field sizes. This
means that for this group, field sizes do not necessarily increase with
farm sizes, and that both small or large farms may operate crops con-
tained in the group “other” on small fields. This is likely because the crop
type group consists of very diverse crops. On the one hand, it includes
labor-intensive crops, such as vegetables, which are more difficult to
mechanize and mostly grown by smaller farms. (Joshi et al., 2006;
Weigel et al., 2018; Wolz, 2013). On the other hand, this crop type group
includes permanent crops, for which we find very large fields in our

Fig. 8. Model results spatially aggregated to hexagons with a vertical and a horizontal diameter of 15 km (~195 km2) for the a) Bayesian model (top row) and b) the
random forest regression with the same observations but all available variables for training (bottom row). The aggregated values in the hexagons represent the mean
reference farm size, mean predicted farm size, and mean error values across all fields that fall into the hexagon. The columns show observed farm size [ha], predicted
farm size [ha], prediction errors [ha] and scatterplots of reference farm sizes vs. predicted farm sizes with ME, RMSE, MAPE and P. The green scale represents the
range of farm sizes in West Germany, while the blue scale represents the range of farm size in East Germany. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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study area. Overall, the FFR is thus dependent not only on crop types,
but also the context in which a particular crop is grown.
As hypothesized, the size of surrounding fields was important in

predicting farm size. Large fields surrounded by other large fields likely
belong to a large farm. In contrast, a large field surrounded by small
fields is likely part of a smaller farm. The very small effect of soil quality
on farm size was unexpected. However, as we only included soil quality
on the population level, one explanation is that multiple heterogeneous
effects cancel each other out. These could be that best soils tend to be
acquired by larger farms with high capital endowments. On the other
hand, larger areas of low-quality soil are required to achieve similar
production levels, which might lead to an association of low-quality soil
and large farms. The agricultural area per region has a small negative
effect on farm size. Multiple co-existing and context-dependent hy-
potheses support heterogeneous effects that could - in sum - cancel each
other. Regions with abundant agricultural lands would typically provide
various forms of agglomeration economies to farmers (such as higher
density of services, skilled labor, etc.), potentially allowing farms to be
more competitive and consolidate over time. Conversely, prime agri-
cultural lands, sustaining higher yields, may have been leading over
time to higher population densities, which in turn may result in land-
scapes occupied by many small farms (Ellis, 2021).

4.2. Estimating farm size

We tested a Bayesian model and RFR to predict farm size. Our models
showed broad predictive power for the bulk of farm size categories but
revealed a high variability in the FFR and the associated predictive
uncertainties for the smallest and largest farm size categories. On the
one hand, the size of very small farms in our data is often overpredicted.
This could arise from the fact that although large farms tend to have
larger fields, they also cultivate fields that are just as small as those
found on small farms, leading to higher uncertainty for predicting farm
size for small fields. On the other hand, the sizes of large farms are
underpredicted. Our results imply that farm size increases with field
sizes, but when field size approaches the upper limit of a manageable
land unit, the relationship between field and farm size fades. Empiri-
cally, our aggregated predictions at the 15 km hexagon level revealed
that this is the case when average farm size is larger than 700–1,000 ha
(compare scatterplots of Fig. 8). Although we observed high un-
certainties at both ends of the farm size gradient, we find that for
medium-sized (50–500 ha) and large farms (500–7,000 ha), which make
up the bulk of all farms (66%), the uncertainties are reasonably low with
MAPE scores of 50–70% (Bayesian model) or 40–114% (RFR models).
The lower performance of the models for the smallest and (MAPE)
somewhat also the largest farm sizes (RMSE, P) could partly be due to a
lower sample size for these farm classes compared to the medium range.
Analyzing the FFR across heterogeneous geographical contexts,
including, for instance, smallholder dominated regions, might shed light
on this aspect.
For the Bayesian model we assumed linear relationships between

explanatory variables, while the RFR can capture non-linear relation-
ships. The comparison of the models revealed that overall, the RFR
performs slightly better in predicting farm size (based on ME and RMSE,
but at the expense of severe overpredictions on the smallest farm size
categories), especially when we included variables that had to be
excluded from the Bayesian model due to multicollinearity. The better
performance of the RFRmight indicate that some of the relationships are
nonlinear. Importantly, although the RFR performed better, predictions
also came with high errors and moderate accuracy (Fig. 7).
The spatial patterns of the predictions displayed smooth gradients,

which failed to capture hot spots of very high or low farm sizes. Spatially
aggregating farm size predictions improved the accuracy, with overall
MAPE scores of 37% for both models, as the influence of local outliers
decreases. The poor performance in capturing positive outliers of farm
size likely relates to the fact that field sizes have a natural size limit at a

certain threshold (as discussed above), which may also explain why in
some cases, the prediction of large farm sizes was spatially close to
observed farm sizes, but not precisely matching, as for instance observed
in the RFR results in southern Bavaria (Fig. 7).

4.3. Missing variables and limitations

We used federal states to account for differences in policies and
historical backgrounds but likely missed out on important information,
which may play out below the level of federal states. For example, the
presence of land consolidation programs used to consolidate ownership
patterns may impact field sizes positively (Sklenicka et al., 2009). The
existence and the success of consolidation programs might vary strongly
between and within the federal states. Further, succession rules and
historic developments, such as land expropriations and restitutions, can
differ strongly between regions, which still influences ownership pat-
terns today (Gatterer et al., 2024; Jänicke and Müller, 2024). Therefore,
including spatially more detailed information on such processes might
explain more of the local variations that we were not able to capture.
Although we incorporated information on the crop type groups

cultivated per field, this variable only captures a snapshot in time, as
farmers plant different crops over several years. Therefore, the response
of field size per crop type might also change over time. Using a dataset
that spans multiple years and potentially includes information on crop
sequences (Jänicke et al., 2022) could help to mitigate this uncertainty.
However, farmers are unlikely to cultivate a given crop in a field that is
(from a management perspective) too small or too large.
Additionally, we could not include information on farm specializa-

tion or total economic farm size, as we used field sizes to predict farm
sizes and not vice versa. For example, there is evidence showing that
organic farms have significantly smaller fields than conventional farms
(Norton et al., 2009). Further, Levin (2006) hypothesized that there
might be a difference between part-time and full-time farmers, as the
latter are more interested in production maximization, and thus more
likely to increase the size of their fields. These variables are likely to
carry additional explanatory power for the FFR, however, we could not
include this information given the setup of our analysis. Studying the
reverse relationship, i.e., explaining field sizes with farm sizes could
allow including this information and could thereby provide additional
insights.
Adding other contextual variables such as on climate could help to

improve the model further for larger and climatically more heteroge-
neous study areas. Further, Levin (2006) hypothesized that the influence
of recreational, scenic, and environmental interests in areas with a large
urban population explains lower field sizes and higher densities of field
divides and small biotopes. Deininger and Byerlee (2012) also high-
lighted several key factors driving large fields and farms related to their
precise location, such as availability of infrastructure and technology,
which could be tested in the future.
Lastly, our investigation of the field size to farm size relationship

builds on the assumption that field size data is abundant. We had the
opportunity to explore the FFR in unprecedented conditions due to the
availability of IACS data. We argue that in the more common setting
where similar data is not available, field sizes could be estimated from
satellite imagery. Recent developments in EO and computer vision
present emerging opportunities to produce spatially detailed and timely
field size estimates across large areas (Waldner and Diakogiannis, 2020).
EO-based field delineations are Essential Agricultural Variables (EAV)
that facilitate monitoring the progress towards the Sustainable Devel-
opment Goals (SDG) (Whitcraft et al., 2019), as they are prerequisites for
field-level assessments of productivity and land management (Lobell
et al., 2020). EO-based field delineation has nearly reached operational
status in consolidated landscapes with large fields (Waldner et al.,
2021). Data bottlenecks continue to challenge field delineation in
smallholder systems in low- and middle-income countries (Nakalembe
and Kerner, 2023; Persello et al., 2019; Wang et al., 2022), but
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pioneering national scale datasets of individual fields are emerging
(Estes et al., 2022). The continued development of satellite-based field
size estimates and land use indicators opens new opportunities to
enhance our knowledge about farm size distributions for large regions.
However, EO-based field delineation is often geometrically imperfect
(Tetteh et al., 2023), and the resulting field size estimates are subject to
additional uncertainty that arise, for example, when the same crop type
is planted on two neighboring fields or when trees are part of the
farming system. We highlight that in-depth error diagnosis of EO-based
field size estimates is needed to evaluate the suitability of field de-
lineations for the respective downstream applications (Rufin et al.,
2023; Wang et al., 2022). While this was beyond the scope of our study,
we encourage further research on how to account for such uncertainties.

4.4. Policy implications

The findings of the study on the relationship between field size and
farm size (FFR) in Germany, leveraging Bayesian multilevel and ma-
chine learning regression models, carry significant implications for both
policy and practice in the agricultural sector. Firstly, the ability to es-
timate farm sizes from field size and other readily available predictors
marks a substantial advancement in agricultural data analysis, although
uncertainties for very small and large farms remain high. Our approach
can be used for a more nuanced monitoring of farm dynamics, enabling
policymakers to design interventions that are better tailored to the needs
of diverse agricultural systems in circumstances where farm size data are
not available.
For policy development, our analysis highlights the potential of

integrating Earth observation data into agricultural planning and
monitoring frameworks. Better knowing the FFR and its heterogeneity
can help to target policies, acknowledging that environmental impacts
are more directly linked to field sizes (such as landscape heterogeneity,
edges, and mosaics; Sirami et al., 2019; Tscharntke et al., 2021; Wese-
meyer et al., 2023), while socio-economic impacts are more strongly
related to farm size (Noack and Larsen, 2019). For example, in-
terventions aiming at sustainable land use and optimizing farm pro-
ductivity could be adjusted according to the specific patterns of farm
sizes within regions. This approach would ensure that policies are not
only more targeted but also more responsive to the spatial and temporal
dynamics of farm sizes.
Our study was situated in a uniquely data-rich environment which

facilitated the exploration of statistical relationships based on large
amounts of data. The relevance of our findings underpins the added
value that can result from a public release of the European IACS data, or
similar datasets around the globe. Yet unfortunately, such datasets are
scarce in other world regions. Consequently, further establishing robust
statistical relationships between field size, contextual predictor vari-
ables, and farm size would allow for broader monitoring capabilities in
these regions. Advancing our understanding of the FFR opens new
pathways for complementing traditional farm surveys and censuses,
which are often limited by infrequent updates and reporting for aggre-
gate spatial units. By incorporating spatially explicit data derived from
Earth observation, agricultural statistics could be enriched, offering a
more detailed and up-to-date picture of agricultural landscapes. This
could enhance the design and implementation of agricultural policies,
ensuring they are grounded in the current realities of farm management
and land use.

5. Conclusion

This study presents the first empirical analysis of the field size to
farm size relationship (FFR) and its variation in a data-rich setting in
Germany. Our work yielded four key insights. First, we found that farm
size increases with field size, but predictions of farm size are associated
with high uncertainty and heteroscedasticity. The relationship between
farm and field size is stronger and the predictions were more accurate for

medium and large farms in the range of 50–7,000 ha, which represent
the bulk of the farms in the study region. Second, predictions tended to
be more accurate when aggregated to larger regions, e.g., for landscape
units. Third, no clear relationship between field and farm sizes exists for
some crop type groups, such as vegetables or flowers. Fourth, machine
learning models have better overall performance than the Bayesian
model for predicting farm sizes, while the Bayesian model is more
explanatory and allows estimating prediction uncertainty. In summary,
we show that field sizes and farm sizes are indeed related, but more
research is needed to assess the transferability of our results beyond the
context of Germany. Also, a deeper understanding or theory about how
and why larger fields are associated with larger farms is needed.
Our study provides a valuable foundation for developing more

informed and effective agricultural policies. By leveraging spatially
explicit data and advanced modelling techniques, policymakers can
foster more sustainable, productive, and equitable agricultural systems.
The approach outlined in the study offers a promising direction for
future research and policy development, emphasizing the need for
continuous innovation in agricultural data analysis and policy design.
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